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Abstract
The non-Hermitian skin effect (NHSE) is a well-known phenomenon in open topological systems
that causes a large number of eigenstates to become localized at the boundary. Althoughmany aspects
of its theory have been investigated in linear systems, this phenomenon remains novel in nonlinear
models. In thefirst step of this paper, we look at the conditions for the presence of quasi-skinmodes in
a semi-infinite, one-dimensional, nonlinear, nonreciprocal lattice. In the following phase, we explore
the survival time of the quasi-skinmode in afinite nonlinear lattice with open edges.We study the
dependency of the survival time on the system’s parameters and demonstrate how the nonreciprocity
of the system affects the survival time. This study introduces amethod for achieving a stable localized
state in a nonlinear finite lattice.

1. Introduction

In recent years, there has been a lot of interest in a novel formof topological tight-binding systemswith active
gain and loss or nonreciprocal couplings [1–11]. The so-called non-Hermitian systems introduced unique
physics and phenomenawith applications in awide range of physical realms.One of the prominent phenomena
in the non-Hermitian topologicalmodels absent in theHermitian one is the skin effect [12–18]where
eigenstates of a lattice with open boundaries exhibit localized behaviors leading to failure of the bulk-boundary
correspondence due to such a nonlocal change of the eigenstates. Themain characteristic in non-Hermitian
models that leads to a skin state is non-reciprocity, where the amplitudes of the right-going and left-going
couplings differ. Recently, another intriguing non-Hermitian phenomenon has been introduced such that a
substantial portion of loss occurs at the systemboundary known as non-Hermitian edge burst [19].

Moreover, nonlinearity could play an important role in different topological platforms [20], including
mechanical [21, 22], photonic [23–27], electric circuit [28], and resonator [29]models. Hence, one can
investigate non-Hermitian extensions of suchmodels to discover novel phenomena such as nonlinear skin
effect.

A nonlinear extension of the skin effect has been studied both from stationary and dynamic viewpoints. In
[30], a stationary skinmode of a nonlinear non-Hermitian systemwith unidirectional coupling is studied under
open boundary conditions (OBCs) and semi-infinite boundary conditions (SIBCs). Themain characteristic that
rises fromnonlinearity is the emergence of a fractal spectrum in addition to the continuumone, where the
localizedmode happens in the continuous spectrum. Indeed, the fractal structure for a nonlinear systemoccurs
while getting frequency distribution for the semi-infinite lattice with solutions that are stable for the initial
amplitude value.Onemethod tofind such stable stationary solutions for afinite but long lattice is the irritation
method, which involves slightly varying initial amplitude and frequency until the right open boundary condition
is satisfied. This leads to a fractal band structure.

The dynamics of the non-Hermitian skin effect and topological trap-skin phase have been explored in
[31, 32] bymaking use of the quenchmethod. The trap-skin state is formed in the strong nonlinearity regime
where the pulse is trapped at the initial site coincident with the skin state. The condition on the existence of
topological edge solitons is examined in a nonlinear Su-Schrieffer-Heeger (SSH)model with gain and loss using
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an analytic technique [33]. Recently, in aweak nonlinear regime, the dynamics of non-Hermitian skinmode has
been investigated in nonlinearHatano-Nelsonmodel [34].

In this paper, we look at quasi-skinmodes and investigate the time intervals across which thesemodes can
maintain their initial profile in a truncated lattice. This time interval is referred to as survival time. The quasi-
skinmodes are the stationary solutions of the nonlinear Schrödinger equation under semi-infinite boundary
conditions, assuming a lattice with a boundary on the left but no boundary on the right. Indeed quasi-skin
modes are a class of solutions among an extensive number of nonlinear solutions localized at the left edge and
decreasemonotonically by increasing the site number of the lattice. These solutions, in general, do notmeet
OBCs.However, for a large enough system, one can apply these solutions to approximately satisfyOBCs up to a
survival time.

In other words, if afinite lattice is initially preparedwith the skinmode of a semi-infinite lattice, that state
will retain its spatial formuntil a survival time has passed. The linear version of the quasi-skinmodes has been
studied recently in [35], where the survival time can bemanipulated by changing the coupling at the end of the
lattice.

Here, in thefirst step, we explore a condition on the system’s parameters leading to the localizedmode in a
nonlinear nonreciprocal semi-infinite lattice. By satisfying this condition, one can obtain class of quasi-skin
solutions.We then investigate the dynamics of thesemodes in a finite truncated system andfind their survival
time.We demonstrate how the system’s parameters influence the survival time of the quasi-skinmode. For
example, the strenght of nonreciprocity canmagnify the influence of nonlinearity inmaking the quasi-skin
mode unstable. On the other side, enlarging the system can result in a longer survival time for the quasi-skin
mode. This study can open a pathway for studying stable non-Hermitian skinmodes, which has the potential for
application in topological laser [36].

2.Model

Weconsider a one-dimensional non-Hermitian tight-bindingmodel described by the following discrete
nonlinear Schrödinger equation

∣ ∣ ( )i
d

dt
g 0, 1n

R n L n n n1 1
2k k

Y
+ Y + Y + Y Y =+ -

where n= 1, 2,L ,N indexes the lattice sites,Ψn is the complex-valued field amplitude at the site n as shown in
figure 1 (inset). Here,κR andκL are the forward and backward coupling amplitudes. One can parametrize the
coupling amplitudes such that

( ) ( ) ( )1 , 1 , 2R Lk k l k k l= + = -

where 0� λ� 1 is the nonreciprocity parameter. The forward and backward couplings are nonreciprocal for
λ≠ 0, suggesting an asymmetric transport pattern. This is referred to as the non-Hermitian skin effect (NHSE)

Figure 1.The stationary solution of (3) for SIBCs. In these diagrams, we takeκ = 1,λ = 0.5, |ψ1| = 1, and g = 2.1. Given these
parameters, the nonlinear Schrödinger equation admits skinmode for (0.1 < ω < 2).We show that the skin solution corresponds to
the frequencies near the lower bound (blue line) and upper bounds (red line). Beyond this range, there is no localized state that
decreasesmonotonically to zero (dashed blue line). In our numericmethod to find such solutions, the initial condition is generally
given, and the values of a sequence are iteratively computed based on a given recurrence relation (nonlinear Schrodinger equation)
and initial conditions. However, among the solutions that are found using the iterative approach, we are particularly interested in
stationary solutions that are stable under perturbation.
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in the linearmodels, where all eigenstates are collected toward the left boundary under theOBCs. In an extreme
case,λ= 1, the forward coupling is turned off, and the coupling becomes unidirectional.

In this study, we assume a general Kerr-type (self-interaction)nonlinearity with strength g> 0 applicable to
numerous physical systems. Themethodology and approachwe used for positive-valued nonlinear strength can
be directly extended to negative-valued nonlinear strength.We focused primarily on the positive case for clarity
and brevity but acknowledged that our approach remains valid for negative values.

The existence of nonlinear skinmodes for the unidirectional couplingwas explored in both open and semi-
infinite boundary conditions [30]. Here, we provide a condition for the existence of nonlinear quasi-skinmodes
forλ≠ 1 and investigate their time evolutions in an open system.

2.1. A nonlinear quasi-skinmode
Weare looking for the stationary solutionswhere the amplitude of the complex-valued field is defined by
Ψn= e iω tψnwithω being frequencies. There exist eigenstates with complex-valued eigenvalues,making the
nonlinear term time-dependant, here in this letter, we restrict ourselves to the real-valued frequency w Î .
Then, we lead to the following set of nonlinear equations

∣ ∣ ( )g 0. 3n R n L n n n1 1
2wy k y k y y y- - - =+ -

To solve this problem, one can use either the SIBCs (ψ0= ψ∞= 0) or theOBCs (ψ0= ψN+1= 0). In the linear
regime, skinmodes can be derived analytically underOBCs, but in the nonlinear case, this is not practicable
since the total number of solutions grows exponentially with the lattice size [30]. In this paper, we take another
approach to investigate nonlinear skinmodes underOBCs. In this approach, instead offinding a nonlinear skin
modes for a truncated system (open boundary condition), which is not practical analytically and even
numerically for large systems.We focus on the class of nonlinear skinmode under SIBCswhich almost satisfy
theOBCs.We called thesemodes quasi-skin. It should be emphasized that eachOBCsmode is a SIBCsmode,
although the reverse is not necessarily true unless the system is large enough.However, we show that the
solutions of equation (3) under SIBCs (quasi-skinmodes) are still applicable in an open system. Indeed, quasi-
skinmodes can keep their spatial structure in the open lattice up to a survival period, τ.We examine how system
parameters impact this survival time in the following steps.

For the semi-infinite lattice, numerical solutions of the nonlinear equation (3) can be found iteratively. In
thismethod, starting from arbitrary valuesψ1 andω, the solutions,ψn, can be given as an n-th termof a sequence
of relation (3)wherewe demand thatψn→ 0when n→∞ . Due to the nonlinear nature of the problem, the
solutions obtained by the recursionmethod are potentially unstable since an arbitrarily small change to initial
valuesψ1 andω causes enormous changes in the sequences [30].We are interested in stationary solutions that are
stable against perturbation among those found using the iterativemethod. In other words, for certain values of
ψ1 andω, we are looking for a class of solutionswith a particular frequency domain inwhich thefield amplitudes
remain bounded and eventually converge to zero. From a technical perspective, they correspond to those
solutions of (3)whose absolute values decreasemonotonically such that |ψn+1|< |ψn|, which guarantees the
SIBCs. These solutions are localized at the left edge. Applying this condition leads to
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in light of the reverse triangle inequality, |a− b|� ||a|− |b||, the above inequality leads to
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from this inquality, we get
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One can go one step forward to determine the upper and lower bounds ofω by considering that for a localized
mode, |ψn−1/ψn|� 1 as n→∞ . Then, the relation (4) is satisfied if

( ∣ ∣ ) ( )g2 2 , 71
2k y w k- -  

where the parameterλ is canceled out in both upper and lower limits, whichmakes them independent of the
nonreciprocity parameter. In order to implement skinmode solutions, it is necessary to have a non-zero
nonreciprocity parameter. Nevertheless, the fact that is not present in equation (6) suggests that it does not
define the possible range for these solutions.

Relation 7 defines a range ofω such that equation (3) admits stationary solutions localized at the left edge.
Modeswithω> 2κ orω< g|ψ1|

2− 2κ are not considered part of the skinmode category. This is because,
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instead of increasing, thesemodes remain constant for large values of n or their amplitude increases significantly.
It reveals that for afixed value,ψ1, frequencies of such skinmodes are determined by the nonlinear coefficient g
and the coupling strengthκ.

One canfind another class of solutions by assuming that |ψn| increases for a few sites and then decreases
monotonically. This happens specifically when the lower bound is positive (e.g. g|ψ1|

2> 2κ), then, for a smallλ,
the lower bound of relation 7 fails to provide a condition for having skinmode. To include this class of skin
mode, we need to extend the lower bound of (7) such that

( {∣ ∣ }) ( ) ( )g2 max . 8n
2k y w g- - +

Wedemonstrate the density of four quasi-skinmodes corresponding to various frequencies infigure 1. This
diagram shows that forω> 2 (dashed blue line), which corresponds to those frequencies above the upper bound
in equation (7), the skinmode disappears.We observe that for the positive lower bound, there are solutions in
which thewave amplitude |ψn| increases for a few sites beforemonotonically decreasing.We plot one of these
solutions (blue line) infigure 1. In this case, for the lower bound, the relation (8)must be considered. These
modifications, however, do not give sufficient criteria for smallλ.We found that the solution blows up at
λ< 0.5 for a given value of the diagram (1). If we reduce the nonlinearity strength of the system, such that
g|ψ1|

2< 2κ, the blow-up solutions disappear. In the next section, we investigate the dynamics of this solution in
an open finite lattice.

3. Stability of quasi-skinmode in afinite lattice

We studied the existence of skinmodes for a semi-infinite lattice in the previous section. In general, under
SIBCs, these stationary solutions do not fulfill OBCs.Nonetheless, up to a survival time, they can be employed as
quasi-skin solutions for afinite lattice withOBCs. This section’s goal is to compute this survival time and study
its relationship to systemparameters. Indeed, we numerically find the time evolution of a skinmode in a
truncated finite lattice by considering the quasi-skinmode fromprevious section as an initial condition. To
analyze the stability of the nonlinear solutions and to reveal amore quantitative structure of the amplitude, we
define the site-dependence time average Sn over a time span fromT0 toT0+ΔT given by

( ) ∣ ( )∣ ( )S T
T

t dt
1

, 9n
T

T T

n
2

0

0

ò yD =
D

+D

whereT0 is our starting point andΔT is the time interval over whichwewish to investigate the stability of the
wave function. This function provides ameasurement for observing the evolution of nonlinear quasi-skinmode
in an intervalΔT [31]. Indeed, for a stable quasimode, the integrand is almost constant in time (i.e.
ψn(t)≈ ψn(0) for t ä [T0,T0+ΔT]), then the function Sn coincides with the quasimode at initial timeT0.

Here, we consider two quasi-skinmodes with frequenciesω= 1.95 andω= 0.49, which are respectively
close to the lower and upper bound in relation 7. These two solutions are depicted by the blue and red lines in
figure 1. Infigures 2, we plot the time average Sn and the time evolution of both solutions. The nonlinear skin
mode begins deviating from the initial profile near the right edge for the localizedmodewith a frequency close to
the upper bound.On the other side, the skinmode ismore stable for the frequency chosen from the lower
bound.

In our numerical analysis, we observe that the strength of nonlinearity has no effect on the survival time τ of
quasi-skinmodes. Inmore detail, the nonlinear parameter defines the frequency range inwhich an initial quasi
skin solution exists. As nonlinearity increases, the quasi-skinmode becomesmore localized at the left edge.
However, it does not affect this solution’s survival time in afinite lattice under open boundary conditions
figure 3(a). Interestingly, this is not the case for the nonreciprocity parameterλ, which impacts survival time. As
previously stated, with the semi-infinite boundary conditions, this parameter does not directly define the
possible frequency range for quasi-skinmode.However, the system’s dynamics are sensitive to nonreciprocity’s
strength. To show this, we study the dynamics of a quasi-skinmodewithω= 1.95 (red line infigures 1) in a
different range of nonreciprocity.We choose two distinct values forλ, one for theweak nonreciprocity
(λ= 0.15) and the other representing the strong nonreciprocity (λ= 0.99). In order to analyze the relation
between survival time τ and the nonreciprocity parameter, we are looking at the relative site-dependant time
average given by ¯ ≔ ∣ ( )∣S S 0n n ny . This parametermeasures stability by ensuring that the relative time average
S̄n is one for a stable quasi-skinmodewithin the time intervalΔT. Alternatively, onemay define the survival time
by considering both an upper and lower bound of S̄n. For example, the survival time is an interval inwhich the
value of S̄n falls within the range of [1− ò, 1+ ò], where ò is a small parameter. Infigure 4, we plot S̄n in the time
intervalΔT= 25 for two different values of nonreciprocity. The graphs show that in the case of weak
nonreciprocityλ= 0.15, the relative time average remains constant for all lattice sites throughout the time
intervalΔT= 25, proving the stability of the nonlinear quasi-skinmode during this period. On the other side, in
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the almost unidirectional lattice (λ= 0.99), the profile of the initial quasi-skinmode is distorted near the right
edge in the same time interval.We performed the same numeric analysis for the skin solutionwithω= 0.49 and
found the same effect of nonreciprocity parameterλ on the survival time. This indicates that large
nonreciprocity amplifies the effect of nonlinearity inmaking the quasi-skinmode unstable, while the initial

Figure 2.Diagrams (a), (c) display time average Sn of the amplitude defined by (9) forω = 1.95 (left) andω = 0.49 (right). The yellow
line and dashed black line represent different average time for each frequency. Figures (b,d) demonstrate the time evolution of
amplitude |ψn|

2. Diagram (a) reveals that the skinmodewith the frequency close to the upper bound loses its initial shape after τ = 8.
This observation becomesmore apparent when examining the time average Sn for two distinct time intervalsΔt = 8 andΔt = 20. In
the latter, there is a significantmismatch between the time average forΔt = 20 and the initial profile at the right edge. In figures (c,d),
we show the time average Sn for the localizedmodewith (ω = 0.49). As one can see from the diagrams, the initial nonlinear skinmode
maintains its profile configuration up to τ = 60. Based on our numerical findings, the deviation from the initial value for the localized
modewith (ω = 0.49) is negligible even for a longer period. In this study, we scaled parameters such as t representing dimensionless
time.

Figure 3.Dynamics for skin-mode in a systemwithwaek nonlinear parameterN = 100, g = 0.45 (a) and in a large latticeN = 200,
g = 2.1 (b). Our numerical analysis reveals that altering nonlinear parameters g does not significantly impact survival time.
Furthermore, by enlarging the nonlinear lattice, the skinmode persists for a longer duration compared to a shorter lattice.

5

Phys. Scr. 99 (2024) 125411 HGhaemi-Dizicheh



quasi-skinmode ismore localized in a unidirectional systemor a systemwith strong nonreciprocity, and it lives
longer in a lattice withweak nonreciprocity.

Skinmode’s life is also affected by the size of the open system, as it lives longer in a larger latticefigure 3(b).
Indeed, as the number of sites grows, the system approaches the semi-infinite boundary conditions, and the
original wave packet approaches the stationary solution.

To study the effect of disorder on τ, we consider defective left and right couplings respectively given by
κL+ δκL andκR+ δκR, where δκL,R chosen randomly from the intervalw[− 0.5, 0.5]with the disorder strength
w. One can intuitively expect that increasing the disorder’s strengthwill decrease the survival time. To show this,
we numerically evaluate the intensity deviation given byΔI(t)= |(I(t)− I(0))/I(0)|where

( ) ≔ ∣ ( )∣I t t ,n
N

n1
2yå = is the total power. Ourfinding reveals that for an unavoidable defect, one canfind a skin

mode that keeps its formup to a considerable survival time in the presence of noise. Infigure 5, for a quasi-skin
modewith frequencyω= 0.49, we plotΔI(t) for the noiseless system (i.e.w= 0) and theweak noise (i.e.
w≈ 10−2). As one can see from the diagrams, by adding noise, the fluctuations are less than four percent up to
around t= 20, which is half of the survival time τ of the noiseless systembut still considerable.We can boost the
stability in the presence of noise by extending the lattice.

4. Conclusions

The linear non-Hermitian skin effect nowadays is a hot topic in topological systemswhosemany aspects have
been explored in theoretical and experimental views point.However, the analytic investigation of its nonlinear
counterpart is almost novel. This paper studies the existence and survival of quasi-skinmode in a truncated

Figure 4.The relative site-dependant time average S̄n of the dynamical solution of nonlinear Schrödinger equation (1) under open
boundary conditions with initial values given by the stationary localized solution of (3)withω = 1.95, g = 2.1. The dashed blue line
represents the time average forweak nonreciprocity, whereas the solid red line represents the time average for strong nonreciprocity.

Figure 5.Diagrams depict the intensity deviation for skinmodewith a frequencyω = 0.49 in both a noiseless system (on the left) and
in the presence of the weak noise (on the right). Diagram (b) illustrates that in the presence of noise, the deviation is less than four
percent (green arrow), up to half of the survival time in the absence of noise. In diagram (b), we set the noise strength (w = 10−2),
which can represent an unavoidable noise throughout the system.
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finite lattice. In thefirst step, we explored the upper and lower bound of frequency inwhich one can have a class
of stationary skin solution for a nonlinear nonreciprocal lattice under semi-infinite boundary conditions. Our
approach reveals that the lower bound depends on the nonlinear parameter such that there is no skinmode in
low frequency for strong nonlinearity. The nonlinear solutions of a semi-infinite lattice do not satisfyOBCs in
general. Nevertheless, they can still survive approximately in a lattice with open edges up to a survival time.Here
we found this survival time and explored the effect of the system’s parameters on it.While nonlinearity’s
strength does not affect skinmode’s survival time, nonreciprocity plays an important role.We observed that for
strong nonreciprocal couplings, the localizedmode does not survive for a long time. In the end, we analyzed the
survival time in the presence of the noise. Our numeric computations reveal that for an unavoidable noise, one
can still obtain quasi-skinmodewith a considerable survival time.Our research offers valuable understanding of
a newmethod for creating a consistent skinmode in a nonlinear non-hermitian lattice and analyzing its behavior
under physical conditions. This has potential implications in different nonlinear topological photonics
platforms [37] and also nonlinear electrical circuit network [38]. This work examines the nonlinear version of
nonreciprocal tight-bindingmodels, focusing on the analysis of nonlinear skinmodes. Further investigations
can be conducted in future study to explore other non-linear topological phenomena, such as nonlinear edge
bursts.

Moreover, the approach that we have developed for locating stable nonlinear skinmodes can be expanded to
include systemswith nonlinearity that go beyond theKerr-type [39]. The various kinds of nonlinearities, on the
other hand, have an effect on the possible range of the system’s parameters for stationary skinmodes and on its
dynamics for survival time.

Data availability statement

All data that support thefindings of this study are includedwithin the article (and any supplementary files).

ORCID iDs

HamedGhaemi-Dizicheh https://orcid.org/0000-0001-9877-2436

References

[1] SchomerusH2013Topologically protectedmidgap states in complex photonic latticesOpt. Lett. 38 1912
[2] RudnerMS and Levitov L S 2009Topological transition in a non-Hermitian quantumwalk Phys. Rev. Lett. 102 065703
[3] ZhuB, LüR andChen S 2014 PT symmetry in the non-Hermitian Su-Schrieffer-Heegermodel with complex boundary potentials Phys.

Rev.A 89 062102
[4] Lee TE 2016Anomalous edge state in a non-hermitian lattice Phys. Rev. Lett. 116 133903
[5] Ghaemi-DizichehH and SchomerusH2021Compatibility of transport effects in non-hermitian nonreciprocal systems Phys. Rev.A

104 023515
[6] Ghaemi-DizichehH2023Transport effects in non-Hermitian nonreciprocal systems: General approach Phys. Rev.B 107 125155
[7] Ashida Y,Gong Z andUedaM2020Non-hermitian physicsAdv. Phys. 69 249
[8] Kunst FK, Edvardsson E, Budich JC andBergholtz E J 2018 Biorthogonal bulk-boundary correspondence in non-hermitian systems

Phys. Rev. Lett. 121 026808
[9] ZengQ-B, Yang Y-B and LüR 2020Topological phases in one-dimensional nonreciprocal superlattices Phys. Rev.B 101 125418
[10] Liu Y andChen S 2020Diagnosis of bulk phase diagramof nonreciprocal topological lattices by impuritymodesPhys. Rev.B 102

075404
[11] ZhouB,WangR andWang B 2020Renormalization group approach to non-hermitian topological quantum criticality Phys. Rev.B 102

205116
[12] Yao S andWangZ 2018 Edge states and topological invariants of non-hermitian systems Phys. Rev. Lett. 121 086803
[13] LeeCH andThomale R 2019Anatomy of skinmodes and topology in non-hermitian systems Phys. Rev.B 99 201103
[14] LeeCH, Li L andGong J 2019Hybrid higher-order skin-topologicalmodes in nonreciprocal systems Phys. Rev. Lett. 123 016805
[15] BorgniaD S, KruchkovA J and Slager R-J 2020Non-hermitian boundarymodes and topology Phys. Rev. Lett. 124 056802
[16] Lee TE 2016Anomalous edge state in a non-hermitian lattice Phys. Rev. Lett. 116 133903
[17] Yao S andWangZ 2018 Edge states and topological invariants of non-hermitian systems Phys. Rev. Lett. 121 086803
[18] Lieu S 2018Topological phases in the non-hermitian su-schrieffer-heegermodel Phys. Rev.B 97 045106
[19] XueW-T,HuY-M, Song F andWang Z 2022Non-hermitian edge burst Phys. Rev. Lett. 128 120401
[20] ZhouD2024Topological boundarymodes in nonlinear dynamics with chiral symmetryNew J. Phys. 26 073009
[21] SneeDD andMaY-P 2019 Edge solitons in a nonlinearmechanical topological insulatorExtremeMechanics Letters 30 100487
[22] LoP-W, Santangelo CD, ChenBG-G, JianC-M, Roychowdhury K and LawlerM J 2021Topology in nonlinearmechanical systems

Phys. Rev. Lett. 127 076802
[23] LeykamDandChongYD2016 Edge solitons in nonlinear-photonic topological insulators Phys. Rev. Lett. 117 143901
[24] Maczewsky L J et al 2020Nonlinearity-induced photonic topological insulator Science 370 701
[25] Kruk S, Poddubny A, SmirnovaD,Wang L, SlobozhanyukA, Shorokhov A,Kravchenko I, Luther-Davies B andKivshar Y 2019

Nonlinear light generation in topological nanostructuresNatureNanotech 14 126

7

Phys. Scr. 99 (2024) 125411 HGhaemi-Dizicheh

https://orcid.org/0000-0001-9877-2436
https://orcid.org/0000-0001-9877-2436
https://orcid.org/0000-0001-9877-2436
https://orcid.org/0000-0001-9877-2436
https://doi.org/10.1364/OL.38.001912
https://doi.org/10.1103/PhysRevLett.102.065703
https://doi.org/10.1103/PhysRevA.89.062102
https://doi.org/10.1103/PhysRevLett.116.133903
https://doi.org/10.1103/PhysRevA.104.023515
https://doi.org/10.1103/PhysRevB.107.125155
https://doi.org/10.1080/00018732.2021.1876991
https://doi.org/10.1103/PhysRevLett.121.026808
https://doi.org/10.1103/PhysRevB.101.125418
https://doi.org/10.1103/PhysRevB.102.075404
https://doi.org/10.1103/PhysRevB.102.075404
https://doi.org/10.1103/PhysRevB.102.205116
https://doi.org/10.1103/PhysRevB.102.205116
https://doi.org/10.1103/PhysRevLett.121.086803
https://doi.org/10.1103/PhysRevB.99.201103
https://doi.org/10.1103/PhysRevLett.123.016805
https://doi.org/10.1103/PhysRevLett.124.056802
https://doi.org/10.1103/PhysRevLett.116.133903
https://doi.org/10.1103/PhysRevLett.121.086803
https://doi.org/10.1103/PhysRevB.97.045106
https://doi.org/10.1103/PhysRevLett.128.120401
https://doi.org/10.1088/1367-2630/ad5b14
https://doi.org/10.1016/j.eml.2019.100487
https://doi.org/10.1103/PhysRevLett.127.076802
https://doi.org/10.1103/PhysRevLett.117.143901
https://doi.org/10.1126/science.abd2033
https://doi.org/10.1038/s41565-018-0324-7


[26] KirschMS, Zhang Y, KremerM,Maczewsky L J, Ivanov SK, KartashovYV, Torner L, BauerD, Szameit A andHeinrichM2021
Nonlinear second-order photonic topological insulatorsNat. Phys. 17 995

[27] Righini GC and Sirleto L 2023Advances inNonlinear Photonics (Elsevier) (https://doi.org/10.1016/C2021-0-01045-2)
[28] EzawaM2022Topological edge states and bulk-edge correspondence in dimerized toda lattice J. Phys. Soc. Jpn. 91 024703
[29] Zangeneh-Nejad F and Fleury R 2019Nonlinear second-order topological insulators Phys. Rev. Lett. 123 053902
[30] YuceC2021Nonlinear non-hermitian skin effect Phys. Lett.A 408 127484
[31] EzawaM2022Dynamical nonlinear higher-order non-hermitian skin effects and topological trap-skin phasePhys. Rev.B 105 125421
[32] EzawaM2022Nonlinear non-hermitian higher-order topological laserPhys. Rev. Research 4 013195
[33] BocharovAA 2023Topological edge solitons in the non-Hermitian nonlinear Su-Schrieffer-HeegermodelChaos, Solitons Fractals 172

113545
[34] MandaBM,Carretero-González R, Kevrekidis PG andAchilleos V 2023 Skinmodes in a nonlinear hatano-nelsonmodel Phys. Rev. B

109 094308
[35] YuceC andRamezaniH 2022 Stabilization of zero-energy skinmodes infinite non-hermitian latticesPhys. Rev.A 106 063501
[36] ZhuB,WangQ, LeykamD,XueH,WangQ J andChongYD2022Anomalous single-mode lasing induced by nonlinearity and the

non-hermitian skin effectPhys. Rev. Lett. 129 013903
[37] SmirnovaD, LeykamD,Chong Y andKivshar Y 2020Nonlinear topological photonicsApplied Physics Reviews 7 021306
[38] Helbig T,HofmannT, Imhof S, AbdelghanyM,Kiessling T,Molenkamp LWandThomale R 2020Generalized bulk-boundary

correspondence in non-hermitian topolectrical circuitsNat. Phys. 16 747
[39] ZhouD, RocklinDZ, LeamyMandYaoY 2022Topological invariant and anomalous edgemodes of strongly nonlinear systemsNat.

Commun. 13 3379

8

Phys. Scr. 99 (2024) 125411 HGhaemi-Dizicheh

https://doi.org/10.1038/s41567-021-01275-3
https://doi.org/10.1016/C2021-0-01045-2
https://doi.org/10.7566/JPSJ.91.024703
https://doi.org/10.1103/PhysRevLett.123.053902
https://doi.org/10.1016/j.physleta.2021.127484
https://doi.org/10.1103/PhysRevB.105.125421
https://doi.org/10.1103/PhysRevResearch.4.013195
https://doi.org/10.1016/j.chaos.2023.113545
https://doi.org/10.1016/j.chaos.2023.113545
https://doi.org/10.1103/PhysRevB.109.094308
https://doi.org/10.1103/PhysRevA.106.063501
https://doi.org/10.1103/PhysRevLett.129.013903
https://doi.org/10.1063/1.5142397
https://doi.org/10.1038/s41567-020-0922-9
https://doi.org/10.1038/s41467-022-31084-y

	1. Introduction
	2. Model
	2.1. A nonlinear quasi-skin mode

	3. Stability of quasi-skin mode in a finite lattice
	4. Conclusions
	Data availability statement
	References



