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ABSTRACT

Here we revisit the classic problem of linear quadratic estimation,
i.e. estimating the trajectory of a linear dynamical system from
noisy measurements. The celebrated Kalman filter gives an optimal
estimator when the measurement noise is Gaussian, but is widely
known to break down when one deviates from this assumption, e.g.
when the noise is heavy-tailed. Many ad hoc heuristics have been
employed in practice for dealing with outliers. In a pioneering work,
Schick and Mitter gave provable guarantees when the measurement
noise is a known infinitesimal perturbation of a Gaussian and raised
the important question of whether one can get similar guarantees
for large and unknown perturbations.

In this work we give a truly robust filter: we give the first strong
provable guarantees for linear quadratic estimation when even a
constant fraction of measurements have been adversarially cor-
rupted. This framework can model heavy-tailed and even non-
stationary noise processes. Our algorithm robustifies the Kalman
filter in the sense that it competes with the optimal algorithm that
knows the locations of the corruptions. Our work is in a challenging
Bayesian setting where the number of measurements scales with
the complexity of what we need to estimate. Moreover, in linear
dynamical systems past information decays over time. We develop
a suite of new techniques to robustly extract information across
different time steps and over varying time scales.
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1 INTRODUCTION

In this work, we revisit the classic problem of linear quadratic esti-
mation, i.e. estimating the trajectory of a linear dynamical system
from noisy measurements. First we review the setup:

(1) There are known matrices 𝐴 ∈ R𝑑×𝑑 and 𝐵 ∈ R𝑚×𝑑 , and an

unknown initial state 𝑥∗0 ∈ R𝑑 drawn from N(0, 𝑅2 Id).
(2) The trajectory {𝑥∗𝑡 }0≤𝑡<𝑇 and the observations {𝑦∗𝑡 }0≤𝑡<𝑇 are

generated according to the following model:

𝑥∗𝑖 = 𝐴𝑥∗𝑖−1 +𝑤
∗
𝑖 , 𝑦∗𝑖 = 𝐵𝑥∗𝑖 + 𝑣∗𝑖

where {𝑤∗
𝑖 } and {𝑣∗𝑖 } are process noise and observation noise

vectors in dimensions 𝑑 and 𝑚, independently drawn from
N(0, 𝜎2 Id) and N(0, 𝜏2 Id) respectively.
The goal is to estimate the trajectory from the observations

in either an offline or online sense, and to minimize the sum of
squares of the error. The celebrated Kalman smoother and Kalman
filter solve these two problems optimally. The main idea is that
when the initialization and noise distributions are Gaussian, at
any time the posterior distribution on the trajectory given the
observations is a Gaussian process. It suffices to estimate the mean
of the posterior, and this can be done by finding the least squares
solution to a structured regression problem depending on 𝐴, 𝐵, and
the observations. It turns out that there is an even more compact
formulation in terms of equations that define the Kalman filter.

The Kalman filter [26, 27] is one of the crowning achievements
in control theory. It has wide-ranging applications in robotics, navi-
gation, signal processing and econometrics. It is also a key building
block in algorithms for estimating the model parameters of a lin-
ear dynamical system, as well as in change-point detection and
building optimal controllers. Famously, the Kalman filter provided
navigation estimates that helped guide the landing of the Apollo 11
lunar module in the Sea of Tranquility. Rudolf Kalman was awarded
the National Medal of Science in 2008.

But how brittle is the Kalman filter to assumptions of Gaussianity?

This is by no means a new question. If we relax the distributional
assumptions but instead restrict the disturbances {𝑤∗

𝑖 } and {𝑣∗𝑖 } to
have bounded norm, then the minimax optimal filter can be found
by dynamic programming. The solution is called the 𝐻∞ filter and
has wide-ranging applications in its own right [25]. However in
many settings the assumption that the disturbances are bounded
in norm is not reasonable either. In such cases, it has often been
repeated that the Kalman filter can fail catastrophically. This is an
unfortunate state-of-affairs because it means even though we can
find the optimal filter when the noise is nice and Gaussian, it can
break down badly with even a single badly outlying observation.

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.
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There are many natural heuristics that have been employed for
dealing with outliers. However we are aware of only one work
that gives rigorous guarantees in the presence of outliers. In 1994,
Schick and Mitter [47] studied a model where the observation noise
is drawn from a distribution (1 − 𝜂)N (0, 𝜎2Id) + 𝜂H where H is a
sufficiently regular distribution, but is allowed to be heavy-tailed.
This is essentially the Huber contamination model. They derived
provable guarantees but under a number of strong assumptions:
First, they assumed that the distributionH is known to the filter
designer. Thus the filter can use information aboutH to correct for
the exact ways in which the noise is non-Gaussian. Second, their
guarantees are asymptotic in nature in the sense that they only
hold in the limit as 𝜂 → 0. As Schick and Mitter [47] discussed, as
𝑇 → ∞ for fixed 𝜂 > 0, the number of outliers (i.e. timesteps where
the observation noise is sampled fromH ) goes to infinity. However
their analysis relies on the exponential asymptotic stability of the
Kalman filter, whereby outside of a window around the current
timestep, the influence of older observations is significantly attenu-
ated. Thus as 𝜂 → 0 the number of outliers in any window can be
bounded, even if the total number of outliers cannot. In fact, while
their estimator is nonlinear, as is necessary for handling heavy-
tailed noise, it is constructed through a bank of Kalman filters. Each
filter ignores one of the observations, assuming that it is the lone
outlier. The filters are then combined in a natural way.

In this work we seek a truly robust filter. We want to build a filter
without knowledge of H . Moreover we want the outliers to not
merely be sampled from a heavy-tailed distribution, but allow for
their values to be chosen, possibly adaptively, by an unbounded
adversary. For instance, this captures situations where the process
generating the outliers is non-stationary. Moreover we want to
prove guarantees that hold for fixed noise rates, as opposed to
guarantees in the 𝜂 → 0 limit. Finally, we will want our filter to be
a robustification of the Kalman filter itself in the sense that when
𝜂 = 0we want to achieve the same exact guarantees as before. Thus
our filter competes with the Kalman filter in a strong sense, but
gracefully degrades in performance as we move away from the
precise distributional assumptions underlying the classic theory.

1.1 Our Results

Model and objective. Let 0 ≤ 𝜂 < 1/2 be the corruption fraction.
We will assume that for every timestep 𝑖 , with probability 𝜂 the
observation 𝑦∗𝑖 falls under the control of an all-powerful adversary.
The adversary can replace all of the observations under his control
with arbitrary values. Now let {𝑦𝑡 }0≤𝑡<𝑇 denote the observation
sequence that the learner ultimately receives. We stress that exactly
which of these have been corrupted is unknown to the learner.

Note that the corrupted timesteps are randomly chosen, just like
in the Huber contamination model. As a special case this captures
the setting studied by Schick and Mitter. Moreover, because the
adversary gets to coordinate his corruptions, our model also allows
dependencies and captures situations where the observation noise
is non-stationary over time. As we show in the full version of the
paper, in the stronger corruption model where the adversary gets
to choose which timesteps to corrupt, there are strong impossibility
results. Thus our corruption model seems to be one of the strongest
where we can still hope for meaningful guarantees.

Next we describe the objective. As discussed above, the Kalman
filter can be thought of as computing the mean of the posterior dis-
tribution on the trajectory given the observations so far. When the
noise is non-Gaussian, the posterior no longer need be a Gaussian
process; it could be much more complex. So how can we even define

an optimization problem that generalizes that solved by Kalman fil-

tering, if the posterior is non-Gaussian and, even worse, depends on

H which is unknown to the filter and possibly changing over time?

Our main idea is to compete with a strong oracle that knows
which measurements are corrupted. Let 𝑎∗𝑖 ∈ {0, 1} denote the
indicator variable for whether round 𝑖 is clean in the sense that its
measurement error came from a Gaussian, rather than coming from
H or being chosen by an adversary. When the 𝑎∗𝑖 ’s are known to the
filter, the optimal estimator in a Bayesian sense is to estimate the
mean of the posterior using only information from the uncorrupted
observations. This leads us to the following objective:

𝐿(𝑥) = 1
𝑇

(∑
𝑖 (𝑎∗𝑖 ∥𝐵𝑥𝑖 − 𝑦𝑖 ∥2/𝜏2 + ∥𝑤𝑖 ∥2/𝜎2) + ∥𝑥0∥2/𝑅2

)
(1)

where the steps 𝑤𝑖 are defined in terms of the trajectory 𝑥𝑖 , i.e.
𝑥𝑖 = 𝐴𝑥𝑖−1 + 𝑤𝑖 for all 𝑖 > 0. This is the clean posterior negative

log likelihood. The best possible error we can achieve is given by
OPT = min{𝑥𝑖 } 𝐿(𝑥) which is attained by the maximum a posteriori
(MAP) estimator. This is the same as the posterior mean and can
be explicitly computed from a Kalman smoother that knows the
observations from clean rounds, i.e. 𝑦𝑖 for the rounds 𝑖 for which
𝑎∗𝑖 = 1. For general {𝑥𝑖 }, we refer to 𝐿(𝑥) − OPT as the excess risk.

We take a moment to explain the differences in our approach
compared to the usual approaches in algorithmic robust statistics,
for example in robust mean estimation [15, 23, 31]. Usually in a
robust statistics problem, the objective of the estimator is to recover
the ground truth, e.g. the true mean in the example of mean esti-
mation, and the goal in the robust setting is to recover the ground
truth perfectly as 𝜂 → 0 while optimizing the dependence on the
corruption fraction 𝜂. This makes sense for mean estimation be-
cause when 𝜂 = 0, the mean can always be estimated consistently
by taking more samples. It does not make as much sense in the
case of Kalman filtering: even without corruptions, we only ever
get one observation per timestep, so we cannot hope to recover the
ground truth trajectory arbitrarily well. Uncertainty about the true
trajectory is unavoidable because the complexity of the trajectory
grows with the number of observations we get to make, and also
because information about the past is washed away over time. For
this reason, we need to pick our measure of success carefully. From
a Bayesian perspective, the clean posterior mean represents the
best possible estimate we can make of the ground truth given the
clean observations given additional information about which rounds

have been corrupted. Thus it gives a natural way to quantify the
distance of our estimator from optimality.

Main results. We show how to design an estimator which is ro-
bust to corruptions and competes with the optimum in the clean
posterior log likelihood. When 𝜂 = 0, our estimator gets asymptot-
ically optimal posterior log likelihood, including the correct con-
stant factor; its guarantee thus matches the posterior mean/Kalman
smoother. In fact, with high probability our estimator will be exactly
the same as the Kalman smoother (see Remark 4.2).
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Theorem 1.1. For 𝜂 ≤ 0.49, and for a uniformly stable and com-

pletely observable dynamical system,1 there is a polynomial-time

algorithm which takes as input the corrupted observations {𝑦𝑖 } and
outputs trajectory {𝑥𝑖 } with excess risk

𝐿(𝑥) − OPT ≤ 𝐶𝑑 𝜂 log(1/𝜂)
(
𝑚 + 𝑑 (𝜎2/𝜏2) log log𝑇

)
+ 𝑜 (1), (2)

with high probability, where the steps𝑤𝑖 are defined by 𝑥𝑖 = 𝐴𝑥𝑖−1 +
𝑤𝑖 , where 𝐶𝑑 is a constant which is polynomially bounded in log𝑑

and the parameters of the system (see Section 3.1).

To compare, we remind the reader of the performance of the obvious
baselines: the Kalman filter can have unbounded error if there is
even a single corruption, and oblivious outlier removal makes error
Θ(𝑇 ) (see full version of paper for this and other lower bounds).
Recall that 𝜎2 is the variance of the process noise and 𝜏2 is the
variance of the observation noise. The dependence on the ratio
𝜎2/𝜏2 is unavoidable, and the dependence on the dimensions 𝑑 and
𝑚 in (2) of Theorem 1.1 is also unavoidable.

Notably, we can obtain strong provable guarantees for any 𝜂 <

1/2 (we wrote 𝜂 < 0.49 above only to simplify the statement). Thus
our estimator has an information-theoretically optimal breakdown
point. Also, our result can handle the case where the eigenvalues
of 𝐴 are on or near the unit circle, e.g. 𝐴 = Id, a situation where the
system is marginally stable but not strictly stable (see e.g. [49] for
discussion of this terminology). This is an important distinction,
because when the eigenvalues of 𝐴 are all small, a relatively simple
method based on truncating the Kalman filter can work (see full
version of paper), but the performance of such a heuristic will
degrade badly as the eigenvalues approach the unit circle, whereas
the algorithm of Theorem 1.1 will still work (see Section 2 for more
discussion)

The above result works in an offline setting. But what happens
when our measurements come in an online fashion and we need
to estimate the position at time 𝑖 from only the observations up to
that point? In this sense we want the filter to be causal. Fortunately,
at a small loss in our overall guarantees, we are able to make our
approach online too. We need to change the definition of the objec-
tive slightly to handle the fact that predictions are made online: for
the online case, we look at the suboptimality in predicting the next
state compared to the oracle Kalman filter.

Theorem 1.2. There is a polynomial time and causal estimator
ˆ̂𝑥𝑖+1 |𝑖 satisfying the following guarantee with probability at least 1−𝛿 .
With 𝑥𝑖+1 |𝑥 denoting the output of the oracle Kalman filter, the sub-

optimality is bounded by 𝑟 ′′
1−𝛿 (𝜂 +𝑂 (

√︁
𝜂 log(2/𝛿)/𝑇 + log(2/𝛿)/𝑇 ))

where 𝑟 ′′ = 𝐶𝑑 𝜂
(
𝑚 + 𝑑 (𝜎2/𝜏2) log𝑇

)
+ 𝑜 (1) and 𝐶𝑑 is a constant

polylogarithmic in 𝑑,𝑚 and depending on other system parameters.

Our analysis combines our convex programming approach with
standard properties of the Kalman filter, such as its exponential
stability, building on an idea of Schick and Mitter [47].

1.2 Further Related Work

Robust Statistics and Sum-of-Squares. Our main algorithm for
robust filtering is based on the Sum of Squares hierarchy [42], which

1Uniform stability and complete observability are standard assumptions from the
control theory literature, which we introduce in Section 2.1.

has broad applications to both control theory (see e.g. [20, 44]) and
to algorithmic robust statistics (see e.g. [4, 11, 14, 22, 29, 30]). It also
builds upon a line of recent work in algorithmic robust statistics
using both SoS and non-SoS methods (see e.g. [9, 12, 13, 15, 17,
31]). One of the techniques we use, introducing a positive semi-
definiteness constraint utilizing matrix concentration bounds (see
Technical Overview), is conceptually related to the main technical
ingredient in [10] for robust linear regression. The recent work
[6] also considers robust statistics in a Bayesian setting, namely
community detection in the stochastic block model: Their method
recovers the optimal detection threshold as the corruption level
goes to zero, but not the optimal performance of the Bayes estimator
(they only establish results for detection and not recovery).

Practical Approaches. Algorithms based on minimizing losses
that are less sensitive to outliers, e.g. the Huber loss, have been
widely applied in practical works on robust filtering (see e.g. [28,
34]) but lack strong theoretical guarantees. This is because, unlike in
other contexts like robust/heavy-tailed mean estimation and regres-
sion [12, 23, 24, 35], the observations come from a non-stationary
generative model and the length of the trajectory and number of
observations are linked, so the existing proof techniques do not
apply. There are many similar ad hoc methods which have been
used in practice to handle outliers, especially by downweighting the
Kalman filter updates when the innovation exceeds some threshold.

Other Notions of Robustness for Kalman Filtering. A popular vari-
ant of the standard Kalman filtering setup is to allow the variables
𝑦𝑖 to be dropped independently with some probability 𝑝 (analogous
to our 𝜂); see e.g. [36, 37, 51]. This is like having an adversarial cor-
ruption model where the location of corruptions are known (and
hence can be ignored); in this version of the problem, the Kalman
filter remains optimal and the focus has been on understanding
aspects of its behavior, e.g. in unstable systems.

We mention some other works in the direction of making the
Kalman filter more robust. Some take the approach of assuming
a particular parametric model for the noise that is non-Gaussian,
such as a Student’s 𝑡-distribution [45] or Lévy distribution [52],
with the corresponding caveat that their results are limited to the
model they assume. A major line of work in the control theory
and filtering literature deals with robustness to uncertainty in the
parameters of the system (e.g. 𝐴 and 𝐵), which is quite different
from the problem of handling outliers. For example [43], studies a
version of this question in the context of the Wiener filter: the goal
there is to choose the best linear filter given the uncertainty set, and
so it cannot handle outlying observations where a nonlinear filter
is required. Similarly, in recent works such as [50, 54] the authors
study online methods for control theory problems where the goal
is to compete with the best policy in a certain class (e.g. compete
with the Kalman filter when the system is unknown, or compete
with the best of the 𝐻∞ controller and the 𝐻2 controller without
knowing the disturbance model), but in our setting the only filters
which perform well are nonlinear and so competing with a class of
linear filters like the Kalman filter is not sufficient.
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2 TECHNICAL OVERVIEW

Wefirst review basic concepts from control theory like observability
and stability that will play an important role in the later discussion.
We then give an overview of the main challenges of handling ad-
versarial corruptions when estimating a linear dynamical system
and explain the techniques we develop to obtain our main results.

2.1 Control Theory Basics

Observability. Before we describe how to estimate a linear tra-
jectory from corrupted observations, we first review how to do so
in the absence of corruptions. Note that without additional assump-
tions on 𝐴 and 𝐵, this may not be possible a priori. For instance, 𝐴

might only act nontrivially on some subspace of R𝑑 , and the rows
of 𝐵 might simply be completely orthogonal to this subspace, in
which case we can’t hope to recover the trajectory.

In control theory, the standard way to ensure that the linear
dynamical system at hand is not degenerate in this fashion is to
assume it is observable, as originally defined by Kalman in [26].
Formally, given a parameter 𝑠 ∈ N, define the observability matrix

O𝑠 ≜
∑𝑠−1
𝑖=0 (𝐴𝑖 )⊤𝐵⊤𝐵𝐴𝑖 .

To motivate this object, suppose momentarily that there were no
observation or process noise, so that the trajectory is given by
𝑥∗𝑖 = 𝐴𝑥∗𝑖−1 and the observations are given by 𝑦∗𝑖 = 𝐵𝑥∗𝑖 . Then our

observations up to the 𝑠-th timestep are given by 𝑦∗𝑖 = 𝐵𝐴𝑖𝑥∗0 for

0 ≤ 𝑖 < 𝑠 . Now note that 𝑥∗0
⊤O𝑠𝑥

∗
0 =

∑𝑠−1
𝑖=0 ∥𝐵𝐴𝑖𝑥∗0 ∥

2
=
∑𝑠
𝑖=0∥𝑦∗𝑖 ∥

2.
In particular, if O𝑠 had nonzero kernel and 𝑥∗0 were an element of
this kernel, then all of the observations up to time 𝑠 would be zero,
and we would get no information about {𝑥∗0 , . . . , 𝑥

∗
𝑠−1}. Conversely,

if O𝑠 were full rank, then one can recover {𝑥∗0 , . . . , 𝑥
∗
𝑠−1} given

{𝑦∗0, . . . , 𝑦
∗
𝑠−1} by solving the appropriate linear system. In other

words, non-degeneracy of the observability matrix O𝑠 is a necessary
and sufficient condition for being able to recover the trajectory up to
time 𝑠 from observations regardless of where the trajectory started.

More generally when there is observation and process noise, the
natural quantitative analogue of non-degeneracy of O𝑠 is an upper
bound on its condition number (see e.g. [18, 38]):

Assumption 1 (Complete observabilityś informal, see Assump-
tion 3). For some 𝑠 ∈ N, O𝑠 ≜

∑𝑠−1
𝑖=0 (𝐴𝑖 )⊤𝐵⊤𝐵𝐴𝑖 is well-conditioned.

Stability. We will focus on models which satisfy the following
weak stability assumption, often made in the control theory litera-
ture (including the work of Schick and Mitter [47]):

Assumption 2 (Uniform stabilityś informal, see Assumption 4).
There is a constant 𝜌 ≥ 1 such that for any 𝑖 ∈ N, ∥𝐴𝑖 ∥ ≤ 𝜌 (here

∥·∥ denotes the operator norm).

Intuitively, uniform stability ensures that the system initialized at
any point will not eventually blow up at some time in the future. In
contrast, if𝐴 has an eigenvalue larger than one, the system is called
explosive or unstable and the state will blow up at an exponential
rate. Although Kalman filtering has also been studied in the case
where𝐴 is unstable, we know from thework on intermittent Kalman

filtering (see Section 1.2) that even the oracle Kalman filter, which
knows the location of the corruptions, will diverge if the corruption
level in the unstable case is above some critical value [36]. Since

the setting we consider is strictly more difficult, there is no hope of
closely tracking the trajectory in our setting.

2.2 Our Techniques

Corruptions Degrade Observability. The first complication that
arises in our setting is that corruptions can degrade the observability
of the system. To see this, again consider the setup where there is
no process or observation noise, but now some of the observations
have been corrupted. We’re essentially given a linear system {𝑦𝑖 =
𝐵𝐴𝑖𝑥∗0 }0<𝑖<𝑠 where some unknown subset 𝑆bad ⊆ {0, . . . , 𝑠 − 1} of
equations have been altered adversarially. If we knew 𝑆bad, then we
could remove the corresponding equations and try solving for 𝑥∗0
with the rest. Then the matrix that we need to be non-degenerate
is no longer O𝑠 but rather

O′
𝑠 ≜

∑
𝑖∉𝑆bad (𝐴

𝑖 )⊤𝐵⊤𝐵𝐴𝑖

Of course, O𝑠 being non-degenerate does not guarantee O′
𝑠 is as

well. One might wonder then whether Assumption 1 must be signif-
icantly strengthened to ensure that the trajectory can be recovered
from corrupted observations. This is indeed the case if the corrup-
tions arrived at arbitrary timesteps. But if the corruptions arrive in
a random fashion, we will demonstrate that no additional assump-
tions need to be made.

Corruptions Subsample the Observability Matrix. To get a sense
for how this could be possible, note that if 𝑆bad comprises a random
𝜂 fraction of the indices up to time 𝑠 , then the expectation of O′

𝑠

is exactly (1 − 𝜂) · O𝑠 . If we could argue that O′
𝑠 also concentrates

around its expectation, then because O′
𝑠 is spectrally close to (1−𝜂) ·

O𝑠 and O𝑠 is non-degenerate/well-conditioned by assumption, the
corruptions don’t actually impact the observability of the dynamical
system in the presence of Huber contamination.

As the summands (𝐴𝑖 )⊤𝐵⊤𝐵𝐴𝑖 are bounded in norm by Assump-
tion 2, we can carry through this matrix concentration argument as
long as 𝑠 is sufficiently large. In Assumption 1 however, we make no
assumptions about how large 𝑠 is. Instead, we note that regardless
of how large 𝑠 in Assumption 1 is, by observing the system 𝑡 steps
at a time rather than 𝑠 steps at a time for a large multiple 𝑡 of 𝑠 , we
find that Assumption 1 also holds for 𝑡 in place of 𝑠 .

More precisely, if we consider the observability matrix O𝑡 ≜∑𝑡−1
𝑖=0 (𝐴𝑖 )⊤𝐵⊤𝐵𝐴𝑖 for some moderately large 𝑡 , then O𝑡 ⪰ O𝑠 , and

one can also easily check that ∥O𝑡 ∥ ≤ (𝑡𝜌2/𝑠)∥O𝑠 ∥. In other words,
the condition number of O𝑡 is at most 𝑡𝜌2/𝑠 worse than that of O𝑠 .
So even if 𝑠 from Assumption 1 is too small for O′

𝑠 to concentrate
sufficiently around its expectation, it would appear that we can
simply take 𝑡 large enough that O′

𝑡 concentrates sufficiently around
its expectation.

Key Challenge: Observable/Unobservable Subspaces. There is one
essential wrinkle in the above argument: the fluctuations for matrix

concentration for O′
𝑡 are of order

√
𝑡 , so at some point they may

exceed the smallest singular value of O𝑡 . In particular, it would
appear that because of Huber contamination, we lose all control
over how well we can estimate the component of the trajectory
that lives in the span of the small singular vectors of O𝑡 , and so no
matter what value of 𝑡 we choose, matrix concentration alone fails
to show we can estimate the state successfully.
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We now sketch a way to get around this problem. First note that
in spite of the issue posed by the small singular vectors of O𝑡 , the
preceding discussion on matrix concentration does ensure that the
projection of O′

𝑡 to the large singular vectors of O𝑡 is sufficiently
nondegenerate with high probability (see Lemma 4.9). One might
therefore hope to be able to estimate the trajectory within this
subspace. For this reason, we will refer to the span of the large
singular vectors of O𝑡 as the observable subspace and its orthogonal
complement as the unobservable subspace; denote projectors to these
subspaces by Π and Π

⊥ respectively. (The unobservable subspace
should not be thought of as some kind of łinvisiblež subspace which
doesn’t affect the observations; based on the discussion above, it
represents directions which are difficult to recover locally based on
partially corrupted observations.)

So what do we do about the unobservable subspace? Here is the
key idea: while we do lose control of the trajectory’s component
inside the unobservable subspace within any fixed window of 𝑡 steps,
we can consolidate information across windows to learn what goes
on in the unobservable subspace. Before we can discuss how to
implement this, we need to introduce our estimator.

An Inefficient Estimator. To motivate the design of our estimator,
we will construct a system of constraints capturing salient features
of the model. We begin by introducing vector-valued variables
{𝑥0, . . . , 𝑥𝑇−1} corresponding to our estimate for the trajectory,
as well as variables {𝑤1, . . . ,𝑤𝑇−1} and {𝑣0, . . . , 𝑣𝑇−1} correspond-
ing to our estimates for the process and observation noise. We
also introduce Boolean variables 𝑎0, ..., 𝑎𝑇−1 ∈ {0, 1}, where 𝑎𝑖
corresponds to our guess for whether the 𝑖-th observation was
uncorrupted. Of course, the true values of the quantities that these
variables represent are unknown to us, but there are a number of
basic constraints they must satisfy. Firstly, because each observa-
tion is independently corrupted with probability 𝜂, we know by

Chernoff that 1
𝑇

∑𝑇−1
𝑖=0 𝑎𝑖 ≥ (1 − 𝜂) − 𝑜 (1). Secondly, we know

that the trajectory is given by a linear dynamical system, and in
any uncorrupted timestep 𝑖 , the observation 𝑦𝑖 is a noisy linear
measurement of the trajectory at that time, so 𝑥𝑖 = 𝐴𝑥𝑖−1 + 𝑤𝑖

and 𝑎𝑖 (𝑦𝑖 − 𝐵𝑥𝑖−1 − 𝑣𝑖 ) = 0. Additionally, we know the dynamics
and observation noise is bounded with high probability, that is,
∥𝑤𝑖 ∥2 = 𝑂 (𝜎2𝑑), ∥𝑣𝑖 ∥ = 𝑂 (𝜏2𝑚). Thus far the constraints have
been fairly straightforward. We now describe a key constraint cap-
turing the preceding discussion on matrix concentration. Recall
that because the corruptions arrive in a random fashion, by ma-
trix concentration the uncorrupted timesteps will łsubsamplež the
observability matrix O𝑡 in each window. In other words, in every
window {ℓ𝑡, . . . , (ℓ + 1)𝑡 − 1} of 𝑡 timesteps, the following spectral
lower bound holds with high probability∑𝑡−1

𝑗=0 (1 − 𝑎ℓ𝑡+𝑗 ) (𝐴 𝑗 )⊤𝐵⊤𝐵𝐴 𝑗 ⪯ 𝜂 · O𝑡 +𝑂 (
√
𝑡) · Id

With these constraints in place, we consider the natural objective
to optimize in light of (1). We want to minimize the łcleanž nega-
tive log-likelihood achieved by {𝑥𝑖 }, where łcleanž is defined with
respect to the variables {𝑎𝑖 } instead of the true indicators {𝑎∗𝑖 }:

min 1
𝑇

(∑𝑇
𝑖=1 (𝑎𝑖 ∥𝐵𝑥𝑖 − 𝑦𝑖 ∥2/𝜏2 + ∥𝑤𝑖 ∥2/𝜎2) + ∥𝑥0∥2/𝑅2

)
Based on the discussion above, we might guess that ∥Π(𝑥𝑖 − 𝑥∗𝑖 )∥

2,
the error from the observable subspace, can be bounded in the above

program based on some kind of matrix concentration argument. It
turns out this question itself is subtle, because we would need to
rule out cancellations between the observable and unobservable
subspace. However, even if we did argue that by itself, this is def-
initely not enough to make our ultimate objective (1), the clean
negative posterior likelihood, small: for some of the clean obser-
vations (𝑖 with 𝑎∗𝑖 = 1), they will be dependent on the information
in the unobservable subspace, and the true state 𝑥∗𝑖 can be very
large in the unobservable subspace (see full version of paper for
an illustrative example). The key difficulty to making the objective
(1) small will be to argue that ∥𝑥𝑖 − 𝑥∗𝑖 ∥, i.e. the error in the whole
space, can be bounded.

Decomposing the Error. Roughly speaking, we will prove this by
showing that the effect of errors in the past decays exponentially
fast for our estimator. Intuitively, this argument will show that we
do not make large errors in the unobservable subspace because the
estimator will successfully propagate information from the past.
Formally, we prove the following key inequality:

∥𝑥𝑖+𝑡 − 𝑥∗𝑖+𝑡 ∥
2 ≤ ∥𝑥𝑖 − 𝑥∗𝑖 ∥

2/2 + noise, (3)

where here and throughout the rest of this overview, we use noise
to denote a small quantity that is polynomially bounded in 𝑡 and in
the variance of the observation and process noise (see Lemma 4.10).

The proof of (3) starts by decomposing 𝑥𝑖+𝑡 − 𝑥∗𝑖+𝑡 into[
(𝑥𝑖+𝑡 − 𝑥∗𝑖+𝑡 ) −𝐴𝑡 (𝑥𝑖 − 𝑥∗𝑖 )

]
+𝐴𝑡

Π(𝑥𝑖 −𝑥∗𝑖 ) +𝐴
𝑡
Π𝑉⊥ (𝑥𝑖 −𝑥∗𝑖 ) (4)

The first term is the amount of new noise introduced between
steps 𝑖 and 𝑖 + 𝑡 : it will be small because we are only taking 𝑡 steps,
the process noise {𝑤∗

𝑖 } is small, and the corresponding program
variables {𝑤𝑖 } are also constrained to be small.

The remaining two terms in (4) account for the error propagated
from the past: the second term 𝐴𝑡

Π(𝑥𝑖 − 𝑥∗𝑖 ) represents the error
propagated from the observable error in the past, and the third term
𝐴𝑡

Π
⊥ (𝑥𝑖 − 𝑥∗𝑖 ) represents the error propagated from the unobserv-

able error in the past. We now show how both of those terms can be
bounded, starting with the last of these terms (unobservable error).

Unobservable Error from the Past. We identify a simple but critical
fact about observable linear dynamical systems: any vector in the
unobservable subspace decreases in norm when it evolves forward

by 𝑡 timesteps. More formally, we show that for any 𝑥 ∈ R𝑑 ,
∥𝐴𝑡

Π
⊥𝑥 ∥2 ≤ 𝑐 · ∥Π⊥𝑥 ∥2, (5)

for small 𝑐 < 1 provided that 𝑡 is large enough relative to 𝑠 (see
Lemma 4.11).

In particular, by applying this to the vector given by the unobserv-
able error in the past, we conclude that the error ∥𝐴𝑡

Π(𝑥𝑖 − 𝑥∗𝑖 )∥
2

from propagating the past unobservable error ∥Π(𝑥𝑖 − 𝑥∗𝑖 )∥
2 can

be upper bounded by a small fraction of ∥Π(𝑥𝑖 − 𝑥∗𝑖 )∥
2.

Remark 2.1. We caution the reader that (5) does not mean the
unobservable component of any vector 𝑥 decays after 𝑥 evolves
over 𝑡 timesteps, which would correspond to a bound of the form

∥Π𝑉⊥𝐴
𝑡𝑥 ∥2 ≤ 𝐶 · ∥Π𝑉⊥𝑥 ∥2 . (6)

for some 𝐶 < 1. Of course, if (6) were true, it would make life
much easier: by taking 𝑥 to be any iterate in the trajectory, we
would conclude that over time, the trajectory barely lives in the
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unobservable subspace at all! Unfortunately, this is not the case, as
it is easy to construct linear dynamical systems with a significant
portion of the state in the unobservable subspace.

Observable Error from the Past. Wenow discuss how to handle the
error ∥𝐴𝑡

Π(𝑥𝑖 − 𝑥∗𝑖 )∥
2 propagated from the observable error in the

past. It is tempting to try the same approach as for the unobservable
error here, namely to argue that ∥𝐴𝑡

Π(𝑥𝑖 −𝑥∗𝑖 )∥
2 is a small fraction

of the observable error in the past. But this is too much to hope
for: together with (5) this would imply that ∥𝐴𝑡 ∥ < 1, whereas we
only assume that ∥𝐴𝑡 ∥ ≤ 𝜌 for some 𝜌 ≥ 1 (as we show in the
full version of the paper, it is quite easy to handle linear dynamical
systems for which the former holds).

In the absence of an analogue of (5), our key insight is that we
can instead relate ∥𝐴𝑡

Π(𝑥𝑖 − 𝑥∗𝑖 )∥
2 to the unobservable error in the

past! Informally, any large errors in estimating the observable part
of the state 𝑥∗𝑖 must be explained by a large amount of interference
from the unobservable part of the state. Essentially, in Lemma 4.13
we show that for some small constant 0 < 𝑐′ < 1,

∥Π(𝑥𝑖 − 𝑥∗𝑖 )∥
2 ≤ 𝑐′ · ∥Π⊥ (𝑥𝑖 − 𝑥∗𝑖 )∥

2 + noise. (7)

The proof is rather involved but can be distilled into two main
ingredients. Firstly, as alluded to earlier, the fact that the random
corruptions subsample the observability matrix lets us relate the
error in estimating the state to the error in fitting the observations.
We can then bound the latter using the following (see Lemma 4.12):

𝑎∗𝑖 𝑎𝑖 ∥𝐵𝐴
𝑖
Π(𝑥0 − 𝑥∗0 )∥

2 ≤ 4𝑎∗𝑖 𝑎𝑖 ∥𝐵𝐴
𝑖
Π
⊥ (𝑥0 − 𝑥∗0 )∥

2 + noise. (8)

Inequality (8) formalizes the following idea: because our estimator
must match the observation at time 𝑖 , any errors coming from
the past are constrained to cancel between the observable and
unobservable parts of the space, so if one is large the other is too.

Unfortunately, combining the two ingredients above naively
would establish (7) with too large of a constant on the right hand
side. It turns out however that we can greatly improve the constant
by appealing to the aforementioned decay property of the unob-
servable subspace from (5). The details here are a bit subtle, and we
refer to the proof of Lemma 4.10 for the formal argument.

Contraction of Error over Time. It is now easy to deduce (3) and
conclude that the error incurred by the filter decays exponentially.
Recalling that ∥(𝑥𝑖+𝑡 − 𝑥∗𝑖+𝑡 ) − 𝐴𝑡 (𝑥𝑖 − 𝑥∗𝑖 )∥

2 will be some small
noise term, we have by triangle inequality that

∥𝑥𝑖+𝑡 − 𝑥∗𝑖+𝑡 ∥
2 ≤ noise + 3∥𝐴𝑡

Π(𝑥𝑖 − 𝑥∗𝑖 )∥
2 + 3∥𝐴𝑡

Π
⊥ (𝑥𝑖 − 𝑥∗𝑖 )∥

2

We can then use (5) and (7) to bound this by noise + ∥𝑥𝑖 − 𝑥∗𝑖 ∥
2/2,

proving (3) and establishing that over the course of 𝑡 timesteps, the
error of our estimate essentially decays geometrically. We remark
that this doesn’t give us any control over our error on the iterates
within these timesteps, and in particular it remains to be shown how
to use all of the tools we’ve introduced to compete with the Bayes-
optimal predictor. It turns out however that by virtue of the program
constraints ensuring that our estimate of the trajectory follows
the linear dynamics and tries to fit the clean observations while
minimizing the objective defined above, the excess risk introduced
within any window of 𝑡 is polynomially bounded by 𝑡 and the
variance of the noise (see Lemma 4.7). In this overview, we do
not delve into the details of this as this particular argument is
reminiscent of existing analyses in robust statistics.

Confidence Bands and Achieving log log𝑇 Excess Risk. There is
an important catch in the above discussion which we now address:
We assumed that every noise vector 𝑢∗𝑖 and𝑤∗

𝑖 is bounded, and that
subsampling holds in every window of size 𝑡 . In order to ensure
that these events hold across the entire trajectory of length 𝑇 , we
would need to take 𝑡 to be logarithmic in 𝑇 . This would translate
into incurring a logarithmic overhead in the excess risk bound. We

are able to avoid paying the full price for this union bound.

First, it turns out that our analysis only requires that the observa-
tion and process noise are bounded on average over the trajectory
in an appropriate sense. The more serious issue is: How can we
avoid assuming that subsampling holds in each window? This is
a key component to being able to integrate information across
different time windows. As a starting point, we observe that our
initial estimator actually meets a stronger guarantee: It actually
outputs a trajectory which is pointwise close to the true trajectory
by a distance that scales polynomially in variance of the noise and
polylogarithmically in 𝑇 (see Corollary 4.14). In other words, it
allows us to form a confidence band around the estimator of radius,
and this logarithmic scaling is essentially optimal for any guarantee
of this form.

We show how to exploit this confidence band. In particular, we
engineer a second system of constraints which incorporates the
output of our initial estimator and refines it to achieve our final
log log𝑇 excess risk bound in Theorem 1.1. Themain idea is because
the noise that accumulates over a window scales polynomially in
the window size, we can consider windows over shorter timescales

scaling doubly logarithmically rather than logarithmically in 𝑇 .
The goal is to achieve higher accuracy on shorter windows when-
ever subsampling holds. This might seem counterproductive: By
shortening the windows, we are only making it more likely that
subsampling will fail in any given window! Indeed, if we are now
taking windows of doubly logarithmic length, then in roughly a
1/polylog(𝑇 ) fraction of the windows, the random corruptions will
fail to properly subsample the observability matrix. But this is
where the confidence band comes in: Over these bad windows, we
already know how to estimate those iterates pointwise to error
polylog(𝑇 ), so the total contribution of the bad windows to the
excess risk scales as (1/polylog(𝑇 )) · polylog(𝑇 ) = 𝑂 (1) !

The key complication is that the algorithm designer doesn’t
actually know which windows subsampling failed in. Instead, we
will set up a system of constraints similar to the one for our earlier
estimator but with additional Boolean variables, one per window,
corresponding to our guess for whether the random corruptions in
that window successfully subsampled the observability matrix. We
show how to integrate information across the windows on which we

correctly guessed that subsampling succeeded to achieve our final
guarantee. As the argument here is rather involved, we defer the
details to the full version of the paper.

Efficient Algorithm via Sum-of-Squares. While the estimators
we have described appear to be inefficient as they require solving
certain systems of polynomial constraints, our proofs that the so-
lutions to these systems satisfy the guarantees of Theorem 1.1 are
simple in the sense that they can be implemented in the degree four
sum-of-squares proof system [42, 48]. So instead of solving these
polynomial systems which would a priori incur an exponential
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runtime, it suffices to output a pseudo-distribution over solutions
and round it to an integral solution in a straightforward way. These
tools have become a mainstay in algorithm design in robust statis-
tics more broadly [3ś5, 16, 22, 30, 33]. We will explain the basics of
the sum-of-squares proof system in Section 3.2.

Two-stage filter. Thus far we have been discussing the offline
problem, where the estimator at some time instant is allowed to
depend on the entire observation sequence 𝑦1, . . . , 𝑦𝑇 ś in other
words, we designed a robust Kalman smoother. Our techniques can
be used to solve the online filtering problem, where the prediction
for 𝑥𝑡 is only allowed to depend on𝑦1, . . . , 𝑦𝑡−1. It turns out that the
transformation to online guarantees is simple: We use the offline
smoother developed above, in particular the confidence band it
outputs, as an outlier removal algorithm and combine it with the
standard Kalman filter run on the observations 𝑦1, . . . , 𝑦𝑇 which
are not deleted by outlier removal. After the outlier removal, only
small corruptions remain, so following an idea of Schick and Mitter
[46, 47], we can then use stability estimates for the Kalman filter to
establish accuracy guarantees on its prediction for the next state.

3 PRELIMINARIES

Given matrix𝑀 , let 𝜆min (𝑀) and 𝜆max (𝑀) denote its bottom and

top singular values, and let 𝜅 (𝑀) ≜ 𝜆min (𝑀 )
𝜆max (𝑀 ) . We will sometimes

also denote 𝜆max (𝑀) by ∥𝑀 ∥.

3.1 Generative Model

For known matrices 𝐴 ∈ R𝑑×𝑑 , 𝐵 ∈ R𝑚×𝑑 , the underlying trajec-
tory {𝑥∗𝑖 } and uncorrupted observations {𝑦∗𝑖 } are given by 𝑥∗0 ∼
N(0, 𝑅2 · Id𝑑 ) and

𝑥∗𝑖 = 𝐴𝑥∗𝑖−1 +𝑤
∗
𝑖 for all 𝑖 > 0

𝑦∗𝑖 = 𝐵𝑥∗𝑖 + 𝑣∗𝑖 for all 𝑖 ≥ 0

where the dynamics noise 𝑤∗
𝑖 is i.i.d. sampled from N(0, 𝜎2 · Id𝑑 )

and and the observation noise 𝑣∗𝑖 is i.i.d. sampled fromN(0, 𝜏2 · Id𝑚),
i.e. both types of noise in the system are isotropic Gaussian up
to scaling. The assumption that the noise is isotropic simplifies
notation greatly, and is largely without loss of generality in the
following sense: if the noise covariance matrices are full rank, a
change of basis will make the noise isotropic. Our results can also
be extended to handle the case where the noise covariance is rank
degenerate.

We now describe how the corrupted observations are formed.
After the trajectory {𝑥∗𝑖 } and observations {𝑦∗𝑖 } have generated,
an independent Ber(1 − 𝜂) coin is flipped for every 0 ≤ 𝑖 < 𝑇 ;
let 𝑎∗𝑖 ∈ {0, 1} denote the outcome at time 𝑖 . For all 𝑖 for which
𝑎∗𝑖 = 1, define 𝑦𝑖 = 𝑦∗𝑖 . For all 𝑖 for which 𝑎∗𝑖 = 0, a computation-
ally unbounded adversary is allowed to set 𝑦𝑖 arbitrarily. We can
assume this adversary has full knowledge of the system, e.g. the
full trajectory {𝑥∗0 , . . . , 𝑥

∗
𝑇1
}, the full sequence of true observations

{𝑦∗0, . . . , 𝑦
∗
𝑇−1}, etc.

The baseline estimation error which we will try to achieve ap-
proximately is

OPT = min
{𝑥𝑖 }

1

𝑇

(
𝑇−1∑︁
𝑖=0

(𝑎∗𝑖 ∥𝐵𝑥𝑖 − 𝑦𝑖 ∥2/𝜏2 + ∥𝑤𝑖 ∥2/𝜎2) + ∥𝑥0∥2/𝑅2
)

(9)
where the minimum ranges over all trajectories 𝑥𝑖 with steps 𝑤𝑖

satisfying 𝑥𝑖 = 𝐴𝑥𝑖−1 +𝑤𝑖 for all 𝑖 > 0. Note that the objective func-
tion here corresponds to the negative log-density of the (Gaussian)
posterior of the trajectory given the clean observations, up to addi-
tive constants and multiplicative factors. In particular the minimum
in (9) (i.e. the posterior MAP as well as the posterior mean, since
the posterior is Gaussian) is achieved by iterates 𝑥𝑖 and steps 𝑤𝑖

given by running the offline Kalman filter (a.k.a. Kalman smoother)
on the part of the trajectory indexed by 𝑖’s for which 𝑎∗𝑖 = 1. Since
the algorithm does not know which times are uncorrupted (have
𝑎∗𝑖 = 1), we cannot hope to exactly match the performance of OPT.
However, we use it as a benchmark and bound the amount of excess
error our algorithms make compared to this oracle.

We make the following assumptions which are standard in the
filtering/control literature (see e.g. [1, 2, 47]):

Assumption 3 (Complete Observability). There exist constants

𝛼, 𝜅 > 0 and 𝑠 ∈ N for which

O𝑠 ≜

𝑠−1∑︁
𝑖=0

(𝐴𝑖 )⊤𝐵⊤𝐵𝐴𝑖

satisfies 𝜆min (O𝑠 ) ≥ 𝜅𝑠 and 𝜆max (O𝑠 ) ≤ 𝛼𝑠 .

Assumption 4 (Uniform stability). There is a constant 𝜌 ≥ 1 for

which ∥𝐴 𝑗 ∥ ≤ 𝜌 for all 𝑗 ∈ N.
The following elementary manipulations will be useful:

Fact 3.1. For 𝑡 ∈ N divisible by 𝑠 , O𝑡 =
∑𝑡/𝑠−1
𝑟=0 (𝐴𝑟𝑠 )⊤O𝑠𝐴

𝑟𝑠 . In

particular,

∥O𝑡 ∥ ≤ 𝑡 · 𝛼 · 𝜌2 . (10)

Fact 3.2. 𝑥∗𝑡 −𝐴𝑡𝑥∗0 =
∑𝑡

𝑗=1𝐴
𝑡− 𝑗𝑤∗

𝑗

3.2 Sum-of-Squares Basics

Here we give a quick review of the sum-of-squares algorithm; for a
more thorough treatment, we refer the reader to [8, 21, 41].

Pseudoexpectations. The sum-of-squares SDP hierarchy is a se-
ries of increasingly tight SDP relaxations for solving polynomial

systems P ≜ {𝑝𝑖 (𝑥) ≥ 0}𝑁𝑖=1. Although it is in general NP-hard to
solve polynomial systems, the level-ℓ SoS SDP attempts to approxi-
mately solve P with increasing accuracy as ℓ increases by adding
more constraints to the SDP. This improvement in approximation
naturally comes at the expense of increasing runtime and space.

In particular, one can think of the SoS SDP as outputting a "dis-
tribution" 𝜇 over solutions to P. However, there are two important
caveats. Firstly, one can only access the degree-ℓ moments of the
"distribution" and secondly there may be no true distribution with
the corresponding degree ℓ moments. Thus we refer to 𝜇 as a pseu-
dodistribution.

Definition 1. A degree ℓ pseudoexpectation Ẽ : R[𝑥]≤ℓ → R

satisfying P is a linear functional over polynomials of degree at most

ℓ satisfying
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(1) (Normalization) Ẽ[1] = 1,

(2) (Constraints of P) Ẽ
[
𝑝 (𝑥)𝑎2 (𝑥)

]
≥ 0 for all 𝑝 ∈ P and poly-

nomials 𝑎 with deg(𝑎2 · 𝑝) ≤ ℓ ,

(3) (Non-negativity on square polynomials) Ẽ
[
𝑞(𝑥)2

]
≥ 0 when-

ever deg(𝑞2) ≤ ℓ .

For any fixed ℓ ∈ N, given a polynomial system, one can effi-
ciently compute a degree ℓ pseudo-expectation in polynomial time.

Fact 3.3. ([32, 39, 42, 48]). For any 𝑛, ℓ ∈ Z+, let Ẽ𝜁 be degree

ℓ pseudoexpectation satisfying a polynomial system P. Then the

following set has a 𝑛𝑂 (ℓ ) -time weak separation oracle (in the sense of

[19]): {
Ẽ𝜁

[
(1, 𝑥1, 𝑥2, ..., 𝑥𝑛)⊗ℓ

]
: degree ℓ Ẽ𝜁 satisfying P

}
Using this separation oracle, the ellipsoid algorithm finds a degree

ℓ pseudoexpectation in time 𝑛𝑂 (ℓ ) . We call this algorithm the degree
ℓ sum-of-squares algorithm.

To reason about the properties of pseudo-expectations, we turn
to the dual object of sum-of-squares proofs.

Sum-of-Squares Proofs. For any nonnegative polynomial 𝑝 (𝑥) :
R
𝑑 → R, one could hope to prove its nonnegativity by writing

𝑝 (𝑥) as a sum of squares of polynomials 𝑝 (𝑥) =
∑𝑚
𝑖=1 𝑞𝑖 (𝑥)2 for

a collection of polynomials {𝑞𝑖 (𝑥)}𝑚𝑖=1. Unfortunately, there exist
nonnegative polynomials with no sum-of-squares proof even for
𝑑 = 2. Nevertheless, there is a generous class of nonnegative poly-
nomials that admit a proof of positivity via a proof in the form of a
sum of squares. The key insight of the sum-of-squares algorithm
is that these sum-of-squares proofs of nonnegativity can be found
efficiently provided the degree of the proof is not too large.

Definition 2. (Sum-of-Squares Proof) Let A be a collection of poly-

nomial inequalities {𝑝𝑖 (𝑥) ≥ 0}𝑚𝑖=1. A sum-of-squares proof that a

polynomial 𝑞(𝑥) ≥ 0 for any 𝑥 satisfying the inequalities in A takes

on the form

©­
«
1 +

∑︁
𝑘∈[𝑚′ ]

𝑏2
𝑘
(𝑥)ª®

¬
· 𝑞(𝑥) =

∑︁
𝑗∈[𝑚′′ ]

𝑠2𝑗 (𝑥) +
∑︁

𝑖∈[𝑚]
𝑎2𝑖 (𝑥) · 𝑝𝑖 (𝑥)

where {𝑠 𝑗 (𝑥)} 𝑗∈[𝑚′′ ] , {𝑎𝑖 (𝑥)}𝑖∈[𝑚] , {𝑏𝑘 (𝑥)}𝑖∈[𝑚′ ] are real polyno-
mials. If such an expression were true, then 𝑞(𝑥) ≥ 0 for any 𝑥

satisfying A. We call these identities sum-of-squares proofs, and the

degree of the proof is the largest degree of the involved polynomials

max{deg(𝑠2𝑗 ), deg(𝑎
2
𝑖 𝑝𝑖 )}𝑖, 𝑗 . Naturally, one can capture polynomial

equalities in A with pairs of inequalities. We denote a degree ℓ sum-

of-squares proof of the positivity of 𝑞(𝑥) fromA asA ℓ
𝑥 {𝑞(𝑥) ≥ 0}

where the superscript over the turnstile denote the formal variable

over which the proof is conducted. This is often unambiguous and we

drop the superscript unless otherwise specified.

Anumber of basic inequalities like Cauchy-Schwarz andHölder’s
admit sum-of-squares proofs (see e.g. Appendix A of [22]).

Sum-of-squares proofs can also be strung together and composed
according to the following convenient rules.

Fact 3.4. For polynomial systemsA and B, ifA
𝑑

𝑥 {𝑝 (𝑥) ≥ 0} and
B

𝑑 ′
𝑥 {𝑞(𝑥) ≥ 0} then A ∪ B

max(𝑑,𝑑 ′ )
𝑥 {𝑝 (𝑥) + 𝑞(𝑥) ≥ 0}. Also

A ∪ B
𝑑𝑑 ′
𝑥 {𝑝 (𝑥)𝑞(𝑥) ≥ 0}

Sum of squares proofs yield a framework to reason about the
properties of pseudo-expectations, that are returned by the SoS
SDP hierarchy.

Fact 3.5. (Informal Soundness) If A 𝑟
𝑥 {𝑞(𝑥) ≥ 0} and Ẽ[·] is

a degree-ℓ pseudoexpectation operator for the polynomial system

defined by A, then Ẽ[𝑞(𝑥)] ≥ 0.

The following standard fact which follows by łSoS Cauchy-
Schwarzž (see e.g. Lemma A.5 of [7]) will allow us to convert from
pseudodistributions over solutions to a polynomial systems to inte-
gral solutions.

Lemma 3.6. For any vector𝑤∗ and degree-2 pseudoexpectation Ẽ[·]
over vector-valued variable𝑤 , we have that

∥Ẽ[𝑤] −𝑤∗∥2 ≤ Ẽ[∥𝑤 −𝑤∗∥2] . (11)

Proof. By the dual definition of 𝐿2 norm, the left-hand side of
(11) can be written as

sup
𝑣∈S𝑑−1

⟨Σ𝑣, Ẽ[𝑤] −𝑤∗⟩2 .

For any 𝑣 ∈ S𝑑−1,
〈
Σ𝑣, Ẽ[𝑤] −𝑤∗〉2

=
(
Ẽ[⟨Σ𝑣,𝑤 −𝑤∗⟩]

)2 ≤
Ẽ[⟨Σ𝑣,𝑤 − 𝑤∗⟩2] ≤ Ẽ[∥𝑤 − 𝑤∗∥2

Σ
], where the first inequality

follows by the pseudoexpectation version of SoS Cauchy-Schwarz
(see e.g. Lemma A.5 of [7]). Therefore, taking the maximum over

all 𝑣 ∈ 𝑆𝑑−1 proves the inequality. □

Finally, we will need the following elementary but crucial in-
equality which admits a degree-2 sum-of-squares proof. Roughly
speaking, it captures the fact that if the sum of two vectors is small
in norm, then either vector must have norm upper bounded in
terms of the norm of the other vector:

Fact 3.7. Let 𝑣1, 𝑣2 be 𝑑-dimensional vector-valued indeterminates.

There is a degree-2 sum-of-squares proof of the inequality ∥𝑣1∥2 ≤
4∥𝑣2∥2 + 4

3𝜀 from the constraint ∥𝑣1 + 𝑣2∥2 ≤ 𝜀.

Proof. By expanding out the hypothesis, we have

∥𝑣1∥2 + 2⟨𝑣1, 𝑣2⟩ + ∥𝑣2∥2 ≤ 𝜀.

By Cauchy-Schwarz, we also have

−2⟨𝑣1, 𝑣2⟩ ≤
1

4
∥𝑣1∥2 + 4∥𝑣2∥2 .

Adding these two inequalities together and rearranging gives the
desired inequality. □

3.3 Concentration Inequalities

Lemma 3.8 (Matrix Hoeffding, see e.g. Theorem 1.3 in [53]). For

any 𝛿 > 0, given symmetric random matrices 𝑀1, . . . , 𝑀𝑇 ∈ R𝑑×𝑑
satisfying ∥𝑀𝑡 ∥ ≤ 1 almost surely for all 𝑡 , if𝑀 ≜

∑
𝑡 𝑀𝑡 , then

P[∥𝑀 − E[𝑀] ∥ ≥
√︁
8𝑇 log(𝑑/𝛿)] ≤ 𝛿.

839



Kalman Filtering with Adversarial Corruptions STOC ’22, June 20ś24, 2022, Rome, Italy

Lemma 3.9 (see e.g. [55]). If 𝑣 ∼ N(0,Σ) for some Σ ∈ R𝑑×𝑑 , then
with probability at least 1 − 𝛿 ,

∥𝑣 ∥ ≤ 𝑂
((√

𝑑 +
√︁
log(1/𝛿)

)
∥Σ∥1/2

)
We use concentration for Gaussian polynomials, which is a con-

sequence of Gaussian hypercontractivity.

Lemma 3.10 (see e.g. [40]). For degree-𝑑 polynomial 𝑝 : R𝑚 → R,
if 𝑥 ∼ N(0, Id), then

P

[
|𝑝 (𝑥) − E[𝑝] | > 𝑡 ·

√︁
V[𝑝]

]
≤ exp(−Ω(𝑡2/𝑑 )) .

4 POLY-LOGARITHMIC EXCESS RISK AND

CONFIDENCE BAND RECOVERY

In this section we show how to achieve excess risk scaling poly-
logarithmically in the number of iterations. While this is worse
than the final bound we will show (in the full version of the paper),
it will introduce many of the important steps in the final analysis
and also yield a warm start for our estimate of the trajectory which
we will subsequently refine in the full version of the paper to get
our final bound. Crucially, we show this algorithm can output a
confidence band which with high probability (over the entire data
generating process) contains the true trajectory.

The main result of this section is the following:

Theorem 4.1. For any 𝜂 ≤ 0.49, there is a polynomial-time algo-

rithm that, given the corrupted observations {𝑦𝑖 }, with probability

1 − 𝛿 over the randomness of the input, outputs a trajectory {𝑥𝑖 } and
steps {𝑤𝑖 } for which 𝑥𝑖 = 𝐴𝑥𝑖−1+𝑤𝑖 for every 𝑖 ∈ [𝑇 ], and for which,

1

𝑇

(
𝑇−1∑︁
𝑖=0

(
𝑎∗𝑖 ∥𝐵𝑥𝑖 − 𝑦𝑖 ∥2/𝜏2 + ∥𝑤𝑖 ∥2/𝜎2

)
+ ∥𝑥0∥2/𝑅2

)
−OPT

≲ 𝜏−2𝜂 ·
[
𝐸noise + 𝜌2

(
𝛼 + ∥𝐵∥2

√︁
log(𝑑𝑇 /𝑡𝛿)/𝑡

)
·
]

(
𝜌6𝐸noise𝑡

𝜅
+ 𝑅2

𝑇 /𝑡 (𝑑 + log(1/𝛿))
)
,

where

𝐸noise ≜ 𝜏2 (𝑚 + log(𝑇 /𝛿)) + 𝑡𝜌2∥𝐵∥2𝜎2 (𝑑 + log(𝑇 /𝛿)) (12)

𝑡 ≜ 𝑠 ∨ Θ̃(𝜅−2𝜌12∥𝐵∥4 log(𝑑𝑇 /𝛿))) . (13)

4.1 Sum-of-Squares Relaxation

We now formulate the sum-of-squares program we work with in
this section. We begin by introducing an important parameter,
the so-called window size 𝑡 . Recall from Assumption 3 that we
assume that the observability matrix O𝑠 is well-conditioned. We
will take 𝑡 to be a sufficiently large multiple of 𝑠 such that, roughly
speaking, the contribution to the observability matrix O𝑡 from
the uncorrupted time steps is also well-conditioned. We defer the
tuning of 𝑡 to later in the proof of Theorem 4.1. For convenience,
given 0 ≤ 𝑖 < 𝑇 , let ℓ (𝑖) ≜ ⌊𝑖/𝑡⌋ denote the index of the window to
which iterate 𝑖 belongs.

At this point, we can define our sum-of-squares relaxation:

Program 1. Let {𝑦𝑖 } be the observations we are given, and let win-
dow size 𝑡 ∈ N be a parameter to be tuned later. The program vari-
ables are 𝑑-dimensional vector-valued variables {𝑥𝑖 } (trajectory es-
timates) and {𝑤𝑖 } (process noise estimates),𝑚-dimensional vector-
valued variables {𝑣𝑖 } (observation noise estimates), and Boolean
variables {𝑎𝑖 } (indicators for uncorrupted time steps), and the con-
straints are that for all 0 ≤ 𝑖 < 𝑇 , Boolean indicators for uncorrupted

steps

(1) 𝑎2𝑖 = 𝑎𝑖

Trajectory estimate follow linear dynamics and fit𝑦𝑖 ’s on uncorrupted

steps

(2) 𝑥𝑖 = 𝐴𝑥𝑖−1 +𝑤𝑖

(3) 𝑎𝑖 (𝑦𝑖 − 𝐵𝑥𝑖 − 𝑣𝑖 ) = 0

Only 𝜂 fraction of timesteps corrupted

(4)
∑𝑇−1
𝑖=0 𝑎𝑖 ≥ (1 − 1.01𝜂)𝑇

Process and observation noise bounded

(5) ∥𝑣𝑖 ∥2 ≤ 𝑂 (𝜏2 (𝑚 + log(𝑇 /𝛿))
(6) ∥𝑤𝑖 ∥2 ≤ 𝑂 (𝜎2 (𝑑 + log(𝑇 /𝛿))

Random corruptions subsample observability matrix in each window

(7) For all 0 ≤ ℓ < 𝑇 /𝑡 ,
𝑡−1∑︁
𝑗=0

(1−𝑎ℓ𝑡+𝑗 ) (𝐴 𝑗 )⊤𝐵⊤𝐵𝐴 𝑗 ⪯ 𝜂 ·O𝑡 +𝑂
(
𝜌2∥𝐵∥2

√︁
𝑡 log(𝑑𝑇 /𝑡𝛿)

)
· Id

Initial state bounded

(8) ∥𝑥0∥2 ≤ 𝑅2 (𝑑 +𝑂 (log(1/𝛿)))
The program objective is to minimize

min
1

𝑇
Ẽ

[
𝑇−1∑︁
𝑖=0

(
𝑎𝑖 ∥𝐵𝑥𝑖 − 𝑦𝑖 ∥2/𝜏2 + ∥𝑤𝑖 ∥2/𝜎2

)
+ ∥𝑥0∥2/𝑅2

]
(14)

over degree-4 pseudoexpectations satisfying the above constraints.

Remark 4.2 (Uncorrupted Case: Equivalence to Kalman Smoother).
Suppose that we know there are no corruptions: then we can set
𝜂 = 0 in the above program and therefore eliminate the variables 𝑎𝑖
(they are all equal to 1). Then, by a well-known folklore argument,
the SoS program is equivalent to the corresponding convex program

with actual variables 𝑥𝑖 ∈ R𝑑 , 𝑣𝑖 ∈ R𝑚 , etc. with the same set of
constraints. (This is because, by SoS Cauchy Schwarz, replacing the
pseudoexpectation Ẽ[·] with the delta distribution over Ẽ[𝑥] gives
a valid pseudoexpectation with equal or better objective value.)
Then the objective is the same as the MAP objective, and as argued
below the constraints are satisfied with high probability by the
unconstrained MAP solution (Kalman smoother), so our algorithm
simply outputs the MAP.

4.2 Feasibility of Oracle Kalman Smoother

In the following section, we show that the output of the oracle
Kalman filter, i.e. the algorithm which knows precisely which
time steps have been corrupted and runs the offline Kalman filter
(Kalman smoother) on the uncorrupted steps to optimally estimate
the trajectory, satisfies the constraints of the Program with high
probability. In the proof of Lemma 4.3, we show how to do this
by reducing to showing that the ground truth 𝑥∗ is feasible with
high probability, which is more straightforward. The key fact which
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allows us to do this is knowledge that the posterior is a Gaussian
centered at the output of the Kalman filter.

Lemma 4.3. Let {𝑥𝑖 } be the sequence of estimates given by running

the Kalman smoother (i.e. offline Kalman filter) on the uncorrupted

part of the trajectory, let 𝑎𝑖 = 𝑎∗𝑖 , let 𝑤𝑖 = 𝑥𝑖 − 𝐴𝑥𝑖−1 for all 𝑇 ,

let 𝑣𝑖 = 𝑦𝑖 − 𝐵𝑥𝑖 when 𝑎∗𝑖 = 1 and otherwise 𝑣𝑖 = 0. Let 𝐸 [·] be
the expectation with respect to the delta distribution at this point

(𝑥𝑖 , 𝑎𝑖 , 𝑣𝑖 ,𝑤𝑖 )𝑛𝑖=1. Then 𝐸 [·] is feasible for Program 1 with probability

at least 1 − 𝛿 .

Proof. It is immediate that Constraints 1, 2, and 3 are satisfied.
Constraints 4 and 7 only involve 𝑎∗𝑖 and we verify them in

Lemma 4.6. It remains to check Constraints 5 and 6.
For what follows, suppose 𝑎∗𝑖 is fixed. We claim the following

two distributions on {𝑥∗𝑖 } are equal:
(1) Sample a trajectory {𝑥∗𝑖 } from the prior.

(2) Sample a trajectory {𝑥0𝑖 } from the prior, sample observations
𝑦𝑖 for times where 𝑎∗𝑖 = 1 given this trajectory, and sample

trajectory {𝑥∗𝑖 } from the resulting posterior on {𝑥0𝑖 } given
𝑦𝑖 .

The equivalence of these two follows from the following basic fact:
given a pair of random variables (𝑋,𝑌 ), it’s equivalent to sample 𝑋
from its marginal law directly, or to first sample𝑌 from its marginal
law, and then to sample 𝑋 conditional on 𝑌 . In the second case, the
observations are the random variable 𝑌 and the trajectory is 𝑋 ; the
fact implies that 𝑌 is sampled from its marginal law, which means
that the marginal law of {𝑥∗𝑖 } is simply the prior on trajectories.
This fact is sometimes called the Nishimori identity.

Recall that the Kalman smoother output is simply the posterior
mean 𝑥𝑖 = E[𝑥∗𝑖 | {𝑦𝑖 }𝑖:𝑎∗

𝑖
=1] and that the posterior on trajectories

is a multivariate Gaussian distribution. By Lemma 4.6, we have that

∥𝑦𝑖 − 𝐵𝑥∗𝑖 ∥
2 ≤ 𝑂 (𝑚𝜏2 + 𝜏2 log(𝑇 /𝛿))

∥𝑥∗𝑖 −𝐴𝑥∗𝑖−1∥
2 ≤ 𝑂 (𝑑𝜎2 + 𝜎2 log(𝑇 /𝛿)) (15)

∥𝑥∗0 ∥
2 ≤ 𝑅2 (𝑑 +𝑂 (log(1/𝛿)))

uniformly over 𝑖 with probability at least 1 − 𝛿 , then by the law of
total probability we know that for K the feasible set defined by the
constraints above in (15),

𝛿 ≥ P[(𝑥∗, 𝑦) ∉ K] = E[P[(𝑥∗, 𝑦) ∉ K|𝑦]]
so by Markov’s inequality P[P[(𝑥∗, 𝑦) ∉ K|𝑦] > 1/3] ≤ 3𝛿 , i.e.

P[P[(𝑥∗, 𝑦) ∈ K|𝑦] ≥ 2/3] ≥ 1 − 3𝛿 , which by Lemma 4.4 implies
that P[(E[𝑥∗ |𝑦], 𝑦) ∈ K] ≥ 1 − 3𝛿 as well. Adjusting the value of 𝛿
by constants proves the result. □

Lemma 4.4. Suppose that K is a closed convex set, 𝑍 ∼ 𝑁 (𝜇, Σ) is
an arbitrary Gaussian random vector, and P[𝑍 ∈ K] ≥ 0.5. Then

𝜇 ∈ K .

Proof. First we show this whenK is an affine halfspace, i.e.K =

{𝑥 : ⟨𝑎, 𝑥⟩ ≥ 𝑏} for some 𝑎 and 𝑏 arbitrary. The assumption gives
that ⟨𝑎, 𝑍 ⟩ ≥ 𝑏 with probability greater than 50%; since themarginal

law of ⟨𝑎, 𝑍 ⟩ is 𝑁 (⟨𝑎, 𝜇⟩, 𝑎𝑇 Σ𝑎), and the Gaussian is symmetrical
about its mean, it must be that ⟨𝑎, 𝜇⟩ ≥ 𝑏 and so 𝜇 ∈ K . Now
the result follows for arbitrary convex sets by writing them as
intersections of affine halfspaces, since the above argument shows
that 𝜇 will lie in each halfspace (since the probability of lying in

each halfspace is at least as large as lying in the intersection), hence
in the intersection of the halfspaces. □

Lemma 4.5. For any 𝛿 > 0,





𝑡−1∑︁
𝑖=0

𝑎∗𝑖 (𝐴
𝑖 )⊤𝐵⊤𝐵𝐴𝑖 − (1 − 𝜂)O𝑡






 ≤ 𝑂 (𝜌2∥𝐵∥2
√︁
𝑡 log(𝑑/𝛿))

with probability at least 1 − 𝛿 .

Proof. We apply the Matrix Hoeffding inequality (Lemma 3.8),
using that ∥(𝐴𝑖 )⊤𝐵⊤𝐵𝐴𝑖 ∥ ≤ 𝜌2∥𝐵∥2 by uniform stability. □

Lemma 4.6. With probability at least 1 − 𝛿 , the ground truth ran-

dom variables (𝑥∗𝑖 ,𝑤
∗
𝑖 , 𝑣

∗
𝑖 , 𝑎

∗
𝑖 ) satisfies the constraints of Program 1

provided 𝑇 = Ω(log(2/𝛿)/𝜂).

Proof. Equality constraints 1, 2, and 3 are satisfied by definition
of the process. The remaining inequality constraints follow from a
union bound as follows. The bound on Constraint 4 follows from
Bernstein’s inequality (see e.g. [55]). Constraint 5 follows by stan-
dard Gaussian concentration with probability at least 1 − 𝛿 . The
same reasoning applies to Constraints 6 and 8. Constraint 7 follow
from Lemma 4.5 applied to every window 0 ≤ ℓ < 𝑇 /𝑡 . □

4.3 Outer Argument

In this section we reduce the problem of competing with OPT to
getting good prediction error on the first iterate of every window.

Lemma 4.7. Let Ẽ[·] be the solution to Program 1, assuming it

is feasible. Let 𝑥𝑖 ≜ Ẽ[𝑥𝑖 ] and 𝑤𝑖 ≜ Ẽ[𝑤𝑖 ] for every 0 ≤ 𝑖 < 𝑇 .

Provided the event of Lemma 4.3 holds, then

1

𝑇

(
𝑇−1∑︁
𝑖=0

(
𝑎∗𝑖 ∥𝐵𝑥𝑖 − 𝑦𝑖 ∥2/𝜏2 + ∥𝑤𝑖 ∥2/𝜎2

)
+ ∥𝑥0∥2/𝑅2

)
−OPT ≲

𝜂
©­
«
𝐸noise + 𝜌2

𝛼 + ∥𝐵∥2
√︁
log(𝑑𝑇 /𝑡𝛿)/𝑡

𝜏2𝑇 /𝑡

𝑇 /𝑡−1∑︁
ℓ=0

Ẽ

[
∥𝑥ℓ𝑡 − 𝑥∗ℓ𝑡 ∥

2
]ª®
¬
.

where 𝐸noise is defined in (12).

Before proving this, we will need the following helper lemma.

Lemma 4.8. Let Ẽ[·] be the solution to Program 1, assuming it

is feasible. Let 𝑥𝑖 ≜ Ẽ[𝑥𝑖 ] and 𝑤𝑖 ≜ Ẽ[𝑤𝑖 ] for every 0 ≤ 𝑖 < 𝑇 .

Provided the event of Lemma 4.3 holds, then

1

𝑇

(
𝑇−1∑︁
𝑖=0

(
𝑎∗𝑖 ∥𝐵𝑥𝑖 − 𝑦𝑖 ∥2/𝜏2 + ∥𝑤𝑖 ∥2/𝜎2

)
+ ∥𝑥0∥2/𝑅2

)
−OPT ≤

Ẽ

[
1

𝑇

𝑇−1∑︁
𝑖=0

(1 − 𝑎𝑖 )∥𝐵(𝑥𝑖 − 𝑥∗𝑖 )∥
2/𝜏2

]
+𝑂 (𝜂 · (𝑚 + log(𝑇 /𝛿))) .

Proof. By Lemma 3.6, for any 0 ≤ 𝑖 < 𝑇 , ∥𝐵𝑥𝑖−𝑦𝑖 ∥2 ≤ Ẽ[∥𝐵𝑥𝑖−
𝑦𝑖 ∥2] and ∥𝑤𝑖 ∥2 ≤ Ẽ[∥𝑤𝑖 ∥2], so it suffices to prove that the pseu-

doexpectation of
∑𝑇−1
𝑖=0

(
𝑎∗𝑖 ∥𝐵𝑥𝑖 − 𝑦𝑖 ∥2/𝜏2 + ∥𝑤𝑖 ∥2/𝜎2

)
+ ∥𝑥0∥2/𝑅2

is sufficiently bounded using the constraints of Program 1. First, by
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splitting up 𝑎∗𝑖 = 𝑎∗𝑖 𝑎𝑖 + 𝑎∗𝑖 (1 − 𝑎𝑖 ), we have

𝑇−1∑︁
𝑖=0

(
𝑎∗𝑖 ∥𝐵𝑥𝑖 − 𝑦𝑖 ∥2/𝜏2 + ∥𝑤𝑖 ∥2/𝜎2

)

=

𝑇−1∑︁
𝑖=0

(
∥𝑤𝑖 ∥2
𝜎2

+ 𝑎∗𝑖 𝑎𝑖
∥𝐵𝑥𝑖 − 𝑦𝑖 ∥2

𝜏2
+ 𝑎∗𝑖 (1 − 𝑎𝑖 )

∥𝐵𝑥𝑖 − 𝑦𝑖 ∥2
𝜏2

)

≤
𝑇−1∑︁
𝑖=0

(
∥𝑤𝑖 ∥2/𝜎2 + 𝑎𝑖 ∥𝐵𝑥𝑖 − 𝑦𝑖 ∥2/𝜏2 + 2𝑎∗𝑖 (1 − 𝑎𝑖 )

(
∥𝐵(𝑥𝑖 − 𝑥∗𝑖 )∥

2/𝜏2 + ∥𝑣𝑖 ∥2/𝜏2
) )

(16)

where in the inequality we used the fact that 𝑎∗𝑖 ≤ 1 and that for

𝑖 satisfying 𝑎∗𝑖 = 1, ∥𝐵𝑥𝑖 − 𝑦𝑖 ∥2 = ∥𝐵(𝑥𝑖 − 𝑥∗𝑖 ) − 𝑣𝑖 ∥2 ≤ 2∥𝐵(𝑥𝑖 −
𝑥∗𝑖 )∥

2 + 2∥𝑣𝑖 ∥2. Furthermore, note that

𝑇−1∑︁
𝑖=0

𝑎∗𝑖 (1 − 𝑎𝑖 )∥𝑣𝑖 ∥2/𝜏2 ≲ 𝜂 (𝑚 + log(𝑇 /𝛿))𝑇, (17)

by Constraints 4 and 5. Putting (16) and (17) together allows us to
upper bound the pseudo-expectation of

𝑇−1∑︁
𝑖=0

(
𝑎∗𝑖 ∥𝐵𝑥𝑖 − 𝑦𝑖 ∥2/𝜏2 + ∥𝑤𝑖 ∥2/𝜎2

)
+ ∥𝑥0∥2/𝑅2

by

OPT + Ẽ
[
1

𝑇

𝑇−1∑︁
𝑖=0

(1 − 𝑎𝑖 )∥𝐵(𝑥𝑖 − 𝑥∗𝑖 )∥
2/𝜏2

]
+𝑂 (𝜂 (𝑚 + log(𝑇 /𝛿))).

(18)
where we used the fact that Ẽ[·] minimizes the objective (14), the
fact that the oracle Kalman filter solution is feasible because the
event of Lemma 4.3 holds, as well as the fact that 𝑎∗𝑖 ≤ 1. □

We now proceed with the proof of Lemma 4.7.

Proof of Lemma 4.7. Lemma 4.8 reduces upper bounding the
excess risk achieved by {𝑥𝑖 }, {𝑤𝑖 } to bounding the main term

Ẽ[ 1𝑇
∑𝑇−1
𝑖=0 (1 − 𝑎𝑖 )∥𝐵(𝑥𝑖 − 𝑥∗𝑖 )∥

2/𝜏2] in (18), which we do now.
Using Fact 3.2, for any 𝑖 = ℓ𝑡 + 𝑗 we can write 𝐵(𝑥𝑖 − 𝑥∗𝑖 ) =

𝐵𝐴 𝑗 (𝑥ℓ𝑡 − 𝑥∗ℓ𝑡 ) +
∑𝑗
𝑠=0 𝐵𝐴

𝑗−𝑠 (𝑤ℓ𝑡+𝑠 −𝑤∗
ℓ𝑡+𝑠 ). We thus have

1

𝑇

𝑇−1∑︁
𝑖=0

(1 − 𝑎𝑖 )∥𝐵(𝑥𝑖 − 𝑥∗𝑖 )∥
2

=
1

𝑇

∑︁
ℓ, 𝑗

(1 − 𝑎ℓ𝑡+𝑗 )





𝐵𝐴 𝑗 (𝑥ℓ𝑡 − 𝑥∗ℓ𝑡 ) +

𝑗∑︁
𝑠=0

𝐵𝐴 𝑗−𝑠 (𝑤ℓ𝑡+𝑠 −𝑤∗
ℓ𝑡+𝑠 )







2

≤ 3

𝑇

∑︁
ℓ, 𝑗

(1 − 𝑎ℓ𝑡+𝑗 )
(

𝐵𝐴 𝑗 (𝑥ℓ𝑡 − 𝑥∗ℓ𝑡 )



2 +







𝑗∑︁
𝑠=0

𝐵𝐴 𝑗−𝑠𝑤ℓ𝑡+𝑠







2

+







𝑗∑︁
𝑠=0

𝐵𝐴 𝑗−𝑠𝑤∗
ℓ𝑡+𝑠







2)

(19)

We can control the two noise terms on the right by noting that for
any ℓ, 𝑗 , 






𝑗∑︁
𝑠=0

𝐵𝐴 𝑗−𝑠𝑤ℓ𝑡+𝑠







2

≤ ( 𝑗 + 1)
𝑗∑︁

𝑠=0

∥𝐵𝐴 𝑗−𝑠𝑤ℓ𝑡+𝑠 ∥2

≲ 𝑡𝜌2∥𝐵∥2𝜎2 (𝑑 + log(𝑇 /𝛿)),
where in the last step we used Constraint 6. Because the true pro-
cess noise {𝑤∗

𝑖 } is part of a feasible solution to Program 1, from
Constraint 4 we conclude that

1

𝑇

∑︁
ℓ, 𝑗

(1 − 𝑎ℓ𝑡+𝑗 ) ©­«






∑︁
𝑠

𝐵𝐴 𝑗−𝑠𝑤ℓ𝑡+𝑠







2

+






∑︁
𝑠

𝐵𝐴 𝑗−𝑠𝑤∗
ℓ𝑡+𝑠







2ª®
¬

≲ 𝜂𝑡𝜌2∥𝐵∥2𝜎2 (𝑑 + log(𝑇 /𝛿))
For the remaining terms in (19), we invoke Constraint 7 and the
bound on ∥O𝑡 ∥ in (10) to get

1

𝑇

∑︁
ℓ, 𝑗

(1 − 𝑎ℓ𝑡+𝑗 )∥𝐵𝐴 𝑗 (𝑥ℓ𝑡 − 𝑥∗ℓ𝑡 )∥
2 ≤ 1.01𝜂𝜌2

(
𝛼 +𝑂

(
∥𝐵∥2

√︁
log(𝑑𝑇 /𝑡𝛿)/𝑡

)) 1

𝑇 /𝑡

𝑇 /𝑡−1∑︁
ℓ=0

∥𝑥ℓ𝑡 − 𝑥∗ℓ𝑡 ∥
2

from which the lemma follows by substituting the two estimates
above into (19). □

4.4 Decay of Unobservable Subspace

In this section we show how to bound our prediction error on the
first iterate of every window. Towards proving this, the main result
of this subsection is to show that our error in estimating these
first iterates decays exponentially over time provided that a certain
matrix concentration event holds in every window.

We begin by describing this event. Let Π denote the projection

to the observable subspace, that is, to the subspace of 𝑣 ∈ R𝑑 for
which 𝑣⊤O𝑡𝑣 ≥ 𝜁 for 𝜁 ≜ 𝜅𝑡

40000𝜌4 , where the window size 𝑡 will be

optimized at the end of this section. The matrix concentration that
we need to hold in every window is the following:

Lemma 4.9. Suppose 𝑡 = Ω̃
(
𝜅−2𝜌12∥𝐵∥4 log(𝑑𝑇 /𝛿)

)
. Then with

probability at least 1 − 𝛿 over the randomness of {𝑎∗𝑖 }, we have that
for all windows 0 ≤ ℓ < 𝑇 /𝑡 , there is a degree-2 SoS proof of the psd
inequality

𝑡−1∑︁
𝑖=0

𝑎∗ℓ𝑡+𝑖𝑎ℓ𝑡+𝑖Π(𝐴
𝑖 )⊤𝐵⊤𝐵𝐴𝑖

Π ⪰ 1

100
ΠO𝑡Π (20)

using the constraints of Program 1.

We leave the proof of Lemma 4.9 to the full version of the paper.
We now turn to showing the main result of this section, namely

that provided the event of Lemma 4.9 holds, our prediction error on
the first iterate of every window decays exponentially over time.

Lemma 4.10. Let pseudoexpectation Ẽ[·] be the solution to Pro-

gram 1, assuming it is feasible. Provided the event of Lemma 4.9 holds,

we have

Ẽ[∥𝑥ℓ𝑡 − 𝑥∗ℓ𝑡 ∥
2] ≤ 1

2
Ẽ[∥𝑥 (ℓ−1)𝑡 − 𝑥∗(ℓ−1)𝑡 ∥

2] +𝑂 (𝜌6𝐸noise𝑡/𝜅),

where 𝐸noise is defined in (12).
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Before proving Lemma 4.10, we first show how to use it to con-
clude the proof of Theorem 4.1.

Proof of Theorem 4.1. Take 𝑡 as in (13). By the union bound,
the events of Lemma 4.3 and Lemma 4.9 hold with probability at
least 1 − 2𝛿 . By summing the conclusion of Lemma 4.10 over the
time windows, we get

1

𝑇 /𝑡

𝑇 /𝑡−1∑︁
ℓ=0

Ẽ

[
∥𝑥ℓ𝑡 − 𝑥∗ℓ𝑡 ∥

2
]
≤ 1

𝑇 /𝑡 Ẽ
[
∥𝑥0 − 𝑥∗0 ∥

2
]
+𝑂 ( 𝜌

6𝐸noise𝑡

𝜅
).

(21)
Recall that 𝑥∗0 ∼ N(0, 𝑅2 ·Id), so by standard concentration, ∥𝑥∗0 ∥

2 ≤
𝑅2 (𝑑 +𝑂 (log(1/𝛿))) with probability at least 1 − 𝛿 . ∥𝑥∗0 ∥

2 is simi-

larly bounded by Constraint 8. We can thus bound Ẽ
[
∥𝑥0 − 𝑥∗0 ∥

2
]

by 2𝑅2 (𝑑 +𝑂 (log(1/𝛿))), so plugging this into (21) and invoking
Lemma 4.7, we conclude the proof of Theorem 4.1. □

We now proceed to the proof of Lemma 4.10. The first step is
an averaging argument to show that applying 𝐴𝑡 to a vector in the
unobservable subspace is guaranteed to decrease its norm.

Lemma 4.11. For any vector 𝑥 ∈ R𝑑 , ∥𝐴𝑡
Π
⊥𝑥 ∥2 ≤ 1

40000𝜌2 ∥Π⊥𝑥 ∥2.

Proof. We have that

1

𝑡/𝑠

𝑡/𝑠−1∑︁
𝑗=0

∥𝐴 𝑗𝑠
Π
⊥𝑥 ∥2 = 1

𝑡/𝑠

𝑡/𝑠−1∑︁
𝑗=0

𝑥⊤Π⊥ (𝐴 𝑗𝑠 )⊤𝐴 𝑗𝑠
Π
⊥𝑥

≤ 1

𝜅𝑡

𝑡/𝑠−1∑︁
𝑗=0

𝑥⊤Π⊥ (𝐴 𝑗𝑠 )⊤O𝑠𝐴
𝑗𝑠
Π
⊥𝑥

=
1

𝜅𝑡
𝑥⊤Π⊥O𝑡Π

⊥𝑥 ≤ 1

40000𝜌4
∥Π⊥𝑥 ∥2,

where the third step follows by the first part of Fact 3.1 and the last
step follows by the definition of Π⊥ and 𝜁 =

𝜅𝑡
40000𝜌4 . By averaging,

there exists there some 0 ≤ 𝑗 < 𝑡/𝑠 for which ∥𝐴 𝑗𝑠
Π
⊥𝑥 ∥2 ≤

1
40000𝜌4 ∥Π⊥𝑥 ∥2. The lemma follows by uniform stability. □

We will eventually take 𝑥 to be the difference between our es-
timate of an iterate at the beginning of a window and the ground
truth. Informally, this will tell us that over the course of a window
of size 𝑡 , the component of the error that started in the unobservable
subspace has decayed.

What about the component of the error that started in the ob-
servable subspace? By uniform stability, it cannot increase by too
much, but unlike the unobservable component, it need not decay.
This brings us to the win-win argument at the core of the proof
of Lemma 4.13: when the observable component does not decay,
we can still relate it to the observable component in the previous
time window just by uniform stability, and then bound this by a
tiny fraction of the unobservable component in the previous time
window!

Lemma 4.12. With probability at least 1 − 𝛿 , the following holds

true for for every window 0 ≤ ℓ < 𝑇 /𝑡 , for 𝑞 ≜ 𝑥ℓ𝑡 − 𝑥∗ℓ𝑡 , all for all
𝑖 < 𝑡 . There is a degree-4 SoS proof from the constraints in Program 1

that

𝑎∗ℓ𝑡+𝑖𝑎ℓ𝑡+𝑖 ∥𝐵𝐴
𝑖
Π𝑞∥2 ≤ 4𝑎∗ℓ𝑡+𝑖𝑎ℓ𝑡+𝑖 ∥𝐵𝐴

𝑖
Π
⊥𝑞∥2 +𝑂 (𝐸noise),

where recall that 𝐸noise is defined in (12).

Proof. Without loss of generality we can assume ℓ = 0. For any
𝑖 < 𝑡 , we have the following sequence of inequalities in degree-4
SoS

𝑎𝑖𝑎
∗
𝑖



𝐵𝐴𝑖 (Π + Π
⊥)𝑞



2 = 𝑎𝑖𝑎
∗
𝑖



𝐵𝐴𝑖𝑞


2

= 𝑎𝑖𝑎
∗
𝑖



(𝑦𝑖 − 𝐵𝑥∗𝑖 ) − (𝑦𝑖 − 𝐵𝑥𝑖 ) + 𝐵(𝑥∗𝑖 −𝐴𝑖𝑥∗0 ) − 𝐵(𝑥𝑖 −𝐴𝑖𝑥0)


2

≤ 3∥𝑣∗𝑖 ∥
2 + 3∥𝑣𝑖 ∥2 + 3







𝑖∑︁

𝑠=1

𝐵𝐴𝑖−𝑠 (𝑤𝑠 −𝑤∗
𝑠 )






2

≤ 𝐸noise,

where we used the constraints and event of Lemma 4.3 in the last
step (which holds with probability at least 1 − 𝛿). So the lemma
follows by applying Fact 3.7 to 𝜀 ≜ 𝐸noise, 𝑣1 = 𝑎∗𝑖 𝑎𝑖𝐵𝐴

𝑖
Π𝑞, and

𝑣2 = 𝑎∗𝑖 𝑎𝑖𝐵𝐴
𝑖
Π
⊥𝑞. □

Lemma 4.13. Let pseudoexpectation Ẽ[·] be the solution to Pro-

gram 1, assuming it is feasible. Provided the events of Lemma 4.9 and

Lemma 4.12 hold, then at least one of the following holds for every

window 0 ≤ ℓ < 𝑇 /𝑡 for 𝑞 ≜ 𝑥ℓ𝑡 − 𝑥∗ℓ𝑡 :

(1) (Observable component decays)

Ẽ

[
∥𝐴𝑡

Π𝑞∥2
]
≤ 1

10
Ẽ

[
∥Π𝑞∥2

]
.

(2) (Observable error bounded by unobservable error)

Ẽ

[
∥Π𝑞∥2

]
≤ 1

10𝜌2
Ẽ

[
∥Π⊥𝑞∥2

]
+𝑂

(
𝐸noise 𝜌

4/𝜅
)
.

Proof. Without loss of generality we can assume ℓ = 0. In
addition to the lower bound of (20), we also have a degree-2 SoS
proof of the upper bound

𝑇−1∑︁
𝑖=0

𝑎∗𝑖 𝑎𝑖Π
⊥ (𝐴𝑖 )𝑇𝐵𝑇𝐵𝐴𝑖

Π
⊥ ⪯ Π

⊥O𝑡Π
⊥ ⪯ 𝜁 · 𝐼 , (22)

where in the first step we used that 𝑎𝑖𝑎
∗
𝑖 ≤ 1 by Constraint 1 and

in the second step we used the definition of Π.
For convenience, define 𝑞 ≜ 𝑥0−𝑥∗0 . We proceed by casework on

whether there is a gap between Ẽ
[
(Π𝑞)⊤O𝑡 (Π𝑞)

]
and Ẽ[𝜁 ∥Π𝑞∥2]:

Case 1: Ẽ
[
∥Π𝑞∥2

]
≥ Ẽ

[
1

4000𝜌2𝜁

∑𝑡−1
𝑖=0 ∥𝐵𝐴𝑖

Π𝑞∥2
]
.

The analysis for this case is very similar to the analysis in
Lemma 4.11. We have

Ẽ

[
∥Π𝑞∥2

]
≥ Ẽ

[
1

4000𝜌2𝜁

𝑡−1∑︁
𝑖=0

∥𝐵𝐴𝑖
Π𝑞∥2

]

= Ẽ


1

4000𝜌2𝜁

𝑡/𝑠−1∑︁
𝑗=0

𝑞⊤Π𝐴 𝑗𝑠⊤O𝑠𝐴
𝑗𝑠
Π𝑞


≥ Ẽ


10𝜌2𝑠

𝑡

𝑡/𝑠−1∑︁
𝑗=0

∥𝐴 𝑗𝑠
Π𝑞∥2


,

where in the last step we used the definition of 𝜁 and the assumption
that 𝜆min (O𝑠 ) ≥ 𝜅𝑠 . Rearranging, we obtain

1

10𝜌2
Ẽ[∥Π𝑞∥2] ≥

1

𝑡/𝑠

𝑡/𝑠−1∑︁
𝑗=0

Ẽ

[
∥𝐴 𝑗𝑠

Π𝑞∥2
]
.

843



Kalman Filtering with Adversarial Corruptions STOC ’22, June 20ś24, 2022, Rome, Italy

Therefore, there exists some index 0 ≤ 𝑗 < 𝑡/𝑠 for which

Ẽ

[
∥𝐴 𝑗𝑠

Π𝑞∥2
]
≤ 1

10𝜌2
Ẽ

[
∥Π𝑞∥2

]
.

By uniform stability, we obtain the first desired outcome in the
lemma statement.

Case 2: Ẽ
[
∥Π𝑞∥2

]
≤ Ẽ

[
1

4000𝜌2𝜁

∑𝑡−1
𝑖=0 ∥𝐵𝐴𝑖

Π𝑞∥2
]
.

In this case we invoke (20) to obtain

Ẽ

[
∥Π𝑞∥2

]
≤ Ẽ

[
1

4000𝜌2𝜁

𝑡−1∑︁
𝑖=0

∥𝐵𝐴𝑖
Π𝑞∥2

]

≤ Ẽ
[

1

40𝜌2𝜁

𝑡−1∑︁
𝑖=0

𝑎∗𝑖 𝑎𝑖 ∥𝐵𝐴
𝑖
Π𝑞∥2

]
.

Recall from Lemma 4.12 that we have a degree-4 SoS proof of

𝑎∗𝑖 𝑎𝑖 ∥𝐵𝐴
𝑖
Π𝑞∥2 ≤ 4𝑎∗𝑖 𝑎𝑖 ∥𝐵𝐴

𝑖
Π
⊥𝑞∥2 +𝑂 (𝐸noise) .

Summing this inequality over 𝑖 < 𝑡 and taking pseudo-expectations,
we get

Ẽ

[
𝑡−1∑︁
𝑖=0

𝑎∗𝑖 𝑎𝑖 ∥𝐵𝐴
𝑖
Π𝑞∥2

]
≤ Ẽ

[
4

𝑡−1∑︁
𝑖=0

𝑎∗𝑖 𝑎𝑖 ∥𝐵𝐴
𝑖
Π
⊥𝑞∥2

]
+𝑂 (𝐸noise𝑡) .

Substituting this back into the main bound (??), we get

Ẽ

[
∥Π𝑞∥2

]
≤ Ẽ

[
1

10𝜌2𝜁

𝑡−1∑︁
𝑖=0

𝑎∗𝑖 𝑎𝑖 ∥𝐵𝐴
𝑖
Π
⊥𝑞∥2

]
+𝑂

(
𝐸noise𝑡

30𝜁

)

≤ Ẽ
[

1

10𝜌2
∥Π⊥𝑞∥2

]
+𝑂

(
𝐸noise𝑡

30𝜁

)
,

where in the last step we used (22). Unpacking the definition of 𝜁 ,
we arrive at the second desired bound. □

We are now ready to prove Lemma 4.10:

Proof of Lemma 4.10. By the SoS triangle inequality,

∥𝑥ℓ𝑡 − 𝑥∗ℓ𝑡 ∥
2

≤ 2∥𝐴𝑡 (𝑥 (ℓ−1)𝑡 − 𝑥∗(ℓ−1)𝑡 )∥
2 +𝑂 (𝑡2𝜎2 (𝑑 + log(𝑇 /𝛿)))

≤ 4∥𝐴𝑡
Π(𝑥 (ℓ−1)𝑡 − 𝑥∗(ℓ−1)𝑡 )∥

2 + 4∥𝐴𝑡
Π
⊥ (𝑥 (ℓ−1)𝑡 − 𝑥∗(ℓ−1)𝑡 )∥

2

+𝑂 (𝑡2𝜎2 (𝑑 + log(𝑇 /𝛿)))
≤ 4∥𝐴𝑡

Π(𝑥 (ℓ−1)𝑡−𝑥∗(ℓ−1)𝑡 )∥
2+(1/10000)∥Π⊥ (𝑥 (ℓ−1)𝑡−𝑥∗(ℓ−1)𝑡 )∥

2

+𝑂 (𝑡2𝜎2 (𝑑 + log(𝑇 /𝛿)))

where we used Constraint 6 and triangle inequality in the first
inequality, SoS triangle inequality in the second inequality, and
Lemma 4.11 in the third inequality.

Now based on Lemma 4.13 applied to ℓ − 1, we consider the
following two cases:

Case 1. : Observable component decays, that is, we have

Ẽ

[
∥𝐴𝑡

Π(𝑥 (ℓ−1)𝑡 − 𝑥∗(ℓ−1)𝑡 )∥
2
]
≤ 1

10
Ẽ

[
∥Π(𝑥 (ℓ−1)𝑡 − 𝑥∗(ℓ−1)𝑡 )∥

2
]
.

Then we can argue that the error at time ℓ𝑡 is a small fraction of the
error at time (ℓ −1)𝑡 because both the observable and unobservable

components of the error at time (ℓ − 1)𝑡 have decayed over 𝑡 steps.
Formally:

Ẽ[∥𝑥ℓ𝑡 − 𝑥∗ℓ𝑡 ∥
2]

≤ Ẽ
[
4∥𝐴𝑡

Π(𝑥 (ℓ−1)𝑡 − 𝑥∗(ℓ−1)𝑡 )∥
2
]

+ Ẽ
[
10−4∥Π⊥ (𝑥 (ℓ−1)𝑡 − 𝑥∗(ℓ−1)𝑡 )∥

2
]
+𝑂 (𝑡2𝜎2 (𝑑 + log(𝑇 /𝛿)))

≤ Ẽ
[
(2/5)∥Π(𝑥 (ℓ−1)𝑡 − 𝑥∗(ℓ−1)𝑡 )∥

2
]

+ Ẽ
[
10−4∥Π⊥ (𝑥 (ℓ−1)𝑡 − 𝑥∗(ℓ−1)𝑡 )∥

2
]
+𝑂 (𝑡2𝜎2 (𝑑 + log(𝑇 /𝛿)))

≤ (1/2)Ẽ
[
∥𝑥 (ℓ−1)𝑡 − 𝑥∗(ℓ−1)𝑡 ∥

2
]
+𝑂 (𝑡2𝜎2 (𝑑 + log(𝑇 /𝛿))) .

where in the last step we used the Pythagorean Theorem.

Case 2. : Observable error bounded by unobservable error, that
is

Ẽ

[
∥Π𝑞∥2

]
≤ 1

10𝜌2
Ẽ

[
∥Π⊥𝑞∥2

]
+𝑂 (𝐸noise𝜌4/𝜅) (23)

where 𝑞 ≜ 𝑥 (ℓ−1)𝑡 − 𝑥∗(ℓ−1)𝑡 . Then we can argue that the error at

time ℓ𝑡 is a small fraction of the error at time (ℓ − 1)𝑡 as follows.
As in Case 1, the unobservable error at time (ℓ − 1)𝑡 has decayed.
As discussed above, the observable error at time ℓ𝑡 might even be
bigger than the observable error at time (ℓ − 1)𝑡 , but it can’t be
much bigger because of uniform stability. On the other hand, the
latter is bounded by a small fraction of the unobservable error at
time (ℓ−1)𝑡 . This lets us conclude that the overall error at time ℓ𝑡 is
bounded even by the unobservable error at time (ℓ − 1)𝑡 . Formally,

Ẽ[∥𝑥ℓ𝑡 − 𝑥∗ℓ𝑡 ∥
2]

≤ Ẽ
[
4∥𝐴𝑡

Π(𝑥 (ℓ−1)𝑡 − 𝑥∗(ℓ−1)𝑡 )∥
2
]

+ Ẽ
[
10−4∥Π⊥ (𝑥 (ℓ−1)𝑡 − 𝑥∗(ℓ−1)𝑡 )∥

2
]
+𝑂 (𝑡2𝜎2 (𝑑 + log(𝑇 /𝛿)))

≤ 4𝜌2∥Π(𝑥 (ℓ−1)𝑡 − 𝑥∗(ℓ−1)𝑡 )∥
2 + 10−4∥Π⊥ (𝑥 (ℓ−1)𝑡 − 𝑥∗(ℓ−1)𝑡 )∥

2

+𝑂 (𝑡2𝜎2 (𝑑 + log(𝑇 /𝛿)))

≤ 1

2
Ẽ

[
∥𝑞∥2

]
+𝑂 (𝜌6𝐸noise𝑡/𝜅).

where𝐶 < 1 is an absolute constant and in the last step we used (23)
and absorbed𝑂 (𝑡2𝜎2 (𝑑 + log(𝑇 /𝛿))) into𝑂 (𝜌6𝐸noise𝑡/𝜅). Since we
showed the desired conclusion in both cases, the proof is complete.

□

4.5 Confidence Band Recovery

Here we note that as a consequence of Theorem 4.1, our estimate
{Ẽ[𝑥𝑖 ]} of the trajectory is actually pointwise 𝑂 (log𝑇 )-close to
the true trajectory at all time steps, except for a 𝑜 (1) proportion of
time close to time zero. This will be useful in the full version of the
paper when we use this as a warm start for a second sum-of-squares
relaxation that will achieve excess risk doubly logarithmic in 𝑇 . A
proof is given in the full version of the paper.

Corollary 4.14. Let pseudoexpectation Ẽ[·] be the solution to Pro-

gram 1, assuming it is feasible. Then provided the event of Lemma 4.9

holds, for all 0 ≤ 𝑖 < 𝑇 the estimates {Ẽ[𝑥𝑖 ]} satisfy

∥Ẽ[𝑥𝑖 ] −𝑥∗𝑖 ∥ ≲
𝜌

2ℓ (𝑖 )/2
𝑅
(√

𝑑 +
√︁
log(1/𝛿)

)
+𝑂 (𝜌4𝐸1/2

noise
𝑡1/2/𝜅1/2)
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