
Applied and Computational Harmonic Analysis 73 (2024) 101695

Available online 12 August 2024
1063-5203/© 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.

Contents lists available at ScienceDirect

Applied and Computational Harmonic Analysis
journal homepage: www.elsevier.com/locate/acha

Full Length Article

The !-invariant graph Laplacian part II: Diffusion maps
Eitan Rosen a,∗, Xiuyuan Cheng b, Yoel Shkolnisky a

a Department of Applied Mathematics, Tel-Aviv University, Tel-Aviv, Israel
b Department of Mathematics, Duke University, Durham, NC, USA

A R T I C L E I N F O A B S T R A C T
Communicated by Amit Singer

Keywords:
Manifold learning
Group invariant embeddings
Diffusion maps
Graph Laplacian

The diffusion maps embedding of data lying on a manifold has shown success in tasks such as 
dimensionality reduction, clustering, and data visualization. In this work, we consider embedding 
data sets that were sampled from a manifold which is closed under the action of a continuous 
matrix group. An example of such a data set is images whose planar rotations are arbitrary. The 
!-invariant graph Laplacian, introduced in Part I of this work, admits eigenfunctions in the form of 
tensor products between the elements of the irreducible unitary representations of the group and 
eigenvectors of certain matrices. We employ these eigenfunctions to derive diffusion maps that 
intrinsically account for the group action on the data. In particular, we construct both equivariant 
and invariant embeddings, which can be used to cluster and align the data points. We demonstrate 
the utility of our construction in the problem of random computerized tomography.

1. Introduction

Data analysis has become a cornerstone in many applications in science and engineering. In a typical setup, we are given a data set 
" =

{
#1,… ,#$

}
⊂ℂ& where & is large, and the goal is to discover structures in the data. Examples for such data include collections 

of images, point clouds, biological measurements, financial data, etc. A common modeling approach for high-dimensional data is that 
the given points lie on a manifold  with intrinsic dimension ' ≪ &.

In various applications, the data set under consideration is assumed to have been sampled from a manifold  that is closed 
under the action of some known matrix group !. In other words, for each point #) ∈" and any * ∈ !, the data point *#) is also 
in. Such manifolds are dubbed !-invariant. A particularly important class of groups appearing in numerous scientific applications 
are compact matrix Lie groups, which includes the groups +,(2) and +,(3) of 2D and 3D spatial rotations, respectively, and low-
dimensional tori, all ubiquitous in fields such as image processing and computer vision. For example, the data set may be a collection 
of two-dimensional images whose in-plane rotation is arbitrary, as is the case for electron microscopy image data sets [28]. In the 
electron microscopy setting, all images lie on a manifold of dimension three, and moreover, rotating each of the input images results 
in another image that may have been generated by the microscope. The current paper provides tools for processing such data sets.

When processing and analyzing data that are assumed to have been sampled from a smooth manifold, a fundamental object of 
interest is the Laplace-Beltrami operator Δ [26], which generalizes the classical Laplacian. The Laplace-Beltrami operator and its 
discrete counterpart, the graph Laplacian [3], have been used to process surfaces, images, and general manifold data [22,33,34,21,
10,16,24]. Formally, the graph Laplacian is defined as the $ ×$ matrix - given by

* Corresponding author at: School of Mathematical Sciences, Tel Aviv University, P.O. box 39040, Ramat-Aviv, Tel-Aviv 6997801, Israel.
E-mail address: eitanrose@gmail.com (E. Rosen).

https://doi.org/10.1016/j.acha.2024.101695
Received 31 July 2023; Received in revised form 24 July 2024; Accepted 2 August 2024

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/acha
mailto:eitanrose@gmail.com
https://doi.org/10.1016/j.acha.2024.101695
http://crossmark.crossref.org/dialog/?doi=10.1016/j.acha.2024.101695&domain=pdf
https://doi.org/10.1016/j.acha.2024.101695


Applied and Computational Harmonic Analysis 73 (2024) 101695

2

E. Rosen, X. Cheng and Y. Shkolnisky

- =. −/ , /)0 = 1
−‖‖‖#)−#0

‖‖‖
2
∕2 , .)) =

$∑
0=1

/)0 , (1.1)

where 2 is a bandwidth parameter, . is a diagonal matrix, and ‖⋅‖ is the 2-norm. The normalized graph Laplacian is defined by

-̃ =.−1-. (1.2)
In [19], it was shown that if " was sampled uniformly from a smooth and compact manifold , then -̃ converges to the Laplace-
Beltrami operator Δ as 2→ 0 and $ →∞. Recently, it was also shown that the eigenvectors and eigenvalues of -̃ converge to the 
eigenfunctions and eigenvalues of Δ [6].

In Part I of this work [25], we laid the foundations for a graph Laplacian based framework for analyzing !-invariant data, where !
is a compact matrix Lie group, and demonstrated its usage for denoising manifold data. Specifically, we showed how to construct the 
graph Laplacian by using all the points in the data set ! ⋅", resulting from applying all the elements in ! to the points in ". This 
graph Laplacian is termed the !-invariant graph Laplacian (abbreviated !-GL). We then obtained two fundamental results regarding 
the!-GL. Firstly, we proved that like the graph Laplacian, the!-GL also converges to the operatorΔ, but at a significantly improved 
rate, where the speedup scales with the dimension of !. Secondly, we derived the eigenfunctions of the !-GL, showing that they 
admit the form of tensor products between the eigenvectors of a sequence of certain matrices and the elements of the irreducible 
unitary representations (abbreviated as IURs) of !. This special form of the eigenfunctions gives rise to efficient algorithms for their 
computation. We then demonstrated how these eigenfunctions can be used to filter noisy samples from a !-invariant manifold .

In the current work, we develop !-GL based embeddings of the data. In particular, we derive several variants of one the most 
successful graph Laplacian based algorithms, known as ‘diffusion maps’ [19], which we now briefly describe. Let 41, … , 4$ and 
51, … , 5$ be eigenvectors and eigenvalues of the matrix 6 = 7 − -̃, respectively (where -̃ was defined in (1.2)). Then, the data set 
" can be embedded into a $ -dimensional Euclidean space by

Φ8(#)) =
(
58141()),… ,58$4$ ())

)
, (1.3)

for some 8 ∈ ℝ+ and #) ∈ ", where 49()) is the )-th entry of 49. The embedding (1.3) has an elegant probabilistic interpretation. 
Observe that 6 is a row stochastic matrix, which we can view as the transition probability matrix of a random walk over ". We 
define a family of distances .8(#), #0 ) where 8 = 1, 2, …, between pairs of point #), #0 ∈" by

.2
8 (#),#0 ) =

‖‖‖6
8
),⋅ − 6

8
0,⋅
‖‖‖
2

:
=

$∑
9=1

(6 8)9 − 6
8
09)

2:9, :9 =
1
.99

, (1.4)

where 6 8),⋅ denotes the )-th row of 6 8, and 6 8)0 is the )0-th element of the matrix 6 8, and .99 is defined in (1.1). The weights :9
are larger for nodes #9 which are weakly connected to their neighbors and are thus more difficult to reach. This fact makes the 
distance (1.4) a natural choice for organizing data into clusters, as a cluster is in essence a set in which every data point resides in a 
neighborhood which is dense with other data points. Thus, any path between two data points residing in distinct clusters would have 
to pass through sparsely inhabited regions of the data landscape, making the distance (1.4) for such paths longer than paths within 
a cluster. In [19], it is shown that

.2
8 (#),#0 ) =

‖‖‖Φ8(#))−Φ8(#0 )
‖‖‖
2
, (1.5)

which implies that the Euclidean distance between the embeddings Φ8(#)) and Φ8(#0 ) is the distance at time 8 between (the distribu-
tions of) a pair of random walks over " that depart from #) and #0 .

In this work, we utilize the!-GL’s eigenfunctions to construct various diffusion maps embeddings, thereby, explicitly incorporating 
the action of ! on the data set " into them. We distinguish between two types of embeddings - equivariant and invariant. For a 
fixed ; ∈ℕ, an equivariant embedding is a map 4 ∶"→ℂ; such that

4(* ⋅ #) =*◦4(#), * ∈!, (1.6)
where ‘⋅’ denotes the action of ! on a data point # ∈ ℂ&, and ‘◦’ denotes the action of ! on the embedded points, which typically 
reside in a different space than ℂ& of a much lower dimension. On the other hand, an invariant embedding is a map < ∶ " → ℂ;
such that

<(* ⋅ #) = <(#), * ∈!, (1.7)
for all # ∈". The difference between the two types of embeddings is that 4 preserves the action of ! through (1.6), while < maps 
all the points = in the orbit ! ⋅ # into the same point <(#) ∈ ℂ; .

An important application of such embeddings is when " is a set of noisy 2D images, with the group ! = +,(2) of planar rotations 
acting on an image by rotating it around its center. In this case, an invariant embedding can be employed to cluster images which 
are (almost) identical up to a planar rotation. Specifically, the property (1.7) implies that for a pair of images #), #0 ∈ " such 
that #) ≈* ⋅ #0 for some rotation matrix * ∈ +,(2), that is, #) is approximately a rotation of #0 , it holds that <(#)) ≈ <(#0 ). We call 
such images rotationally-invariant neighbors. On the other hand, the property (1.6) implies that if #) ≈* ⋅ #0 , then 4(#)) ≈*◦4(#0 ). 
In other words, an approximate rotation of an image results in an approximate rotation of its embedding. Hence, we can utilize 4 to 



Applied and Computational Harmonic Analysis 73 (2024) 101695

3

E. Rosen, X. Cheng and Y. Shkolnisky

align the rotationally-invariant neighbors of each image #) with it, by computing for each neighbor #0 the element * ∈ +,(2) that 
minimizes the distance ‖‖‖4(#))−*◦4(#0 )

‖‖‖. Assuming that the noise in each image is additive, i.i.d. with mean zero, we expect that averaging the aligned nearest neighbors of an image #) will result in a denoised image which closely approximates #). Furthermore, 
it is typically possible to align pairs of images using an embedding 4 of dimension far lower than that of the images in ", which is 
faster than aligning the images by directly rotating them.

Various methods have been proposed in literature for constructing group-invariant embeddings, especially for rotational-
invariance in image processing and computer vision tasks [29,36,12,4]. Most of these methods typically follow one of two approaches. 
The first approach is based on steerable-PCA [35,20] that computes the PCA of a data set of images and all of their planar rotations. 
In other words, steerable PCA computes an embedding of the images and all their infinitely many rotations into a low-dimensional 
subspace which best captures their geometry. Importantly, steerable PCA efficiently computes the sample covariance matrix of all 
infinitely many rotations of the images, avoiding any data augmentation, which can be computationally prohibitive. In [27], the latter 
idea was extended to a data set of images residing on a compact manifold by introducing the steerable graph Laplacian, which is con-
ceptually equivalent to the graph Laplacian - in (1.1) constructed from all the images and their infinitely many rotations. In Part I of 
this work [25], we generalized the steerable graph Laplacian to arbitrary compact manifolds, which are closed under the action of an 
arbitrary compact matrix Lie group. The second approach, is to construct a graph Laplacian by using some rotationally-invariant pair-
wise distance between the points, and then use this graph Laplacians’ eigenvectors and eigenvalues to define a rotationally-invariant 
embedding [29]. This approach was applied to handle the case of arbitrary compact Lie groups in [11]. However, it is not always 
obvious which invariant distance is the most appropriate for the task, or how to compute it efficiently. Furthermore, in general, the 
limiting operator resulting from such a construction is either unknown, or is not the Laplace-Beltrami operator [17], in which case its 
properties are not always well understood. On the other hand, the embedding proposed in this work employs the eigenfunctions and 
eigenvalues of the !-GL, which converges to the Laplace-Beltrami operator on the manifold, allowing us to preserve the geometry 
of the underlying manifold. In particular, the group-invariance of the manifold is explicitly manifested in the form of the !-GL’s 
eigenfunctions, being a product between certain vectors and the IURs of ! (given by Theorem 2 in the following section.). As we 
show below, this enables us to embed not only the points in given the data set, but also all the points generated by the action of the 
group on these points.

The contributions of this work are as follows. First, we employ the !-GL’s eigenfunctions to construct an equivariant diffusion 
maps embedding of the data set, and an associated equivariant diffusion distance, analogous to (1.3) and (1.4), respectively. We 
then analyze their properties. Next, we employ the !-GL’s eigenfunctions to construct an invariant diffusion maps embedding of the 
data, and an associated invariant diffusion distance, and analyze their properties. In particular, we show that the latter distance is 
associated with certain random walks on the data manifold, and derive a relation of the form (1.5) for the invariant distance and 
embedding. Finally, we demonstrate the utility of the proposed embeddings in reconstructing a 2D image from its noisy and shifted 
1D Radon transform projections [9].

This paper is organized as follows. In Section 2, we briefly review the !-invariant graph Laplacian framework developed in [25]. 
In Section 3, we derive !-equivariant embeddings of the data, and diffusion distances over the set ! ⋅", which are analogous to (1.3). 
In Section 4, we derive and analyze !-invariant embeddings of the data. In Section 5, we demonstrate the utility of our framework 
using numerical simulations. Lastly, in Section 6, we summarize our results and discuss future work.

2. The !-invariant graph Laplacian

In this section, we review the definition and eigendecomposition of the !-invariant graph Laplacian, introduced in [25]. Let 
" =

{
#1,… ,#$

} be a data set sampled from a uniform distribution over a smooth !-invariant manifold.
Denoting [$] = {1,… ,$}, consider the set

[$] ×! = {(),*) ∶ ) ∈ [$], * ∈!} , (2.1)
where we use the pair (), *) ∈ [$] ×! to refer to the point * ⋅#) resulting from applying the element * ∈! (by matrix multiplication) 
to the point #) ∈". Now, let  =-2([$] ×!) be the Hilbert space of functions of the form

> (),*) = >)(*), * ∈!, (2.2)
where >) ∈-2(!), endowed with the inner product

⟨> ,?⟩ =
$∑
)=1 ∫!

>)(*)?)(*)'@(*), (2.3)

where @(⋅) is the Haar measure on ! (see Appendix A.1 for a brief introduction to integration over Lie groups). Furthermore, let us 
define the action of any $ ×$ diagonal matrix . on functions > ∈ by

{.>} (),*) =.)) ⋅ > (),*) =.)) ⋅ >)(*). (2.4)



Applied and Computational Harmonic Analysis 73 (2024) 101695

4

E. Rosen, X. Cheng and Y. Shkolnisky

Definition 1 (The !-invariant graph Laplacian). Let / ∶ → be the operator defined as

/ {>} (),*) =
$∑
0=1

∫
!

/)0 (*,A)>0 (A)'@(A), /)0 (*,A) = 1
−‖‖‖*⋅#)−A⋅#0

‖‖‖
2
∕2 , (2.5)

where ‖⋅‖ is the 2-norm over ℂ&, and let . be the diagonal $ ×$ matrix whose diagonal entries are given by

.)) =
$∑
0=1∫!

/)0 (7 ,B)'@(B), ) ∈ {1,… ,$} . (2.6)

The !-invariant graph Laplacian (abbreviated !-GL) - ∶ → is defined as

-> =.> −/ > , > ∈. (2.7)
The normalized !-GL is defined as the operator

-̃ =.−1- = 7 −.−1/ , (2.8)
that is, for any > ∈ we have

-̃{>} (),*) = >)(*)−
1
.))

⋅
$∑
)=1 ∫!

/)0 (*,A)>0 (A)'@(A). (2.9)

We observe that since ! is a unitary matrix group, /)0 (*, A) in (2.5) satisfies

/)0 (*,A) = 1
−‖‖‖*#)−A#0

‖‖‖
2
∕2 = 1−

‖‖‖#)−*
∗A#0

‖‖‖
2
∕2 =/)0 (7 ,*∗A), (2.10)

where *∗ is the conjugate-transpose of the matrix * ∈ !. By the Peter-Weyl theorem (see Appendix A.2), the function /)0 (7 , ⋅)
over ! admits an expansion in a series of the entries of the irreducible unitary representations (abbreviated IURs) of !. The IURs 
of ! are a countably-infinite sequence {

C#}
#∈! of unitary matrix-valued functions over !, where C#(*) is a unitary matrix of 

dimensions '# × '# for each * ∈!, and ! is a set that enumerates the sequence. Explicitly, by using (A.13) (see Appendix A.1) we 
get that

/)0 (7 ,*∗A) =
∑
#∈!

'# ⋅ trace
(
/̂ #
)0 C

#(*∗A)
)
, (2.11)

where /̂ #
)0 is the '# × '# matrix given by

/̂ #
)0 = ∫

!

/)0 (7 ,*)C#(*)'@(*), # ∈ !, (2.12)

with C#(*) denoting the entry-wise complex-conjugate of the matrix C#(*). We now state a theorem (derived in [25]) that charac-
terizes the eigendecomposition of -̃ of (2.8) in terms of certain products between the rows of the IURs C# and the eigenvectors of 
the block matrices

/̂ (#) =

⎛
⎜
⎜
⎜
⎜⎝

/̂ #
11 /̂ #

12 ... /̂ #
1$

⋮ ⋱ ⋮
⋮ ⋱ ⋮

/̂ #
$1 /̂ #

$2 ... /̂ #
$$

⎞
⎟
⎟
⎟
⎟⎠

, # ∈ !, (2.13)

where the matrix /̂ (#) of dimensions $'# ×$'# has /̂ #
)0 of (2.12) as its )0-th block. Also, for any vector E ∈ℂ$'# and 0 ∈ {1, … , $}, 

we denote by

10 (E) = (E((0 − 1) ⋅ '# + 1),… ,E(0 ⋅ '#))F ∈ℂ'# , (2.14)
the elements (0 − 1)'# + 1 up to 0 ⋅ '# of E stacked as a '# -dimensional column vector.

Theorem 2. ([25]) For each # ∈ ! , let
.(#) = diag

(
.11 ⋅ 7'#×'# ,… ,.$$ ⋅ 7'#×'#

)
(2.15)

be the $'# ×$'# block-diagonal matrix whose )th block of size '# × '# on the diagonal is given by the product of the scalar .)) from (2.6)
with the '# × '# identity matrix. Then, the normalized !-invariant graph Laplacian -̃ in (2.8) admits the following:



Applied and Computational Harmonic Analysis 73 (2024) 101695

5

E. Rosen, X. Cheng and Y. Shkolnisky

1. A sequence of non-negative eigenvalues {5̃1,# , … , 5̃$'# ,#}#∈! , where 5̃&,# is the &th eigenvalue of the matrix

G (#) = 7 − (.(#))−1/̂ (#). (2.16)
2. A sequence {Φ̃#,−#,1, … , Φ̃#,#,$'# }#∈! of eigenfunctions, which are complete in , and are given by

Φ̃#,H,&(),*) =
√
'# ⋅C#

H,⋅(*) ⋅ 1
)(Ẽ&,#), (2.17)

where Ẽ&,# is an eigenvector of G (#) that corresponds to the eigenvalue 5̃&,# , and 1) is defined in (2.14). For each & ∈ {1, … , $'#}
and # ∈ ! , the eigenfunctions {Φ̃#,1,&, … , Φ̃#,'# ,&} correspond to the eigenvalue 5̃&,# of -̃.

The following lemma, which implies that the elements 1)(E) of an eigenvector E of the matrix /̂ (#) of (2.13) are !-equivariant, 
lies at the heart of all subsequent derivations.

Lemma 3. Suppose that #0 =A ⋅ #) for some A ∈!, and let E be an eigenvector of /̂ (#) given by (2.13), that corresponds to an eigenvalue 
5 > 0. Then, for all # ∈ ! and & ∈ℕ we have

10 (E) =C#(A) ⋅ 1)(E). (2.18)

Proof. See Appendix B. □

3. !-equivariant diffusion maps

In this section, we derive an equivariant embedding of the data set", which we term ‘!-equivariant diffusion maps’. The derivation 
employs the eigenvectors and eigenvalues of the operator

6IJ =.−1/ = 7 − -̃, (3.1)
where -̃ was defined in (2.8). Explicitly, by (2.9), we get that

{
6IJ>

}
(),*) =

$∑
0=1

∫
!

6 ((),*), (0,A))>0 (A)'@(A), 6 ((),*), (0,A)) =
/)0 (*,A)

.))
, (3.2)

where/)0 and.)) are defined in (2.5) and (2.6), respectively. We observe that 6IJ may be viewed as a transition probability operator 
of a single step of a random walk over [$] ×! (defined in (2.1)). Indeed, by (2.5) we have that 6 ((), *), (0, A)) > 0, and moreover, 
if we denote by 1 ∈ the constant function that takes the value 1 over [$] ×!, then by (3.2) and (2.6) we have that

{
6IJ1

}
(),*) =

$∑
0=1

∫
!

6 ((),*), (0,A))'@(A) (3.3)

=
$∑
0=1∫!

/)0 (*,A)
∑$
9=1 ∫!/)9(*,B)'@(B)

'@(A) = 1, (3.4)

for all (), *) ∈ [$] ×!. The expression on the right hand side of (3.3) is understood as the sum of transition probabilities from the 
point (), *) ∈ [$] ×! to all other points in [$] ×!. It is easily seen that the eigenvalues of 6IJ are given by

5&,# = 1− 5̃&,# , & ∈ [$], # ∈ !, (3.5)
where {5̃&,#} are the eigenvalues of -̃ of (2.8), while for the eigenfunctions {Φ(J)

#,H,&} of 6IJ it holds that

Φ(J)
#,H,& = Φ̃#,H,&, & ∈ [$], # ∈ !, H ∈ ['#], (3.6)

where {Φ̃#,H,&} from (2.17) are the eigenfunctions of -̃. Therefore, the eigenfunctions of 6IJ can be computed by diagonalizing the 
matrices G (#) in (2.16), as described by Theorem 2. As the rest of this work concerns only the eigenpairs of 6IJ, we associate the 
eigenvectors of G (#) with the operator 6IJ by introducing the notation

E(J)&,# = Ẽ&,# , & ∈ [$], # ∈ !. (3.7)
For 8 ∈ℕ, we define the 8-step transition probability operator 6 8IJ ∶ → to be the operator that acts on > ∈ by applying 6IJ

to > iteratively 8 times. It can be shown that (see e.g. [13])
{
6 8IJ>

}
(),*) =

$∑
0=1∫!

6 8((),*), (0,A))>0 (A)'@(A), > ∈, (3.8)



Applied and Computational Harmonic Analysis 73 (2024) 101695

6

E. Rosen, X. Cheng and Y. Shkolnisky

where we define for all *, A ∈!

6 1((),*), (0,A)) ≜ 6 ((),*), (0,A)),
6 8((),*), (0,A)) ≜ $∑

9=1∫!
6 8−1((),*), (9,B))6 1((9,B), (0,A))'@(B), 8 = 2,3,… . (3.9)

By (3.9) and (3.4), for any (), *) ∈ [$] ×! we get by induction over 8 that
{
6 8IJ1

}
(),*) = 1. (3.10)

Furthermore, by (2.5), (3.2) and (3.9), we get that 6 8((), *), (0, A)) > 0 for all (), *), (0, A) ∈ [$] × ! and 8 ∈ ℕ. Thus, we conclude 
that 6 8IJ is a probability transition operator for all 8 ∈ℕ, with a probability density kernel function given by (3.9).

For a fixed point (), *) ∈ [$] ×!, the function 6 8((), *), (0, A)) > 0 induces a probability distribution on [$] ×!, with its density 
given by

6 8),*(9,B) ≜ 6 8((),*), (9,B)), (9,B) ∈ [$] ×!. (3.11)
Analogously to (1.4), we now define a diffusion distance on [$] ×!, as follows.

Definition 4. For all 8 = 0, 1, 2, …, we define the equivariant diffusion distance between each pair of points (), *), (0, A) ∈ [$] ×! as

.J,8((),*), (0,A)) =
‖‖‖6

8
),* − 6 80,A

‖‖‖,'@∕.
(3.12)

≜ ⎛
⎜
⎜⎝

$∑
9=1∫!

(
6 8),*(9,B)− 6

8
0,A(9,B)

)2 '@(B)
.99

⎞
⎟
⎟⎠

1
2

. (3.13)

Similarly to (1.4), the diffusion distance (3.12) can be computed by first embedding the points in [$] ×! into a Euclidean space, 
and then computing the Euclidean distance between the embedded points. The required embedding is defined as follows.

Definition 5. For all 8 = 0, 1, 2, …, we define the equivariant embedding of [$] ×! by

Φ(J)
8 (),*) =

(
58&,#Φ

(J)
#,H,&(),*)

)#,$

H=1,&=1,#∈! , (),*) ∈ [$] ×!, (3.14)

where 5&,# and Φ(J)
#,H,& are the eigenvalues and eigenfunctions, respectively, of 6 8IJ from (3.8).

We will show that the embedding Φ(J)
8 is indeed equivariant (as defined in (1.6)), shortly. The following Theorem relates the 

embedding (3.14) with the distance (3.12).

Theorem 6. For all 8 = 0, 1, 2, …, and (), *), (0, A) ∈ [$] ×!, we have that

.J,8((),*), (0,A)) =
‖‖‖Φ

(J)
8 (),*)−Φ(J)

8 (0,A)‖‖‖#2 . (3.15)

Proof. See Appendix C.1. □

Note that for each (), *) ∈ [$] ×!, the embedding (3.14) is an infinite dimensional sequence. In practice, we truncate (3.14) to 
obtain a finite-dimensional embedding, such that pairwise squared distances between the finite-dimensional embedded points closely 
approximate (3.12), as we now argue. The operator 6 8IJ defines a Markov chain over [$] ×!, with the 8-step transition probability 
from a point (), *) to the points of a (Borel) measurable subset K ⊆ {0} ×! given by

∫
{A∈! ∶ (0,A)∈K }

6 8),*(0,A)'@(A). (3.16)

By definition, we have that 6 8),* > 0. By a result in [18], the largest eigenvalue of 6 8IJ is simple and equals 1, while the rest of 
the eigenvalues are strictly less than 1 (and non-negative due to Theorem 2). This implies that, with the exception of the leading 
eigenvalue, all the eigenvalues 58&,# (of 6 8IJ from (3.8)) decay to zero exponentially fast when 8 →∞, and thus, so do the terms on the 
right hand side of (3.14). Thus, for a fixed 8 ∈ℕ, we can set up a truncation rule for the sequence (3.14) by retaining only the terms 
of (3.14) for which 58&,# > M, where M > 0 is some parameter chosen so that the distances (3.12) are approximated up to a prescribed 
error, when replacing Φ(J)

8 (), *) and Φ(J)
8 (0, *) in (3.15) with their truncated versions. We mention that the eigenfunction Φ(J)

0,0,1that corresponds to the leading eigenvalue 50,1 = 1 can be shown to be constant over [$] ×!, and thus, can be discarded from the 



Applied and Computational Harmonic Analysis 73 (2024) 101695

7

E. Rosen, X. Cheng and Y. Shkolnisky

embedding. Since {58&,#} are independent of the index H (that enumerates the rows of the IURs C# in (2.17)), we define the truncated 
embedding

Φ(J)
M,8 (),*) =

(
58&,#Φ

(J)
#,H,&(),*)

)$
H=1,(&,#)∈M,8 , (3.17)

where

M,8 =
{
(&,#) ∶ 0 < M < 58&,# < 1

}
. (3.18)

By using Lemma 3, we obtain the following result which shows that (3.17) induces a !-equivariant embedding ) ↦ Φ(J)
M,8 (), 7)of the data set ", in the sense that the action of an element A ∈ ! on a point #) ∈ " results in an action of an IUR of ! on the 

embedding Φ(J)
M,8 .

Proposition 7.

1. For all (), *) ∈ [$] ×! we have that

Φ(J)
M,8 (),*) =

(
58&,#

√
'# ⋅C# (*) ⋅ 1)(E(J)&,#)

)
(&,#)∈M,8 , (3.19)

where E(J)&,# and 1)(⋅) were defined in (3.7) and (2.14), receptively.
2. Let C (A) be the block-diagonal matrix with the IURs C#(A) such that (&, #) ∈ M,8 on its diagonal, and suppose that #0 = A ⋅ #) for 

some A ∈!. Then, we have that

Φ(J)
M,8 (0,7) =C (A) ⋅Φ(J)

M,8 (),7). (3.20)

Furthermore, the function C (⋅) is an IUR of !. In particular, for each A ∈! the matrix C (A) is unitary.

Proof. See Appendix C.2. □

We comment that Lemma 3 implies a similar result for the non-truncated embedding (3.14). In this case, C (A) is the infinite-
dimensional block-diagonal “matrix” with all the IURs C#(A) of ! for all (&, #) on its diagonal.

4. !-invariant diffusion maps

In the previous section, we saw that the diffusion distance (3.12) between pairs of points #), #0 ∈" gives rise to the equivariant 
embedding (3.17) of the data set ". In various applications, the group action is viewed as a nuisance factor. Therefore, it is of interest 
to derive group-invariant embeddings that map all the points in the set ! ⋅ #) =

{
* ⋅ #) ∶ * ∈!

} (the orbit generated by the action 
of ! on #)) into a single point in the embedding space.

We can employ the distance (3.12) and its relation (3.15) to the equivariant embedding (3.14) to obtain a !-invariant dis-
tanceNJ,8 ∶ [$] × [$] →ℝ+ between points in " by defining

N2
J,8(), 0) = min

*,A∈!
‖‖‖6

8
),* − 6 80,A

‖‖‖
2

,'@∕.
= min
*,A∈!

‖‖‖Φ
(J)
8 (),*)−Φ(J)

8 (),A)‖‖‖
2

#2
, (4.1)

as the following proposition establishes.

Proposition 8. Suppose that #9 =O ⋅ #) and #P =Q ⋅ #0 for some O, Q ∈!. Then, we have that

NJ,8(9, P) =NJ,8(), 0). (4.2)
Furthermore, we have that

N2
J,8(), 0) = min

*∈!
‖‖‖Φ

(J)
8 (),7)−Φ(J)

8 (0,*)‖‖‖
2

#2
. (4.3)

Proof. See Appendix D.1. □

The distance NJ,8 can be approximated by solving the least-squares problem in (4.3), with Φ(J)
8 (), *) replaced by the trunca-

tion Φ(J)
M,8 (), *) of (3.17). By using the second assertion of Proposition 7, and in particular, that for each A ∈! the matrix C (A) in the 

assertion is a block-diagonal matrix with the IURs of ! on its diagonal, the squared distances on the right hand side of (4.3) can be 
computed efficiently for low-dimensional groups ! for which there exist FFT-type algorithms. We describe such a procedure in detail 
for the rotations group +,(3) in Part I of this work [25], and show that computing the squared distances ‖Φ(J)

8 (), 7) −Φ(J)
8 (0, *)‖2

#2



Applied and Computational Harmonic Analysis 73 (2024) 101695

8

E. Rosen, X. Cheng and Y. Shkolnisky

above over a G points discretization of +,(3) can be accomplished with ,(G ⋅ log2G + |M,8|) operations, where |M,8| (the cardinality 
of (3.18)) is the dimension of the embedding (3.17).

Unfortunately, even though the distance NJ,8 of (4.1) is group-invariant, in general, it is not guaranteed that there exists an 
embedding Υ such that NJ,8(), 0) = ‖Υ())−Υ(0)‖ for every pair ), 0 ∈ [$]. Regardless, we can use the property (4.3) ofNJ,8 to “align” 
pairs of points #), #0 ∈" that are close up to the action of !. That is, we can compute the element * ∈! that solves (4.3), and then 
compute * ⋅#0 . An important application (mentioned in Section 1) is to align pairs of images that are approximately rotations of each 
other.

Next, we employ the eigenfunctions and eigenvalues of the !-GL to define a group-invariant embedding of the data set ", as 
follows.

Definition 9. For all 8 = 0, 1, 2, …, we define a !-invariant embedding of the data set " by the function Ψ(J)
8 ∶ [$] → #2 defined as

Ψ(J)
8 ()) =

(√
'# ⋅ 58&,#5

8
&′ ,# ⋅

⟨
(1)(E(J)&,#)), 1

)(E(J)&′ ,#)
⟩)$

&,&′=1, #∈! . (4.4)

By Lemma 3, we get that Ψ(J)
8 ()) is !-invariant, since if #0 =* ⋅ #) for some * ∈!, then we have that

⟨
10 (E(J)&,#), 1

0 (E(J)&′ ,#)
⟩
=
⟨
C#(*)1)(E(J)&,#),C#(*)1)(E(J)&′ ,#)

⟩
=
⟨
1)(E(J)&,#), 1

)(E(J)&′ ,#)
⟩
, (4.5)

for all # ∈ ! and & ∈ [$]. We can now define a !-invariant diffusion distance between the points in ".

Definition 10. For all 8 = 0, 1, 2, …, we define the !-invariant diffusion distance over " by

RJ,8(), 0) =
‖‖‖Ψ

(J)
8 ())−Ψ(J)

8 (0)‖‖‖#2 , ), 0 ∈ [$]. (4.6)

Remark 1. Similarly to what we did in the previous section for the equivariant embedding Φ(J)
8 defined in (3.14), we can truncate 

the embedding Ψ(J)
8 to obtain a finite-dimensional !-invariant embedding by thresholding the sequence 

{
58&,#5

8
&′ ,#

}
using a rule 

analogous to (3.18).

In Section 3, we defined the diffusion distance .J,8(), 0) in (3.12) as the distance between the probability densities of random 
walks over [$] ×! that depart from the points #) and #0 . We then showed that both the distance .J,8(), 0) and the induced embed-
ding Φ(J)

8 (), *) in (3.14) are !-equivariant. We now show that the !-invariant distance RJ,8 defined above in (4.6) can be expressed 
as a distance between certain probability densities related to random walks over [$] ×!.

To that end, we first illustrate that the embedding (3.14) is !-equivariant due the fact that for each ) ∈ [$] the correspondence

)↦ 6 8),7 (4.7)
between the point #) (which we identify with (), 7) ∈ [$] ×!) and the probability density 6 8),7 (defined in (3.11)) of the random walk 
on [$] ×! that departs from (), 7) is by itself !-equivariant. Indeed, consider the action ‘◦’ of ! on functions in , and in particular 
on 6 8),7 ∈, defined by

{
O◦6 8),7

}
(9,B) = 6 8),7 (9,O

∗B), (9,B) ∈ [$] ×!. (4.8)

For any fixed 90 ∈ [$], the function 6 8),7 (90,O∗B) ∈-2(!) is known as the left-translation of 6 8),7 (90, B) by O (see [14]), and thus by 
extension, we refer to 6 8),7 (9, O∗B) ∈-2([$] ×!) in (4.8) as the left-translation of 6 8),7 (9, B) by O. The following proposition shows that the correspondence (4.7) is !-equivariant with respect to left-translations.

Proposition 11. Suppose that #0 =O ⋅ #) for some O ∈!. Then, we have that

6 80,7 (9,B) =
{
O◦6 8),7

}
(9,B), (9,B) ∈ [$] ×!. (4.9)

Proof. See Appendix D.2. □

In words, equation (4.9) implies that the density 6 80,7 is the left translation by O of 6 8),7 . This shows that a translation of #) ∈"
by O ∈! results in a translation of 6 80,7 ∈ by O.

We now define a !-invariant correspondence that maps each #) ∈ " to a certain probability density related to random walks 
over [$] ×!, and show that the !-invariant distance RJ,8(), 0) of (4.6) is the distance between the densities to which #) and #0 are 
mapped. We begin with the following definition.



Applied and Computational Harmonic Analysis 73 (2024) 101695

9

E. Rosen, X. Cheng and Y. Shkolnisky

Definition 12. Given a pair of functions > , ? ∈-2(!), their cross-correlation function > ⋆ ? ∈-2(!) is defined as

(> ⋆ ?)(B) = ∫
!

> (*) ⋅ ?(*B)'@(*). (4.10)

Now, consider the Hilbert space -2 ([$]2 ×!
) of functions of the form ℎ(), 0, *) such that for each fixed )0, 00 ∈ [$] we have that 

ℎ()0, 00, *) ∈-2(!). Given a pair of functions > , ? ∈, we denote by ‘⋆! ’ the operation defined as

(> ⋆! ?)(9, P,Q) ≜ {> (9, ⋅)⋆ ?(P, ⋅)} (Q), (9, P,Q) ∈ [$]2 ×!. (4.11)
That is, the function > ⋆! ? ∈ -2([$]2 × !) is the cross-correlation over ! of > (9, ⋅) and ?(P, ⋅), for each (9, P) ∈ [$]2. Now, for 
each #) ∈", consider the correspondence

)↦ 6 8),7 ⋆! 6 8),7 , (4.12)
where by (4.10), we have that

{
6 8),7 ⋆! 6 8),7

}
(9, P,Q) =

{
6 8),7 (9, ⋅)⋆ 6

8
),7 (P, ⋅)

}
(Q) (4.13)

= ∫
!

6 8),7 (9,B) ⋅ 6
8
),7 (P,BQ)'@(B). (4.14)

The following proposition asserts that the correspondence (4.12) is indeed !-invariant.

Proposition 13. Suppose that #0 =O ⋅ #) for some O ∈!. Then, we have that

6 8),7 ⋆! 6 8),7 = 6
8
0,7 ⋆! 6 80,7 . (4.15)

Proof. See Appendix D.3. □

Remark 2. Proposition 13 implies that the correspondence (4.12) is !-invariant. We can also consider mapping each point ) by

)↦ 6 81),7 ⋆! 6
82
),7 , (4.16)

for arbitrary pairs of times 81 and 82. Repeating the steps of the proof of Proposition 13, we get that the correspondence (4.16)
is also !-invariant for any pair of positive integer times 81 and 82. The latter suggests that we can construct embeddings of " by 
combining distinct diffusion time pairs.

The following theorem asserts that the function on the left hand side of (4.13) is a probability density over [$]2 ×!, and that the 
distance RJ,8(), 0) in (4.6) equals the distance between the probability densities corresponding to ) ∈ [$] and 0 ∈ [$] via (4.12).

Theorem 14.

1. For all ) ∈ [$] and 8 ∈ℕ, we have that 6 8),7 ⋆! 6 8),7 ≥ 0, and furthermore, that
$∑

9,P=1
∫
!

{
6 8),7 ⋆! 6 8),7

}
(9, P,Q)'@(Q) = 1. (4.17)

In other words, the function 6 8),7 ⋆! 6 8),7 is a probability density over [$]2 ×!.
2. The diffusion distance RJ,8 in (4.6) is given by

RJ,8(), 0) =
‖‖‖6

8
),7 ⋆! 6 8),7 − 6

8
0,7 ⋆! 6 80,7

‖‖‖-2([$]2×!,'@∕.⊗.
) , (4.18)

where -2 ([$]2 ×!,'@∕.⊗.
) is the Hilbert space of functions > (), 0, *) such that for each fixed )0, 00 ∈ [$] we have that 

> ()0, 00, *) ∈-2(!), and with inner product given by

⟨> ,?⟩-2([$]2×!,'@∕.⊗.
) ≜ $∑

),0=1∫!
> (), 0,B) ⋅ ?(), 0,B) '@(B)

.)) ⋅.00
. (4.19)

Proof. See Appendix D.4. □



Applied and Computational Harmonic Analysis 73 (2024) 101695

10

E. Rosen, X. Cheng and Y. Shkolnisky

We now relate the probability density 6 8),7 ⋆! 6 8),7 to random walks over the data. Assuming that * ⋅ #) ≠ #) for (almost) all * ∈!
and all #) ∈" (as in Theorem 2), we get that there exists a 1 − 1 correspondence between each orbit ! ⋅ #) and !, given by the map 
* ↦* ⋅#). Thus, we may think of the domain [$] ×! as a set of coordinates over ! ⋅", where the coordinate of a point * ⋅#) ∈! ⋅"
is given by (), *) ∈ [$] ×!. In terms of the latter, we say that a random walk over ! ⋅" can either move along the “[$]-direction” 
or the “!-direction” (or both) in the domain [$] × !. Now, let "1,8 and "2,8 be the positions at time 8 of a pair of random walks 
over [$] ×! that depart together from (), 7) at time 8 = 0, both with probability density given by 6 8),7 . Furthermore, let $1,8 and $2,8
denote the random variables that take the values 9 and P, respectively, whenever "1,8 = (9, *) and "2,8 = (P, A) for some *, A ∈!. In 
other words, $1,8 and $2,8 are the coordinates of "1,8 and "2,8 in the [$]-direction. Similarly, let !1,8 and !2,8 denote the random 
variables that assume the values * and A, respectively, whenever "1,8 = (9, *) and "2,8 = (P, A) for some 9, P ∈ [$], and so, !1,8
and !2,8 are the coordinates of the random walks in the !-direction. Lastly, we define the “displacement” of "1,8 and "2,8 in the 
!-direction” as the random variable Q8 = !∗

1,8 ⋅!2,8, which is the relative position of the random walks in the !-direction. We now 
have the following proposition.

Proposition 15. Let "1,8 and "2,8 be the positions at time 8 of a pair of independent random walks over [$] ×! that depart from (), 7), 
both with probability density given by 6 8),7 . For any 9, P ∈ [$] and V ⊆!, consider the event

V9P =
{
$1,8 = 9, $2,8 = P, Q8 ∈V

}
, (4.20)

whereby at time 8 the random walks "1,8 and "2,8 had reached the orbits ! ⋅ #9 and ! ⋅ #P, respectively, and their displacement Q8 in 
the !-direction is in V . Then, we have that

ℙ
(
V9P

)
= ∫
V

{
6 8),7 ⋆! 6 8),7

}
(9, P,Q)'@(Q), (4.21)

where ‘⋆! ’ is defined in (4.11).

Proof. See Appendix D.5 □

In light of Proposition 15, we conclude that Theorem 14 asserts that RJ,8 from (4.6) is the distance between the densities of the 
displacements of two pairs of random walks over [$] × !. To further clarify the implications of Theorem 14 and Proposition 15, 
consider the special case where  =! ⋅ #9 for some arbitrary fixed point #9 ∈". That is, the entire manifold  is the single orbit 
generated by the action of ! on the single point #9. Since for any #) ∈ there exists an element * ∈ ! such that #) = * ⋅ #9, we 
may think of the point #9 as the origin of the space  = ! ⋅ #9, analogously to the origin in a Euclidean space, and consider the 
elements of ! as coordinates on . If we express every point that the random walks reach in [$] ×! in coordinates with respect 
to the origin #9, then every point takes the form (9, *) for some * ∈! (and a fixed 9 ∈ [$]). Consequently, in these “coordinates”, 
the random variables $1,8 and $2,8 above are both constant, taking the value 9. This implies that in this case (4.21) is a probability 
distribution of the displacement Q8 (the relative position) of a pair of random walks on  that depart simultaneously from some 
point #), where the probability density of Q8 is given, due to Theorem 14 and Proposition 15, by 6 8),7 ⋆! 6 8),7 of (4.13). While the 
distributions of the positions of a pair of random walks certainly depend on their departure point, the distribution of their relative 
position does not. Proposition 13 formalizes the latter statement, by asserting that the density 6 8),7 ⋆! 6 8),7 is !-invariant, which 
is exactly the motivation behind the !-invariant correspondence (4.12). In the general case, where  consists of multiple orbits, 
Proposition 13 asserts that the density 6 8),7 ⋆! 6 8),7 is unchanged by varying the departure point in the !-direction, that is, when #)is replaced by O ⋅ #) for some O ∈!.

5. Numerical experiments

5.1. Basic examples

In this section, we corroborate the key properties of the distances derived in the previous sections using some simulated !-invariant 
data sets. In particular, we demonstrate the !-equivariance of .J,8 in (3.12), and !-invariance of the distance RJ,8 in (4.6).

In the following simulation, we consider the action of the group ! = +,(2) of 2D rotations on the 2D torus % 2 ⊂ℝ3, given by
⎛
⎜
⎜⎝

cosW − sinW
sinW cosW

1

⎞
⎟
⎟⎠

⎛
⎜
⎜⎝

#
=
X

⎞
⎟
⎟⎠
, (#,=,X)F ∈ % 2, (5.1)

where % 2 is given by

#(Y,W) = (Q+ P cosW) cos4, (5.2)
=(Y,W) = (Q+ P cosW) sin4, (5.3)
X(Y,W) = P sinY, (5.4)



Applied and Computational Harmonic Analysis 73 (2024) 101695

11

E. Rosen, X. Cheng and Y. Shkolnisky

Fig. 1. Figure (a) shows the +,(2)-equivariant diffusion distances (3.12) of the points in the simulated data set " from #) ∈" (marked by a blue dot), depicted as a 
heat map superimposed on the torus % 2 ⊂ℝ3 . Figure (b) shows the distances (3.12) of the points in " from #$+1 (marked by the green dot). The images indicate that 
rotating #) by 180◦ rotates the heat distribution by the same angle.

Fig. 2. Figure (a) displays the +,(2)-invariant diffusion distance of the points in the simulated data set " from #) ∈" (marked by the blue point). Figure (b) shows 
the same simulation repeated with points sampled from the 2-sphere. In both cases, the distances are constant over the orbits induced by the action of +,(2) by 
rotations about the X-axis, namely, the horizontal circles.

with Y, W ∈ [0, 2Z), and Q = 2, P = 1.
To demonstrate that the distance .J,8 in (3.12) is +,(2)-equivariant, we first sampled a data set " of $ = 10000 points from a 

uniform distribution over % 2. Next, we randomly chose a point #) ∈" and added to " the point #$+1 that results from a rotation 
of #) by 180◦ about the X axis. We then used the data set "̃ =" ∪

{
#$+1

} to compute and factor the matrices / (#) given by (2.13). 
We used the resulting eigenvectors and eigenvalues to compute the +,(2)-equivariant embedding Φ(J)

8 of (3.14), where we chose 
the time parameter 8 = 3, and truncated (3.14) by applying the rule (3.18) with M = 0.1. Finally, we computed the distances .J,8 of 
each point # ∈" from #) and from #$+1. Fig. 1 depicts the diffusion distances of the points in " from #) and #$+1, respectively, 
superimposed on the torus % 2 ⊂ℝ3 as a heat map. In Fig. 1a we plot the value .J,8(), 0) at #0 ∈ % 2 for each 0 ∈ [$], and similarly, in 
Fig. 1b we plot the value .J,8($ +1, 0) at #0 . We observe that for a fixed ) ∈ [$], the distance .J,8(), ⋅) is localized in a neighborhood 
of #), and furthermore, that the distances .J,8($ + 1, ⋅) are a rotation of .J,8(), ⋅) by 180◦, which demonstrates that .J,8 is +,(2)-
equivariant.

Next, we used the eigenvectors and eigenvalues of 6 8IJ for 8 = 3 to compute the +,(2)-invariant embedding Ψ(J)
8 of (4.4), truncated 

as suggested in Remark 1 in Section 4, with M = 0.1. Fig. 2a depicts the values of the +,(2)-invariant diffusion distances RJ,8 of (4.6)
from #) to the points in ", superimposed on the torus % 2 ⊂ℝ as a heat map, where as before, each value RJ,8(), 0) is plotted at #0 ∈". 
It is seen that the heat distribution is constant along the direction of the action of +,(2) in (5.1), that is, over the horizontal circles 
in % 2, which demonstrates that RJ,8 is invariant under the action (5.1).

We also repeated the previously described simulations with points sampled from the two-dimensional unit sphere +2 ⊂ℝ3 coupled 
with the action of +,(2) by rotations about the X-axis. The results are depicted in Figs. 2b and 3 in the same manner as for the case 
of % 2, implying the same qualitative picture as for % 2.



Applied and Computational Harmonic Analysis 73 (2024) 101695

12

E. Rosen, X. Cheng and Y. Shkolnisky

Fig. 3. Heat distributions resulting from repeating the simulation depicted in Fig. 1 with data sampled from the 2-sphere. In this case, the green point is a rotation 
of #) (marked by the blue point) by 60◦ about the X-axis. The distribution of the diffusion distances of the points in the simulated data set from the rotation of #) by 
60◦ in Figure (b) is obtained by rotating the distribution of the distances from #) in Figure (a) by 60◦ , showing a similar qualitative picture to that of the simulation 
with the torus.

5.2. Random computerized tomography with random angles and shifts

In this section, we consider the problem of random computerized tomography [1], where the goal is to reconstruct a 2D image from 
its 1D Radon transform projections taken at random unknown orientations and shifts. We demonstrate the utility of our framework 
in resolving this problem.

Let 7(#, =) ∈-2(ℝ2) be an image, finitely supported in ℝ2. The Radon transform 6W(8) of 7 in the direction W ∈ [0, 2Z) is defined 
as the line integral of 7 along the line -, which is inclined at an angle 4 and is at distance 8 from the origin. That is,

6W(8) = ∫
-

7(#,=)'[ =
∞

∫
−∞

∞

∫
−∞

7(#,=)M(# cosW+ = sinW− 8)'#'=, (5.5)

where M(#) is the Dirac delta. Given a finite set of samples " =
{
#1,… ,#$

} of the Radon transform, where #) = (6W) (81), … , 6W) (8H)), each generated at known angles W1, … , W$ and fixed equally spaced distances 81, … , 8H from the origin, tomographic reconstruction 
algorithms [23] estimate the image 7 from these samples. In random tomography, the goal is to reconstruct an image 7 from the 
set " above in the case where the angles W1, … , W$ are unknown but were sampled uniformly at random from [0, 2Z) (and as 
before 81, … , 8H are known).

In [9], it was shown that this problem can be reduced to tomographic reconstruction with known angles outlined above, by ordering 
the projections according to the angles at which they were generated, and reconstructing the image by setting W) = 2Z)∕$ for each ) ∈
[$]. Specifically, it was shown that the angles W1, … , W$ can be sorted as follows. First, use " to construct the density-invariant 
graph Laplacian matrix - =.−1-.−1 [19], where - and . are defined in (1.1). Then, compute the diffusion maps embedding using 
the two non-trivial leading eigenvectors 42, 43 of -. With a proper choice of the bandwidth 2, the embedded projections reside on a 
circle, and moreover, they are ordered according to the projection angels W) (up to a rotation by an arbitrary angle). Thus, we can 
estimate the angles of the projections via

W̃) = atan2(42()),43())), ) ∈ [$], (5.6)
and use these angles to order the projections. Then, the image is reconstructed by reordering the projections with respect to W̃), and 
setting for the reordered projections W) to be 2Z)∕$ . The procedure above is outlined in Algorithm 1.

Algorithm 1 Image reconstruction from random projections
Input: Projection images #) =

(
6W) (81),… ,6W) (8H)

), for ) = 1, … , $ .
1: Compute . and - from (1.1), and construct the density-invariant graph Laplacian - =.−1-.−1 .
2: Compute the two leading non-trivial eigenvectors 42, 43 of -.
3: Sort the projections #) according to W̃) = atan2(42()), 43())).
4: Reconstruct a 2D image using the sorted projections #) , setting the input angles W) to be 2Z)∕$ .

Remark 3. As explained in [9], the eigenvectors 42, 43 of - approximate a pair of eigenfunctions of the Laplace-Beltrami operator 
on the circle +1, that correspond to an eigenvalue with multiplicity 2. Thus, the computation of 42, 43 may result in any orthogonal 
combination of these eigenvectors (depending on the numerical procedure used for their computation). This implies that the diffusion 
maps embedding formed by these eigenvectors is only unique up to an arbitrary rotation and possibly a reflection (orientation of the 



Applied and Computational Harmonic Analysis 73 (2024) 101695

13

E. Rosen, X. Cheng and Y. Shkolnisky

curve). This degree of freedom is manifested in the fact that the reconstruction of the image is only possible up to a rotation and a 
possible reflection, or by the same token, in that the order of the projection angles can be recovered only up to a cyclic permutation, 
and that it may be possibly flipped.

Here, we tackle the case where each projection #) ∈ " is not only generated at a random unknown angle, but also may be 
independently shifted by a random unknown shift [) (to the left or to the right) [2]. In terms of the model formulated above, this 
corresponds to the setting where the equally spaced distances 81, … , 8H may be shifted by a random number [), sampled uniformly at 
random from an interval + = [−[max, [max], where [max is the maximal shift of a projection. To conclude, our goal is to reconstruct a 2D 
image from the set " =

{
(6W) (81 + [)),… ,6W) (8H + [)))

}$
)=1

, where W) and [) are sampled independently and uniformly at random 
from [0, 2Z) and + , respectively. In this setting, the data points in " reside in the two-dimensional manifold comprised of all the 
projections and their shifts in + . Since Algorithm 1 requires the projections to reside on a curve, we cannot except it to directly 
resolve this problem. Indeed, below we demonstrate that in this case Algorithm 1 fails to recover the order of the projections in ", 
and so also fails to recover the underlying image.

We now derive a method in which we first unshift the projections in " such that they reside on a curve B , after which we 
apply Algorithm 1 to the unshifted projections. Formally, our method finds a set of shifts [̃1, … , ̃[$ such that shifting #) = (6W) (81 +
[)), … , 6W) (8H + [))) by [̃) approximates the unshifted projection (6W) (81), … , 6W) (8H)), that is,

(6W) (81 + [) − [̃)),… ,6W) (8H + [) − [̃))) ≈ (6W) (81),… ,6W) (8H)). (5.7)
In a nutshell, the unshifting works as follows. First, we compute an embedding of " which is invariant to the shifts [). In other words, 
any two projections #) and #0 such that #0 is a shift of #) are embedded into the same point. This enables us to detect which unshifted 
projections (6W) (81), … , 6W) (8H)) reside at neighboring points on B . Then, we compute an embedding of " which is equivariant to the 
shifts [), which we employ to find for each such pair of neighboring projections the relative shift [)0 ∈ + that best aligns #0 with #). 
Finally, we show how to employ an algorithm derived in [32] to extract the shifts [̃1, … , ̃[$ from the relative shifts [)0 .

In order to implement our method, we would like to construct a shift-invariant graph Laplacian, and compute its associated 
invariant and equivariant embeddings, derived in the previous sections. Unfortunatelly, the set of shifts + is clearly not a group. 
Thus, our strategy is to first embed + into the circle +1 (a one-dimensional Lie group) via an invertible map Θ, such that each 
element \ ∈ +1 acts on #) ∈" by a unique shift [\ =Θ−1(W) (where we identify +1 with [0, 2Z)). Then, we can construct the +1-GL 
by using" with the aforementioned action of +1, and the +1-invariant and equivariant embeddings computed from its eigenfunctions 
and eigenvalues induce the desired embeddings. We now construct such an embedding Θ.

Recall that the eigendecomposition of the +1-GL is derived by using the eigenvectors and eigenvalues of the matrices / (#)

from (2.13). The matrices / (#) in our construction are formed by the coefficients of the Fourier series of the functions ')0 (W) ≜
exp{− ‖‖‖#) − [\◦#0

‖‖‖
2
∕2} for all ), 0 ∈ [$]. To obtain an everywhere convergent series for each ), 0 ∈ [$], we need to make sure that 

the definition of the map Θ above guarantees that each function ')0 is 2Z-periodic. For that, we observe that the projections in " are 
assumed to have been generated from an image 7 that is finitely supported in ℝ2, and are thus also finitely-supported. Now, Suppose, 
that their support lies within the interval O = [−;, ;] for some ; > 0. Then, for each ), 0 ∈ [$], and any shift [ such that |[| ≥ [, 
where [ =max{2;, 2[max}, we have that

‖‖‖#) − [◦#0
‖‖‖
2
= ‖‖#)‖‖2 − 2

⟨
#), [◦#0

⟩
+ ‖‖‖#0

‖‖‖
2
= ‖‖#)‖‖2 + ‖‖‖#0

‖‖‖
2
. (5.8)

Thus, if we define the map Θ above by

Θ([) = Z + 2Z[
2[

, [ ∈ +, (5.9)

which maps + = [−[, [] to +1 by identifying the boundaries of the interval + , (5.8) implies that

')0 (2Z) = exp{−‖‖‖#) − [◦#0
‖‖‖
2
∕2} = exp{−‖‖‖#) − (−[)◦#0

‖‖‖
2
∕2} = ')0 (0), (5.10)

as desired. Furthermore, Θ is invertible, and due to the definition of [ above, we also have that + ⊆ + , which together imply that each 
shift within + is embedded by Θ into a unique point in +1. Therefore, if we compute the +1-invariant embedding (4.4) associated 
with the +1-GL constructed as just described, any two projections #), #0 ∈" such that #) = [◦#0 for some [ ∈ + get embedded into the 
same point. Moreover, the associated +1-equivariant embedding Φ(J)

M,8 in (3.17) induces a shift-equivariant embedding of ", where 
if #) = [◦#0 for some [ ∈ + then Φ(J)

M,8 (0, Z) = C (Θ([)) ⋅Φ(J)
M,8 (), Z), where Z = Θ(0) is the group element in +1 that corresponds to the 

zero shift (see (3.20) in Proposition 7).

Remark 4. Note, that we may have to pad the projections #) ∈ " with zeros to implement the shifts [◦#) for all [ ∈ + , whose 
magnitude may be larger than [max (the magnitude of the maximal shift in the data). In particular, we avoid cyclically shifting the 
data which produces vectors that cannot have been obtained by the Radon projection (5.5).



Applied and Computational Harmonic Analysis 73 (2024) 101695

14

E. Rosen, X. Cheng and Y. Shkolnisky

Since the unshifted projections of a 2D image reside on a smooth and closed curve B , the data set of projections {[\◦#) ∶ #) ∈
", \ ∈ [0, 2Z)} resides on the compact two-dimensional manifold generated by letting the elements W ∈ +1 act on each point # ∈ B
by [\◦#, as described above. We now describe in detail our method to reconstruct a 2D-image from its random shifted projections, 
which uses the +1-invariant and +1-equivariant diffusion maps derived from the +1-GL constructed by viewing the projections in "
as samples from . The method consists of 5 steps.

Algorithm 2 +1-GL based shift-invariant G nearest neighbors
Input:
1. Data set " of shifted projections.
2. Maximal IUR index #max , an integer G > 0 of nearest neighbors to compute, and a diffusion time parameter 8.

1: Use " to construct the +1-GL as described in Theorem 2, with the action of +1 on " given by the shifts Θ−1(W), W ∈ [0, 2Z) (see (5.9)).
2: Compute the truncated +1-invariant diffusion maps Ψ(J)

#max ,8
()) via (4.4) with # ≤ #max , for all ) ∈ [$].

3: For each #) ∈" compute the set ) of the G projections #0 ∈" with smallest distance ‖‖‖Ψ
(J)
#max ,8

())−Ψ(J)
#max ,8

(0)‖‖‖ .

In Step 1, we use the data set " to construct and decompose the +1-invariant graph Laplacian, where we perceive " as being 
sampled from a +1-invariant manifold, as described above. Practically, this means that we construct and factor the matrices G (#)

in (2.16) up to a certain threshold # ≤ #max. We then compute for each ) ∈ [$] the truncated +1-invariant embedding Ψ(J)
#max ,8

())
given by (4.4) with # ≤ #max, and & ≤ &# for each #, where &# is the number of leading eigenvectors of G (#) we use to construct the 
embedding. Below, we describe how we chose #max and &# in our simulations.

In Step 2, we first fix an integer G ≪$ and a diffusion time parameter 8 ≥ 0, and compute for each projection #) the set )
of its G nearest +1-invariant neighbors defined as the G projections #0 with the smallest distance ‖‖‖Ψ

(J)
#max ,8

())−Ψ(J)
#max ,8

(0)‖‖‖ in the 
embedding space. Then, for each ) ∈ [$], the set ) contains the G neighbors of #) up to shifts. Step 1 and Step 2 are outlined 
in Algorithm 2.

In Step 3, for each projection #) and each of its neighboring projections #0 ∈) determined in Step 2, we employ the truncated 
equivariant embedding of (3.17) to compute the relative shift [)0 that best aligns #0 with #) by solving

[)0 =min
[∈+

‖‖‖Φ
(J)
M,8 (),Θ

−1([))−Φ(J)
M,8 (0,Z)

‖‖‖ , (5.11)

where Θ−1 is the inverse map of Θ defined in (5.9), and Φ(J)
M,8 (), Θ

−1([)) is the embedding of [◦#). In particular, by (5.9), we have 
that Φ(J)

M,8 (0, Θ
−1(0)) = Φ(J)

M,8 (0, Z), which is the embedding of the point #0 . We discuss below how we chose the threshold M in our 
simulations. We point out that it is also possible to compute the relative shifts [)0 by directly aligning the projections. That is, by 
solving

[)0 =min
[

‖‖‖[◦#) − #0
‖‖‖ , [ ∈ +, (5.12)

where [◦#) is defined as

[◦#) =
(
6W) (81 + [) − [),… ,6W) (81 + [) − [)

)
. (5.13)

However, as we demonstrate in simulations below, while both methods of computing the [)0 produce comparable results, the 
method (5.11) can be more computationally efficient.

Algorithm 3 Global alignment of projections
Input:
1. Pairwise relative shifts [)0 for all ), 0 ∈ [$] such that ) ∈0 or 0 ∈) .
2. Shifted projections #) =

(
6Y) (81 + [)),… ,6Y) (8H + [))

), for ) = 1, … , $ .
1: Compute Y)0 =Θ([)0 ) for all ), 0 ∈ [$] (see (5.9)).
2: Construct the $ ×$ matrix V defined in (5.15).
3: Compute the leading eigenvector ℎ of V .
4: Set [̃) = Θ−1(arg(ℎ()))) for all ) ∈ [$] (arg(⋅) is the complex argument function).
5: Compute #̃) =

(
6Y) (81 + [) − [̃)),… ,6Y) (8H + [) − [̃))

), for ) = 1, … , $ .

In Step 4, we use the relative shifts [)0 to derive a set of shifts [̃1, … , ̃[$ such that the consistency relations

[)0 ≈ [̃0 − [̃), ) ∈0 or 0 ∈), (5.14)
approximately hold for all pairs (), 0) simultaneously. We use the method of angular synchronization proposed in [32], which solves 
an equivalent problem for relative rotation angles instead of relative shifts (recall that each relative shift [)0 can be mapped to a 
relative rotation angle via (5.9)). We now briefly describe this method. Consider the set of all angles Y)0 =Θ([)0 ), where either ) ∈0
or 0 ∈) (or both). We construct an $ ×$ matrix V defined by



Applied and Computational Harmonic Analysis 73 (2024) 101695

15

E. Rosen, X. Cheng and Y. Shkolnisky

Fig. 4. Shepp-Logan phantom reconstructed from 256 shifted random projections at various levels of noise, after centering them by using our method.

V)0 =
{
1)Y)0 ) ∈0 or 0 ∈),
0 otherwise. (5.15)

It is shown in [32] that if the neighbors of each point in " are identified accurately, then for a sufficiently large $ , the complex 
arguments arg(ℎ())) of the elements of ℎ, the top eigenvector of V , are a set of angles Ỹ1, … , Ỹ$ for which the consistency relations

Y)0 ≈ Ỹ0 − Ỹ), ) ∈0 or 0 ∈), (5.16)
hold with high probability. Computing Y) by the method just described we obtain the set of shifts [̃) = Θ−1(Ỹ)) for which, by (5.16)
and the linearity of (5.9), the consistency relations (5.14) approximately hold. We can now shift the projections #) by the obtained 
shifts [̃), so that (5.7) holds. The procedure just described is outlined in Algorithm 3.

At this point, all the projections are aligned with respect to each other (due to (5.14)). However, it may be that all the projections 
are shifted together by a single global shift [ with respect to the center of each projection. Thus, Step 5 (the last step of our method) 
is to resolve this last degree of freedom, as follows. Let P be the dimension of the 1D projections in " (in pixels). First, we form the 
2D array of size $ × P pixels obtained by placing the 1 × P aligned projections in a stack of height $ . We then center this array by 
shifting it to its center of mass, and use the resulting stack of projections as our data set. At this point we can input the resulting 
aligned and centered projections to Algorithm 1 to obtain the order of the projections, and reconstruct the image.

To demonstrate the method just described, we applied it to the reconstruction of the Shepp-Logan Phantom from its projections 
generated at random angles and random shifts. The result is depicted in Fig. 4a. This figure was generated as follows. First, we 
generated $ = 1024 uniformly distributed angles from [0, 2Z), denoted by W1, … , W$ . For each Y), we evaluated the analytic ex-
pression of the Radon transform of the Shepp-Logan phantom at H = 512 equally spaced point between -1.5 and 1.5. Thus, each 
projection #) is a 1D vector of 512 pixels. The maximal shift [max = 102 was chosen to be approximately 40% of the support of the 
signal in each projection, which is around 256 pixels on average. We then sampled $ integer shifts [) from a uniform distribution 
over + = {−102,… ,102}, and shifted each vector #) by [) pixels. Next, we applied Steps 1 − 5 described above to the projections, as 
follows. The bandwidth 2 was chosen by using the approximation rule proposed in [9]

2opt = argmax
2

] logTr{.(2)}
] log 2 , (5.17)

where Tr{.(2)} is the trace of the diagonal matrix .(2), which is the matrix . in (2.6), whose elements were computed by using the 
bandwidth parameter 2. Then, we applied Algorithm 2 to the data. Specifically, we computed the +1-invariant diffusion maps with 
diffusion time 8 = 0, where for each IUR index # ∈ +1 (see Appendix A.2) we used the top &# eigenvectors of the matrix G (#) in (2.16)
that satisfy 5&,# > 0.1. The maximal IUR index #max ∈ +1 was chosen as follows. First, we set #max = 1 and computed the +1-invariant 
embedding (4.4), where we used the &1 top eigenvectors ofG (1), chosen by using the condition described above. Then, for each #) ∈"
we computed the G = 32 nearest neighbors #0 ∈) with the smallest Euclidean distance between their embedding and that of #). 
We then computed the median med1 of these distances over all #). Next, we set #max = 2, and repeated the previous computation, 
constructing the diffusion maps by taking all the eigenvectors of the matrices G (1) and G (2), with the number of eigenvectors of each 



Applied and Computational Harmonic Analysis 73 (2024) 101695

16

E. Rosen, X. Cheng and Y. Shkolnisky

Fig. 5. Angles W̃()) obtained by ordering the true projection angles W) according to the order of the sorted angles W̃) of (5.6), plotted against the angles W()) obtained 
by sorting W) . The angles W̃) were estimated by passing to Algorithm 1 the class-averages of the 32 nearest neighbors of each #) ∈", determined by the +1-invariant 
diffusion maps.

matrixG (#) chosen using the same condition as for the case #max = 1. Then, we used the resulting embedding to compute the 32 nearest 
neighbors of each #) ∈" the same way we did for #max = 1, and computed a new respective median nearest neighbor distance med2. 
We then repeated this process of increasing #max until the relative change in the median (med)+1 −med))∕med) was > −0.01. Then, 
we computed the +1-equivariant embedding (3.17), using the same eigenvectors that were employed for the construction of the +1-
invariant embedding above. The resulting equivariant embedding Φ(J)

M,8 has dimension 20, and corresponds to the threshold M = 0.1. 
Then, for each #) ∈ ", we computed the relative shifts [)0 that best align the points #0 ∈  with #), by solving (5.11). Next, we 
applied Algorithm 3, using |)| = 32 nearest neighbors computed as described above, to construct V in (5.15), and aligned the 
projections by using the resulting shifts as on the l.h.s. of (5.7). The aligned projections were then centered as described in Step 5 
above. We then applied Algorithm 1 to the aligned and centered data set to order the projections according to the angles which 
generated them. Finally, we reconstructed the image shown in Fig. 4a by using a subset of 256 of the ordered projections with equally 
spaced indexes 1, 5, … , 1019 (as was done in [9]). In Fig. 5a, we demonstrate that our method manages to recovering the ordering of 
the true projection angles W, by graphing the angles

W̃(1), W̃(2),… , W̃($), (5.18)
obtained by ordering W) according to the order of the sorted angles W̃) of (5.6) (obtained by Algorithm 1), against

W(1) ≤ W(2) ≤… ≤ W($), (5.19)
the angles W) sorted in ascending order.

We also applied Algorithm 1 directly to the shifted projections in ". Fig. 6a shows the reconstructed phantom, demonstrating that 
Algorithm 1 fails when the projections are shifted. As we explained above, this is attributed to the fact that shifted projections are 
scattered on a two-dimensional manifold rather than a curve. Thus, the order of the projection angles cannot be recovered from the 
two non-trivial leading eigenvectors 42, 43 of -̃. This is demonstrated in Fig. 6b, where we graph the angles W̃()) in (5.18) against W())
in (5.19).

A common method to deal with shifts in the data, is to shift it so that its center of mass (CM) is located in the center of the 
projection vector [15]. Fig. 7a shows the high quality reconstruction obtained by applying Algorithm 1 after centering according to 
their CMs. In Fig. 7e, we graph the angles W̃()) in (5.18) against W()) in (5.19), showing that after centering the projections Algorithm 1
succeeds in retrieving the ordering of the projection angles (the jump discontinuity observed in the graph is attributed to the fact that 
the order of the angles can only be retrieved up to a cyclic permutation, as explained in Remark 3).

We now demonstrate the performance of our proposed method with noisy projections, where we measure the amount of noise in 
the projections by the signal-to-noise ratio (SNR) measured in decibels, defined here as



Applied and Computational Harmonic Analysis 73 (2024) 101695

17

E. Rosen, X. Cheng and Y. Shkolnisky

Fig. 6. Reconstruction by directly applying Algorithm 1 to the shifted projections.

SNRdb = 10 log10
(Var(")

^2

)
, (5.20)

where ^2 is the variance of the white noise, and Var(") is the sample variance of the data set. It was observed in [9] that Algorithm 1
performs well for SNRdb ≥ 10.6 and undergoes an abrupt phase transition for SNRdb ≤ 10.5, performing poorly and failing to retrieve 
the order of the projections. It was reasoned that this threshold effect is caused by the noise thickening the curve B of the Radon 
projections, making the graph Laplacian treat the data as a surface instead of a curve. However, by denoising the projections before 
applying Algorithm 1 using a wavelet based low-pass filter, the 10.5 dB threshold in [9] was pushed down to 2 dB. The latter threshold 
was pushed further to −5 dB in [30], that proposed applying several advanced preliminary denoising methods to the projections, 
before using Algorithm 1.

To have a point of reference, we repeated the procedure described in [9] with noisy shifted projections after centering them 
using their CMs, as described above. The resulting reconstructions for several SNR levels are shown in Figs. 7b-7d. We see that after 
centering Algorithm 1 performs reasonably well for SNRdB ≥ 4, although with some features of the reconstructed phantom visibly 
distorted already at SNRdB = 10.

To deal with noise in our simulations, we employed instead a method known as class-averaging [31] (that provides superior 
results), as follows. After we aligned the projections by Algorithm 3, we generated a new data set "CA where each projection #) was 
replaced with the average of its 32 aligned nearest neighbors in ) (including #) itself). The idea is that after alignment the majority 
of the neighbors #0 ∈) are approximately equal to #), and thus, the random white noise having a zero mean gets averaged out by 
averaging all the neighbors, producing a denoised version of #). We then used the data set "CA as an input to Algorithm 1 to estimate 
the angles W̃1, … , W̃$ , and assigned to each #) ∈" the angle W̃). We then ordered the projections #) ∈" according to their assigned 
angles W̃). Finally, we reconstructed the image from the sorted aligned projections #) ∈", assuming that their projection angles are 
equally spaced in [0, 2Z) (see [9] for a detailed justification).

To demonstrate our method with denoising by class-averaging, we added various amounts of additive Gaussian white noise to 
the data set of $ = 1024 projections generated in the previous section. The reconstructed images corresponding to SNRs 30 dB, 10
dB, 2 dB, −3 dB, and −4 dB are shown in Fig. 4. In particular, we see that even in the presence of shifts, our method manages to go 
well beyond the 2 dB threshold reported in [9], obtaining good reconstructions up to SNRdB = −3. At SNRdB = −4 the performance 
deteriorates, 2 dB lower than the performance reported in [30] without shifts. After a proper adaptation to account for shifts, the 
denoising methods used in [30] can also be combined into to our algorithm as a preprocessing step, which we expect to significantly 
improve our results as well. We leave that for future work.

The effect of class-averaging on the performance of the method is illustrated in Fig. 8. The right column depicts a randomly chosen 
projection #) = 6W) (81, … , 8$ ) ∈" at the various levels of noise (blue line), and its denoising (red line). The denoised projection was 
obtained by averaging # with its 32 nearest neighbors, determined by Algorithm 2. The left column shows the denoised projection 
in each row superimposed on the clean projection. We see that the denoised projection gives a good approximation to the clean 
projection even at SNRdb = −4, where the method breaks down. This abrupt break down is attributed to the threshold effect observed 
in [9] (discussed above), when applying Algorithm 1 to the (aligned) projections. We illustrate this phenomenon in Fig. 5, where 
for each SNR value we graph the angles W̃()) of (5.18) against the angles W()) of (5.19). Note that some of the graphs admit a jump 
discontinuity, and that the slope of each graph is either +1 or −1. This is just a manifestation of the degrees of freedom inherent to 
the problem, as we described in Remark 3. We see that the ordering of the projections deteriorates as the noise level grows, breaking 
down at SNRdb = −4.

Lastly, we wish to demonstrate the advantages of using the equivariant embedding (3.17) for pairwise alignment of projections, 
over directly aligning pairs of projections. For this, we repeated the simulations described above with SNR values of 10 dB, 2 dB, 



Applied and Computational Harmonic Analysis 73 (2024) 101695

18

E. Rosen, X. Cheng and Y. Shkolnisky

Fig. 7. Shepp-Logan phantom reconstructed from 256 shifted random projections at various levels of noise, ordered by using Algorithm1 after centering each projection 
based on its center of mass.

−3 dB, and −4 dB, but with the pairwise alignment method (5.11) (that employs (3.17)) replaced by (5.12) that directly aligns the 
projections. Fig. 9 depicts the resulting reconstructed Shepp-Logan phantoms, showing that at moderate SNR levels the reconstructions 
are of similar quality to those in the previous simulations, but at lower SNRs alignment using the equivariant embedding performs 
better (compare with Fig. 4). Furthermore, using the alignment method (5.12) in Step 3 involves directly shifting the projections, 
where the complexity of a shift is of the order of the projections’ dimension, which is 512. On the other hand, alignment using (5.11)
requires applying the action of +1 to the embedded projections Φ(J)

M,8 (), Z), which in our simulation have dimension 20. Using that 
the IURs of +1 are the Fourier modes 1)HW together with Proposition 7, and in particular (3.20), implies that the action of an 
element 1)W ∈ +1 on the embedding Φ(J)

M,8 (), Z) of each projection #) can be computed by multiplying the embedding by a 20 × 20
diagonal matrix C with Fourier modes on the diagonal. The complexity of this operation is of the order of the dimension of Φ(J)

M,8 (), Z)(since C is diagonal), which is a huge improvement over directly shifting the projections.

6. Summary and future work

In this work, we generalized the diffusion maps embedding for data sets closed under the action of a compact matrix Lie group. We 
derived an equivariant embedding, and showed that the Euclidean distance between embedded points equals the distance between 
the probability densities of a pair of random walks over the orbits generated by the action of the group on the data set. Next, we 
derived an invariant embedding, and showed that the distance between a pair of embedded points equals the distance between the 
probability densities of displacements of pairs of random walks that depart from the points. We then demonstrated the utility of our 
framework for the problem of reconstructing a 2D image from its noisy random 1D Radon transform projections, each shifted by a 
random shift.

As for future work, a natural direction is to apply !-invariant diffusion maps for clustering, dimensionality reduction, and align-
ment of data sets of images, points clouds, and volumes. Of particular interest, is the problem of class-averaging in cryoEM [31], 
which can be seen as a 2D analog of the random tomography problem addressed in Section 5.2.

Data availability

No data was used for the research described in the article.

Acknowledgments

XC was supported in part by NSF DMS-2007040. ER and YS were supported by NSF-BSF award 2019733 and by the European 
Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement 723991 -
CRYOMATH). YS was supported also by the NIH/NIGMS Award R01GM136780-01.



Applied and Computational Harmonic Analysis 73 (2024) 101695

19

E. Rosen, X. Cheng and Y. Shkolnisky

Fig. 8. Right column: a randomly chosen projection 6W) with additive white noise at various noise levels (blue), and its denoising by class-averaging (32 nearest neighbors) at each noise level (red). Left column: denoised projections from the right column (red), superimposed on the clean projection (blue).

Appendix A. Compact matrix Lie groups

A.1. Matrix Lie groups and actions

In this section and the next, we review some background on compact matrix Lie groups and harmonic analysis on them. For a 
thorough introduction to the subject we refer the reader to [5].



Applied and Computational Harmonic Analysis 73 (2024) 101695

20

E. Rosen, X. Cheng and Y. Shkolnisky

Fig. 9. Shepp-Logan phantom reconstructed from 256 random shifted projections at various levels of noise, centered by directly aligning the nearest neighbors) to 
the projection #) in Step 3 of our method.

Definition 16. A matrix Lie group is a smooth manifold !, whose points form a group of matrices.

For example, consider the special unitary group of order 2

+C (2) =
{(

X :
−: X

)
∶ X,: ∈ℂ, |X|2 + |:|2 = 1

}
, (A.1)

which consists of all 2 × 2 unitary matrices with determinant 1. Writing X = #1 + )#2 and : = #3 + )#4 we have that

1 = det
(

X :
−: X

)
= |X|2 + |:|2 = #21 + #22 + #23 + #24. (A.2)

Furthermore, it is readily verified that each X, : ∈ ℂ for which (A.2) holds defines a unique element in +C (2). Hence, we conclude 
that +C (2) is diffeomorphic to the three-dimensional unit sphere +3. Other important examples for matrix Lie groups include the 
group of three-dimensional rotation matrices +,(3), and the &-dimensional torus % &, which is just the group of diagonal & ×& unitary 
matrices.

Definition 17. The action of a group ! of & × & matrices on a subset _ ⊆ℂ& is a map ‘ ⋅ ’ ∶! ×_ →_ , defined for each * ∈! and 
# ∈_ by matrix multiplication on the left * ⋅ #.

We say that the set _ is closed under the action of ! or simply that _ is !-invariant, if for every * ∈! it holds that * ⋅ # ∈_ . 
We will assume that the data set _ was sampled from a !-invariant compact manifold  ⊂ ℂ&. In other words, we assume that 
* ⋅ # ∈ for all # ∈ and * ∈!. We assume that ! is compact as well.

The tools we develop in this work employ Fourier series expansions over Lie groups. The expansion coefficients are obtained by 
integration with respect to the Haar measure, which we now define.

Definition 18. The Haar measure over a Lie group ! is the unique finite valued, non-negative function @(⋅) over all (Borel) subsets 
+ ⊆!, such that

@(* ⋅ +) = @(+) for all * ∈!, (A.3)
and

@(!) = 1. (A.4)

If the group ! is compact (as we assume throughout this work), then we also have right invariance ([7])

@(+ ⋅*) = @(+) for all * ∈!, (A.5)
and furthermore, that ([7])

@(+∗) = @(+), + ⊆!, (A.6)
where +∗ = {*∗ ∶ * ∈ +}.

As an example for a Haar integral, consider again the group +C (2) in (A.1). Any element * ∈ +C (2) can be written using Euler 
angles as

*(`,a, b) =
(

cos a2 1
)(`+b)∕2 sin a

2 1
)(`−b)∕2

) sin a
2 1

−)(`−b)∕2 cos a2 1
−)(`+b)∕2

)
, (A.7)



Applied and Computational Harmonic Analysis 73 (2024) 101695

21

E. Rosen, X. Cheng and Y. Shkolnisky

where ` ∈ [0, 2Z), a ∈ [0, Z) and b ∈ [−2Z, 2Z). Using (A.7), the Haar integral of a function > ∶ +C (2) → ℂ can be computed by 
(see [8])

∫
+C (2)

> (*)'@(*) = 1
16Z2

2Z

∫
0

Z

∫
0

2Z

∫
−2Z

> (*(`,a, b)) sina'`'a'b . (A.8)

We observe that in this case, the volume element induced by the Haar measure is given in Euler angles parametrization 
by sina'`'a'b .

A.2. Harmonic analysis over matrix Lie groups

In this section, we give a brief introduction to Fourier series expansions of group valued functions, which arise as a consequence 
of the celebrated Peter-Weyl theorem [5]. The expansion of a function > ∶ !→ ℂ is obtained in terms of the elements of certain 
matrix valued functions, known as the irreducible unitary representations of !, which we now define.

Definition 19. An &-dimensional unitary representation of a Lie group ! is matrix-valued function C (⋅) from ! into the group U(n) 
of & × & unitary matrices, such that

C (* ⋅A) =C (*) ⋅C (A), *,A ∈!, (A.9)
and

C (7) = 7&, (A.10)

where 7 ∈ ! and 7& ∈ U(&) are the identity elements of ! and U(n), respectively. The homomorphism property (A.9) together 
with (A.10) implies that the set {C (*)}*∈! is also a matrix Lie group. Furthermore, by (A.9) and (A.10) we have that

7& =C (**∗) =C (*) ⋅C (*∗), (A.11)
which implies that

C (*∗) = (C (*))∗ , * ∈!. (A.12)
In other words, the matrix C (*∗) is the inverse element of C (*).

Definition 20. A group representation C (⋅) is called reducible, if there exists a unitary matrix 6 , such that 6C (*)6−1 is block 
diagonal for all * ∈!. An irreducible unitary representation (abbreviated IUR) is a representation that is not reducible.

By the Peter-Weyl theorem [5], there exists a countable family {C`} of finite dimensional IURs of !, such that the collec-
tion

{
C`
)0 (⋅)

}
of all the elements of all these IURs forms an orthogonal basis for -2(!). This implies that any smooth function 

> ∶ !→ ℂ can be expanded in a series of the elements of the IURs of !. For example, the IURs of +C (2) in (A.7) are given by a 
sequence of matrices {C#}, # = 0, 1∕2, 1, 3∕2, …, where C#(*) is a (2# + 1) × (2# + 1) dimensional matrix for each * ∈ ! (see e.g. 
[8]). In particular, the matrix-valued function in (A.7) is the IUR of +C (2) that corresponds to # = 1∕2.

In general, the series expansion of a function > ∶!→ℂ is given by

> (*) =
∑
#∈!

'# ⋅ trace
(
>̂# ⋅C#(*)

)
, (A.13)

where ! is a countable set that enumerates the IURs of !, '# is the dimension of the #-th IUR, and >̂# is the '# × '# matrix given 
by

>̂# = ∫
!

> (*)C#(*)'@(*), (A.14)

for each # ∈ ! . Note, that the elements of the conjugate of the IUR C#(*) in (A.14) is defined simply by taking the conjugate of 
each element of C#(*). Importantly, we have Schur’s orthogonality relation (see [8])

∫
!

C#
H&(*)C

#
H′&′ (*)'@(*) = '

−1
# ⋅ M##′MHH′M&&′ , (A.15)

where M;P is Kronecker’s delta.



Applied and Computational Harmonic Analysis 73 (2024) 101695

22

E. Rosen, X. Cheng and Y. Shkolnisky

Appendix B. Proof of Lemma 3

By assumption, there exists A ∈! such that #0 = A ⋅ #). First, we show that

/̂ #
)9 =C#(A) ⋅ /̂ #

09, 9 = 1,… ,$ , (B.1)

where /̂ #
)9 is defined in (2.12). Indeed, by using (2.5), we have

/̂ #
)9 = ∫

!

/)9(7 ,*)C#(*)'@(*) = ∫
!

1−‖‖#)−*⋅#9‖‖
2∕2C#(*)'@(*)

= ∫
!

1−
‖‖‖#0−A*⋅#9

‖‖‖
2
∕2C#(*)'@(*).

Making the change of variables B =A*, we get

∫
!

1−
‖‖‖#0−A*⋅#9

‖‖‖
2
∕2C#(*)'@(*) = ∫

!

1−
‖‖‖#0−B⋅#9

‖‖‖
2
∕2C#(A∗B)'@(A∗B)

=C#(A∗)∫
!

1−
‖‖‖#0−B⋅#9

‖‖‖
2
∕2C#(B)'@(A∗B) (B.2)

=C#(A∗)∫
!

1−
‖‖‖#0−B⋅#9

‖‖‖
2
∕2C#(B)'@(B) (B.3)

=C#(A∗) ⋅ /̂ #
09, (B.4)

where we used the homomorphism property (A.9) in passing to (B.2), and the translation invariance property (A.3) of the Haar 
measure in passing to (B.3). Next, we observe that for all ) ∈ [$], we have

/̂ (#)E = 5E ⟺
$∑
9=1

/̂ #
)9 ⋅ 1

9(E) = 51)(E) ⟺ C#(A∗) ⋅
$∑
9=1

/̂ #
091

9(E) = 51)(E)

⟺
$∑
9=1

/̂ #
091

9(E) =C#(A)51)(E), (B.5)

where we used (A.12) in passing to (B.5), and thus, using that 5 > 0, we get that

510 (E) =
$∑
9=1

/̂ #
091

9(E) = 5C#(A) ⋅ 1)(E) ⟺ 10 (E) =C#(A) ⋅ 1)(E). (B.6)

Appendix C. Proofs of results from Section 3

C.1. Proof of Theorem 6

First, let us express (3.13) in terms of the eigenvectors and eigenvalues of 6 8IJ of (3.8). We begin by diagonalizing the operator +IJ ∶ → defined by

+IJ {>} (),*) =
$∑
0=1∫!

+((),*), (0,A))>0 (A)'@(A), > ∈, (C.1)

where

+((),*), (0,A)) =
√
.))√
.00

6 ((),*), (0,A)) =
/)0 (*,A)√
.))

√
.00

, (C.2)

where 6 is defined in (3.1) and /)0 is defined in (2.5). By (C.2) and (2.5), the function +((), *)(0, A)) is symmetric, and thus, the 
operator +IJ is also symmetric. Now, consider the matrix +(#) = (.(#))−1∕2/̂ (#)(.(#))−1∕2, related to the matrix G (#) in (2.16) by

+(#) = 7 − (.(#))1∕2G (#)(.(#))−1∕2, (C.3)
where .(#) and / (#) were defined in (2.13) and (2.15), respectively. By (C.3) we have that G (#) = 7 − (.(#))−1∕2+(#)(.(#))1∕2, and 
so, if Ẽ&,# is an eigenvector of G (#) that corresponds to the eigenvalue 5̃&,# (see Theorem 2), then (3.5) implies that



Applied and Computational Harmonic Analysis 73 (2024) 101695

23

E. Rosen, X. Cheng and Y. Shkolnisky

5̃&,# ⋅ Ẽ&,# =G (#) ⋅ Ẽ&,# = (7 − (.(#))−1∕2+(#)(.(#))1∕2) ⋅ Ẽ&,# ⟺

(.(#))−1∕2+(#)(.(#))1∕2 ⋅ Ẽ&,# = 5&,# ⋅ Ẽ&,# ⟺ +(#)((.(#))1∕2Ẽ&,#) = 5&,# ⋅ (.(#))1∕2Ẽ&,# . (C.4)
Thus, we see that Ẽ&,# is an eigenvector of G (#) if and only if (.(#))1∕2Ẽ is an eigenvector of +(#).

As we explained in Section 3, the eigenfunctions {Φ(J)
#,H,&} in (3.6) of 6IJ from (3.1) are identical to those of -̃ in (2.8), which can 

be computed by using the eigenvectors E(J)&,# = Ẽ&,# of G (#) via (2.17). By (3.6) and (2.17), the eigenfunctions of 6IJ can be expressed 
as

Φ(J)
#,H,&(),*) =

√
'# ⋅C#

H,⋅(*) ⋅ 1
)(E(J)&,#). (C.5)

We further denote the eigenvectors of +(#) from (C.3) by
{
E([)&,#

}
, and by (C.4), we obtain that

E([)&,# = (.(#))1∕2E(J)&,# , & ∈ [$], # ∈ !. (C.6)
The following result relates the eigendecomposition of +IJ in (C.1) with that of 6IJ.

Lemma 21. The functions Φ([)
#,H,& ∶ [$] ×!→ℂ defined by

Φ([)
#,H,&(),*) =

√
'# ⋅C#

H,⋅(*) ⋅ 1
)(E([)&,#), (C.7)

for # ∈ ! , H ∈
{
1,… ,'#

}, and & ∈ [$], are eigenfunctions of +IJ which are complete in , and are orthonormal with respect to the inner 
product

⟨> ,?⟩ =
$∑
9=1∫!

> (9,B) ⋅ ?(9,B)'@(B). (C.8)

Furthermore, each eigenfunction Φ([)
#,H,& corresponds to the eigenvalue 5&,# of 6IJ from (3.1), and it is related to the eigenfunction Φ(J)

#,H,&
in (3.6) (of 6IJ) by

Φ([)
#,H,& =.

1∕2Φ(J)
#,H,&, (C.9)

where . is defined in (2.6).

Proof. By (2.14), (2.15) and (C.6), for all 0, & ∈ [$] we have that

10 (E([)&,#) = 1
0 ((.(#))1∕2E(J)&,#) =

√
.00 ⋅ 10 (E

(J)
&,#). (C.10)

Combining the latter with (C.5), (C.7) and (2.4), we obtain (C.9). Hence, by (C.1), (C.2) and (C.7) we have that

+IJ
{
Φ([)

#,H,&

}
(),*) =

$∑
0=1

∫
!

/)0 (*,A)√
.))

√
.00

√
'# ⋅C#

H,⋅(*) ⋅ 1
0 (E([)&,#)'@(A), (C.11)

=
√
.)) ⋅

$∑
0=1

∫
!

/)0 (*,A)
.))

√
'# ⋅C#

H,⋅(*) ⋅ 1
0 (E(J)&,#)'@(A) (C.12)

=
√
.)) ⋅ 6

{
Φ(J)

#,H,&

}
(),*) =

√
.)) ⋅ 5&,# ⋅Φ

(J)
#,H,&(),*) (C.13)

= 5&,# ⋅Φ
([)
#,H,&(),*), (C.14)

where in (C.12) we used (C.10), then in (C.13) we used (C.5), and in (C.14) we used (C.9) and (2.4). The completeness of the 
eigenfunctions in (C.7) follows by combining (3.6) and (C.9) with the completeness of the functions {Φ̃#,H,&

} of (2.17) in , which 
is implied by Theorem 2. Finally, to see that

{
Φ([)

#,H,&

}
are orthonormal, observe that by (C.7) we have

⟨
Φ([)

#,H,&,Φ
([)
#′ ,H′ ,&′

⟩
 =

√
'# ⋅

√
'#′ ⋅

$∑
0=1

∫
!

C#
H,⋅(*) ⋅ 1

0 (E([)&,#) ⋅C
#
H′ ,⋅(*)⋅10 (E&′ ,#′ )'@(*)

=
√
'# ⋅ '#′ ⋅

$∑
0=1

(10 (E([)&,#))
F ⋅

⎛
⎜
⎜⎝∫!

(C#
H,⋅(*))

F ⋅C#
H′ ,⋅(*)'@(*)

⎞
⎟
⎟⎠
⋅10 (E&′ ,#′ )



Applied and Computational Harmonic Analysis 73 (2024) 101695

24

E. Rosen, X. Cheng and Y. Shkolnisky

=
√
'# ⋅ '#′ ⋅

$∑
0=1

(10 (E([)&,#))
F ⋅ 1

'#
⋅ M##′MHH′7#×# ⋅ 10 (E&′ ,#′ ) (C.15)

= M##′MHH′

⟨
E([)&,# ,E

([)
&′ ,#

⟩
= M##′MHH′M&&′ , (C.16)

where in passing to (C.15) we used (A.15), and in passing to (C.16) we used (2.14), and that
{
E([)&,#

}
are orthonormal eigenvectors 

of the symmetric matrices +(#) in (C.3).
Now, consider the operator +8IJ ∶ → defined similarly to (3.8) and (3.9) by

{
+8IJ>

}
(),*) =

$∑
0=1∫!

+8((),*), (0,A))>0 (A)'@(A), > ∈, (C.17)

where for each (), *), (0, A) ∈ [$] ×! we define +1
IJ = +IJ (see (C.1)), and

+8((),*), (0,A)) ≜ $∑
9=1

∫
!

+8−1((),*), (9,B)) ⋅ +((9,B), (0,A))'@(B), 8 = 2,3,… (C.18)

Applying Mercer’s theorem to +8IJ in conjunction with Lemma 21, we obtain that

+8((),*), (0,A)) =
∑
#∈!

#∑
H=1

$∑
&=1

58&,#Φ
([)
#,H,&(),*) ⋅Φ

([)
#,H,&(0,A), (C.19)

for all (), *), (0, A) ∈ [$] ×!. By induction on 8 ∈ℕ, combined with (C.2) and (C.19), we obtain for all 8 ∈ℕ that

+8((),*), (0,A)) =
√
.))√
.00

6 8((),*), (0,A)), (),*), (0,A) ∈ [$] ×!. (C.20)

Therefore, by using (C.19), (C.20) and (2.4), we can write 6 8),*(9, B) from (3.11) as

6 8),*(9,B) = 6
8((),*), (9,B)) =

∑
#∈!

#∑
H=1

$∑
&=1

58&,#
⎛
⎜
⎜⎝

Φ([)
#,H,&(),*)√

.))

⎞
⎟
⎟⎠
⋅
√
.00 ⋅Φ

([)
#,H,&(9,B)

=
∑
#∈!

#∑
H=1

$∑
&=1

58&,#
{
.−1∕2 ⋅Φ([)

#,H,&

}
(),*) ⋅

{
.1∕2 ⋅Φ([)

#,H,&

}
(9,B). (C.21)

By (C.9), each function .−1∕2Φ([)
#,H,& =Φ(J)

#,H,& is an eigenfunction of 6IJ, that corresponds to the eigenvalue 5&,# . By using (C.21), it 
is straightforward to verify that for each 8 ∈ℕ it is also an eigenfunction of 6 8IJ, that corresponds to the eigenvalue 58&,# . □

Now, to write .J,8 from (3.12) in terms of the functions {Φ(J)
#,H,&}, we employ the following observation. We may view (C.21) as 

the expansion of 6 8),* in terms of the functions {.1∕2 ⋅Φ([)
#,H,&}, which are orthogonal with respect to the inner product on  defined 

by

⟨> ,?⟩,'@∕. =
$∑
9=1

∫
!

> (9,B) ⋅ ?(9,B)'@(B)
.99

, (C.22)

and with expansion coefficients given by {.−1∕2 ⋅Φ([)
#,H,&}(), *) =Φ(J)

#,H,&(), *) for all #, H and &. Thus, by Parseval’s identity, we obtain 
that .J,8((), *), (0, A)) from (3.12) is given by

‖‖‖6
8
),* − 6 80,A

‖‖‖,'@∕.
=
( ∑

#∈!

'#∑
H=1

$∑
&=1

528&,# ⋅
|||Φ

(J)
#,H,&(),*)−Φ(J)

#,H,&(0,A)
|||
2
) 1

2

, (C.23)

as claimed.



Applied and Computational Harmonic Analysis 73 (2024) 101695

25

E. Rosen, X. Cheng and Y. Shkolnisky

C.2. Proof of Proposition 7

First, by (2.17) and (3.6), the elements of (3.14) that correspond to fixed values of # and & are given by the '# -dimensional vector
⎛
⎜
⎜
⎜⎝

Φ(J)
#,1,&
⋮

Φ(J)
#,'# ,&

⎞
⎟
⎟
⎟⎠
=
√
'# ⋅C# (*) ⋅ 1)(E(J)&,#). (C.24)

Hence, we may write (3.14) as

Φ(J)
8 (),*) =

(
58&,#

√
'# ⋅C# (*) ⋅ 1)(E(J)&,#)

)$
&=1,#∈! , (C.25)

where we perceive Φ(J)
8 (), *) as an infinite dimensional vector, obtained by concatenating all the '# -dimensional vectors in (C.24). 

Next, by Lemma 3 and (A.10), we have that

Φ(J)
8 (0,7) =

(
58&,#

√
'# ⋅C# (7) ⋅ 10 (E(J)&,#)

)$
&=1,#∈! =

(
58&,#

√
'# ⋅C# (A) ⋅ 1)(E(J)&,#)

)$
&=1,#∈! . (C.26)

Furthermore, since each block C#(A) on the diagonal of C (A) is irreducible, then so is C (A), which implies that the function C (⋅)
defined by A↦C (A) is an IUR of !.

Appendix D. Proofs for Section 4

D.1. Proof of Proposition 8

We first require the following result.

Lemma 22. Suppose that #0 =A ⋅ #) for some A ∈!. Then, we have that

Φ(J)
8 (0,*) =Φ(J)

8 (),*A). (D.1)
In particular, if * = 7 , then we get that Φ(J)

8 (0, 7) =Φ(J)
8 (), A).

Proof. Suppose that #0 =A#). Then, by Lemma 3 and (A.12) we have
(
Φ(J)
8 (0,*)

)
#,H,&

= 58&,#
√
'#

(
10 (Ẽ&,#)

)F ⋅C#
⋅,H(*

∗) = 58&,#
√
'
(
C# (A)1)(Ẽ&,#)

)F
⋅C#

⋅,H(*
∗)

= 58&,#
√
'#

(
1)(Ẽ&,#)

)F C# (A∗) ⋅C#
⋅,H(*

∗)

= 58&,#
√
'#

(
1)(Ẽ&,#)

)F C#
⋅,H(A

∗*∗) =
(
Φ(J)
8 (),*A)

)
#,H,&

. □

Next, we observe that by (3.15) and (C.25), for any *, A ∈! we have that

‖‖‖6
8
),* − 6 80,A

‖‖‖
2

,'@∕.
=

∑
#∈!

$∑
&=1

528#,& ⋅ '# ⋅
‖‖‖C#(*)1)(Ẽ&,#)−C#(A)10 (Ẽ&,#)

‖‖‖
2
. (D.2)

By using that C#(*) is unitary for all * ∈!, and by the homomorphism property (A.9), equation (D.2) implies that
‖‖‖6

8
),* − 6 80,A

‖‖‖
2

,'@∕.
= ‖‖‖6

8
),7 − 6

8
0,*∗A

‖‖‖
2

,'@∕.
, (D.3)

and since the map A↦*∗A is a homeomorphism from ! onto itself, we get that

min
*,A∈!

‖‖‖6
8
),* − 6 80,A

‖‖‖
2

,'@∕.
= min
O∈!

‖‖‖6
8
),7 − 6

8
0,O

‖‖‖
2

,'@∕.
. (D.4)

Therefore, by (4.1), (3.15), Lemma 22, (D.4), and (D.2) we have that

N2
J,8(9, P) = min

O∈!
‖‖‖6

8
9,7 − 6

8
P,O

‖‖‖
2

,'@∕.

= min
O∈!

‖‖‖Φ
(J)
8 (9,7)−Φ(J)

8 (P,O)‖‖‖
2

#2
= min
O∈!

‖‖‖Φ
(J)
8 (),*)−Φ(J)

8 (0,OA)‖‖‖
2

#2

= min
O∈!

∑
#∈!

$∑
&=1

528#,& ⋅ '# ⋅
‖‖‖C#(*)1)(Ẽ&,#)−C#(OA)10 (Ẽ&,#)

‖‖‖
2

ℂ'#



Applied and Computational Harmonic Analysis 73 (2024) 101695

26

E. Rosen, X. Cheng and Y. Shkolnisky

= min
O∈!

∑
#∈!

$∑
&=1

528#,& ⋅ '# ⋅
‖‖‖1
)(Ẽ&,#)−C#(*∗OA)10 (Ẽ&,#)

‖‖‖
2

ℂ'#
(D.5)

= min
O∈!

∑
#∈!

$∑
&=1

528#,& ⋅ '# ⋅
‖‖‖1
)(Ẽ&,#)−C#(O)10 (Ẽ&,#)

‖‖‖
2

ℂ'#
(D.6)

= min
O∈!

‖‖‖6
8
),7 − 6

8
0,O

‖‖‖
2

,'@∕.
=N2

J,8(), 0), (D.7)

where in passing to (D.5) we used the fact that the 2-norm is invariant to unitary transformations, and in passing to (D.6) we used 
the fact that the map O ↦ *∗OA is a homeomorphism of ! onto itself.

D.2. Proof of Proposition 11

We begin with the following auxiliary result.

Lemma 23. For any O ∈!, 9 ∈ [$], and 8 ∈ℕ we have that

6 8),7 (9,O
∗B) = 6 8),O(9,B), B ∈!. (D.8)

Proof. By (2.10), (3.2), (3.9) and (3.11), for 8 = 1 we have that

6 1
),O(9,B) = 6

1((),O), (9,B)) = 6 ((),O), (9,B)) =
/)9(O,B)

.))
=
/)9(7 ,O∗B)

.))

= 6 ((),7), (9,O∗B)) = 6),7 (9,O∗B) = 6 1
),7 (9,O

∗B). (D.9)
For 8 = 2, 3, …, the proof follows from (3.9) by induction on 8. □

Now, suppose that #0 =O ⋅ #) for some O ∈!. Then, by (2.5), (3.2), and (3.9), we have that

6 80,7 (9,B) = 6
8
),O(9,B), (9,B) ∈ [$] ×!. (D.10)

Hence, by (D.10), Lemma 23, and (4.8), for any 8 ∈ℕ we get that

6 80,7 (9,B) = 6
8
),O(9,B) = 6

8
),7 (9,O

∗B) =
{
O◦6 8),7

}
(9,B), (9,B) ∈ [$] ×!, (D.11)

as claimed.

D.3. Proof of Proposition 13

By (4.14), (4.9), and Lemma 11, for all 9, P ∈ [$] and Q ∈! we have that
{
6 80,7 ⋆! 6 80,7

}
(9, P,Q) = ∫

!

6 80,7 (9,B) ⋅ 6
8
0,7 (P,BQ)'@(B)

= ∫
!

6 8),O(9,B) ⋅ 6
8
),O(P,BQ)'@(B) (D.12)

= ∫
!

6 8),7 (9,O
∗B) ⋅ 6 8),7 (P,O

∗BQ)'@(B), (D.13)

where we used that #0 =O ⋅ #) in passing to (D.12). Applying the change of variables B̃ =O∗B , we obtain that
{
6 80,7 ⋆! 6 80,7

}
(9, P,Q) = ∫

!

6 8),7 (9, B̃) ⋅ 6
8
),7 (P, B̃Q)'@(OB̃) (D.14)

= ∫
!

6 8),7 (9, B̃) ⋅ 6
8
),7 (P, B̃Q)'@(B̃) (D.15)

=
{
6 8),7 ⋆! 6 8),7

}
(9, P,Q), (D.16)

where we used the translation-invariance property of the Haar measure (A.3) in passing to (D.15).



Applied and Computational Harmonic Analysis 73 (2024) 101695

27

E. Rosen, X. Cheng and Y. Shkolnisky

D.4. Proof of Theorem 14

For the first assertion, by (4.13) and (3.10), we have that the left hand side of (4.17) equals
$∑

9,P=1
∫
!

{
6 8),7 (9, ⋅)⋆ 6

8
),7 (P, ⋅)

}
(Q)'@(Q) =

$∑
9,P=1

∫
!

⎛
⎜
⎜⎝∫!

6 8),7 (9,B) ⋅ 6
8
),7 (P,BQ)'@(B)

⎞
⎟
⎟⎠
'@(Q) =

$∑
9=1∫!

6 8),7 (9,B) ⋅
⎛
⎜
⎜⎝

$∑
P=1 ∫!

6 8),7 (P,BQ)'@(Q)
⎞
⎟
⎟⎠
'@(B). (D.17)

Then, by using the change of variables Q̃ = BQ combined with the translation invariance property (A.3), we obtain that (D.17) equals
$∑
9=1

∫
!

6 8),7 (9,B) ⋅
⎛
⎜
⎜⎝

$∑
P=1

∫
!

6 8),P(7 , Q̃)'@(B
∗Q̃)

⎞
⎟
⎟⎠
'@(B) =

$∑
9=1

∫
!

6 8),7 (9,B) ⋅
⎛
⎜
⎜⎝

$∑
P=1

∫
!

6 8),7 (P, Q̃)'@(Q̃)
⎞
⎟
⎟⎠
'@(B) =

$∑
9=1

∫
!

6 8),7 (9,B)'@(B) = 1. (D.18)

Furthermore, by (4.14), (3.11), and the fact that 6 8((), *), (0, A)) from (3.9) is non-negative, we have that 6 8),7 ⋆! 6 8),7 ≥ 0.
For the second assertion, we begin with a technical result. Let ‘⊗’ denote the Kronecker product defined for any > , ? ∈ by

{> ⊗ ?} ((),*), (0,A)) = > (),*) ⋅ ?(0,A), (),*), (0,A) ∈ [$] ×!. (D.19)

Lemma 24. For fixed 9 and P, and all *, A ∈! we have that

{
6 8),7 (9, ⋅)⋆6

8
),7 (P, ⋅)

}
(*∗A) =

⎧
⎪
⎨
⎪⎩
∫
!

6 8),B ⊗ 6 8),B'@(B)
⎫
⎪
⎬
⎪⎭
((9,*), (P,A)), (D.20)

where the expression on the right hand side of (D.20) is the function in  × defined by
⎧
⎪
⎨
⎪⎩
∫
!

6 8),B ⊗ 6 8),B'@(B)
⎫
⎪
⎬
⎪⎭
((9,*), (P,A)) ≜ ∫

!

6 8),B (9,*) ⋅ 6
8
),B (P,A)'@(B). (D.21)

Furthermore, denoting

R̃J,8(), 0) =
‖‖‖6

8
),7 ⋆! 6 8),7 − 6

8
0,7 ⋆! 6 80,7

‖‖‖-2([$]2×!
)
,'@∕.⊗.

, (D.22)

we have that

R̃J,8(), 0) =
‖‖‖‖‖‖‖
∫
!

6 8),B ⊗ 6 8),B'@(B)− ∫
!

6 80,B ⊗ 6 80,B'@(B)
‖‖‖‖‖‖‖

2

(,'@∕.)×(,'@∕.)

, (D.23)

where (, '@∕.) is the Hilbert space of square integrable functions over [$] ×! with inner product given by (C.22).

Proof. First, by Lemma 11, for any (9, *), (P, A) ∈ [$] ×!, we have that

∫
!

6 8),B (9,*) ⋅ 6
8
),B (P,A)'@(B) = ∫

!

6 8),7 (9,B
∗*) ⋅ 6 8),7 (P,B

∗A)'@(B) (D.24)

= ∫
!

6 8),7 (9,O) ⋅ 6
8
),7 (P,O*

∗A)'@(*O∗) (D.25)

= ∫
!

6 8),7 (9,O) ⋅ 6
8
),7 (P,O*

∗A)'@(O) (D.26)



Applied and Computational Harmonic Analysis 73 (2024) 101695

28

E. Rosen, X. Cheng and Y. Shkolnisky

=
{
6 8),7 (9, ⋅)⋆6

8
),7 (P, ⋅)

}
(*∗A), (D.27)

where in passing to (D.25) we used the change of variables O = B∗*, then in passing to (D.26) we used the left-invariance prop-
erty (A.3) of the Haar measure @ combined with (A.6), and finally, we used (4.14) in passing to (D.27).

Next, by (D.19) and (D.27), we get that
‖‖‖‖‖‖‖
∫
!

6 8),B ⊗ 6 8),B'@(B)− ∫
!

6 80,B ⊗ 6 80,B'@(B)
‖‖‖‖‖‖‖

2

×

=
$∑

9,P=1∫! ∫
!

⎛
⎜
⎜⎝∫!

6 8),B (9,*) ⋅ 6
8
),B (P,A)'@(B)− ∫

!

6 80,B (9,*) ⋅ 6
8
0,B (P,A)'@(B)

⎞
⎟
⎟⎠

2
'@(A)
.00

'@(*)
.))

=
$∑

9,P=1∫! ∫
!

({
6 8),7 (9, ⋅)⋆ 6

8
),7 (P, ⋅)

}
(*∗A)−

{
6 80,7 (9, ⋅)⋆ 6

8
0,7 (P, ⋅)

}
(*∗A)

)2 '@(A)
.00

'@(*)
.))

. (D.28)

Then, using the change of variables Q =*∗A, the last expression in (D.28) becomes
$∑

9,P=1
∫
!

∫
!

({
6 8),7 (9, ⋅)⋆ 6

8
),7 (P, ⋅)

}
(Q)−

{
6 80,7 (9, ⋅)⋆ 6

8
0,7 (P, ⋅)

}
(Q)

)2 '@(*Q)
.00

'@(*)
.00

(D.29)

=
$∑

9,P=1
∫
!

∫
!

({
6 8),7 (9, ⋅)⋆ 6

8
),7 (P, ⋅)

}
(Q)−

{
6 80,7 (9, ⋅)⋆ 6

8
0,7 (P, ⋅)

}
(Q)

)2 '@(Q)
.00

'@(*)
.))

(D.30)

=
$∑

9,P=1∫!
({
6 8),7 (9, ⋅)⋆ 6

8
),7 (P, ⋅)

}
(Q)−

{
6 80,7 (9, ⋅)⋆ 6

8
0,7 (P, ⋅)

}
(Q)

)2 '@(Q)
.)) ⋅.00

(D.31)

=‖‖‖6
8
),7 ⋆! 6 8),7 − 6

8
0,7 ⋆! 6 80,7

‖‖‖
2

-2([$]2×!
)
,'@∕.⊗.

= R̃J,8(), 0), (D.32)

where we used the translation-invariance property (A.3) of the Haar measure in passing to (D.30), and in passing to (D.31) we 
used (A.4) coupled with the fact that the integrand in (D.30) is independent of the integration variable *. □

Now, let us write the function in (D.21), appearing in the quantity R̃J,8 in (D.23) in terms of the eigenfunctions and eigenvalues 
of the operator 6 8IJ in (3.8). To that end, first consider the function

⎧
⎪
⎨
⎪⎩
∫
!

+8),B ⊗+8),B'@(B)
⎫
⎪
⎬
⎪⎭
((9,*), (P,A)) ≜ ∫

!

+8),B (9,*) ⋅+
8
),B (P,A)'@(B), (D.33)

where

+8),*(9,B) ≜ +8((),*), (9,B)), (9,B) ∈ [$] ×!, (D.34)
and +8 was defined in (C.18) via (C.2). Note that the function +8),B is related to 6 8),* through (C.2), (3.9), and (3.11).

By (C.2), it follows by induction over 8 that

+8),B (9,*) = +
8((),B), (9,*)) = +8((9,*), (),B)) = +89,*(),B), (D.35)

for all (), B), (9, *) ∈ [$] ×!. Therefore, by (D.33), (D.34), (D.35), and (C.19), for all (9, *), (P, A) ∈ [$] ×! we have that

⎧
⎪
⎨
⎪⎩
∫
!

+8),B ⊗+8),B'@(B)
⎫
⎪
⎬
⎪⎭
((9,*), (P,A)) = ∫

!

+8),B (9,*) ⋅+
8
),B (P,A)'@(B)

=∫
!

+8((),B), (9,*)) ⋅+8((),B), (P,A)) = ∫
!

+8((9,*), (),B)) ⋅ +8((),B), (P,A))

=∫
!

∑
#,#′∈!

'#∑
H,H′=1

$∑
&,&′=1

58&,#5
8
&′ ,#′Φ

([)
#,H,&(9,*) ⋅Φ

([)
#,H,&(),B)Φ

([)
#′ ,H′ ,&′ (),B) ⋅Φ

([)
#′ ,H′ ,&′ (P,A)'@(B)



Applied and Computational Harmonic Analysis 73 (2024) 101695

29

E. Rosen, X. Cheng and Y. Shkolnisky

=
∑

#,#′∈!

'#∑
H,H′=1

$∑
&,&′=1

58&,#5
8
&′ ,#′Φ

([)
#,H,&(9,*) ⋅Φ

([)
#′ ,H′ ,&′ (P,A) ⋅ ∫

!

Φ([)
#,H,&(),B) ⋅Φ

([)
#′ ,H′ ,&′ (),B)'@(B). (D.36)

Now, by (A.15), we have that
⎛
⎜
⎜⎝∫!

(
C#
H,⋅(B)

)F
C#′
H′ ,⋅(B)'@(B)

⎞
⎟
⎟⎠
= '−1# ⋅ M##′MHH′7'#×'# , # ∈ !. (D.37)

Hence, by using (C.7) and (D.37), the following expression, that appears in (D.36), evaluates as

∫
!

Φ([)
#,H,&(),B) ⋅Φ

([)
#′ ,H′ ,&′ (),B)'@(B)

=
√
'# ⋅ '#′ ∫

!

(
C#
H,⋅(B)1)(E

([)
&,#)

)
⋅C#′

H′ ,⋅(B)1
)(E([)&′ ,#′ )'@(B)

=
√
'# ⋅ '#′

(
1)(E([)&,#)

)∗ ⎛⎜
⎜⎝∫!

(
C#
H,⋅(B)

)F
C#′
H′ ,⋅(B)'@(B)

⎞
⎟
⎟⎠
1)(E([)&′ ,#′ )

=
√
'# ⋅ '#′

1
'#

⋅
(
1)(E([)&,#)

)∗
1)(E([)&′ ,#′ )M##′MHH′ =

(
1)(E([)&,#)

)∗
1)(E([)&′ ,#′ )M##′MHH′ . (D.38)

Plugging (D.38) back into (D.36), and using (D.19) we obtain that
⎧
⎪
⎨
⎪⎩
∫
!

+8),B ⊗+8),B'@(B)
⎫
⎪
⎬
⎪⎭
((9,*), (P,A))

=
∑

#,#′∈!

'#∑
H,H′=1

$∑
&,&′=1

58&,#5
8
&′ ,#′Φ

([)
#,H,&(9,*) ⋅Φ

([)
#′ ,H′ ,&′ (P,A) ⋅

(
1)(E([)&,#)

)∗
1)(E([)&′ ,#′ )M##′MHH′

=
∑
#∈!

$∑
&,&′=1

58&,#5
8
&′ ,#

(
1)(E([)&,#)

)∗
1)(E([)&′ ,#)

'#∑
H=1

Φ([)
#,H,&(9,*) ⋅Φ

([)
#,H,&′ (P,A)

=
∑
#∈!

$∑
&,&′=1

58&,#5
8
&′ ,#

(
1)(E([)&,#)

)∗
1)(E([)&′ ,#)

'#∑
H=1

{
Φ([)

#,H,& ⊗
(
Φ([)

#,H,&′

)∗}
((9,*)(P,A)). (D.39)

On the other hand, by (D.19), (3.11), (C.20), and (D.34) we get that
⎧
⎪
⎨
⎪⎩
∫
!

6 8),B ⊗ 6 8),B'@(B)
⎫
⎪
⎬
⎪⎭
((9,*), (P,A)) = ∫

!

6 8),B (9,*) ⋅ 6
8
),B (P,A)'@(B) =

=∫
!

6 8((),B), (9,*)) ⋅ 6 8((),B), (P,A))'@(B)

=
√
.99

√
.PP

.)) ∫
!

+8((),B), (9,*)) ⋅ +8((),B), (P,A))'@(B)

=
√
.99

√
.PP

.))

⎧
⎪
⎨
⎪⎩
∫
!

+8),B ⊗+8),B'@(B)
⎫
⎪
⎬
⎪⎭
((9,*), (P,A)). (D.40)

Next, by using (D.39) together with (C.10), the expression in (D.40) evaluates as
√
.99

√
.PP

.))

⎧
⎪
⎨
⎪⎩
∫
!

+8),B ⊗+8),B'@(B)
⎫
⎪
⎬
⎪⎭
((9,*), (P,A))

=
√
.99

√
.PP

.))

∑
#∈!

$∑
&,&′=1

58&,#5
8
&′ ,#

(
1)(E([)&,#)

)∗
1)(E([)&′ ,#)

'#∑
H=1

{
Φ([)

#,H,& ⊗
(
Φ([)

#,H,&′

)∗}
((9,*)(P,A))



Applied and Computational Harmonic Analysis 73 (2024) 101695

30

E. Rosen, X. Cheng and Y. Shkolnisky

=
√
.99

√
.PP

∑
#∈!

$∑
&,&′=1

58&,#5
8
&′ ,#

(
1)(E(J)&,#)

)∗
1)(E(J)&′ ,#)

'#∑
H=1

{
Φ([)

#,H,& ⊗
(
Φ([)

#,H,&′

)∗}
((9,*)(P,A))

=
∑
#∈!

$∑
&,&′=1

58&,#5
8
&′ ,#

(
1)(E(J)&,#)

)∗
1)(E(J)&′ ,#)

'#∑
H=1

{
.1∕2Φ([)

#,H,& ⊗
(
.1∕2Φ([)

#,H,&′

)∗}
((9,*), (P,A)), (D.41)

where in the last equality we used that by (D.19) and (2.4), we have
{
.1∕2Φ([)

#,H,& ⊗
(
.1∕2Φ([)

#,H,&′

)∗}
((9,*), (P,A)) =

{
.1∕2Φ([)

#,H,&′

}
(9,*) ⋅

{
.1∕2Φ([)

#,H,&′

}
(P,A)

=
√
.99 ⋅Φ

([)
#,H,&′ (9,*) ⋅

√
.PP ⋅Φ

([)
#,H,&′ (P,A) (D.42)

=
√
.99 ⋅

√
.PP

{
Φ([)

#,H,& ⊗
(
Φ([)

#,H,&′

)∗}
((9,*), (P,A)).

Thus, by (D.40), and (D.41) we have that

∫
!

6 8),B ⊗ 6 8),B'@(B) =
∑
#∈!

$∑
&,&′=1

58&,#5
8
&′ ,#

(
1)(E(J)&,#)

)∗
1)(E(J)&′ ,#)

'#∑
H=1

.1∕2Φ([)
#,H,& ⊗

(
.1∕2Φ([)

#,H,&′

)∗
. (D.43)

Plugging (D.43) into (D.23), we get that

R̃2
J,8(), 0) =

‖‖‖‖
∑
#∈!

$∑
&,&′=1

58&,#5
8
&′ ,#

(
1)(E(J)&,#)

)∗
1)(E(J)&′ ,#)

'#∑
H=1

.1∕2Φ([)
#,H,& ⊗

(
.1∕2Φ([)

#,H,&′

)∗
−

∑
#∈!

$∑
&,&′=1

58&,#5
8
&′ ,#

(
10 (E(J)&,#)

)∗
10 (E(J)&′ ,#)

'#∑
H=1

.1∕2Φ([)
#,H,& ⊗

(
.1∕2Φ([)

#,H,&′

)∗ ‖‖‖‖
2

(,'@∕.)×(,'@∕.)
. (D.44)

Next, denoting

c(J)#,&,&′ = 5
8
&,#5

8
&′ ,#

((
1)(E(J)&,#)

)∗
1)(E(J)&′ ,#)−

(
10 (E(J)&,#)

)∗
10 (E(J)&′ ,#)

)
,

and using (D.44) and (D.22), gives us that
‖‖‖6

8
),7 ⋆! 6 8),7 − 6

8
0,7 ⋆! 6 80,7

‖‖‖
2

-2([$]2×!
)
,'@∕.⊗.

= R̃2
J,8(), 0) (D.45)

=‖
∑
#∈!

$∑
&,&′=1

c(J)#,&,&′ ⋅
'#∑
H=1

.1∕2Φ([)
#,H,& ⊗

(
.1∕2Φ([)

#,H,&′

)∗
‖2(,'@∕.)×(,'@∕.)

=
∑
#∈!

$∑
&,&′=1

'# ⋅ |c(J)#,&,&′ |
2

=
∑
#∈!

$∑
&,&′=1

'# ⋅ 528&,#5
28
&′ ,#

||||
(
1)(E(J)&,#)

)∗
1)(E(J)&′ ,#)−

(
10 (E(J)&,#)

)∗
10 (E(J)&′ ,#)

||||
2

=
∑
#∈!

$∑
&,&′=1

'# ⋅ 528&,#5
28
&′ ,#

||||
⟨
1)(E(J)&,#), 1

)(E(J)&′ ,#)
⟩
−
⟨
10 (E(J)&,#), 1

0 (E(J)&′ ,#)
⟩||||

2

=‖‖‖Ψ
(J)
8 ())−Ψ(J)

8 (0)‖‖‖
2

#2
=R2

J,8(), 0), (D.46)

where the third equality stems from the fact that since the functions 
{
Φ([)

#,H,& ⊗Φ([)
#,H,&′

}
are orthonormal in×, then the functions 

.1∕2Φ([)
#,H,& ⊗

(
.1∕2Φ([)

#,H,&′

)∗
are orthonormal in (, '@∕.) × (, '@∕.), and the last equality is due to (4.4).

D.5. Proof of Proposition 15

We begin by proving the following result.

Lemma 25. Let d and \ be a pair of Borel measures over ! given by

d(V) = ∫
V

> (*)'@(*), \(V) = ∫
V

?(*)'@(*), V ⊆!, (D.47)



Applied and Computational Harmonic Analysis 73 (2024) 101695

31

E. Rosen, X. Cheng and Y. Shkolnisky

where @ is the Haar measure, and > and ? are non-negative functions1 over ! such that d(!), \(!) <∞. Let V ⊆! be a Borel-measurable 
subset, and consider the subset V× ⊆! ×! defined by

V× ≜ {
(*,A) ∈! ×! ∶ *∗A ∈V

}
. (D.48)

Then, we have that

{d ⊗ \} (V×) = ∫
V

> ⋆ ?(B)'@(B), (D.49)

where d ⊗ \ is the product measure over ! ×! defined by

{d ⊗ \} (V1 ×V2) = d(V1) ⋅ \(V2), V1,V2 ∈!. (D.50)

Proof. Let us denote by 1V× (*, A) the indicator function of V× over the space ! ×!. Then, we have that

{d ⊗ \} (V×) = ∫
!×!

1V× (*,A)'d(*)'\(A) = ∫
!

⎛
⎜
⎜⎝∫!

1V× (*,A)'\(A)
⎞
⎟
⎟⎠
'd(*)

= ∫
!

\
{
A ∈! ∶ *∗A ∈V

}
'd(*) = ∫

!

\(* ⋅V)'d(*)

= ∫
!

⎛
⎜
⎜⎝∫*⋅V

?(A)'@(A)
⎞
⎟
⎟⎠
'd(*). (D.51)

Applying the change of variables B =*∗A, and using the translation-invariance property (A.3) of @, we obtain that

{d ⊗ \} (V×) = ∫
!

⎛
⎜
⎜⎝∫V

?(*B)'@(B)
⎞
⎟
⎟⎠
'd(*) = ∫

!

⎛
⎜
⎜⎝∫V

> (*)?(*B)'@(B)
⎞
⎟
⎟⎠
'@(*)

= ∫
V

⎛
⎜
⎜⎝∫!

> (*)?(*B)'@(*)
⎞
⎟
⎟⎠
'@(B) = ∫

V

> ⋆ ?(B)'@(B). □ (D.52)

Now, since "1,8 and "2,8 are i.i.d. with probability distributions given by 6),7 from (3.11), we get by using (D.48) that

ℙ
(
V9P

)
= ∫
{(*,A)∈!×!∶*∗A∈V}

6 8),7 (9,*) ⋅ 6
8
),7 (P,A)'@(*)'@(A)

= ∫
V×

6 8),7 (9,*) ⋅ 6
8
),7 (P,A)'@(*)'@(A). (D.53)

Now, let us define the pair of measures over !

d(+) = ∫
+

6 8),7 (9,*)'@(*), \(+) = ∫
+

6 8),7 (P,A)'@(A), + ⊆!. (D.54)

Then, continuing from (D.53) and using Lemma 25 together with (4.13), we obtain that

ℙ
(
V9P

)
= ∫
V×

1'd(*)'\(A) = ∫
!×!

1V× (*,A)'d(*)'\(A) = d ⊗ \(V×)

= ∫
V

{
6 8),7 (9, ⋅)⋆ 6

8
),7 (P, ⋅)

}
(Q)'@(Q)

= ∫
V

{
6 8),7 ⋆! 6 8),7

}
(9, P,Q)'@(Q), (D.55)

as claimed.

1 The function > is known as the Radon-Nikodym derivative 'd
'@

of d with respect to @.



Applied and Computational Harmonic Analysis 73 (2024) 101695

32

E. Rosen, X. Cheng and Y. Shkolnisky

References

[1] S. Basu, Y. Bresler, Feasibility of tomography with unknown view angles, in: Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No. 
98CB36269), vol. 2, 1998, pp. 15–19.

[2] S. Basu, Y. Bresler, Uniqueness of tomography with unknown view angles, IEEE Trans. Image Process. 9 (6) (2000) 1094–1106.
[3] M. Belkin, P. Niyogi, Laplacian eigenmaps for dimensionality reduction and data representation, Neural Comput. 15 (6) (2003) 1373–1396.
[4] T. Bendory, I. Hadi, N. Sharon, Compactification of the rigid motions group in image processing, SIAM J. Imaging Sci. 15 (3) (2022) 1041–1078.
[5] D. Bump, Lie Groups, Springer, Springer-Verlag New York Inc., 2004.
[6] X. Cheng, N. Wu, Eigen-convergence of Gaussian kernelized graph Laplacian by manifold heat interpolation, Appl. Comput. Harmon. Anal. 61 (2022) 132–190.
[7] G.S. Chirikjian, Stochastic Models, Information Theory, and Lie Groups, vol. 2, Birkhäuser, Boston, 2010.
[8] G.S. Chirikjian, A.B. Kyatkin, Engineering Applications of Noncommutative Harmonic Analysis with Emphasis on Rotation and Motion Groups, CRC Press LLC, 

CRC Press LLC, Boca Raton, Florida, 2001.
[9] Ronald R. Coifman, Yoel Shkolnisky, Fred J. Sigworth, Amit Singer, Graph Laplacian tomography from unknown random projections, IEEE Trans. Image Process. 

17 (10) (2008) 1891–1899.
[10] M. Desbrun, M. Meyer, P. Schröder, A.H. Barr, Implicit fairing of irregular meshes using diffusion and curvature flow, in: Proceedings of the 26th Annual 

Conference on Computer Graphics and Interactive Techniques, ACM Press/Addison-Wesley Publishing Co., 1999, pp. 317–324.
[11] Y. Fan, T. Gao, Z.J. Zhao, Unsupervised co-learning on -manifolds across irreducible representations, 2019.
[12] Yifeng Fan, Zhizhen Zhao, Multi-frequency vector diffusion maps, in: Kamalika Chaudhuri, Ruslan Salakhutdinov (Eds.), Proceedings of the 36th International 

Conference on Machine Learning, in: Proceedings of Machine Learning Research, vol. 97, PMLR, 09–15 Jun 2019, pp. 1843–1852.
[13] I. Gohberg, S. Goldberg, Basic Operator Theory, Birkhäuser, Boston, 1981.
[14] B. Hall, Lie groups, Lie Algebras, and Representations: an Elementary Introduction, 2015.
[15] Ayelet Heimowitz, Nir Sharon, Amit Singer, Centering noisy images with application to cryo-em, SIAM J. Imaging Sci. 14 (2) (2021) 689–716.
[16] M. Hein, M. Maier, Manifold denoising, in: NIPS, vol. 19, 2006, pp. 561–568.
[17] J. Kileel, A. Moscovich, N. Zelesko, A. Singer, Manifold learning with arbitrary norms, J. Fourier Anal. Appl. 27 (5) (2021).
[18] S. Lafon, Diffusion maps and geometric harmonics, Ph.D. dissertation.
[19] S. Lafon, R.R. Coifman, Diffusion maps, Appl. Comput. Harmon. Anal. 21 (2006) 5–30.
[20] B. Landa, Y. Shkolnisky, Steerable principal components for space-frequency localized images, SIAM J. Imaging Sci. 10 (2) (2017) 508–534.
[21] X. Liu, D. Zhai, D. Zhao, G. Zhai, W. Gao, Progressive image denoising through hybrid graph Laplacian regularization: a unified framework, IEEE Trans. Image 

Process. 23 (4) (2014) 1491–1503.
[22] F.G. Meyer, X. Shen, Perturbation of the eigenvectors of the graph Laplacian: application to image denoising, Appl. Comput. Harmon. Anal. 36 (2) (2014) 

326–334.
[23] Frank Natterer, Frank Wübbeling, Mathematical Methods in Image Reconstruction, Society for Industrial and Applied Mathematics, 2001.
[24] S. Osher, Z. Shi, W. Zhu, Low dimensional manifold model for image processing, SIAM J. Imaging Sci. 10 (4) (2017) 1669–1690.
[25] Eitan Rosen, Paulina Hoyos, Xiuyuan Cheng, Joe Kileel, Yoel Shkolnisky, The !-invariant graph Laplacian part I: convergence rate and eigendecomposition, 

Appl. Comput. Harmon. Anal. 71 (2024).
[26] S. Rosenberg, The Laplacian on a Riemannian manifold: an introduction to analysis on manifolds, in: Number, in: London Mathematical Society Student Texts 

Book., vol. 31, Cambridge University Press, 1997.
[27] Y. Shkolnisky, B. Landa, The steerable graph Laplacian and its application to filtering image datasets, SIAM J. Imaging Sci. 11 (4) (2018) 2254–2304.
[28] A. Singer, F. Sigworth, Computational methods for single-particle electron cryomicroscopy, Annu. Rev. Biomed. Data Sci. 3 (2020) 163–190.
[29] A. Singer, H.-T. Wu, Vector diffusion maps and the connection Laplacian, Commun. Pure Appl. Math. 65 (8) (2012) 1067–1144.
[30] A. Singer, H.-T. Wu, Two-dimensional tomography from noisy projections taken at unknown random directions, SIAM J. Imaging Sci. 6 (1) (2013) 136–175.
[31] A. Singer, Z. Zhao, Y. Shkolnisky, R. Hadani, Viewing angle classification of cryo-electron microscopy images using eigenvectors, SIAM J. Imaging Sci. 4 (2) 

(2011) 543–572.
[32] Amit Singer, Angular synchronization by eigenvectors and semidefinite programming, Appl. Comput. Harmon. Anal. 30 (1) (2009) 20–36.
[33] G. Taubin, A signal processing approach to fair surface design, in: Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques, 

ACM, 1995, pp. 351–358.
[34] B. Vallet, B. Lévy, Spectral geometry processing with manifold harmonics, Comput. Graph. Forum 27 (2) (2008) 251–260.
[35] Z. Zhao, Y. Shkolnisky, A. Singer, Fast steerable principal component analysis, IEEE Trans. Comput. Imaging 2 (1) (2016) 1–12.
[36] Z. Zhao, A. Singer, Rotationally invariant image representation for viewing direction classification in cryo-EM, J. Struct. Biol. 186 (1) (2014) 153–166.

http://refhub.elsevier.com/S1063-5203(24)00072-1/bibE7EC98D8C505C6359C055B013E9E6EC6s1
http://refhub.elsevier.com/S1063-5203(24)00072-1/bibE7EC98D8C505C6359C055B013E9E6EC6s1
http://refhub.elsevier.com/S1063-5203(24)00072-1/bib94B0090B2DEB68EC1E248F070E86353Fs1
http://refhub.elsevier.com/S1063-5203(24)00072-1/bibBE8DA175F71C4B6B0B821BBC3C136071s1
http://refhub.elsevier.com/S1063-5203(24)00072-1/bib91EE12C22F33308B795FD49C2B964DB6s1
http://refhub.elsevier.com/S1063-5203(24)00072-1/bib5CCABBB206D95235F21817CCC4D66C0As1
http://refhub.elsevier.com/S1063-5203(24)00072-1/bibD221D02BBD70F8CFFB7995EB8F971D9Cs1
http://refhub.elsevier.com/S1063-5203(24)00072-1/bib82C917DE12519219EB6A96BA2A2B7DF5s1
http://refhub.elsevier.com/S1063-5203(24)00072-1/bib06D0BA04E3B4E1562FFCCFFB7A4AC301s1
http://refhub.elsevier.com/S1063-5203(24)00072-1/bib06D0BA04E3B4E1562FFCCFFB7A4AC301s1
http://refhub.elsevier.com/S1063-5203(24)00072-1/bib66EC5B2CD119A82C57D6BDAF8C7F05A1s1
http://refhub.elsevier.com/S1063-5203(24)00072-1/bib66EC5B2CD119A82C57D6BDAF8C7F05A1s1
http://refhub.elsevier.com/S1063-5203(24)00072-1/bib71D9D1A5A14F6159139B09EF32BBB71Fs1
http://refhub.elsevier.com/S1063-5203(24)00072-1/bib71D9D1A5A14F6159139B09EF32BBB71Fs1
http://refhub.elsevier.com/S1063-5203(24)00072-1/bibC00684CE600AB207C20E8A487E2175BAs1
http://refhub.elsevier.com/S1063-5203(24)00072-1/bib62E47C10D1246F62F190760F1BB77BFCs1
http://refhub.elsevier.com/S1063-5203(24)00072-1/bib62E47C10D1246F62F190760F1BB77BFCs1
http://refhub.elsevier.com/S1063-5203(24)00072-1/bibB508AD430EBE4872136642112F55DDB6s1
http://refhub.elsevier.com/S1063-5203(24)00072-1/bib23AB99AF7DA678D49DF1CB613E3380DDs1
http://refhub.elsevier.com/S1063-5203(24)00072-1/bib0EE3867549CD581070FF3CDF792D174Ds1
http://refhub.elsevier.com/S1063-5203(24)00072-1/bib13D1EB744B57BBFCFE445DE3F5F847ADs1
http://refhub.elsevier.com/S1063-5203(24)00072-1/bib7A7580914A7FEE5F1F372DC6CE109422s1
http://refhub.elsevier.com/S1063-5203(24)00072-1/bib2616B9C53D63B1F9E2C9FABEB615AEB7s1
http://refhub.elsevier.com/S1063-5203(24)00072-1/bib291B3105AF17C1CA44017FBB52476018s1
http://refhub.elsevier.com/S1063-5203(24)00072-1/bib2A977952EF9EFB583C5B0C4EECB0C644s1
http://refhub.elsevier.com/S1063-5203(24)00072-1/bib2A977952EF9EFB583C5B0C4EECB0C644s1
http://refhub.elsevier.com/S1063-5203(24)00072-1/bibBE87E8C72ACC23BF035B1F47A8D51494s1
http://refhub.elsevier.com/S1063-5203(24)00072-1/bibBE87E8C72ACC23BF035B1F47A8D51494s1
http://refhub.elsevier.com/S1063-5203(24)00072-1/bib2DB8930B1EB85A8E89022B0BCBFD5125s1
http://refhub.elsevier.com/S1063-5203(24)00072-1/bib50E9178DFEA0C79380F30FE0FCE82E46s1
http://refhub.elsevier.com/S1063-5203(24)00072-1/bib1D9D8E1B67D34856F4C7C59E393F2478s1
http://refhub.elsevier.com/S1063-5203(24)00072-1/bib1D9D8E1B67D34856F4C7C59E393F2478s1
http://refhub.elsevier.com/S1063-5203(24)00072-1/bibB5B721259ADDE62B8AA26C40BABA1431s1
http://refhub.elsevier.com/S1063-5203(24)00072-1/bibB5B721259ADDE62B8AA26C40BABA1431s1
http://refhub.elsevier.com/S1063-5203(24)00072-1/bib9F10EA2BB512D6A4B18CD2BFE12D9C0Bs1
http://refhub.elsevier.com/S1063-5203(24)00072-1/bibA1DA3AAADF01124910ED5D9E8F0FEF01s1
http://refhub.elsevier.com/S1063-5203(24)00072-1/bib03721E08CF4807DD8C67003BF2B16AA9s1
http://refhub.elsevier.com/S1063-5203(24)00072-1/bib408375CA637AFE8A46E317F40BEF4206s1
http://refhub.elsevier.com/S1063-5203(24)00072-1/bib10C4B7E38BC0A9ACD1D4E455CFA20044s1
http://refhub.elsevier.com/S1063-5203(24)00072-1/bib10C4B7E38BC0A9ACD1D4E455CFA20044s1
http://refhub.elsevier.com/S1063-5203(24)00072-1/bib25981D49D2973DCB2723DC1E153366E1s1
http://refhub.elsevier.com/S1063-5203(24)00072-1/bib7A402DA72488409D4ADBCE08A2303F43s1
http://refhub.elsevier.com/S1063-5203(24)00072-1/bib7A402DA72488409D4ADBCE08A2303F43s1
http://refhub.elsevier.com/S1063-5203(24)00072-1/bib1BDC33B7CDA9CB6BD0826366F6B98CE9s1
http://refhub.elsevier.com/S1063-5203(24)00072-1/bib021F971792FFEE8D8B0310FDC3740AF8s1
http://refhub.elsevier.com/S1063-5203(24)00072-1/bib10D8B50BF8C192E219EB6F2CE95FB9E0s1

	The G-invariant graph Laplacian part II: Diffusion maps
	1 Introduction
	2 The G-invariant graph Laplacian
	3 G-equivariant diffusion maps
	4 G-invariant diffusion maps
	5 Numerical experiments
	5.1 Basic examples
	5.2 Random computerized tomography with random angles and shifts

	6 Summary and future work
	Data availability
	Acknowledgments
	Appendix A Compact matrix Lie groups
	A.1 Matrix Lie groups and actions
	A.2 Harmonic analysis over matrix Lie groups

	Appendix B Proof of Lemma 3
	Appendix C Proofs of results from Section 3
	C.1 Proof of Theorem 6
	C.2 Proof of Proposition 7

	Appendix D Proofs for Section 4
	D.1 Proof of Proposition 8
	D.2 Proof of Proposition 11
	D.3 Proof of Proposition 13
	D.4 Proof of Theorem 14
	D.5 Proof of Proposition 15

	References


