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Quantum technology has the potential to revolutionize how we acquire and process experimental
data to learn about the physical world. An experimental setup that transduces data from a physical
system to a stable quantum memory, and processes that data using a quantum computer, could have
significant advantages over conventional experiments in which the physical system is measured and
the outcomes are processed using a classical computer. We prove that, in various tasks, quantum
machines can learn from exponentially fewer experiments than those required in conventional exper-
iments. The exponential advantage holds in predicting properties of physical systems, performing
quantum principal component analysis on noisy states, and learning approximate models of physical
dynamics. In some tasks, the quantum processing needed to achieve the exponential advantage can
be modest; for example, one can simultaneously learn about many noncommuting observables by
processing only two copies of the system. Conducting experiments with up to 40 superconduct-
ing qubits and 1300 quantum gates, we demonstrate that a substantial quantum advantage can
be realized using today’s relatively noisy quantum processors. Our results highlight how quantum
technology can enable powerful new strategies to learn about nature.

I. Introduction

Humans learn about nature by doing experiments,
but up until now our ability to acquire knowledge has
been hampered by viewing the quantum world through
a classical lens. The rapid advance of quantum tech-
nology portends an opportunity to observe the world in
a fundamentally different and more powerful way. In-
stead of measuring physical systems and then process-
ing the classical measurement outcomes to infer prop-
erties of the physical systems, quantum sensors [1] will
eventually be able to transduce [2] quantum informa-
tion in physical systems directly to a quantum mem-
ory [3, 4], where it can be processed by a quantum
computer. Fig. 1(a) illustrates the distinction between
conventional and quantum-enhanced experiments. For
example, in a quantum-enhanced experiment, multiple
photons might be captured and stored coherently at
each node of a quantum network, and then processed
coherently to extract an informative signal [5–7].

Recently, mathematical analyses done by some of the
authors show that there exist properties of an 𝑛-qubit
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system that a quantum machine can learn efficiently,
while the required number of conventional experiments
to achieve the same task is exponential in 𝑛 [8, 9].
This exponential advantage contrasts sharply with the
quadratic advantage achieved in many previously pro-
posed strategies for improving sensing using quantum
technology [1]. In this article, we propose and analyze
three classes of learning tasks with exponential quan-
tum advantage, and report on proof-of-principle exper-
iments using up to 40 qubits on a Google Sycamore
processor [10]. These experiments confirm that a sub-
stantial quantum advantage can be realized even when
the quantum memory and processor are both noisy.

To be more concrete, suppose that each experiment
generates an 𝑛-qubit state 𝜌, and our goal is to learn
some property of 𝜌; see Fig. 1. We depict conventional
and quantum-enhanced experiments for this scenario in
Fig. 1(b). In conventional experiments, each copy of 𝜌
is measured separately, the measurement data is stored
in a classical memory, and a classical computer out-
puts a prediction for the property after processing the
classical data. In quantum-enhanced experiments, each
copy of 𝜌 is stored in a quantum memory, and then the
quantum machine outputs the prediction after process-
ing the quantum data in the quantum memory. We
prove that for some tasks, the number of experiments
needed to learn a desired property is exponential in 𝑛
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Figure 1: (a) Quantum-enhanced experiments versus conventional experiments. Quantum-enhanced/conventional experi-
ments interface with a quantum/classical machine running a quantum/classical learning algorithm that can store and process
quantum/classical information. (b) Learning physical state 𝜌. Each experiment produces a physical state 𝜌. In the conven-
tional setting, we measure each 𝜌 to obtain classical data (the measurement could depend on prior measurement outcomes)
and store the data in a classical memory. In the quantum-enhanced setting, 𝜌 can coherently alter the quantum information
stored in the memory of the quantum machine (illustrated by the change in color). With large enough quantum memory,
the quantum machine can simply store each copy of 𝜌. After multiple rounds of experiments, quantum processing followed
by a measurement is performed on the quantum memory. (c) Learning physical process ℰ. Each experiment is an evolution
under ℰ . In the conventional setting, the classical machine specifies the input state to ℰ using a classical bitstring, and
obtains classical measurement data [11]. In the quantum-enhanced setting, the evolution ℰ coherently alters the memory of
the quantum machine: the input state to ℰ is entangled with the quantum memory in the quantum machine and the output
state is retrieved coherently by the quantum machine.

using the conventional strategy, but only polynomial in
𝑛 using the quantum-enhanced strategy. For suitably
defined tasks, we can achieve exponential quantum ad-
vantage using a protocol as simple as storing two copies
of 𝜌 in quantum memory and performing an entangling
measurement. We also show that quantum-enhanced
experiments have a similar exponential advantage in a
related scenario shown in Fig. 1(c), in which the goal
is to learn about a quantum process ℰ rather than a
quantum state 𝜌.

Building on observations in [8, 12] we prove that
for a task that entails acquiring information about a
large number of non-commuting observables, quantum-
enhanced experiments can have an exponential advan-
tage even when the measured quantum state is unentan-
gled. By performing experiments with up to 40 super-
conducting qubits, we show that this quantum advan-
tage persists even when using currently available quan-
tum processors. We also demonstrate quantum advan-
tage in learning the symmetry class of a physical evo-
lution operator, inspired by recent theoretical advances
[9, 12]. Finally, in a theoretical contribution, we rigor-
ously prove that quantum-enhanced experiments have
an exponential advantage in learning about the princi-
pal component of a noisy state, as previously indicated
in [13].

In our proof-of-principle experiments, we directly ex-
ecute the state preparation or process to be learned
within the quantum processor. In an actual application,
the quantum data analyzed by the learning algorithm

might be produced by an analog quantum simulator or
a gate-based quantum computer. We also envision fu-
ture applications in which quantum sensors equipped
with quantum processors interact coherently with the
physical world. The robustness of quantum advantage
with respect to noise, validated by our experiments us-
ing a noisy superconducting device, boosts our confi-
dence that the quantum-enhanced strategies described
here can be exploited someday to achieve a substantial
advantage in realistic applications.

II. Provable quantum advantage

Here we present three classes of learning tasks and the
associated quantum-enhanced experiments, each yield-
ing a provable exponential advantage over conventional
experiments. Each result is encapsulated by a theo-
rem which we state informally. Precise statements and
proofs are presented in the Supplemental Material. Our
experimental demonstrations are discussed in Sec. III.
The proofs proceed by representing a classical algorithm
with a decision tree depicted at the center of the gray
robot in Fig. 1. The tree representation encodes how
the classical memory changes as we obtain more exper-
imental data. We then analyze how the transitions on
the tree differ for distinct measured physical systems
to provide rigorous information-theoretic lower bounds.
A general mathematical framework building on [12] is
given in Appendix C .
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The first task concerns learning about a physical sys-
tem described by an 𝑛-qubit state 𝜌. We suppose that
each experiment generates one copy of 𝜌. In the con-
ventional setting, we measure each copy of 𝜌 to obtain
classical data. The procedure can be adaptive, that is,
each measurement can depend on the data obtained in
earlier measurements. In the quantum-enhanced set-
ting, a quantum computer can store each copy of 𝜌 in
a quantum memory, and act jointly on multiple copies
of 𝜌. In both scenarios, we require all quantum data
to be measured at the end of the learning phase of the
procedure, so that only classical data survives. After
the learning is completed, the learner is asked to pro-
vide an accurate prediction for the expectation value of
one observable drawn from a set {𝑂1, 𝑂2, . . . } where the
number of observables in the set is exponentially large
in 𝑛. The observables in the set can be highly incom-
patible, that is, each observable may fail to commute
with many others in the set.

In prior work by some of the authors [8, 12], we re-
quired the learner to predict exponentially many ob-
servables, which is not possible in practice if the system
size is large. In order to demonstrate the advantage
in an actual device, we prove that predicting just the
absolute value of one observable requires exponentially
many copies in the conventional scenario. In contrast,
predicting the entire set of observables can be achieved
with a polynomial number of copies in the quantum-
enhanced scenario. We thereby establish the following
constant versus exponential separation. The proof is
given in Appendix D.

Theorem 1 (Predicting observables). There exists a
distribution over 𝑛-qubit states and a set of observables
such that in the conventional scenario, at least order 2𝑛

experiments are needed to predict the absolute value of
one observable selected from the set, while a constant
number of experiments suffice in the quantum-enhanced
scenario.

The exponential quantum advantage can occur even
if the state 𝜌 is unentangled. For example, in our ex-
periments we consider 𝜌 ∝ (𝐼 + 𝛼𝑃 ) where 𝑃 is an
𝑛-qubit Pauli operator and 𝛼 ∈ (−1, 1). This state can
be realized as a probabilistic ensemble of product states,
each of which is an eigenstate of 𝑃 with eigenvalue 𝛼.
Even if the state is known to be of this form, but 𝑃, 𝛼
are unknown, the exponential separation between con-
ventional and quantum-enhanced experiments persists.
Moreover, the quantum advantage can be achieved by
performing simple entangling measurements on pairs of
copies of 𝜌. That the quantum advantage applies even
when correlations among the 𝑛 qubits are classical leads
us to believe that the quantum-enhanced strategy will
be beneficial in a broad class of sensing applications. In
Appendix G, we extend this theorem, showing that a
sufficiently large quantum memory is needed to achieve
this task in the quantum-enhanced scenario.

Our second machine learning task with a quantum
advantage is quantum principal component analysis
(PCA) [13]. In this task, each experiment produces one
copy of 𝜌, and our goal is to predict properties of the
(first) principal component of 𝜌, namely the eigenstate
|𝜓⟩ of 𝜌 with the largest eigenvalue. For example, we
may want to predict the expectation values of a few
observables in the state |𝜓⟩. This task may become a
valuable ingredient in future quantum-sensing applica-
tions. If an imperfect quantum sensor transduces a de-
tected quantum state into quantum memory, the state
is likely to be corrupted by noise. But it is reasonable to
expect that properties of the principal component are
relatively robust with respect to noise [14], and there-
fore highly informative about the uncorrupted state. To
perform quantum PCA, a learning algorithm was intro-
duced in [13] based on phase estimation which requires
fault-tolerant quantum computers. One can also obtain
information about the principal component of 𝜌 using
more near-term algorithms, such as virtual cooling [15]
and virtual distillation [16].

While the quantum PCA algorithm in [13] is expo-
nentially faster than known algorithms based on con-
ventional experiments, this advantage was not proven
against all possible algorithms in the conventional sce-
nario. Here, we rigorously establish the exponential
quantum advantage for performing quantum PCA. The
exponential quantum advantage also holds in the near-
term proposals [15, 16]. The proofs are in Appendix E.

Theorem 2 (Performing quantum PCA). In the con-
ventional scenario, at least order 2𝑛/2 experiments are
needed to learn a fixed property of the principal com-
ponent of an unknown 𝑛-qubit quantum state, while a
constant number of experiments suffice in the quantum-
enhanced scenario.

It is worth commenting on recent results in Refs. [17,
18] showing that quantum PCA can be achieved by
polynomial-time classical algorithms, which may seem
to contradict Theorem 2. Those works assume the
ability to access any entry of the exponentially large
matrix 𝜌 to exponentially high precision in polynomial
time. Achieving such a high precision requires measur-
ing exponentially many copies of 𝜌, which takes an ex-
ponential number of experiments and exponential time.
Hence, the assumptions of [17, 18] do not hold here.
See [19] which provides a detailed exposition of these
matters.

Another core task in quantum mechanics is under-
standing physical processes rather than states. Here,
each experiment implements a physical process ℰ , and
we can interface with ℰ through a quantum/classi-
cal machine in the quantum-enhanced/conventional set-
ting; see Fig. 1(c). We show that a quantum machine
can learn an approximate model of any polynomial-time
quantum process ℰ from only a polynomial number of
experiments. Given a distribution on input states, the
approximate model can predict the output state from ℰ
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Figure 2: Quantum advantage in learning physical states. (a) Supervised machine learning (ML) model based on quantum-
enhanced experiments. 𝑁 repetitions of quantum-enhanced experiments are performed and the data is fed into a gated
recurrent neural network (GRU) [20, 21]. The neurons in the GRU are aggregated to predict an output. (b) Training process
of the supervised ML model. We train the supervised ML model to determine which of two 𝑛-qubit Pauli operators has a
larger magnitude for the expectation value in an unknown state 𝜌 using noiseless simulation for small system sizes (𝑛 < 8).
We consider the cross entropy [22] as the training loss. Then we use the supervised ML model to make predictions using
data from noisy quantum-enhanced experiments running on the Sycamore processor [10] for larger system sizes (8 ≤ 𝑛 ≤ 20).
We consider the probability to predict correctly as the prediction accuracy. Random guessing yields a prediction accuracy
of 0.5. (c) Quantum advantage in the number of experiments needed to achieve ≥ 70% accuracy. Here, (Q) corresponds to
results running the supervised ML model based on quantum-enhanced experiments and (C) corresponds to results running
the best known conventional strategy. The dotted line is a lower bound for any conventional strategy (C, LB) as proven in
Appendix D.4. Even running on a noisy quantum processor, quantum-enhanced experiments are seen to vastly outperform
the best theoretically achievable conventional results (C, LB).

accurately on average. In contrast, we would need an
exponential number of experiments to achieve the same
task in the conventional setting. The proof for general
quantum processes is given in Appendix F.

Theorem 3 (Learning quantum processes). Suppose
we are given a polynomial-time physical process ℰ acting
on 𝑛 qubits and a probability distribution over 𝑛-qubit
input states. In the conventional scenario, at least or-
der 2𝑛 experiments are needed to learn an approximate
model of ℰ that predicts output states accurately on av-
erage, while a polynomial number of experiments suffice
in the quantum-enhanced scenario.

III. Demonstrations of quantum advantage

The exponential quantum advantage captured by
Theorems 1, 2, and 3 applies no matter how much clas-
sical processing power is leveraged in the conventional
experiments. The conventional strategy fails because
there is just no way to access enough classical data to
perform the specified tasks, if the number of experi-
ments is subexponential in 𝑛. But these exponential
separations apply in an idealized setting where quan-
tum states are stored and processed perfectly. Will ac-
cess to quantum memory unlock a substantial quantum
advantage under more realistic conditions?

For two different tasks, we have investigated the ro-
bustness of the quantum advantage by conducting ex-
periments using a superconducting quantum processor.

The first task we studied pertains to Theorem 1. The
task is to approximately estimate the magnitude for the
expectation value of Pauli observables. The unknown
state is an unentangled 𝑛-qubit state 𝜌 = 2−𝑛 (𝐼 + 𝛼𝑃 ),
where 𝛼 = ±0.95, 𝑃 is a Pauli operator, and both 𝛼, 𝑃
are unknown. After all measurements are completed
and learning is terminated, two distinct Pauli operators
𝑄1 and 𝑄2 are announced, one of which is 𝑃 and the
other of which is not equal to 𝑃 . We ask the machine to
determine which of |tr (𝑄1𝜌) | and |tr (𝑄2𝜌) | is larger.

In the conventional scenario, where copies of 𝜌 are
measured one by one, the best known strategy is to use
randomized Clifford measurements requiring an expo-
nential number of copies to achieve the task with rea-
sonable success probability [8, 24]. In the quantum-
enhanced scenario, copies of 𝜌 are deposited in quantum
memory two at a time, and a Bell measurement across
the two copies is performed to extract a snapshot of
the state. We then feed the snapshots into a supervised
machine learning (ML) model based on a gated recur-
rent neural network [20, 21, 25] to make a prediction,
as depicted in Fig. 2(a). We train the neural network
using noiseless simulation data for small system sizes
(𝑛 < 8). Then we use the neural network to make pre-
dictions when we are provided with experimental data
for large system sizes (8 ≤ 𝑛 ≤ 20). We report the
prediction accuracy, which is equal to the probability
for correctly answering whether |tr (𝑄1𝜌) | or |tr (𝑄2𝜌) |
is larger. Fig. 2(b) shows the performance of the ML
model as we train the neural network. Fig. 2(c) depicts,
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Figure 3: Quantum advantage in learning physical dynamics. (a) Unsupervised machine learning (ML) model. We perform
500 repetitions of quantum-enhanced experiments (each accessing ℰ𝑘 twice) for every physical process ℰ𝑘, and feed the data
into an unsupervised ML model (Gaussian kernel PCA [23]) to learn a one-dimensional representation for describing distinct
physical dynamics ℰ1, ℰ2, . . .. Similarly, we also consider applying unsupervised ML to data obtained from 1000 repetitions of
the best known conventional experiments (each accessing ℰ𝑘 once) for every physical process ℰ𝑘. (b) Representation learned
by unsupervised ML for 1D dynamics. Each point corresponds to a distinct physical process ℰ𝑘. The vertical line at the
bottom shows the exact 1D representation of each ℰ𝑘. Half of the processes satisfy time-reversal symmetry (blue diamonds)
while the other half of them do not (red circles). When fed with data from quantum-enhanced experiments, the ML model
accurately discovers the underlying symmetry pattern. In contrast, the ML model fails to do so when fed with data from
conventional experiments. (c) Representation learned by unsupervised ML for 2D dynamics. (d) The geometry implemented
on the Sycamore processor [10]. We consider two different classes of connectivity geometry for implementing 1D (top) and
2D (bottom) dynamics.

as a function of the system size 𝑛, the number of experi-
ments needed in each scenario to achieve 70% prediction
accuracy. We show the experimental results when us-
ing conventional and quantum-enhanced experiments,
along with a theoretical lower bound on the number
of experiments needed in the conventional scenario as
proven in Appendix D.4. Despite the noisy storage and
processing in the experimental device, we observe a sig-
nificant quantum advantage.

The second task we studied, which pertains to The-
orem 3, is inspired by the recent observation that
quantum-enhanced experiments can efficiently identify
the symmetry class of a quantum evolution operator,
while conventional experiments cannot [9, 12]. An
unknown 𝑛-qubit quantum evolution operator is pre-
sented, drawn either from the class of all unitary trans-
formations, or from the class of time-reversal-symmetric
unitary transformations (i.e., real orthogonal transfor-
mations). We consider whether an unsupervised ML
can learn to recognize the symmetry class of the un-
known evolution operator based on data obtained from
either quantum-enhanced experiments or conventional
experiments. An illustration is shown in Fig. 3(a).

In the conventional scenario, we repeatedly apply the
unknown evolution operator to the initial state |0⟩⊗𝑛,
and then measure each qubit of the output state in the
𝑌 -basis. Under 𝑇 -symmetric evolution the output state
has purely real amplitudes; hence the expectation value
of any purely imaginary observable, such as the Pauli-
𝑌 operator, is always zero. In contrast, the expectation
value of 𝑌 after general unitary evolution is generically
nonzero, but may be exponentially small and hence hard
to distinguish from zero. In the quantum-enhanced sce-
nario, we make use of 𝑛 additional memory qubits. We
prepare an initial state in which the 𝑛 system qubits are
entangled with the 𝑛 memory qubits, evolve the system
qubits under the unknown evolution operator, swap the
system and memory qubits, evolve the system qubits
again, and finally perform 𝑛 Bell measurements, each
acting on one system qubit and one memory qubit.

Each evolution operator is a one-dimensional or
two-dimensional 𝑛-qubit quantum circuit as shown in
Fig. 3(d). After sampling many different evolution op-
erators from both symmetry classes (and obtaining data
from each sampled evolution multiple times), we use an
unsupervised ML model (kernel PCA [23]) to find a one-
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dimensional representation of the evolution operators.
The representations learned by the unsupervised ML
model are shown in Fig. 3(b, c). Using the quantum-
enhanced data, the ML model discovers a clean separa-
tion between the two symmetry classes, while there is
no discernable separation into classes when using data
from conventional experiments. The signal from the
quantum-enhanced experiments is strong enough that
the two classes are easily recognized without access to
any labeled training data.

IV. Outlook

We have investigated how quantum technology can
enhance our ability to discover new phenomena occur-
ring in nature. For a variety of tasks, we proved that
quantum-enhanced strategies using quantum memory
and quantum processing can predict properties of phys-
ical systems using exponentially fewer experiments than
conventional strategies. This exponential advantage is
achievable even if the amount of classical processing
used in the conventional strategies is unlimited, and
even when the physical system exhibits only classical
correlations. While many previous studies of quantum
advantage have focused on computational tasks with
known inputs, our work focuses instead on learning
tasks, where the goal is to learn about an a priori un-
known physical system. This work provides a new ap-
proach to understanding and achieving quantum advan-
tage in quantum machine learning [26, 27] and quantum
sensing [1].

Our experiments with up to 40 qubits in a super-
conducting quantum processor show that a substantial
quantum advantage is already evident when using to-
day’s noisy intermediate-scale quantum platforms [28].
These experiments demonstrate that supervised and un-
supervised machine learning models [25, 29] employing
data obtained from quantum-enhanced experiments can

predict properties and discover underlying structure in
physical systems that are beyond the scope of conven-
tional experiments.

We envision that future quantum sensing systems will
be able to transduce detected quantum data to a quan-
tum memory and then process the stored data using a
quantum computer. Lacking for now suitably advanced
sensors and transducers, we have conducted proof-of-
concept experiments in which quantum data is directly
planted in our quantum processor. Nevertheless, the
robust quantum advantage we have validated highlights
the potential for advancing quantum platforms to un-
lock facets of nature that would otherwise remain con-
cealed.
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A. Experimental details

In this section, we present the details for the physical experiments ran on the superconducting processor as well
as the supervised/unsupervised machine learning models used to analyze the data.

A.1. General description

The experiments were performed on a Google Sycamore processor containing up to 53 superconducting transmon
qubits. The largest error source in the Sycamore processor [10] is qubit readout error, which ranges from 3% to
7%. The second largest error source is the two-qubit gate with an error around 0.5% to 1.5%. Single-qubit gates
have the smallest error around 0.05% to 0.5%. The Sycamore chip was introduced in Ref. [10], where additional
details concerning the hardware implementation and performance can be found. The Sycamore chip was controlled
remotely using an internal cloud interface programmed using Cirq [30] and TensorFlow Quantum [27]. The layout
of the chip including connectivity is depicted in Supp. Fig. 1(a).

http://dx.doi.org/10.1017/9781316848142
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For all of our experiments on learning about states and dynamics, the total number of qubits was varied from 4
to 40 qubits (where in each case half of the qubits are used to simulate a physical system). As the system size was
varied, the subset of qubits used for the experiments was varied in order to maximize experimental performance
and minimize any overhead related to the 2D connectivity. That is, the largest contiguous patches with low gate
and measurement error rates were selected, and swap operations were used to meet connectivity requirements when
necessary. The experimental requirements for learning states, 1D dynamics, and 2D dynamics differ considerably
in their experimental complexity.

In all experiments, the implementations of the unknown states or dynamics are performed in the quantum
processor, where the learning algorithms do not know about them. While this is only an emulation of the process
of data collection from a physical system in an actual sensing experiment, it allows us to examine the proposed
pipeline for quantum data processing in a situation where data collection is imperfect.

A.2. Experiments on learning physical states

We separate this subsection into the concrete procedure for generating the unknown states, the conventional
experiments we run, the quantum-enhanced experiments we run, and the supervised neural network model for
making prediction based on data from quantum-enhanced experiments.

A.2.a. Procedure for generating the class of unknown states

The state preparation we consider is relatively simple in that the unknown state 𝜌 is unentangled, but has strong
non-local classical correlations. In the experimental demonstration we consider states of the form 𝜌 = 2−𝑛 (𝐼 + 𝛼𝑃 ),
where 𝛼 ∈ {−0.95, 0.95}, 𝑃 =

⨂︀𝑛
𝑖=1 𝑃𝑖 is an 𝑛-qubit Pauli operator, and both 𝛼 and 𝑃 are unknown. The state

𝜌 = 2−𝑛 (𝐼 + 𝛼𝑃 ) is prepared by a randomized constant-depth circuit described in the following. To generate one
copy of 𝜌, we introduce a parameter 𝜂 = sign(𝛼). Then for each qubit 𝑖 = 1, . . . , 𝑛, we do the following.

1. If 𝑃𝑖 = 𝐼, then we set qubit 𝑖 to be |0⟩⟨0| with probability 1/2, and be |1⟩⟨1| with probability 1/2.

2. If 𝑃𝑖 ̸= 𝐼 and there exists 𝑗 > 𝑖 such that 𝑃𝑗 ̸= 𝐼, then we set qubit 𝑖 to be one of the two eigenstates of 𝑃𝑖
with equal probability. We multiply 𝜂 by the eigenvalue (+1 or −1) of the selected eigenstate of 𝑃𝑖.

3. If 𝑃𝑖 ̸= 𝐼 and there does not exist 𝑗 > 𝑖 such that 𝑃𝑗 ̸= 𝐼, then we use the following procedure.

(a) With probability 0.05, we set qubit 𝑖 to be either |0⟩⟨0| or |1⟩⟨1| with equal probability.

(b) With probability 0.95, we set qubit 𝑖 to be the positive eigenstate of 𝑃𝑖 if 𝜂 = +1, and set qubit 𝑖 to be
the negative eigenstate of 𝑃𝑖 if 𝜂 = −1.

By construction, the density operator prepared by this procedure is realized as an ensemble of pure states, where
each pure state is a tensor product of Pauli operator eigenstates. Therefore, there is no quantum entanglement
across different qubits. Furthermore, step 3 is designed to assure that | tr (𝑃𝜌) | = 0.95.

A.2.b. Conventional experiments

In the conventional setting, the optimal strategy (up to logarithmic factors) for estimating expectation values
of high-weight 𝑛-qubit Pauli observables uses classical shadow tomography based on randomized Clifford mea-
surements [24]. Using this strategy, in each experiment we randomly sample a unitary transformation from the
Clifford group, apply the sampled transformation to the unknown state 𝜌, and then measure in the computational
basis. Although such randomized Clifford measurements can be executed using quantum circuits of polynomial
size, the required circuits are too large to be performed accurately with today’s noisy quantum devices except for
quite modest values of 𝑛. Furthermore, the classical post-processing of the measurement results has complexity
exponential in 𝑛.

In our conventional experiments, because randomized Clifford measurements are infeasible we instead use classical
shadow tomography based on randomized Pauli measurements [24]. Using this strategy, in each experiment,
we randomly sample from depth-1 Clifford circuits, apply the sampled circuit to 𝜌, and then measure in the
computational basis. That is, for each of the 𝑛 qubits, we decide uniformly at random to measure one of the three
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Supplementary Figure 1: (a) Layout of a Google Sycamore processor. There is a total of 53 superconducting transmon
qubits (the qubit corresponding to an empty cross is out of order). The blue rectangles show the adjustable couplers that
can apply the entangling two-qubit gate SYC to neighboring qubits. (b) Layout used for learning states and for learning 1D
dynamics. We partition the 40 qubits into 20 system qubits and 20 memory qubits. Either an unknown state of the system
qubits is prepared, or an unknown process is applied to the system qubits. (c) Layout used for learning 2D dynamics.

Pauli observables 𝑋, 𝑌 , or 𝑍. Many such measurements are performed, each time on a new copy of 𝜌, and the
classical data collected is post-processed to predict expectation values of observables in the state 𝜌.

Classical shadow tomography based on randomized Pauli measurements is a powerful technique that enables
classical ML models to predict quantum many-body ground states and quantum phases of matter with rigorous
guarantees [31]. However, for the task of estimating the expectation value of an 𝑛-qubit Pauli observable that is
announced after all measurements are completed, both randomized Clifford and randomized Pauli measurements
require a number of experiments that scale exponentially in 𝑛, as we have proven in Appendix D.4. Likewise,
exponentially many experiments are needed to perform Task 1 defined in Appendix D.4 with high success proba-
bility. In Fig. 2(b), we report the average prediction accuracy (the probability of performing Task 1 successfully)
over system sizes 𝑛 = 8, 10, 12, 14, 16, 18, 20. For each 𝑛-qubit state 𝜌, we conduct 1000 experiments to obtain the
measurement data. The prediction accuracy is indicated by the gray point shown on the vertical axis, which is only
slightly better than random guessing (0.5). For system sizes 𝑛 ≥ 10, the prediction accuracy is very close to 0.5.
Classical shadow tomography based on randomized Pauli measurements is a statistical estimation procedure that
has no training phase. Therefore, the prediction accuracy for conventional experiments is a single point Fig. 2(b).
The training epoch on the horizontal axis in Fig. 2(b) is only for quantum-enhanced strategy. In Fig. 2(c), we
report the number of experiments required to achieve a prediction accuracy of at least 70% for different system
sizes. We consider a maximum of 5000 experiments. For system size 𝑛 ≥ 10, we are unable to achieve at least
70% prediction accuracy with 5000 experiments. Hence we only show system size 𝑛 = 2, 4, 6, 8 for conventional
experiments in Fig. 2(c).

A.2.c. Quantum-enhanced experiments

Quantum-enhanced experiments are executed by performing an entangling Bell measurement across two copies
of 𝜌. We prepare the state 𝜌 on the system qubits (marked blue in Supp. Fig. 1), swap the state to the memory
qubits (marked red), prepare another state 𝜌 on the system qubits, then perform an entangling Bell measurement
across the two copies of 𝜌. Note that every preparation of 𝜌 generates a random product state according to a
classical probability distribution described in Appendix A.2.a.

For each system size 𝑛 = 2, . . . , 20, we choose 𝑛 qubits from among the 20 pairs of qubits shown in Supp. Fig. 1(b);
these pairs are selected to minimize errors in the state preparations, gates, and measurements. Because the state
𝜌 is not entangled, no entangling gates are used during the state preparation; therefore there is no advantage in
choosing the pairs of qubits to be in proximity to one another. For each system size 𝑛, we use the same qubits for
the conventional experiments as for the quantum-enhanced experiments, except that in conventional experiments
we prepare the unknown state 𝜌 only on the system qubits, and then perform a randomized Pauli measurement of
the system immediatly after the state preparation.

While a Bell measurement on a pair of qubits can be performed via a simple circuit containing one Hadamard
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gate, one CNOT gate, and two 𝑍-basis measurements, we instead compile these operations into operations better
suited for the Sycamore processor. In particular, the native two-qubit entangling gate is the Sycamore Gate, which
has a unitary matrix representation given by

SYC = iSWAP† CPHASE(−𝜋/6) =

⎛⎜⎜⎝
1 0 0 0
0 0 −𝑖 0
0 −𝑖 0 0
0 0 0 𝑒−𝑖𝜋/6

⎞⎟⎟⎠ . (A1)

Using this gate, the Bell state measurements may be performed by the gate sequence needed to unprepare a Bell
state, which when compiled to Sycamore’s native gates is expressed as a product of SYC gates and phased XZ
gates (PhXZ𝑖). The phased XZ gate PhXZ𝑖 on the 𝑖-th qubit is a native gate on the Sycamore device that can be
expressed as

PhXZ(𝑎, 𝑥, 𝑧)𝑖 = 𝑍𝑧𝑖 𝑍
𝑎
𝑖 𝑋

𝑥
𝑖 𝑍
−𝑎
𝑖 . (A2)

where 𝑋𝑖 and 𝑍𝑖 are the standard Pauli operators acting on qubit 𝑖, and the exponents 𝑎, 𝑥, 𝑧 are real numbers. The
particular angles (𝑎, 𝑥, 𝑧) for each of the gates used in our experiments were compiled numerically via a variational
optimization. As the inverse Sycamore is not a native gate of the architecture, the compilations to hardware for
inverse gates have to compensate for this difference, which we do numerically. The full decomposition of all the
gates and circuits we reference are provided as Cirq circuits in additional supplemental material.

Each quantum-enhanced experiment generates a classical bitstring of size 2𝑛. We collect the bitstrings from
all experiments and feed them into a neural network model. In addition to the experimental data, the neural
network model also takes in two Pauli strings 𝑄1, 𝑄2 and predicts which one of | tr(𝑄1𝜌)| and | tr(𝑄2𝜌)| is larger.
In Fig. 2(b), we repeat each quantum-enhanced experiments 500 times. This provides a fair comparison with
conventional experiments because two copies of the unknown state 𝜌 are used in each quantum-enhanced experiment;
therefore a total of 1000 copies are consumed in both our conventional and quantum-enhanced experiments. In
Fig. 2(c), we repeat quantum-enhanced experiments for a maximum of 500 times over different system sizes from
𝑛 = 2, 4, 6, 8, 10, 12, 14, 16, 18, 20.

A.2.d. A supervised neural network model using data from quantum-enhanced experiments

We train a supervised neural network model using noiseless simulation data from small system sizes. Then we
use the trained neural network model on the noisy experimental data obtained from performing quantum-enhanced
experiments. The neural network model has three layers. Each of the outer layers runs the preceding inner layer
multiple times. In the following, we describe each layer of the neural network model.

1. The inner layer is a recurrent neural network based on gated recurrent unit (GRU) [20, 21, 25]. The recurrent
neural network takes in a size-2𝑛 bitstring, corresponding to the measurement outcome from a single quantum-
enhanced experiment, and an 𝑛-qubit Pauli operator 𝑄, which can be represented as a size-2𝑛 bitstring. The
recurrent neural network outputs a two-dimensional real vector. Other popular choices of recurrent units,
such as long short-term memory (LSTM) [32] or transformer [33], could be used instead of GRU.

2. The intermediate layer is an aggregation layer. This layer runs the inner layer for all the bitstrings obtained
from each of the quantum-enhanced experiments. For example, if we run the quantum-enhanced experiments
for 100 times, we would obtain 100 size-2𝑛 bitstring and we would run the inner layer for 100 times over
each bitstring. The intermediate layer outputs the average of the two-dimensional output vectors from the
multiple runs of the inner layers.

3. The outer layer is inspired by a Siamese neural network (twin neural network) [34]. This layer runs the
intermediate layer twice, one for each of the two Pauli operators 𝑄1 and 𝑄2. Each intermediate layer
generates a real-valued vector 𝑥 of dimension two, which we map to a single real value by considering 𝑥1−𝑥2.
The outer layer compares the real value from the two intermediate layers and outputs 𝑄1 or 𝑄2 based on
which one of them has a higher real value.

The specific details of the above neural network structure is given in the accompanying code repository1.

1 https://github.com/quantumlib/ReCirq/tree/master/recirq/qml_lfe

https://github.com/quantumlib/ReCirq/tree/master/recirq/qml_lfe
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In the inner layer, we create a recurrent neural network with an encoding layer that maps an integer between
0 and 15 to a vector of dimension 30, a GRU with 30 neurons, and a decoding layer that maps 30 neurons to 2
neurons. Only the inner layer contains trainable parameters. The intermediate layer and the outer layer are both
fixed operations based on outputs from the inner layer, which will not be updated.

Next, we discuss the process for training the neural network model. We use noiseless simulation data (for small
system sizes 𝑛 < 8) to train the recurrent neural network. During training, we pick a state 𝜌 = 2−𝑛 (𝐼 + 𝛼𝑃 ) where
𝛼 ∈ {−0.95, 0.95} and 𝑃 is an 𝑛-qubit Pauli operator, and pick an 𝑛-qubit Pauli operator 𝑄 that is equal to 𝑃
with probability 1/2 and is not equal to 𝑃 with probability 1/2. We encode the training data into two tensors, inp
and target. The encoding is defined by the following.

• The tensor inp is of size 𝑏× 𝑛, where 𝑏 is the number of quantum-enhanced experiments we performed, 𝑛 is
the number of qubits, and each entry of inp is an integer from 0 to 15. The (𝑡, 𝑖)-th entry of inp encodes the
component of 𝑄 on qubit 𝑖 (a choice of 4 for 𝐼,𝑋, 𝑌, 𝑍) and the Bell measurement outcome on qubit 𝑖 from
the 𝑡-th quantum-enhanced experiment (also a choice of 4). Each entry takes a total of 16 possible values.

• The tensor target is of size 1. The entry in target is equal to 1 if 𝑃 = 𝑄, and is equal to 0 if 𝑃 ̸= 𝑄.

We update the neural network model once using inp of size 𝑏 × 𝑛 and target of size 1. We are using the cross
entropy loss and employ the Adam optimizer [35], which is a gradient-based optimization algorithm that adaptively
estimates lower-order moments. We generate multiple different states 𝜌 and 𝑄 corresponding to different inp and
target to train the neural network model.

During the training process, we are not using the outer layer. Also, we simultaneously run the 𝑏 repetitions of
the inner layer for each outcome from a single quantum-enhanced experiment by leveraging parallel computing.
Then, we average over the 𝑏 repetitions of the inner layer. Also, the output of the neural network model is a
two-dimensional real vector, denoted as 𝑣 = (𝑣0, 𝑣1). When target is 𝑎 ∈ {0, 1}, the loss function is given by

− log

(︂
e𝑣𝑎

e𝑣0 + e𝑣1

)︂
. (A3)

The two real values 𝑣0, 𝑣1 are combined to produce a probability distribution

e𝑣0

e𝑣0 + e𝑣1
= 1− 1

e𝑣0−𝑣1 + 1
,

e𝑣1

e𝑣0 + e𝑣1
=

1

e𝑣0−𝑣1 + 1
, (A4)

indicating which of 𝑎 = 0 and 𝑎 = 1 is more likely. If 𝑣0 − 𝑣1 is large, then 𝑎 = 0 corresponding to 𝑃 ̸= 𝑄 is more
likely. On the other hand, if 𝑣0 − 𝑣1 is small, then 𝑎 = 1 corresponding to 𝑃 = 𝑄 is more likely. We compute the
gradient through back-propagation and update the model using the Adam optimizer [35].

Finally, we discuss the prediction process in the neural network model. Due to the significant amount of mea-
surement errors, we employ a form of measurement error mitigation. We first characterize the measurement errors
for every qubit assuming the zero state preparations and 𝑋-gates are perfect. For each qubit 𝑖, we obtain a 2× 2
matrix specifying the probability to measure 0 or 1 if the qubit is in |0⟩⟨0| or |1⟩⟨1|. We store that as a list of
2 × 2 matrices called calib_2x2. We then expand the data, referred to as data in the pseudo-code, obtained from
the quantum-enhanced experiments, which is a two-dimensional array of size 𝑏 × (2𝑛). Basically, we expand each
measurement to 20 measurements with a real-valued coefficient associated to each of the expanded measurements.
Therefore, data_expanded is a two-dimensional array of size (20𝑏) × (2𝑛) and coefficients is a one-dimensional
array of size 20𝑏.

def noise_inversion(data, calib_2x2 , inverse_cnt=20):
Set data_expanded as an empty array

Set list_of_coefficients as an empty array

for t from 0 to b−1:
for r from 0 to inverse_cnt−1:

Set single_data as an empty array

Set coefficient as 1.0

for i from 0 to 2n−1:
Set p as calib_2x2[i][1, 1] if data[t][i] = 0
Set p as calib_2x2[i][0, 0] if data[t][i] = 1
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With probability 1−p do:
single_data.append(1−data[t][i])
coefficient ∗= −1

Else do:

single_data.append(data[t][i])

Append single_data to data_expanded

Append coefficient to list_of_coefficients

return data_expanded , list_of_coefficients

After obtaining data_expanded, we construct two tensors inp1 and inp2 corresponding to the same experimental
data data_expanded, but different Pauli operators 𝑄1, 𝑄2. Both inp1 and inp2 are tensors of size (20𝑏)×𝑛, where 𝑏
is the number of quantum-enhanced experiments we performed, 𝑛 is the number of qubits, and each entry of inp1
and inp2 is an integer from 0 to 15 similar to the training process. Then the neural network make a prediction
using the two input tensors inp1 and inp2. In the outer layer, the neural network model runs the intermediate
layer (as well as the multiple repetitions of inner layer) for each of the two input tensors to obtain two 2D vectors
denoted as 𝑢 = (𝑢0, 𝑢1), 𝑣 = (𝑣0, 𝑣1). From the discussion given around Eq. (A4). If 𝑢0 − 𝑢1 is small, then it is
more likely that 𝑃 = 𝑄1. If 𝑣0−𝑣1 is small, then it is more likely that 𝑃 = 𝑄2. The neural network hence compare
𝑢0 − 𝑢1 and 𝑣0 − 𝑣1 to predict whether 𝑃 = 𝑄1 or 𝑃 = 𝑄2.

A.3. Experiments on learning physical dynamics

For the task of learning about physical dynamics in 1D and 2D, we considered unitary transformations imple-
mented by 1D and 2D random quantum circuits. We generated many random circuits, half of which are time-reversal
symmetric (i.e., real orthogonal), and half of which are general unitary circuits without any symmetry. For each
of these circuits, we performed both conventional and quantum-enhanced experiments to generate classical mea-
surement data. This data was fed to an unsupervised machine learning model to learn a low-dimensional classical
representation of the physical dynamics. We wished to see whether the unsupervised ML model could recognize the
difference between time-reversal symmetric dynamics and general dynamics. The results summarized in Fig. 3 were
obtained in experiments analyzing 180 different circuits in each of the the two classes, using methods described
below. The largest quantum circuits we ran on the Sycamore processor are presented in Table I.

Number of qubits Number of gates Circuit depth

1D dynamics 40 842 40
2D dynamics 40 1388 54

Table I: Circuit information for the experiments on learning physical dynamics.

In [9], a restricted subclass of conventional strategies was shown to require an exponential number of experiments
to distinguish between general unitary dynamics and time-reversal-symmetric dynamics. In [12], some of the authors
of the present work have shown that an exponential number of experiments are required for this task even when
arbitrary conventional strategies are allowed. Furthermore, it is plausible that under appropriate cryptographic
assumptions, the superpolynomial difficulty of characterizing quantum dynamics in conventional experiments would
persist even for psuedo-random dynamical processes that can be efficiently generated on a quantum computer.
However, at present, explicit constructions of cryptographically-secure pseudo-random unitaries are not known.
In light of this, in our experiments we resort to studying random quantum circuits similar to those used for
demonstrating quantum computational supremacy [10].

In this subsection, we provide further details regarding how our samples of 1D dynamics and 2D dynamics are
generated, how our experiments are conducted, and how our unsupervised machine learning model works. As we
will see, the unsupervised ML successfully learns to classify quantum circuits into symmetry classes when provided
with data from quantum-enhanced experiments, but not when provided with data from conventional experiments.
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Supplementary Figure 2: To implement the 2D dynamics, we first move from the layout on the left to the layout in the
middle (by swapping some pairs of system and memory qubits). Then, we iterate between the layout in the middle and the
layout in the right (by swapping all pairs of system and memory qubits).

A.3.a. 1D dynamics

We use the layout provided in Supp. Fig. 1(b). A 1D circuit is implemented along the 1D line connecting all the
qubits circled in blue. For system size 𝑛 < 20, we consider a contiguous region on the 1D line with the smallest
gate/measurement error. For general unitary dynamics, we use a 1D version of the quantum supremacy circuit
[10]. The quantum supremacy circuit in 1D interleaves between a layer of random single-qubit gates and a layer of
two-qubit entangling gates, namely SYC gates applied to neighboring qubits. We alternate the partitioning of the
two-qubit entangling gates, e.g., (1, 2), (3, 4), (5, 6)←→ (2, 3), (4, 5) for 𝑛 = 6.

For 𝑇 -symmetric (time-reversal-symmetric) dynamics, the single-qubit gates are real orthogonal 2 × 2 matrices
of the form e−𝑖𝑡𝑌 , where 𝑌 is the Pauli-𝑌 matrix and 𝑡 is a randomly chosen real number. In addition, we replace
the two-qubit entangling gate SYC by a 𝑇 -symmetric two-qubit entangling gate

𝑉 = (𝑈3 ⊗ 𝑈4)SYC(𝑈1 ⊗ 𝑈2), (A5)

where 𝑈1, 𝑈2, 𝑈3, 𝑈4 are appropriately chosen single-qubit gates. In order to find a suitable choice of 𝑈1, . . . , 𝑈4

such that the two-qubit gate 𝑉 is time-reversal symmetric, we employ a numerical optimization. We parameterize
each of 𝑈𝑖 as exp(i(𝑎𝑖𝑋+𝑏𝑖𝑌 +𝑐𝑖𝑍)), where 𝑎𝑖, 𝑏𝑖, 𝑐𝑖 ∈ R are initialized randomly. There are a total of 12 variables.
Next, we define the loss function to be equal to the Frobenius norm of the imaginary part of the matrix 𝑉 (after
fixing the top left entry of 𝑉 to be real). We then perform gradient descent to minimize the loss function and
terminate once we have found that the loss function is below 10−9. We then replace SYC by 𝑉 .

In the conventional experiment, we begin with |0𝑛⟩⟨0𝑛| on the system qubits, evolve under the 1D dynamics, and
measure in the 𝑌 -basis. We also considered using randomized Pauli measurement at the end, but the performance
for measuring in the 𝑌 -basis is slightly better. The rationale is that the output state under 𝑇 -symmetric evolution
has purely real amplitudes; hence the expectation value of any purely imaginary observable, such as the Pauli-𝑌
operator, is always zero. In contrast, the expectation value of 𝑌 after a general unitary evolution is non-zero. 𝑇 -
symmetric unitaries are nevertheless hard to distinguish from general unitaries in the conventional setting because
the expectation value of 𝑌 is exponentially small for general unitaries; theefore an exponentially large number of
experiments are needed to discern its nonzero value. Indeed, the result in [9, 12] shows that conventional strategies
require an exponential number of experiments for distinguishing 𝑇 -symmetric unitaries from general unitaries.

In the quantum-enhanced experiment, we prepare a Bell state 1√
2
(|00⟩+|11⟩) for every pair of system and memory

qubits. Then we evolve the system qubits under the unknown dynamics. After the evolution, we swap the system
and the memory qubits. Then we evolve the system qubits under the unknown dynamics again. Finally, we measure
every pair of system and memory qubits in the Bell basis. Each quantum-enhanced experiment generates a 2𝑛-bit
string. We perform gradient descent to find our implementation of the Bell state preparation, swap operation, and
Bell measurement using the native gates in the Sycamore processor.

A.3.b. 2D dynamics

For our 2D circuits we use the layout provided in Supp. Fig. 1(c) which is also shown as the leftmost layout in
Supp. Fig. 2. In the leftmost layout, none of the system qubits (circled blue) are connected to one another. In order
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to implement 2D dynamics, we first swap some pairs of the system and memory qubits to obtain the layout shown
in the middle. In the middle layout, we can see that many of the system qubits are connected (the light blue line).
We implement a depth-4 1D random quantum circuit for each light blue line. Each depth-4 circuit corresponds to
1 layer of single-qubit gates, 1 layer of two-qubit gates, 1 layer of single-qubit gates, and 1 layer of two-qubit gates.
The partitioning of the two layers of two-qubit gates are different. Then, we swap all pairs of qubits to obtain the
layout shown on the right. The right-most layout connects a different set of system qubits (the light blue line).
We again implement a depth-4 1D random quantum circuit for each light blue line. After that, we move back to
the middle layout and repeat for multiple rounds. After sufficiently many repetitions, the 𝑛 qubits become globally
entangled.

A.3.c. An unsupervised machine learning model

For each circuit, we create a feature vector by obtaining statistics for each bit in the measurement outcome
bitstring. In conventional experiments, each experiment produces an 𝑛-bit measurement outcome. In quantum-
enhanced experiments, each experiment produces a 2𝑛-bit measurement outcome. In the following, we consider
ℓ = 𝑛 or 2𝑛 depending on either we are running conventional or quantum-enhanced experiments. For an ℓ-
bit measurement outcome, we obtain a feature vector of size 2ℓ including the first and second moment of each
bit. After constructing a feature vector for each circuit, we map the feature vector to an infinite-dimensional
reproducing kernel Hilbert space (corresponding to a Gaussian kernel) that includes all the polynomial expansions
of the feature vector. Then, we find a low-dimensional subspace in the infinite-dimensional Hilbert space using
principal component analysis (PCA) [23]. The entire procedure can be performed efficiently using kernel PCA [23].
Kernel PCA is implemented using scikit-learn [36].

In Fig. 3 of the main text, we show a one-dimensional subspace found by the unsupervised ML model, for both
1D and 2D random quantum circuits. We can use this one-dimensional representation to classify the circuits into
two classes (by splitting the one-dimensional representation in the middle). Then, we can evaluate the accuracy of
the unsupervised ML model by checking the percentage of circuits that are correctly classified as general circuits
or as 𝑇 -symmetric circuits. A two-dimensional subspace found by the unsupervised ML model, and an assessment
of classification accuracy, are discussed in Appendix A.4

A.4. Additional experimental results

In Supp. Fig. 3, we provide the two-dimensional representations learned by unsupervised ML for the various
random quantum circuits investigated in our conventional and quantum-enhanced experiments. (One-dimensional
representations are presented in Fig. 3 in the main text.) We see that in the second dimension found by unsupervised
ML using quantum-enhanced experiments for 1D dynamics, 𝑇 -symmetric dynamics are clustered into two groups.
Further inspection shows that the unsupervised ML model has learned substructure corresponding to the parity of
the depth of the evolution (recall that the depth is always an integer). In principle, the unsupervised ML model
should be able to learn a wide variety of structures in the dynamics. Notably, we see that it places the distinction
between general unitary dynamics and 𝑇 -symmetric dynamics as the major axis (the first dimension), and places
less prominent structure as the second major axis (the second dimension).

In Supp. Fig. 4, we provide the accuracy of the unsupervised ML model for distinguishing between general unitary
dynamics and 𝑇 -symmetric dynamics. We see a substantial advantage for using the quantum-enhanced strategy
in both the physical experiments and the noiseless simulation. We perform brute-force noiseless simulation for
conventional experiments because the system size is at most 20. The noiseless simulation for quantum-enhanced
experiments uses the fact that (𝑈 ⊗𝑈) 1√

2𝑛

∑︀2𝑛−1
𝑖=0 |𝑖𝑖⟩ = (𝑈𝑈𝑇 ⊗ 𝐼) 1√

2𝑛

∑︀2𝑛−1
𝑖=0 |𝑖𝑖⟩, hence we can effectively reduce

the simulation to a system size at most 20.

A.5. Performance and characterization data

The performance of the device was characterized before each run. The measurement data is collected explicitly
and used for measurement error mitigation in the prediction process of the supervised neural network model (see
discussion in the last part of Appendix A.2.d). The task of learning quantum states is largely limited by the qubit
measurement fidelities. A representative sample of the data from the device is reported in Fig. 5, where one can
see that typical readout errors (conflated with errors in preparing zero and one states) range from 3% to 7%.
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Supplementary Figure 3: Two-dimensional representation learned by unsupervised ML for (a) 1D dynamics and (b) 2D
dynamics. Each point in the two-dimensional plane corresponds to a distinct physical process. Half of the processes have
time-reversal symmetry (blue diamonds) while the other half do not (red circles). When fed with data from quantum-
enhanced experiments, the ML model accurately discovers the underlying symmetry pattern. In contrast, the ML model
fails to do so when fed with data from conventional experiments.

Supplementary Figure 4: Accuracy of the unsupervised ML model for classifying general unitary and 𝑇 -symmetric dynamics.
For each system size, we generate 100 different circuits for each of the two classes (general and 𝑇 -symmetric). The one-
dimensional representation found by the unsupervised ML model is used to classify the 200 circuits into two classes. We
consider both physical experiments and noiseless simulations. Accuracy is plotted as a function of the number of experiments
in both the conventional and quantum-enhanced settings.

For transmons, the |0⟩ preparation has a small error; hence Supp. Fig. 5(a) is dominated by the readout error.
Furthermore, the single-qubit gate error (shown in Supp. Fig. 6) is much smaller than the error shown in Fig. 5(b),
hence the error shown in Supp. Fig. 5(b) is mostly due to readout errors rather than gate errors. During the actual
run of the experiments, we avoid using qubits with the worst readout errors by checking the measurement errors
before the experiment and selecting the layout accordingly.

The task of learning quantum dynamics involves circuits of higher complexity and hence is limited by both
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measurement errors and errors in two-qubit gates. For these experiments, we report in Supp. Fig. 6 the quality of the
single-qubit and two-qubit gates across the device. This data was obtained via parallel cross-entropy benchmarking
and single-qubit randomized benchmarking. The typical single-qubit gate error is around 0.001 to 0.005, while the
typical two-qubit gate error is around 0.01 to 0.05.

B. A brief review on quantum information theory

In this section we review some relevant definitions and basic results in quantum information theory which are
leveraged throughout our problem statements and proofs. Specifically, we will discuss quantum processes, which
are a general mathematical formalism for describing physical processes, and positive operator-valued measures
(POVMs), which encompass all possible physical measurements. Readers familiar with these concepts can skip this
section.

B.1. Definition and properties of quantum processes

For concreteness, let us consider a Hilbert space ℋ𝑆 ≃ C𝑑. Here the subscript 𝑆 stands of ‘system’, since the
Hilbert space describes the space of states of some particular system we wish to study. Given a density matrix 𝜌
on this Hilbert space, we might ask: how can it evolve in time? The Schrödinger equations tells us that a state
can evolve via unitary time evolution, and as such a density matrix can evolve by 𝜌 ↦→ 𝑈𝜌𝑈 †. However, there is
a more general type of time evolution allowed by quantum mechanics. Suppose that we append our Hilbert space
by another ℋ𝐸 ≃ C𝑑′ which describes an external environment. The joint Hilbert space is then the tensor product
ℋ𝑆 ⊗ℋ𝐸 . We can imagine having an initial state 𝜌𝑆 ⊗ 𝜌𝐸 which factorizes between the system and environment,
and then evolving the state by a unitary on the joint Hilbert space which couples the system and environment:
𝜌𝑆 ⊗ 𝜌𝐸 ↦→ 𝑈𝑆𝐸(𝜌𝑆 ⊗ 𝜌𝐸)𝑈 †𝑆𝐸 . If we only have access to ℋ𝑆 , then our knowledge of 𝑈𝑆𝐸(𝜌𝑆 ⊗ 𝜌𝐸)𝑈 †𝑆𝐸 is described
by performing a partial trace over the environment, namely tr𝐸

(︁
𝑈𝑆𝐸(𝜌𝑆 ⊗ 𝜌𝐸)𝑈 †𝑆𝐸

)︁
. As such, if we are only aware

of the initial density matrix 𝜌𝑆 on ℋ𝑆 , then only having access to ℋ𝑆 the time evolution would appear to be

𝜌𝑆 ↦−→ tr𝐸
(︁
𝑈𝑆𝐸(𝜌𝑆 ⊗ 𝜌𝐸)𝑈 †𝑆𝐸

)︁
. (B1)

Note that, viewed as time evolution on 𝜌𝑆 alone, the above map is not unitary. This is because information in
𝜌𝑆 can leak into the environment, and similarly information from the environment can influence the state on our
system 𝑆 of interest. This mapping is an example of a quantum process, which can be more compactly notated as
𝜌𝑆 ↦→ 𝒞[𝜌𝑆 ]. Here, 𝒞 is a map from density matrices on ℋ𝑆 to (other) density matrices on ℋ𝑆 . We visualize this
dynamical process in Supp. Fig. 7.

Our quantum process 𝒞 has two properties that are worth highlighting:

1. 𝒞 is trace-preserving. This means that tr(𝒞[𝜌𝑆 ]) = tr(𝜌𝑆). The equality follows from the definition of 𝒞[𝜌] via
the right-hand side of (B1), since

tr(𝒞[𝜌𝑆 ]) = tr𝑆
(︁
tr𝐸
(︁
𝑈𝑆𝐸(𝜌𝑆 ⊗ 𝜌𝐸)𝑈 †𝑆𝐸

)︁)︁
= tr

(︁
𝑈𝑆𝐸(𝜌𝑆 ⊗ 𝜌𝐸)𝑈 †𝑆𝐸

)︁
(B2)

= tr(𝜌𝑆 ⊗ 𝜌𝐸) = tr(𝜌𝑆) tr(𝜌𝐸) = tr(𝜌𝑆) , (B3)

where we have used the cyclicity of the trace to cancel 𝑈𝑆𝐸 with 𝑈 †𝑆𝐸 , and have also leveraged tr(𝜌𝐸) = 1.

2. 𝒞 is completely positive. Suppose we append our system Hilbert space ℋ𝑆 by ancillas ℋ𝐴 to arrive at the
joint Hilbert space ℋ𝐴 ⊗ℋ𝑆 . Then complete positivity means that for any density matrix 𝜌𝐴𝑆 on this joint
system (and for any choice of ancilla Hilbert space), (Id𝐴 ⊗ 𝒞)[𝜌𝐴𝑆 ] is positive-semidefinite; here Id𝐴 acts as
the identity on the ancillas. To see why this property holds, we can write out (Id𝐴⊗𝒞)[𝜌𝐴𝑆 ] more explicitly:

(Id𝐴 ⊗ 𝒞)[𝜌𝐴𝑆 ] = tr𝐸
(︁
(𝐼𝐴 ⊗ 𝑈𝑆𝐸)(𝜌𝐴𝑆 ⊗ 𝜌𝐸)(𝐼𝐴 ⊗ 𝑈†𝑆𝐸)

)︁
.

Since the right-hand side is merely performing a unitary transformation on the density matrix 𝜌𝐴𝑆 ⊗ 𝜌𝐸 and
then tracing out a subsystem (i.e. the environment subsystem), positive semi-definiteness is preserved.
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Supplementary Figure 5: Sycamore state preparation and measurement error data.
(a) |0⟩ state preparation and measurement error. We prepare a noisy zero state |0⟩ and measure in the computational basis
using the noisy single-qubit readout. We show the probability of measuring |1⟩ in the qubit readout.
(b) |1⟩ state preparation and measurement error. We prepare a noisy one state |1⟩ and measure in the computational basis
using the noisy single-qubit readout. We show the probability of measuring |0⟩ in the qubit readout.
While these values change over time, we present here a representative sample of the error. One can see that in accordance
with physical expectations based on T1 errors, the readout in the physical 1 state is substantially higher than the 0 state.

Supplementary Figure 6: Sycamore single- and two-qubit gate error data.
(a) Single-qubit gate error. The figure shows the error of single-qubit gates across the chip using parallel single-qubit
randomized benchmarking.
(b) Two-qubit gate error. The figure shows the error across the chip of two-qubit gates being executed in parallel, as to
account for errors that occur during simultaneous operation of qubits. We can see that the distribution of errors varies
across the chip couplers, showing the extent to which performance is non-uniform.
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Supplementary Figure 7: Illustration of quantum process: a formalism for describing physical processes. Quantum process
is also known as quantum operation or quantum dynamical map, and is often referred to as quantum channel in quantum
communication theory.

We have thus shown that our 𝒞 is a completely positive, trace-preserving (CPTP) linear map from density matrices
on ℋ𝑆 to density matrices on ℋ𝑆 . Henceforth, when we refer to a map as being CPTP, we will implicitly suppose
that the map is linear. Moreover, we will interchangeably call a CPTP map a quantum process.

What is not immediately obvious is the following fact:

Theorem 4 (Stinespring dilation). Any CPTP map 𝒞 taking density matrices on ℋ𝑆 ≃ C𝑑 to density matrices on
ℋ𝑆 ≃ C𝑑 can be written in the form

𝒞[𝜌𝑆 ] = tr𝐸
(︁
𝑈𝑆𝐸(𝜌𝑆 ⊗ 𝜌𝐸)𝑈 †𝑆𝐸

)︁
for any 𝜌𝑆, where 𝑈𝑆𝐸, 𝜌𝐸, and the dimension of the environment 𝑑′ are all fixed.

This theorem means that any CPTP map on a density matrix can be realized as a unitary operation on a larger
system, i.e. coupling the density matrix to an appropriate environment and evolving the joint state and ultimately
tracing out the environment. In this sense, a quantum process is the most general form of evolution of a density
matrix. Note that a special case of a quantum process is simply a unitary channel, i.e. 𝒞[𝜌] = 𝑈𝜌𝑈 †. A way of
summarizing the above Theorem is that a quantum process that is not a unitary channel can be thought of as
implementing open system dynamics.

B.2. Definition and properties of POVMs

The most conventional way to measure a quantum state |𝜓⟩ is by decohering it with respect to a complete
orthonormal basis. More specifically, suppose that |𝜓⟩ ∈ C𝑑 and we choose some complete orthonormal basis
{|𝑖⟩}𝑑−1𝑖=0 of C𝑑. Then upon measuring |𝜓⟩ with respect to this basis, we will measure |𝜓⟩ to be in the state |𝑖⟩ with
probability Prob(𝑖) = |⟨𝑖|𝜓⟩|2. Analogously for a density matrix 𝜌 on the same Hilbert space, if we measure it with
respect to the same orthonormal basis we will measure the state to be |𝑖⟩⟨𝑖| with probability Prob(𝑖) = tr(|𝑖⟩⟨𝑖| 𝜌).

There is a nice way of conceptualizing measurements which will admit useful generalizations. First, let us
develop some notation. We define Π𝑖 = |𝑖⟩⟨𝑖| which is the projector onto state |𝑖⟩, and will speak of the collection
of projectors {Π𝑖}𝑑−1𝑖=0 . It is readily seen that

∑︀𝑑−1
𝑖=0 Π𝑖 = 𝐼 since this is just a resolution of the identity. Observe

that each Π𝑖 is Hermitian and positive semi-definite. Now suppose we append to our Hilbert space another copy
C𝑑. Then we can define a unitary on both copies which acts by

𝑈
(︀
|𝜓⟩ ⊗ |0⟩

)︀
=

𝑑−1∑︁
𝑖=0

Π𝑖|𝜓⟩ ⊗ |𝑖⟩ (B4)
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Supplementary Figure 8: Illustration of POVM: a formalism encompassing all physical measurements. POVM considers a
composition of the input state with an auxiliary state in the measurement apparatus (which can be thought of as a set of
ancilla qubits) that undergoes an unitary evolution, followed by a projective measurement.

for any |𝜓⟩. Note that, as required of a unitary,

(︀
⟨𝜓| ⊗ ⟨0|

)︀
𝑈†𝑈

(︀
|𝜓⟩ ⊗ |0⟩

)︀
=

𝑑−1∑︁
𝑖,𝑗=0

⟨𝜓|Π𝑖Π𝑗 |𝜓⟩⟨𝑖|𝑗⟩ =
𝑑−1∑︁
𝑖=0

⟨𝜓|Π2
𝑖 |𝜓⟩ =

𝑑−1∑︁
𝑖=0

⟨𝜓|Π𝑖|𝜓⟩ = 1

on account of Π2
𝑖 = Π𝑖 and

∑︀𝑑−1
𝑖=0 Π𝑖 = 𝐼. Given the right-hand side of (B4), we can make a measurement on the

appended Hilbert space in the {|𝑖⟩}𝑑−1𝑖=0 basis; we will then measure the appended register to be in the state |𝑖⟩ with
probability

Prob(𝑖) =
(︀
⟨𝜓| ⊗ ⟨0|

)︀
𝑈†
(︀
𝐼 ⊗ |𝑖⟩⟨𝑖|

)︀
𝑈
(︀
|𝜓⟩ ⊗ |0⟩

)︀
= tr(Π𝑖|𝜓⟩⟨𝜓|) = |⟨𝑖|𝜓⟩|2 . (B5)

Similarly, if we consider 𝜌 ⊗ |0⟩⟨0|, conjugate by 𝑈 , and then measure the state of the ancilla, the probability of
measuring the ancilla to be |𝑖⟩ is Prob(𝑖) = tr(Π𝑖𝜌) = tr(|𝑖⟩⟨𝑖| 𝜌).

We can think about the above in terms of the following procedure. First we prepare a state |𝜓⟩; then we bring
in an ancilla |0⟩ and cause the two states to interact such that the ancilla goes into a state |𝑖⟩ upon coupling with
the |𝑖⟩-component of |𝜓⟩. This leads to the right-hand side of (B4). The ancilla can be thought of as a proxy for
the readout of a measurement apparatus: upon reading off the value of |𝑖⟩, we are informed that the state |𝜓⟩ has
been projected into its |𝑖⟩-component.

This type of procedure can be generalized as follows. Suppose we have a set of 𝑁 𝑑 × 𝑑 operators {𝑀𝑖}𝑁−1𝑖=0

satisfying the completeness relation
∑︀𝑁−1
𝑖=0 𝑀†𝑖𝑀𝑖 = 𝐼. Let us append to our Hilbert space C𝑑 and ancillary Hilbert

space C𝑁 with complete orthonormal basis {|𝑖⟩}𝑁−1𝑖=0 . Then we can consider a unitary map

𝑈
(︀
|𝜓⟩ ⊗ |0⟩

)︀
=
𝑁−1∑︁
𝑖=0

𝑀𝑖|𝜓⟩ ⊗ |𝑖⟩ . (B6)

The fact that
(︀
⟨𝜓| ⊗ ⟨0|

)︀
𝑈†𝑈

(︀
|𝜓⟩ ⊗ |0⟩

)︀
= 1 can be checked using the completeness relation

∑︀𝑁−1
𝑖=0 𝑀†𝑖𝑀𝑖 = 𝐼.

Now if we measure the ancilla with respect to the {|𝑖⟩}𝑁−1𝑖=0 basis, then we will measure the ancilla to be in the
state |𝑖⟩ with probability Prob(𝑖) = |𝑀𝑖|𝜓⟩|2. If we performed an analogous procedure at the level of density
matrices, namely starting with a state 𝜌 ⊗ |0⟩⟨0|, conjugating both sides by 𝑈 , and then measuring the ancilla in
the {|𝑖⟩}𝑁−1𝑖=0 basis, we would measure the ancilla to be |𝑖⟩ with probability Prob(𝑖) = tr(𝑀 †𝑖𝑀𝑖𝜌). We visualize the
above procedure in Supp. Fig. 8.

We can abstract this procedure into what is called a positive operator-valued measure (POVM):
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Definition 1 (POVM). A POVM is a set Hermitian, positive semi-definite operators {𝐹𝑖}𝑁−1𝑖=0 on C𝑑 satisfying
the completeness relation

∑︀𝑁−1
𝑖=0 𝐹𝑖 = 𝐼. A POVM measurement is a procedure in which, given a state 𝜌 on C𝑑, an

ancillary measurement apparatus registers the index 𝑖 with probability tr(𝐹𝑖𝜌).

This relates to our previous procedure as follows. We simply decompose 𝐹𝑖 = 𝑀†𝑖𝑀𝑖 (say, by a Cholesky decom-
position) and perform the procedure previously stated with the 𝑀𝑖’s.

We remark that the term ‘measure’ is used above in two distinct ways. When we speak of a POVM, the M means
measure in the sense of measure theory, since we can think of {𝐹𝑖}𝑁−1𝑖=0 as comprising a type of discrete measure
on the space of operator on C𝑑. Otherwise, we use ‘measure’ in the sense of measurement.

A useful fact is that given a POVM {𝐹𝑖}𝑁−1𝑖=0 , we can refine it into another, larger POVM {𝐹𝑖,𝑗}𝑁−1,𝑑−1𝑖=0,𝑗=0 such
that (1) each 𝐹𝑖,𝑗 is rank-1, and (2) a POVM measurement of {𝐹𝑖,𝑗}𝑁−1,𝑑−1𝑖=0,𝑗=0 can simulate a POVM measurement
of {𝐹𝑖}𝑁−1𝑖=0 . Let us explain this construction. Since each 𝐹𝑖 is a positive semi-definite Hermitian operator, we can
diagonalize each operator as 𝐹𝑖 =

∑︀𝑑−1
𝑗=0 𝜆

(𝑖)
𝑗 |𝑣

(𝑖)
𝑗 ⟩⟨𝑣

(𝑖)
𝑗 |. Then let 𝐹𝑖,𝑗 := 𝜆

(𝑖)
𝑗 |𝑣

(𝑖)
𝑗 ⟩⟨𝑣

(𝑖)
𝑗 | which is manifestly positive

semi-definite, Hermitian, and rank-1; it is also clear that
∑︀𝑁−1
𝑖=0

∑︀𝑑−1
𝑗=0 𝐹𝑖,𝑗 =

∑︀𝑁−1
𝑖=0 𝐹𝑖 = 𝐼. We can use a POVM

measurement of {𝐹𝑖,𝑗}𝑁−1,𝑑−1𝑖=0,𝑗=0 to simulate a POVM measurement of {𝐹𝑖}𝑁−1𝑖=0 by simply summing measurement
results:

𝑑−1∑︁
𝑗=0

tr(𝐹𝑖,𝑗𝜌) = tr(𝐹𝑖𝜌) . (B7)

Accordingly, we can without loss of generality choose to work with rank-1 POVMs, since we can use these to
simulate any other POVMs.

C. Mathematical framework for proving exponential advantage

One of the central ingredients for establishing exponential advantage is to prove an exponential lower bound for
any learning algorithm with only external classical memory. In this section, we present the basic framework for
proving such lower bounds. This framework enables us to establish a suite of exponential advantage in various
physically-relevant tasks, which will be presented after this section. The purpose of this section is to provide the
readers with the essential tools to prove quantum advantage in the tasks they want to study.

The basic tools include the tree representation of learning algorithms (Appendix C.1), reduction to distinguish-
ing tasks and information-theoretic lower bounds (Appendix C.2.a and C.3). Many of these techniques were
introduced and leveraged in [12]. We also present a novel partially-revealed many-versus-one distinguishing task in
Appendix C.4 that is crucial for realizing the advantage in practice. Then, in Appendix C.5, we discuss how having
noise in the unknown physical states and dynamics only makes the lower bounds for conventional experiments
larger. This result on the presence of noise is simple to establish but also crucial in practice because there is often
noise in the unknown physical states and dynamics. There are some other techniques presented in a theory paper
written by some of the authors [12], such as a multi-linear tensor analysis on the learning tree, which may be of
interest to some readers.

C.1. Tree representation

We begin by presenting the tree representation for analyzing algorithms with only classical memory [12]. The
key idea is to track changes in the classical memory state in the algorithm using a graph, which we can take to be
a rooted tree. We consider each node 𝑢 of the graph to be a classical memory state. Based on the memory state,
the algorithm performs an experiment to obtain a measurement outcome 𝑠.

C.1.a. Experiments for learning physical world

To motivate the definitions in the sequel, we separately describe the two types of experimental setups that
we focus on in this work: one on learning an unknown physical state and the other on learning an unknown
process [8, 9, 12].
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• Learning an unknown physical state : A physical state is represented by a density matrix 𝜌. An algorithm
leveraging the classical memory state 𝑢 measures the physical system 𝜌 using a rank-1 POVM {𝑤𝑢𝑠 |𝜑𝑢𝑠 ⟩⟨𝜑𝑢𝑠 |}
with

∑︀
𝑠 𝑤

𝑢
𝑠 |𝜑𝑢𝑠 ⟩⟨𝜑𝑢𝑠 | = 𝐼. Note that from the discussion in Appendix B.2, we can always consider rank-1

POVMs only. The measurement outcome 𝑠 occurs with probability

𝑤𝑢𝑠 ⟨𝜑𝑢𝑠 | 𝜌 |𝜑𝑢𝑠 ⟩ . (C1)

Here, the rank-1 POVM {𝑤𝑢𝑠 |𝜑𝑢𝑠 ⟩⟨𝜑𝑢𝑠 |} depends on the classical memory state 𝑢.

• Learning an unknown physical process : A physical process is represented by a quantum process ℰ (equivalently,
a CPTP map). An algorithm leveraging the memory state 𝑢 prepares an initial state |𝜓𝑢⟩, feeds it into the
physical evolution ℰ , and measures the output state ℰ(|𝜓𝑢⟩⟨𝜓𝑢|) with a rank-1 POVM {𝑤𝑢𝑠 |𝜑𝑢𝑠 ⟩⟨𝜑𝑢𝑠 |} with∑︀
𝑠 𝑤

𝑢
𝑠 |𝜑𝑢𝑠 ⟩⟨𝜑𝑢𝑠 | = 𝐼. The outcome 𝑠 is obtained from the experiment with probability

𝑤𝑢𝑠 ⟨𝜑𝑢𝑠 | ℰ(|𝜓𝑢⟩⟨𝜓𝑢|) |𝜑𝑢𝑠 ⟩ . (C2)

In this case, both the initial state and the measurement depend on the classical memory state 𝑢.
We consider the initial state |𝜓𝑢⟩ to be an (𝑛+𝑛′)-qubit state, where ℰ acts on the first 𝑛 qubits. The rank-1
POVM {𝑤𝑢𝑠 |𝜑𝑢𝑠 ⟩⟨𝜑𝑢𝑠 |} is on an (𝑛+ 𝑛′)-qubit state.

C.1.b. Dynamics of the learning algorithm

The classical memory state of the learning algorithm is initialized in a certain state, which we represent by the
root node 𝑟. The memory state of the algorithm begins at the root 𝑟. Each measurement outcome 𝑠 resulting from
a single experiment causes the algorithm to transition to a node neighbor of 𝑟. Whenever the algorithm obtains a
measurement outcome 𝑠, the memory state changes. This is represented by a transition from a node 𝑢 to another
node 𝑣,

𝑢
𝑠−→ 𝑣. (C3)

The directed edge 𝑒 = (𝑢, 𝑣, 𝑠) from 𝑢 to 𝑣 represents the transition of the memory in an algorithm when we receive
the measurement outcome 𝑠. We illustrate the transition under a single experiment in Supp. Fig. 9(a).

If a different 𝑠 leads us to the same node, then the algorithm is not retaining full information of the measurement
outcome. An example is given in Supp. Fig. 9(b). Since we do not limit the size of the classical memory, there is no
need to lose (or forget) information. Hence, all the outgoing edges of the root node 𝑟 indexed by the measurement
outcome 𝑠 will point to distinct nodes. The same argument holds for any node in the graph. More precisely, every
outgoing edge from a node 𝑢 will connect to a node 𝑣, such that 𝑣 has exactly one incoming edge (the edge is from
𝑢). The only node in the graph without an incoming edge is the root 𝑟. This is exactly the definition of a directed
rooted tree 𝒯 . We will focus on an algorithm that performs 𝑇 experiments. This means the depth of the tree,
namely the number of edges in any root-to-leaf path, will be 𝑇 . The tree representation is shown in Supp. Fig. 9(c).

When we execute the algorithm to achieve a certain task (such as to verify entanglement, or learn a model of
the physical system), the entire dynamic process of how the memory state changes will be represented by a path
from the root 𝑟 to a leaf ℓ in the tree 𝒯 ,

𝑢0 = 𝑟
𝑠1−→ 𝑢1

𝑠2−→ 𝑢2
𝑠3−→ . . .

𝑠𝑇−1−−−→ 𝑢𝑇−1
𝑠𝑇−−→ 𝑢𝑇 = ℓ. (C4)

To establish a lower bound against any learning algorithm for a particular task, we need to analyze each such path
along with the probability that the path is taken.

C.2. Many-versus-one distinguishing tasks

C.2.a. Reduction

In a learning task, we often want the learning algorithm to be able to make accurate predictions about some
properties of the unknown physical system or dynamics. We will have a set of states (the mathematical represen-
tation of a physical system) or a set of channels (the mathematical representation of physical dynamics) to which
we assume the unknown system or dynamics belong. The basic technique we employ in all of our proofs is to pick
out one of the states/channels as the null hypothesis, and consider all the rest as the alternative hypothesis [8, 12].
Let 𝒳 denote the set of possible states/channels.
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Supplementary Figure 9: Illustration of the tree representation for a learning algorithm. (a) Dynamics of memory. The
memory state changes based on the measurement outcome 𝑠. (b) No cycles. If two memory states 𝑎, 𝑏 transition into the
same memory state 𝑐, then some information is lost. (c) Tree representation of an algorithm. When no information is lost,
the transition graph of the memory states must be a directed tree. Each layer of the tree corresponds to one experiment.
After 𝑇 experiments, the memory state is represented by a node in the 𝑇 -th layer.

• Null hypothesis : The unknown state/channel is an element 𝑋0 ∈ 𝒳 . To establish a tight lower bound, we
should choose an 𝑋0 that we think is close to every other state/channel in 𝒳 .

• Alternative hypothesis : The unknown state/channel is a random element in 𝒳 ∖ {𝑋0}.
Furthermore, we need to choose 𝑋0 such that the desired property we would like to learn enables us to distinguish
between 𝑋0 and the entire set of 𝒳 ∖ {𝑋0}.

To prove a lower bound against any classical algorithm, we try to answer the following question.

How hard is it to distinguish the alternative hypothesis from the null hypothesis?

Because the alternative hypothesis consists of many elements and the null hypothesis consists of only one element,
we refer to this distinguishing task as the many-versus-one distinguishing task.

C.2.b. Information-theoretic lower bound

In order to establish a lower bound for the many-versus-one distinguishing task, we need to first discuss the
leaf probability distribution in the tree representation of the learning algorithm [8, 12]. Recall that depending on
the unknown state/process, the transition probabilities among the memory states in the learning algorithm will
be different. This is because the outcome probability for each experiment differs when the unknown state/process
differs. Therefore, the probability to traverse a certain path in the tree representing an execution of the learning
algorithm will change according to the unknown state/process. Hence, the probability to arrive at a particular leaf
node in the depth-𝑇 tree will change. An illustration is given in Supp. Fig. 10.

For each element 𝑋 in 𝒳 , the set of all admissible states/channels, we write the probability distribution over
leaves as

𝑝𝑋(ℓ), ℓ : leaf node of the tree. (C5)

The probability distribution over the leaves ℓ for the null hypothesis and for the alternative hypothesis are respec-
tively

𝑝𝑋0
(ℓ) and E

𝑋∈𝒳∖{𝑋0}
𝑝𝑋(ℓ). (C6)

The probability distribution over 𝑋 ∈ 𝒳 ∖ {𝑋0} in the expectation E𝑋∈𝒳∖{𝑋0} is arbitrary. We should choose the
probability distribution that yields the largest lower bound.

Suppose that the null hypothesis and the alternative hypothesis are true with probability 1/2 each. If we want
to use the memory state of the learning algorithm to distinguish between the null hypothesis and the alternative
hypothesis, then the success probability of any procedure is upper bounded by

1

2
+

1

2
TV

(︂
𝑝𝑋0

, E
𝑋∈𝒳∖𝑋0

𝑝𝑋

)︂
=

1

2
+

1

4

∑︁
ℓ

⃒⃒⃒⃒
𝑝𝑋0

(ℓ)− E
𝑋∈𝒳∖𝑋0

𝑝𝑋(ℓ)

⃒⃒⃒⃒
, (C7)
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Supplementary Figure 10: Illustration for the leaf probability distribution. The leaf probability distribution depends on the
unknown physical state/process and the learning algorithm. In the null hypothesis, we have a single state/process, which
gives rise to a probability distribution over leaves. In the alternative hypothesis, there are multiple possible states/processes.
Each state/process produces a different leaf probability distribution. The leaf probability distribution for the alternative
hypothesis is the average of all the leaf probability distributions.

which is also known as LeCam’s two-point method. TV(𝑝0, 𝑝1) is the total variation distance between the two
probability distributions 𝑝0, 𝑝1.

Intuitively, as we perform more experiments, the depth of the tree increases and the total variation distance
between the leaf probability distribution increases. If we want to achieve a prediction accuracy of 𝑝 ≥ 1

2 , then we
need the total variation distance to be lower bounded by,

TV

(︂
𝑝𝑋0

, E
𝑋∈𝒳∖𝑋0

𝑝𝑋

)︂
≥ 2𝑝− 1. (C8)

On the other hand, the total variation distance can be upper bounded by a monotonically increasing function of
the number of experiments 𝑇 equal to the depth of the tree. Altogether, this allows us to lower bound the number
of experiments 𝑇 by a function of the success probability 𝑝.

C.3. Many-versus-many distinguishing task

Sometimes, it is easier to first reduce the learning task to a many-versus-many distinguishing task before reducing
to a many-versus-one task. This technique is used in Appendix E to prove exponential advantage for quantum
principal component analysis. Consider 𝒳 to be the set of allowed states/channels. We consider a subset 𝒜 ⊆ 𝒳 ,
and define ℬ = 𝒳 ∖ 𝒜. Here, we consider the following two hypotheses.

• Hypothesis A: The unknown state/channel is a random element in 𝒜.

• Hypothesis B: The unknown state/channel is a random element in ℬ.

Assume each hypothesis happens with probability 1/2. The goal is to distinguish which hypothesis is true. Because
𝒜,ℬ can contain many elements in 𝒳 , we refer to this as the many-versus-many distinguishing task. In Supp.
Fig. 11, we visualize the difference between the many-versus-many distinguishing task and the other tasks.

Following a similar derivation as the many-versus-one distinguishing task, for any learning algorithm in the
conventional setting, we represent the algorithm as a learning tree. Given a tree representation 𝒯 , the success
probability for any procedure to distinguish hypothesis A and B using the final memory state of the learning
algorithm is upper bounded by

1

2
+

1

2
TV

(︂
E

𝑋∈𝒜
𝑝𝑋 , E

𝑋∈ℬ
𝑝𝑋

)︂
, (C9)
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Supplementary Figure 11: Visualization of the different distinguishing tasks. (a) In the many-versus-one distinguishing task,
we are distinguishing between the null hypothesis and the alternative hypothesis (which can be one of many alternatives).
(b) In the many-versus-many distinguishing task, we want to distinguish between two hypotheses (each of which can be
one of many alternatives). (c) In the partially-revealed many-versus-one distinguishing task, some information about the
alternatives is revealed, which makes the distinguishing task easier.

where 𝑝𝑋 is a probability distribution over the leaf nodes of the tree 𝒯 when the unknown state/channel is 𝑋.
Hence, if we want to achieve a prediction accuracy of 𝑝 ≥ 1

2 , then we need the total variation distance to be lower
bounded by

TV

(︂
E

𝑋∈𝒜
𝑝𝑋 , E

𝑋∈ℬ
𝑝𝑋

)︂
≥ 2𝑝− 1 . (C10)

This last inequality will be important for establishing the lower bound on the number of experiments 𝑇 .

C.4. Partially-revealed many-versus-one distinguishing task

In some tasks, it can be challenging to verify if an algorithm has learned accurately without revealing some
information to the learning algorithm. Here, we consider a setting where after learning, the algorithm is additionally
given some partial information about the underlying state/process.

The set 𝒳 of all admissible states/processes can be represented as follows,

𝑋 = (𝜉, 𝜒) ∈ 𝒳 , (C11)

where 𝜉 is the information that will be revealed during prediction and 𝜒 remains hidden. After performing all
experiments, the algorithm can obtain 𝜉*, such that the unknown state/process 𝑋 is guaranteed to be either

𝑋0 or (𝜉*, 𝜒) ∈ 𝒳 ∖ {𝑋0}, (C12)
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i.e. the null hypothesis or an element of the alternative hypothesis. In Supp. Fig. 11, we visualize the difference
between the partially-revealed many-versus-one distinguishing task and other tasks. Due to the additional infor-
mation revealed to the learning algorithm, the distinguishing task becomes easier. However, in many examples,
we show that revealing a significant amount of information to a learning algorithm that only has external classical
memory will not significantly help its distinguishing power.

Suppose that after revealing the information 𝜉* to the learning algorithm, the conditional probability for whether
the unknown state/process 𝑋 is 𝑋0 (null hypothesis) or one of (𝜉*, 𝜒) ∈ 𝒳 ∖ {𝑋0} (alternative hypothesis) is still
uniform, i.e., 1/2 and 1/2. Then similar to when the information is not revealed, the success probability of any
procedure to distinguish between null and alternative hypothesis is upper bounded by
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. (C13)

When 𝜉* is chosen randomly, the average success probability is upper bounded by

1
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𝜉*
TV
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𝑝𝑋0

, E
(𝜉*,𝜒)∈𝒳∖{𝑋0}

𝑝(𝜉*,𝜒)

)︂
. (C14)

Again, similar to the discussion before, in order to achieve a prediction accuracy of 𝑝 ≥ 1/2, we need to satisfy the
inequality

E
𝜉*
TV

(︂
𝑝𝑋0 , E

(𝜉*,𝜒)∈𝒳∖{𝑋0}
𝑝(𝜉*,𝜒)

)︂
≥ 2𝑝− 1. (C15)

The left-hand side of the above inequality can be upper bounded by a monotonically increasing function of 𝑇 , hence
we can obtain a lower bound on 𝑇 . Note that by Jensen’s inequality, the left hand side of the above inequality is
larger than the left hand side in Eq. (C8), so we will obtain a weaker lower bound on 𝑇 . This makes sense because
making accurate predictions with partially-revealed information is easier.

C.5. Presence of noise

So far, we have considered protocols for learning quantum states or quantum processes in the absence of noise.
There are several forms of noise we can consider: (i) noise on input states, (ii) noise on the POVMs which are
measured, and (iii) noise on the quantum process (if there is one). Let us prove the following result:

Theorem 5 (Noise cannot decrease the lower bound). If the upper bound

TV

(︂
E

𝑋∈𝒜
𝑝𝑋 , E

𝑋∈ℬ
𝑝𝑋

)︂
≤ 2𝑝− 1 (C16)

holds for all learning protocols with a classical memory, then this same bound holds for all learning protocols with a
classical memory in the presence of noise. Because the upper bound on total variation distance applies when noise
is present, so does the lower bound on the number of experiments needed to achieve the distinguishing task.

Proof. Consider first the setting of learning an unknown physical state 𝜌. Suppose we have a learning protocol with
a classical memory described by a learning tree 𝒯 . At node 𝑢 in the protocol, we measure the state 𝜌 with the
POVM {𝐹𝑢𝑠 }𝑠. We will measure the 𝑠th outcome with probability

tr(𝐹𝑢𝑠 𝜌) . (C17)

If there is noise on 𝜌, we can use 𝜌 ↦→ 𝒩 [𝜌] for some noise quantum process 𝒩 . Likewise if there is noise on the
POVM, we can use 𝐹𝑢𝑠 ↦→ ℳ†[𝐹𝑢𝑠 ] for a noise quantum process ℳ. Then the probability of the 𝑠th outcome is
instead

tr(ℳ†[𝐹𝑢𝑠 ]𝒩 [𝜌]) = tr((𝒩 † ∘ℳ†)[𝐹𝑢𝑠 ] 𝜌) . (C18)

But {(𝒩 † ∘ℳ†)[𝐹𝑢𝑠 ]}𝑠 also forms a POVM. We can apply this same argument to each node in the tree; note that
the noise channels can be node-dependent. The result is that we simply get a new learning tree with classical
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memory, with POVM’s augmented by the noise channels. But since by hypothesis (C16) holds for all learning
protocols with a classical memory, the bound evidently still holds in the noisy setting.

In the setting where we are learning a physical process ℰ , the argument is similar. Given a learning tree 𝒯 for
learning the physical process, at node 𝑢 we (i) prepare the state 𝜌𝑢, (ii) apply the physical process ℰ , and (iii)
measure with the POVM {𝐹𝑢𝑠 }𝑠 and obtain outcome 𝑠 with probability

tr(𝐹𝑢𝑠 ℰ [𝜌𝑢]) . (C19)

If the initial state is noisy, we can implement this by a channel mapping 𝜌𝑢 ↦→ 𝒩 [𝜌𝑢]. If ℰ is noisy, this can be
implemented by ℰ ↦→ 𝒟 ∘ ℰ ∘ ℱ . Finally, if the POVM is noisy, we can implement this by 𝐹𝑢𝑠 ↦→ ℳ†[𝐹𝑢𝑠 ]. In these
circumsntances, the probability of the 𝑠th outcome is instead

tr(ℳ†[𝐹𝑢𝑠 ] (𝒟 ∘ ℰ ∘ ℱ)[𝒩 [𝜌𝑢]]) = tr((𝒟† ∘𝑀†)[𝐹𝑢𝑠 ] ℰ [ℱ ∘ 𝒩 [𝜌𝑢]]) . (C20)

But {(𝒟† ∘𝑀†)[𝐹𝑢𝑠 ]}𝑠 also forms a POVM, and (ℱ ∘𝒩 )[𝜌𝑢] is also a valid choice of input state. The same argument
can be used for noise channels applied at every node in the tree, and moreover the noise can be node-dependent.
The result is that we just get a modified learning tree with classical memory, which by assumption satisfies (C16),
as desired.

In summary, we have shown that if a task is hard for all learning protocols with classical memory, then the task
is still just as hard (if not harder) in the presence of noise.

C.6. Related works

We begin with existing works that study the separation between conventional and quantum-enhanced strategies
for learning physical systems and dynamics. In [37], they establish a polynomial separation between conventional
and quantum-enhanced strategies for testing if a state is maximally mixed or not. In [8, 9, 12], exponential
separations between conventional and quantum-enhanced strategies are established for tasks regarding the learning
of physical systems and dynamics.

We also mention some relevant works that study other classes of strategies for learning or characterizing physical
systems and dynamics. It was shown in Ref. [38] that the dynamics of open quantum systems with dimension 𝑑𝑛,
where 𝑑 is a prime, can be fully reconstructed with a quadratically fewer experiments over conventional quantum
process tomography, with a quantum-enhanced strategy consist of 𝑛 auxiliary systems of same dimensions 𝑑 and
performing generalized Bell-sate preparations and generalized Bell-state measurements. The results in [39] give a
polynomial separation between a restricted class of conventional strategies and quantum-enhanced strategies for
learning the complete description of a quantum state. The results in [24] give an exponential separation between
a restricted class of conventional strategies and quantum-enhanced strategies for learning to predict properties
of a quantum state. [40] establish an exponential separation between ancilla-free strategies and ancilla-assisted
strategies for learning the eigenvalues in Pauli channels. [41] give an exponential separation between restricted
quantum-enhanced strategies and quantum-enhanced strategies for learning about a quantum state. [42] consider
a problem on learning two spatially separated quantum states using local quantum learning algorithms and give
an exponential separation between having a quantum or a classical communication channel between the local
quantum learning algorithms. In [43, 44], an exponential separation between two bounded-depth quantum learning
algorithms are given for learning about an exponential-time quantum process.

D. Predicting highly-incompatible observables

The first task we study using the framework of the previous section involves learning about a physical system
represented by an 𝑛-qubit state 𝜌. We provide an illustration of the task in Supp. Fig. 12.

• In conventional experiments, we consider algorithms that can measure each copy of 𝜌 one at a time. The
algorithm can choose to perform any POVM measurement on each copy, where the POVM measurement can
be chosen adaptively based on the outcomes of previous experiments.

• In quantum-enhanced experiments, we consider algorithms that can use a quantum computer to act collec-
tively on multiple copies of 𝜌 to obtain entangled measurement data.



28

Supplementary Figure 12: Illustration for the task of predicting highly-incompatible observables. The unknown quantum
state 𝜌 is represented by the green sphere. Conventional experiments measure each copy of state 𝜌 individually, and the
measurements can depend adaptively on previous measurements. Quantum-enhanced experiments store many copies of 𝜌 in
a quantum memory, process the copies with a quantum computer, and produce an entangled measurement outcome. The
classical data obtained from the experiments are used to predict a property of 𝜌.

In both scenarios, we consider all quantum data to be used during the learning phase, and we are left only with
classical measurement data. After this learning phase, the learner is then asked to provide accurate predictions for
the expectation value of an observable 𝑂, using the classical data obtained from the experiments. The observable
𝑂 is selected from an exponentially large set {𝑂1, 𝑂2, . . . 𝑂𝑀}, where 𝑂1, . . . , 𝑂𝑀 may not be mutually commuting
and 𝑀 is exponential in 𝑛.

Note that when the observables in the set are not mutually commuting, it is impossible to measure all of them
simultaneously. Hence, a naïve algorithm in the conventional scenario would be to measure the exponential number
of observables individually, which would result in exponential sample complexity.

D.1. Exponential advantage in predicting absolute value of a single observable

We will prove that even predicting the absolute value of just a single observable requires exponentially many
copies in the conventional scenario. In contrast, an algorithm with quantum memory can predict the expectation
values for 𝑀 arbitrary observables from only 𝒪(𝑛 log(𝑀)/𝜖4) copies of 𝜌 through the procedure known as shadow
tomography [45–47]. Hence, even if we would like to predict an exponential number of observables, an algorithm
with quantum memory only needs a polynomial number of copies.

In fact, for certain natural instances, we can show an even more dramatic separation. Specifically, for the
following states and observables, we will show how to achieve an exponential versus constant separation.

Definition 2 (Separation instance). Consider a distribution 𝒟 over 𝑛-qubit state 𝜌 and observable 𝑂.

1. With probability 1/2, the state is 𝜌 = 𝐼/2𝑛 and 𝑂 ∈ {𝐼,𝑋, 𝑌, 𝑍}⊗𝑛 ∖ {𝐼⊗𝑛} is chosen uniformly at random.

2. With probability 1/2, the state is 𝜌 = (𝐼 + 0.9𝑠𝑃 )/2𝑛 and 𝑂 = 𝑃 , where 𝑠 = {±1} with equal probability and
𝑃 ∈ {𝐼,𝑋, 𝑌, 𝑍}⊗𝑛 ∖ {𝐼⊗𝑛} is chosen uniformly at random.2

The 𝑛-qubit state 𝜌 considered in the above definition does not contain any quantum entanglement. The state
𝜌 can be written as a classical probability distribution over tensor products of single-qubit states. Despite the

2 While 0.9 is used in the definition 𝜌 = (𝐼 + 0.9𝑠𝑃 )/2𝑛, any constant value smaller than 1 is sufficient to obtain the exponential
separation. A technical difficulty arises when we consider (𝐼 + 𝑠𝑃 )/2𝑛, and it is unclear whether this difficulty is fundamental.
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lack of quantum entanglement, we can still achieve an exponential versus constant separation. This result is a
substantial improvement over the result established in [8]. In [8], some of the authors showed an Ω(2𝑛/3) versus
𝒪(𝑛) separation between conventional and quantum-enhanced strategies, but the task was to predict an exponential
number of observables, which can only be verified using an exponential amount of time.

Theorem 6 (Exponential advantage in predicting highly-incompatible observables). We sample an 𝑛-qubit state
𝜌 and an observable 𝑂 according to 𝒟 given in Definition 2; both of these are unknown to the algorithm. The
algorithm then learns about 𝜌 through conventional or quantum-enhanced experiments. After the learning phase,
we ask the learning algorithm to predict |tr(𝑂𝜌)|.

• Upper bound: There is an algorithm in the quantum-enhanced scenario using only 𝒪(1) copies of 𝜌 to
predict up to 0.25 additive error with probability at least 0.8.

• Lower bound: For any algorithm in the conventional scenario, it needs at least Ω(2𝑛) copies of 𝜌 to predict
up to 0.25 additive error with probability at least 0.8.

Here, we are using the standard Big-𝒪 and Big-Ω notations: 𝑓 = Ω(𝑔) if there is an 𝑛0, 𝐶 > 0 such that ∀𝑛 > 𝑛0,
𝑓(𝑛) ≥ 𝐶𝑔(𝑛); and 𝑓 = 𝒪(𝑔) if there is an 𝑛0,𝑀 > 0 such that ∀𝑛 > 𝑛0, |𝑓(𝑛)| ≤ 𝑀𝑔(𝑛). We separate the proof
of Theorem 6 into the following two subsections. In Appendix D.2, we prove a constant upper bound for quantum-
enhanced experiments for this task. In Appendix D.3, we prove an exponential lower bound for conventional
experiments for the same task.

D.2. A constant upper bound for quantum-enhanced experiments

The learning algorithm in the quantum-enhanced scenario builds on results presented in [8]. We separate the
protocol into the learning phase, where entangled measurements are performed, and the prediction phase, where
we predict the desired properties.

D.2.a. Learning phase

Consider 𝑁Q rounds of two-copy entangled measurements. In round 𝑡 ∈ {1, . . . , 𝑁Q}, for every 𝑘 ∈ {1, . . . , 𝑛} we
measure the 𝑘-th qubit from the first and second copies of 𝜌 in the Bell basis to obtain

𝑆
(𝑡)
𝑘 ∈

{︁
|Ψ+⟩⟨Ψ+|, |Ψ−⟩⟨Ψ−|, |Φ+⟩⟨Φ+|, |Φ−⟩⟨Φ−|

}︁
, (D1)

where the Bell basis encompasses four maximally entangled two-qubit states. Here, |Ω⟩ = 1√
2
(|00⟩+ |11⟩) is the

Bell state, and we additionally have

|Ψ+⟩ = 𝐼 ⊗ 𝐼 |Ω⟩ = 1√
2
(|00⟩+ |11⟩) , |Ψ−⟩ = 𝐼 ⊗ 𝑍 |Ω⟩ = 1√

2
(|00⟩ − |11⟩) ,

|Φ+⟩ = 𝐼 ⊗𝑋 |Ω⟩ = 1√
2
(|01⟩+ |10⟩) , |Φ−⟩ = i𝐼 ⊗ 𝑌 |Ω⟩ = 1√

2
(|01⟩ − |10⟩) .

Then, we efficiently store the measurement data 𝑆
(𝑡)
𝑘 , ∀𝑘 = 1, . . . , 𝑛, ∀𝑡 = 1, . . . , 𝑁Q in a classical memory with

2𝑛𝑁Q classical bits.

D.2.b. Prediction phase

Given an observable 𝑂 drawn from {𝐼,𝑋, 𝑌, 𝑍}⊗𝑛 ∖ {𝐼⊗𝑛}, we can use the block of classical memory obtained
in the learning phase to estimate | tr(𝑂𝜌)|. First let us consider the case where 𝜌 is a single-qubit state. When we
measure 𝜌⊗ 𝜌 in the Bell basis, the measurement outcome 𝑆 is a projector onto one of the four Bell states given in
Eq. (D1). Let 𝜎 ∈ {𝐼,𝑋, 𝑌, 𝑍} be any Pauli matrix. Each Bell state is an eigenstate of 𝜎 ⊗ 𝜎 with an eigenvalue
±1. The probability that the Bell measurement outcome 𝑆 is an eigenstate of 𝜎 ⊗ 𝜎 with eigenvalue +1 is

Prob(+) =
1

2
tr ((𝐼 ⊗ 𝐼 + 𝜎 ⊗ 𝜎)(𝜌⊗ 𝜌)) , (D2)
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while the −1 eigenvalue occurs with probability

Prob(−) = 1

2
tr ((𝐼 ⊗ 𝐼 − 𝜎 ⊗ 𝜎)(𝜌⊗ 𝜌)) . (D3)

Therefore, we have

E [tr ((𝜎 ⊗ 𝜎)𝑆)] = Prob(+)− Prob(−) = tr ((𝜎 ⊗ 𝜎)(𝜌⊗ 𝜌)) = | tr(𝜎𝜌)|2, (D4)

where E denotes the expectation with respect to the probability distribution over Bell measurement outcomes. We
see that the entangling Bell measurement enables us to estimate the absolute value | tr(𝜎𝜌)| for any Pauli matrix
𝜎 ∈ {𝐼,𝑋, 𝑌, 𝑍}.

We can generalize this observation to the case where 𝜌 is an 𝑛-qubit state, and each pair of qubits in 𝜌 ⊗ 𝜌 is
measured in the Bell basis to yield the outcomes {𝑆𝑘, 𝑘 = 1, 2, . . . , 𝑛}. If 𝑂 = 𝜎1 ⊗ · · · ⊗ 𝜎𝑛 is a Pauli observable,
then as in the 𝑛 = 1 case the Bell state 𝑆𝑘 is an eigenstate of 𝜎𝑘 ⊗ 𝜎𝑘 with eigenvalue ±1 for each 𝑘. This implies
that

⨂︀𝑛
𝑘=1 𝑆𝑘 is an eigenstate of 𝑂 ⊗𝑂 with an eigenvalue ±1. In particular, let us consider the product

𝑛∏︁
𝑘=1

tr ((𝜎𝑘 ⊗ 𝜎𝑘)𝑆𝑘) = ±1. (D5)

This product is equal to +1 when the tensor product of the Bell measurement outcomes
⨂︀𝑛

𝑘=1 𝑆𝑘 is an eigenstate
of 𝑂⊗𝑂 with eigenvalue +1, and it is −1 when ⊗𝑛𝑘=1𝑆𝑘 is an eigenstate of 𝑂⊗𝑂 with eigenvalue −1. We conclude
that

E

[︃
𝑛∏︁
𝑘=1

tr ((𝜎𝑘 ⊗ 𝜎𝑘)𝑆𝑘)
]︃
= E

[︃
tr

(︃
(𝑂 ⊗𝑂)

𝑛⨂︁
𝑘=1

𝑆𝑘

)︃]︃
= Prob(𝑂 ⊗𝑂 = +1)− Prob(𝑂 ⊗𝑂 = −1)
= tr ((𝑂 ⊗𝑂)(𝜌⊗ 𝜌))
= | tr(𝑂𝜌)|2, (D6)

where E denotes the expectation with respect to the probability distribution of Bell measurement outcomes. The
above derivation shows that the 𝑛-qubit entangling Bell measurement enables us to estimate the absolute value
| tr(𝑂𝜌)| for any 𝑂 considered in Definition 2.

Because Equation (D6) relates the probability distribution of Bell measurement outcomes to the absolute value
| tr(𝑂𝜌)|, we can estimate | tr(𝑂𝜌)| accurately by repeatedly making entangling Bell measurements on successive
pairs of copies of 𝜌 sufficiently many times. Specifically, in the learning phase, we perform the entangling Bell
measurement on 𝑁Q pairs of copies of 𝜌, and collect the measurement data {𝑆(𝑡)

𝑘 } in the classical memory, where
𝑘 = 1, 2, . . . , 𝑛 labels the qubit pairs, and 𝑡 = 1, 2, . . . , 𝑁Q labels the different rounds of measurements. For any
given 𝑛-qubit Pauli observable 𝑂 = 𝜎1 ⊗ · · · ⊗ 𝜎𝑛, we consider the following estimator

𝑎̂(𝑂) =
1

𝑁𝑄

𝑁𝑄∑︁
𝑡=1

𝑛∏︁
𝑘=1

tr
(︁
(𝜎𝑘 ⊗ 𝜎𝑘)𝑆(𝑡)

𝑘

)︁
, (D7)

which can be computed efficiently in time 𝒪(𝑛𝑁Q).
Using the expectation evaluated in Equation (D6), we can apply Hoeffding’s inequality to show that the estimate

𝑎̂(𝑂) is equal to the expectation value tr((𝑂 ⊗ 𝑂)(𝜌 ⊗ 𝜌)) = | tr(𝑂𝜌)|2 up to a small error with high probability.
The formal statement is given below.

Lemma 1. Given 𝑁Q = Θ(log(1/𝛿)/𝜖2). For any observable 𝑂 considered in Definition 2, we have⃒⃒
𝑎̂(𝑂)− | tr(𝑂𝜌)|2

⃒⃒
≤ 𝜖, (D8)

with probability at least 1− 𝛿.

To obtain an estimate for the absolute value | tr(𝑂𝜌)|, we consider the estimate

𝑏̂ =
√︀
max(0, 𝑎̂). (D9)
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We can show the inequalities

| tr(𝑂𝜌)|2 − 𝜖 ≤ 𝑎̂ ≤ | tr(𝑂𝜌)|2 + 𝜖 =⇒ max(0,
√︀
| tr(𝑂𝜌)|2 −√𝜖) ≤ 𝑏̂ ≤

√︀
| tr(𝑂𝜌)|2 +√𝜖, (D10)

using the fact that
√
𝑥+ 𝑦 ≤ √𝑥+

√
𝑦.

In the final step of the upper bound proof, we use Lemma 1 to obtain the following result. As long as 𝑁Q = 𝒪(1),
we can estimate the absolute value of tr(𝑂𝜌) for any observable 𝑂 given in Definition 2 to an error 0.25 with
probability at least 0.8.

Corollary 1. Let 𝑁Q = Θ(1). For any observable 𝑂 considered in Definition 2, we have⃒⃒⃒
𝑏̂− | tr(𝑂𝜌)|

⃒⃒⃒
≤ 0.25, (D11)

with probability at least 0.8.

This concludes the constant upper bound for quantum-enhanced experiments in Theorem 6.

D.3. An exponential lower bound for conventional experiments

The proof begins with a reduction to the partially-revealed many-versus-one distinguishing task followed by
bounding the total variation distance.

D.3.a. Reduction to partially-revealed many-versus-one distinguishing task

We consider the following partially-revealed many-versus-one distinguishing task discussed in Appendix C.4,
namely where:

• The null hypothesis is 𝐼/2𝑛.

• The alternative hypothesis is (𝐼 + 0.9𝑠𝑃 )/2𝑛.

The partially revealed information is the Pauli operator 𝑃 . Recall the following from Definition 2,

1. With probability 1/2, the state is 𝜌 = 𝐼/2𝑛 and 𝑂 ∈ {𝐼,𝑋, 𝑌, 𝑍}⊗𝑛 ∖ {𝐼⊗𝑛} is sampled uniformly at random.
(Corresponds to the null hypothesis)

2. With probability 1/2, the state is 𝜌 = (𝐼 + 0.9𝑠𝑃 )/2𝑛 and 𝑂 = 𝑃 , where 𝑠 = {±1} with equal probability
and 𝑃 ∈ {𝐼,𝑋, 𝑌, 𝑍}⊗𝑛 ∖ {𝐼⊗𝑛} uniformly. (Corresponds to the alternative hypothesis)

For 𝜌 = 𝐼/2𝑛, we have | tr(𝑂𝜌)| = 0. For 𝜌 = (𝐼 + 0.9𝑠𝑃 )/2𝑛, we have | tr(𝑂𝜌)| = 0.9. Therefore, if an algorithm
could predict | tr(𝑂𝜌)| to 0.25 error with probability at least 1− 𝛿, it could be used to distinguish between the null
and alternative hypotheses with success probability at least 1− 𝛿.

D.3.b. Total variation distance

From the information-theoretic lower bound for partially-revealed many-versus-one distinguishing task given in
Appendix C.4, if we let 𝑝𝜌(ℓ) be the leaf probability distribution under 𝜌, then

E
𝑃∈{𝐼,𝑋,𝑌,𝑍}⊗𝑛∖{𝐼⊗𝑛}

TV

(︂
𝑝𝐼/2𝑛 , E

𝑠∈{±1}
𝑝(𝐼+0.9𝑠𝑃 )/2𝑛

)︂
≥ 1− 2𝛿. (D12)

For each leaf node ℓ, we consider the path from the root to ℓ,

𝑢0 = 𝑟
𝑠1−→ 𝑢1

𝑠2−→ 𝑢2
𝑠3−→ . . .

𝑠𝑇−1−−−→ 𝑢𝑇−1
𝑠𝑇−−→ 𝑢𝑇 = ℓ. (D13)

At each node 𝑢, we perform a POVM measurement {𝑤𝑢𝑠 |𝜑𝑢𝑠 ⟩⟨𝜑𝑢𝑠 |}𝑠 on 𝜌 to obtain an outcome 𝑠 with probability

𝑤𝑢𝑠 ⟨𝜑𝑢𝑠 | 𝜌 |𝜑𝑢𝑠 ⟩ . (D14)
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Hence, we can write down the probability to arrive at the leaf ℓ as

𝑝𝜌(ℓ) =
𝑇∏︁
𝑡=1

𝑤𝑢𝑡−1
𝑠𝑡 ⟨𝜑𝑢𝑡−1

𝑠𝑡 | 𝜌 |𝜑𝑢𝑡−1
𝑠𝑡 ⟩ . (D15)

Recalling the definition of total variation distance, note that for any probability distributions 𝑝𝐴, 𝑝𝐵 for which
𝑝𝐴(ℓ) > 0 whenever 𝑝𝐵(ℓ) > 0,

TV(𝑝𝐴, 𝑝𝐵) =
1

2

∑︁
ℓ

|𝑝𝐴(ℓ)− 𝑝𝐵(ℓ)| =
∑︁
ℓ

max(0, 𝑝𝐴(ℓ)− 𝑝𝐵(ℓ)) =
∑︁
ℓ

𝑝𝐴(ℓ) ·max

(︂
0, 1− 𝑝𝐵(ℓ)

𝑝𝐴(ℓ)

)︂
, (D16)

where the last equality follows from max(𝑎𝑥, 𝑎𝑦) = 𝑎max(𝑥, 𝑦) for all 𝑥, 𝑦 ∈ R and all 𝑎 ≥ 0.
Observe that for leaf ℓ,

E𝑠∈{±1} 𝑝(𝐼+0.9𝑠𝑃 )/2𝑛(ℓ)

𝑝𝐼/2𝑛(ℓ)
=

E𝑠∈{±1}
∏︀𝑇
𝑡=1 𝑤

𝑢𝑡−1
𝑠𝑡 ⟨𝜑𝑢𝑡−1

𝑠𝑡 | 𝐼+0.9𝑠𝑃
2𝑛 |𝜑𝑢𝑡−1

𝑠𝑡 ⟩∏︀𝑇
𝑡=1 𝑤

𝑢𝑡−1
𝑠𝑡 ⟨𝜑𝑢𝑡−1

𝑠𝑡 | 𝐼2𝑛 |𝜑
𝑢𝑡−1
𝑠𝑡 ⟩

(D17)

= E
𝑠∈{±1}

𝑇∏︁
𝑡=1

(︀
1 + 0.9𝑠 ⟨𝜑𝑢𝑡−1

𝑠𝑡 |𝑃 |𝜑𝑢𝑡−1
𝑠𝑡 ⟩

)︀
. (D18)

Combining (D16) and (D18), we can express the total variation distance inside the expectation in (D12) as

TV

(︂
𝑝𝐼/2𝑛 , E

𝑠∈{±1}
𝑝(𝐼+0.9𝑠𝑃 )/2𝑛

)︂
=
∑︁
ℓ

𝑝𝐼/2𝑛(ℓ) max

(︃
0, 1− E

𝑠∈{±1}

𝑇∏︁
𝑡=1

(︀
1 + 0.9𝑠 ⟨𝜑𝑢𝑡−1

𝑠𝑡 |𝑃 |𝜑𝑢𝑡−1
𝑠𝑡 ⟩

)︀)︃
(D19)

D.3.c. Upper bound for total variation distance

We analyze one of the terms in the total variation distance using Jensen’s inequality (note that exp(𝑥) is a convex
function in 𝑥).

E
𝑠∈{±1}

𝑇∏︁
𝑡=1

(︀
1 + 0.9𝑠 ⟨𝜑𝑢𝑡−1

𝑠𝑡 |𝑃 |𝜑𝑢𝑡−1
𝑠𝑡 ⟩

)︀
(D20)

= E
𝑠∈{±1}

exp

[︃
𝑇∑︁
𝑡=1

log
(︀
1 + 0.9𝑠 ⟨𝜑𝑢𝑡−1

𝑠𝑡 |𝑃 |𝜑𝑢𝑡−1
𝑠𝑡 ⟩

)︀]︃
(D21)

≥ exp

[︃
E

𝑠∈{±1}

𝑇∑︁
𝑡=1

log
(︀
1 + 0.9𝑠 ⟨𝜑𝑢𝑡−1

𝑠𝑡 |𝑃 |𝜑𝑢𝑡−1
𝑠𝑡 ⟩

)︀]︃
(D22)

= exp

[︃
𝑇∑︁
𝑡=1

1

2
log
(︁
1− 0.81 ⟨𝜑𝑢𝑡−1

𝑠𝑡 |𝑃 |𝜑𝑢𝑡−1
𝑠𝑡 ⟩2

)︁]︃
(D23)

=
𝑇∏︁
𝑡=1

√︁
1− 0.81 ⟨𝜑𝑢𝑡−1

𝑠𝑡 |𝑃 |𝜑𝑢𝑡−1
𝑠𝑡 ⟩2 . (D24)

We can then upper bound the total variation distance as

TV

(︂
𝑝𝐼/2𝑛 , E

𝑠∈{±1}
𝑝(𝐼+0.9𝑠𝑃 )/2𝑛

)︂
(D25)

≤
∑︁
ℓ

𝑝𝐼/2𝑛(ℓ) max

(︃
0, 1−

𝑇∏︁
𝑡=1

√︁
1− 0.81 ⟨𝜑𝑢𝑡−1

𝑠𝑡 |𝑃 |𝜑𝑢𝑡−1
𝑠𝑡 ⟩2

)︃
(D26)

=
∑︁
ℓ

𝑝𝐼/2𝑛(ℓ)

(︃
1−

𝑇∏︁
𝑡=1

√︁
1− 0.81 ⟨𝜑𝑢𝑡−1

𝑠𝑡 |𝑃 |𝜑𝑢𝑡−1
𝑠𝑡 ⟩2

)︃
. (D27)

The last equality follows from the fact that all eigenvalues of 𝑃 are ±1, hence 1 ≥∏︀𝑇
𝑡=1

√︁
1− 0.81 ⟨𝜑𝑢𝑡−1

𝑠𝑡 |𝑃 |𝜑𝑢𝑡−1
𝑠𝑡 ⟩2.
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D.3.d. Lower bound for the number of measurements

We can combine Eq. (D27) and Eq. (D12) to find

E
𝑃∈{𝐼,𝑋,𝑌,𝑍}⊗𝑛∖{𝐼⊗𝑛}

∑︁
ℓ

𝑝𝐼/2𝑛(ℓ)

(︃
1−

𝑇∏︁
𝑡=1

√︁
1− 0.81 ⟨𝜑𝑢𝑡−1

𝑠𝑡 |𝑃 |𝜑𝑢𝑡−1
𝑠𝑡 ⟩2

)︃
≥ 1− 2𝛿. (D28)

By linearity of expectation, we have

∑︁
ℓ

𝑝𝐼/2𝑛(ℓ)

(︃
1− E

𝑃∈{𝐼,𝑋,𝑌,𝑍}⊗𝑛∖{𝐼⊗𝑛}

𝑇∏︁
𝑡=1

√︁
1− 0.81 ⟨𝜑𝑢𝑡−1

𝑠𝑡 |𝑃 |𝜑𝑢𝑡−1
𝑠𝑡 ⟩2

)︃
≥ 1− 2𝛿. (D29)

We analyze the expectation value term in the summand as follows:

E
𝑃∈{𝐼,𝑋,𝑌,𝑍}⊗𝑛∖{𝐼⊗𝑛}

𝑇∏︁
𝑡=1

√︁
1− 0.81 ⟨𝜑𝑢𝑡−1

𝑠𝑡 |𝑃 |𝜑𝑢𝑡−1
𝑠𝑡 ⟩2 (D30)

= E
𝑃∈{𝐼,𝑋,𝑌,𝑍}⊗𝑛∖{𝐼⊗𝑛}

exp

[︃
1

2

𝑇∑︁
𝑡=1

log
(︁
1− 0.81 ⟨𝜑𝑢𝑡−1

𝑠𝑡 |𝑃 |𝜑𝑢𝑡−1
𝑠𝑡 ⟩2

)︁]︃
(D31)

≥ exp

[︃
1

2

𝑇∑︁
𝑡=1

E
𝑃∈{𝐼,𝑋,𝑌,𝑍}⊗𝑛∖{𝐼⊗𝑛}

log
(︁
1− 0.81 ⟨𝜑𝑢𝑡−1

𝑠𝑡 |𝑃 |𝜑𝑢𝑡−1
𝑠𝑡 ⟩2

)︁]︃
(D32)

≥ exp

[︃
1

2

𝑇∑︁
𝑡=1

E
𝑃∈{𝐼,𝑋,𝑌,𝑍}⊗𝑛∖{𝐼⊗𝑛}

−1.701 ⟨𝜑𝑢𝑡−1
𝑠𝑡 |𝑃 |𝜑𝑢𝑡−1

𝑠𝑡 ⟩2
]︃

(D33)

= exp

[︃
−0.8505

𝑇∑︁
𝑡=1

1

2𝑛 + 1

]︃
= exp

(︂
−0.8505𝑇

2𝑛 + 1

)︂
. (D34)

The second line follows from Jensen’s inequality because exp(𝑥) is convex in 𝑥. The third line uses log(1 − 𝑥) ≥
−2.1𝑥, ∀𝑥 ∈ [0, 0.82]. The fourth line uses the fact that

E
𝑃∈{𝐼,𝑋,𝑌,𝑍}⊗𝑛∖{𝐼⊗𝑛}

𝑃 ⊗ 𝑃 =
2𝑛SWAP− 𝐼 ⊗ 𝐼

4𝑛 − 1
, (D35)

hence E𝑃∈{𝐼,𝑋,𝑌,𝑍}⊗𝑛∖{𝐼⊗𝑛} ⟨𝜑
𝑢𝑡−1
𝑠𝑡 |𝑃 |𝜑𝑢𝑡−1

𝑠𝑡 ⟩2 = 2𝑛−1
4𝑛−1 = 1

2𝑛+1 .
Combining the analysis with Eq. (D29), we find that

∑︁
ℓ

𝑝𝐼/2𝑛(ℓ)

(︃
1− exp

(︂
−0.8505𝑇

2𝑛 + 1

)︂)︃
≥ 1− 2𝛿. (D36)

Because
∑︀
ℓ 𝑝𝐼/2𝑛(ℓ) = 1, we have

1− exp

(︂
−0.8505𝑇

2𝑛 + 1

)︂
≥ 1− 2𝛿. (D37)

Together, the following lower bound on the number of experiments can be obtained:

𝑇 ≥ 2𝑛 + 1

0.8505
log

(︂
1

2𝛿

)︂
. (D38)

After setting 𝛿 = 0.2 (corresponding to a success probability of at least 0.8), we conclude the exponential lower
bound for conventional experiments in Theorem 6.
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D.4. An exponential lower bound for comparing absolute values

In the physical experiment presented in the main text, we considered a slightly different task that also yields
an exponential lower bound for conventional experiments. This slightly different task has two main differences
when compared with the task described in Appendix D.3. First, we do not consider the maximally mixed state
𝐼/2𝑛. Second, we ask the learner to predict which of two observables 𝑂1, 𝑂2 has a larger absolute value. The task
description is given below.

Task 1 (Comparing absolute values). There is an unknown state 𝜌 = (𝐼 + 0.9𝑠𝑃 )/2𝑛 where 𝑠 = {±1} and 𝑃 ∈
{𝐼,𝑋, 𝑌, 𝑍}⊗𝑛 ∖ {𝐼⊗𝑛} are both sampled uniformly at random. The algorithm learns about 𝜌 through conventional
or quantum-enhanced strategies. The algorithm transforms all quantum data to classical data. After learning, we
present the learning algorithm with

𝑂1 = 𝑃, 𝑂2 = 𝑄 or 𝑂1 = 𝑄, 𝑂2 = 𝑃, (D39)

with equal probability, where 𝑄 ̸= 𝑃 ∈ {𝐼,𝑋, 𝑌, 𝑍}⊗𝑛∖{𝐼⊗𝑛} is sampled uniformly. The learning algorithm succeeds
if it correctly classifies whether | tr(𝑂1𝜌)| > | tr(𝑂2𝜌)| or | tr(𝑂1𝜌)| < | tr(𝑂2𝜌)|.

Using the procedure presented in Appendix D.2, it is not hard to show that quantum-enhanced strategies could
accomplish the above task with classification accuracy (i.e., the probability that the classification is correct) at least
1− 𝛿 from only 𝒪(log(1/𝛿)) experiments. In contrast, we have the following theorem for conventional experiments.

Theorem 7 (Exponential lower bound for Task 1). A learning algorithm in the conventional setting (without
quantum memory) requires at least

(2𝑛 + 1)

0.8505
log

(︂
2

1 + 2𝛿

)︂
(D40)

experiments to accomplish Task 1 with an accuracy of 1− 𝛿, for a given 𝛿 > 0.

D.4.a. Lower bound for total variation distance

Here we begin the proof of Theorem 7. Task 1 is closely related to the partially-revealed many-versus-one
distinguishing task, but is not exactly the same. We will utilize a slightly different information-theoretic bound for
this task. Let us define the following notation

𝜌𝑠𝑃 ≡
𝐼 + 0.9𝑠𝑃

2𝑛
. (D41)

We consider a learning algorithm in the conventional setting. We consider the probability distribution 𝑝𝜌(ℓ) over
the leaf node ℓ when the underlying state is 𝜌. Recall that the leaf node ℓ is the final memory state of the learning
algorithm. Any procedure that makes the prediction based on the final memory state of the learning algorithm
must have a classification accuracy upper bounded by

1

(4𝑛 − 1)(4𝑛 − 2)

∑︁
𝑃 ̸=𝑄∈{𝐼,𝑋,𝑌,𝑍}⊗𝑛∖{𝐼⊗𝑛}

[︂
1

2
+

1

2
TV

(︂
E

𝑠∈{±1}
𝑝𝜌𝑠𝑃 (ℓ), E

𝑠∈{±1}
𝑝𝜌𝑠𝑄(ℓ)

)︂]︂
. (D42)

To understand why the above inequality holds, consider a fixed 𝑃 ̸= 𝑄. There is an equal probability that
the underlying state is 𝜌+𝑃 , 𝜌−𝑃 , 𝜌+𝑄, or 𝜌−𝑄 because 𝑠 ∈ {±1} with equal probability and 𝑂1 = 𝑃,𝑂2 = 𝑄 or
𝑂1 = 𝑄,𝑂2 = 𝑃 with probability 1/2. In order to distinguish the event of 𝜌+𝑃 , 𝜌−𝑃 from the event 𝜌+𝑄, 𝜌−𝑄 based
on the leaf node ℓ, we need the two distributions E𝑠∈{±1} 𝑝𝜌𝑠𝑃 (ℓ) and E𝑠∈{±1} 𝑝ℓ(𝜌𝑠𝑄) to be sufficiently distinct.
Formally, one can show that the success probability is upper bounded by

1

2
+

1

2
TV

(︂
E

𝑠∈{±1}
𝑝𝜌𝑠𝑃 (ℓ), E

𝑠∈{±1}
𝑝𝜌𝑠𝑄(ℓ)

)︂
(D43)

using LeCam’s two-point method, see e.g. Lemma 1 in [48]. To achieve the above success probability, one can use
the maximum likelihood protocol that outputs 𝑃 if E𝑠∈{±1} 𝑝𝜌𝑠𝑃 (ℓ) > E𝑠∈{±1} 𝑝𝜌𝑠𝑄(ℓ) and outputs 𝑄 otherwise.
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Because 𝑃,𝑄 are both chosen uniformly at random (but distinct), the average classification accuracy is given in
Eq. (D42). If the learning algorithm could achieve an accuracy of 1− 𝛿, we would have

(1− 𝛿) ≤ 1

2
+

1

2(4𝑛 − 1)(4𝑛 − 2)

∑︁
𝑃 ̸=𝑄∈{𝐼,𝑋,𝑌,𝑍}⊗𝑛∖{𝐼⊗𝑛}

TV

(︂
E

𝑠∈{±1}
𝑝𝜌𝑠𝑃 (ℓ), E

𝑠∈{±1}
𝑝𝜌𝑠𝑄(ℓ)

)︂
. (D44)

This implies that

1− 2𝛿 ≤ 1

(4𝑛 − 1)(4𝑛 − 2)

∑︁
𝑃 ̸=𝑄∈{𝐼,𝑋,𝑌,𝑍}⊗𝑛∖{𝐼⊗𝑛}

TV

(︂
E

𝑠∈{±1}
𝑝𝜌𝑠𝑃 (ℓ), E

𝑠∈{±1}
𝑝𝜌𝑠𝑄(ℓ)

)︂
. (D45)

D.4.b. Upper bound for total variation distance

We now perform triangle inequalities and reuse inequalities in Appendix D.3 to upper bound the total variation
distance:

TV

(︂
E

𝑠∈{±1}
𝑝𝜌𝑠𝑃 (ℓ), E

𝑠∈{±1}
𝑝𝜌𝑠𝑄(ℓ)

)︂
≤ TV

(︂
𝑝𝐼/2𝑛(ℓ), E

𝑠∈{±1}
𝑝𝜌𝑠𝑃 (ℓ)

)︂
+TV

(︂
𝑝𝐼/2𝑛(ℓ), E

𝑠∈{±1}
𝑝𝜌𝑠𝑄(ℓ)

)︂
(D46)

≤
∑︁
ℓ

𝑝𝐼/2𝑛(ℓ)

(︃
1−

𝑇∏︁
𝑡=1

√︁
1− 0.81 ⟨𝜑𝑢𝑡−1

𝑠𝑡 |𝑃 |𝜑𝑢𝑡−1
𝑠𝑡 ⟩2

)︃

+
∑︁
ℓ

𝑝𝐼/2𝑛(ℓ)

(︃
1−

𝑇∏︁
𝑡=1

√︁
1− 0.81 ⟨𝜑𝑢𝑡−1

𝑠𝑡 |𝑄 |𝜑𝑢𝑡−1
𝑠𝑡 ⟩2

)︃
(D47)

= 1−
∑︁
ℓ

𝑝𝐼/2𝑛(ℓ)
𝑇∏︁
𝑡=1

√︁
1− 0.81 ⟨𝜑𝑢𝑡−1

𝑠𝑡 |𝑃 |𝜑𝑢𝑡−1
𝑠𝑡 ⟩2

+ 1−
∑︁
ℓ

𝑝𝐼/2𝑛(ℓ)
𝑇∏︁
𝑡=1

√︁
1− 0.81 ⟨𝜑𝑢𝑡−1

𝑠𝑡 |𝑄 |𝜑𝑢𝑡−1
𝑠𝑡 ⟩2. (D48)

The first line is triangle inequality. The second inequality uses Eq. (D27) for both 𝑃 and 𝑄. The equality step uses∑︀
ℓ 𝑝𝐼/2𝑛(ℓ) = 1. Therefore, we have

1

(4𝑛 − 1)(4𝑛 − 2)

∑︁
𝑃 ̸=𝑄∈{𝐼,𝑋,𝑌,𝑍}⊗𝑛∖{𝐼⊗𝑛}

TV

(︂
E

𝑠∈{±1}
𝑝𝜌𝑠𝑃 (ℓ), E

𝑠∈{±1}
𝑝𝜌𝑠𝑄(ℓ)

)︂
(D49)

≤ 1− 1

(4𝑛 − 1)(4𝑛 − 2)

∑︁
𝑃 ̸=𝑄∈{𝐼,𝑋,𝑌,𝑍}⊗𝑛∖{𝐼⊗𝑛}

[︃∑︁
ℓ

𝑝𝐼/2𝑛(ℓ)
𝑇∏︁
𝑡=1

√︁
1− 0.81 ⟨𝜑𝑢𝑡−1

𝑠𝑡 |𝑃 |𝜑𝑢𝑡−1
𝑠𝑡 ⟩2

]︃

+ 1− 1

(4𝑛 − 1)(4𝑛 − 2)

∑︁
𝑃 ̸=𝑄∈{𝐼,𝑋,𝑌,𝑍}⊗𝑛∖{𝐼⊗𝑛}

[︃∑︁
ℓ

𝑝𝐼/2𝑛(ℓ)
𝑇∏︁
𝑡=1

√︁
1− 0.81 ⟨𝜑𝑢𝑡−1

𝑠𝑡 |𝑄 |𝜑𝑢𝑡−1
𝑠𝑡 ⟩2

]︃
(D50)

= 1−
∑︁
ℓ

𝑝𝐼/2𝑛(ℓ) E
𝑃∈{𝐼,𝑋,𝑌,𝑍}⊗𝑛∖{𝐼⊗𝑛}

𝑇∏︁
𝑡=1

√︁
1− 0.81 ⟨𝜑𝑢𝑡−1

𝑠𝑡 |𝑃 |𝜑𝑢𝑡−1
𝑠𝑡 ⟩2

+ 1−
∑︁
ℓ

𝑝𝐼/2𝑛(ℓ) E
𝑄∈{𝐼,𝑋,𝑌,𝑍}⊗𝑛∖{𝐼⊗𝑛}

𝑇∏︁
𝑡=1

√︁
1− 0.81 ⟨𝜑𝑢𝑡−1

𝑠𝑡 |𝑄 |𝜑𝑢𝑡−1
𝑠𝑡 ⟩2 (D51)

= 1−
∑︁
ℓ

𝑝𝐼/2𝑛(ℓ) exp

(︂
−0.8505𝑇

2𝑛 + 1

)︂
+ 1−

∑︁
ℓ

𝑝𝐼/2𝑛(ℓ) exp

(︂
−0.8505𝑇

2𝑛 + 1

)︂
(D52)

= 2− 2 exp

(︂
−0.8505𝑇

2𝑛 + 1

)︂
. (D53)
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In the above inequalities, the first inequality uses Eq. (D48). The equality thereafter uses the following analysis,

1

(4𝑛 − 1)(4𝑛 − 2)

∑︁
𝑃 ̸=𝑄∈{𝐼,𝑋,𝑌,𝑍}⊗𝑛∖{𝐼⊗𝑛}

𝑓(𝑃 ) (D54)

=
1

4𝑛 − 1

∑︁
𝑃∈{𝐼,𝑋,𝑌,𝑍}⊗𝑛∖{𝐼⊗𝑛}

𝑓(𝑃 )

⎛⎜⎜⎝ 1

4𝑛 − 2

∑︁
𝑄∈{𝐼,𝑋,𝑌,𝑍}⊗𝑛∖{𝐼⊗𝑛}

s.t., 𝑄̸=𝑃

1

⎞⎟⎟⎠ (D55)

=
1

4𝑛 − 1

∑︁
𝑃∈{𝐼,𝑋,𝑌,𝑍}⊗𝑛∖{𝐼⊗𝑛}

𝑓(𝑃 ) (D56)

= E
𝑃∈{𝐼,𝑋,𝑌,𝑍}⊗𝑛∖{𝐼⊗𝑛}

𝑓(𝑃 ) , (D57)

where 𝑓(𝑃 ) =
∑︀
ℓ 𝑝𝐼/2𝑛(ℓ)

∏︀𝑇
𝑡=1

√︁
1− 0.81 ⟨𝜑𝑢𝑡−1

𝑠𝑡 |𝑄 |𝜑𝑢𝑡−1
𝑠𝑡 ⟩2, as well as linearity of expectation, i.e.

E
𝑃∈{𝐼,𝑋,𝑌,𝑍}⊗𝑛∖{𝐼⊗𝑛}

∑︁
ℓ

𝑝𝐼/2𝑛(ℓ) =
∑︁
ℓ

𝑝𝐼/2𝑛(ℓ) E
𝑃∈{𝐼,𝑋,𝑌,𝑍}⊗𝑛∖{𝐼⊗𝑛}

. (D58)

The third step in Eq. (D52) uses Eq. (D30) to (D34), and the final step uses
∑︀
ℓ 𝑝𝐼/2𝑛(ℓ) = 1.

D.4.c. Combining upper and lower bounds

We can combine the lower bound obtained in Eq. (D45) and the upper bound in Eq. (D53) to find

1− 2𝛿 ≤ 2− 2 exp

(︂
−0.8505𝑇

2𝑛 + 1

)︂
. (D59)

Basic algebraic manipulations give

0.8505𝑇

2𝑛 + 1
≥ − log

(︂
1

2
+ 𝛿

)︂
= log

(︂
2

1 + 2𝛿

)︂
. (D60)

We have thus concluded the desired lower bound

𝑇 ≥ (2𝑛 + 1)

0.8505
log

(︂
2

1 + 2𝛿

)︂
(D61)

stated in Theorem 7.

E. Performing quantum principal component analysis

The (first) principal component of a nonnegative Hermitian matrix 𝐴 is the eigenvector of 𝐴 with the largest
eigenvalue. Here, we consider a well-known task called quantum principal component analysis (PCA), which can
be achieved efficiently using the quantum algorithm given in [13]. The formal definition of the quantum PCA task
is given in the following definition.

Task 2 (Quantum principal component analysis task). Let 𝜌 be an unknown 𝑛-qubit mixed state whose top eigen-
vector |𝜑⟩ has eigenvalue larger than all other eigenvalues by a constant factor independent of 𝑛. Given a fixed
observable 𝑂, we would like to predict ⟨𝜑|𝑂 |𝜑⟩ up to a small additive error.

We can accomplish this task using the quantum PCA algorithm in [13]. In this algorithm, multiple copies of 𝜌
are used in a protocol that approximates the unitary operator

∑︀
𝑡 |𝑡⟩⟨𝑡| ⊗ exp(−𝑖𝜌𝑡), where 𝑡 is the “time” stored

in an auxiliary register. By applying this conditional exp(−𝑖𝜌𝑡) operation to the initial state 𝜌 =
∑︀
𝑖 𝜆𝑖|𝜑𝑖⟩⟨𝜑𝑖|,

performing the quantum Fourier transform and measuring the auxiliary register, we read out an eigenvalue 𝜆𝑖
and prepare the corresponding eigenstate |𝜑𝑖⟩ with probability 𝜆𝑖. The eigenvalue can be measured with constant
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accuracy, and the eigenstate prepared with constant fidelity, using a constant number of copies of 𝜌. Once |𝜑𝑖⟩ has
been prepared, we can measure the observable 𝑂 in this state.

By assumption, the largest eigenvalue of 𝜌 is a constant independent of 𝑛, and furthermore is greater than all
other eigenvalues by a constant. Hence by repeating the above procedure a constant number of times, we can
estimate ⟨𝜑|𝑂|𝜑⟩ to constant accuracy, where |𝜑⟩ is the eigenstate of 𝜌 with the largest eigenvalue. In contrast, in
Appendix E.1 we show that algorithms that can only learn about 𝜌 through conventional experiments require an
exponential number of copies of 𝜌. Bringing these arguments all together, we establish the following theorem.

Theorem 8 (Exponential advantage for quantum principal component analysis). Let 𝜌 be an unknown 𝑛-qubit
mixed state (for 𝑛 > 1) whose top eigenvector |𝜑⟩ has eigenvalue larger than all the other eigenvalues by a constant,
and let 𝑍1 be an observable which is equal to the Pauli-𝑍 operator on the first qubit. Algorithms learn about 𝜌
through conventional or quantum-enhanced experiments.

• Upper bound: There is an algorithm in the quantum-enhanced scenario using only 𝒪(1) copies of 𝜌 to
predict ⟨𝜑|𝑍1 |𝜑⟩ up to 0.25 error with probability at least 0.8.

• Lower bound: Any algorithm in the conventional scenario needs at least Ω(2𝑛/2) copies of 𝜌 to predict
⟨𝜑|𝑍1 |𝜑⟩ up to 0.25 error with probability at least 0.8.

Instead of estimating ⟨𝜑|𝑍1 |𝜑⟩, we can also consider the near-term proposals [15, 16] to obtain some information
about the principal component |𝜓⟩ of an unknown state 𝜌 as follows. The proposals consider 𝜌𝑀/ tr(𝜌𝑀 ), which
approaches |𝜓⟩⟨𝜓| when 𝑀 is large. In particular, [16] shows that one can efficiently estimate tr(𝑍1𝜌

2)/ tr(𝜌2) by
performing entangling Bell measurements over at most two copies of 𝜌 at a time. By the analysis in [16], if the
eigenvalue associated to the principal component of 𝜌 is a constant, then tr(𝑍𝑖𝜌

2)/ tr(𝜌2) can be estimated to any
constant error by performing quantum-enhanced experiments over a constant number of copies of 𝜌. In contrast,
we show that if one can only measure a single copy of 𝜌 at a time, exponentially many copies are necessary to
estimate tr(𝑍𝑖𝜌

2)/ tr(𝜌2).

Theorem 9 (Exponential advantage for near-term quantum principal component analysis). Suppose we are given
an observable 𝑍1 which is equal to the Pauli-𝑍 operator on the first qubit, as well as an 𝑛-qubit state 𝜌 (for 𝑛 > 1)
where an eigenvector |𝜑⟩ of 𝜌 has an eigenvalue that is larger than all the other eigenvalues by a constant. We
consider algorithms which learn about 𝜌 through conventional or quantum-enhanced experiments. Then we have the
following bounds:

• Upper bound: There is an algorithm in the quantum-enhanced scenario using only 𝒪(1) copies of 𝜌 to
predict tr(𝑍1𝜌

2)/ tr(𝜌2) up to 0.25 error with probability at least 0.8.

• Lower bound: Any algorithm in the conventional scenario needs at least Ω(2𝑛/2) copies of 𝜌 to predict
tr(𝑍1𝜌

2)/ tr(𝜌2) up to 0.25 error with probability at least 0.8.

E.1. An exponential lower bound for conventional experiments

The lower bound proofs for both Theorem 8 and Theorem 9 are essentially the same. We first reduce quantum
PCA (or near-term analogs thereof) to a many-versus-many distinguishing task. Then we bound the total variation
distance to arrive at the exponential lower bound.

E.1.a. Reduction to many-versus-many distinguishing task

We begin by considering a many-versus-many distinguishing task, as discussed in Appendix C.3. The two
hypotheses are given below.

• Hypothesis A: The unknown 𝑛-qubit state 𝜌 is given by

𝜌𝐴(|𝜓⟩) =
1

2
|0⟩⟨0| ⊗ |𝜓⟩⟨𝜓|+ 1

2
|1⟩⟨1| ⊗ 𝐼

2𝑛−1
, (E1)

where |𝜓⟩ is an fixed (𝑛− 1)-qubit pure state, sampled at the outset from the Haar measure.
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• Hypothesis B: The unknown 𝑛-qubit state 𝜌 is given by

𝜌𝐵(|𝜓⟩) =
1

2
|1⟩⟨1| ⊗ |𝜓⟩⟨𝜓|+ 1

2
|0⟩⟨0| ⊗ 𝐼

2𝑛−1
, (E2)

where |𝜓⟩ is again a fixed (𝑛− 1)-qubit pure state, sampled at the outset from the Haar measure.

It is not hard to see that in hypothesis A, the principal component (largest eigenvector) is |𝜑⟩ = |0⟩ ⊗ |𝜓⟩.
On the other hand, in hypothesis B, the principal component (largest eigenvector) is |𝜑⟩ = |1⟩ ⊗ |𝜓⟩. Hence,
⟨𝜑|𝑍1 |𝜑⟩ = 1 in hypothesis A, but ⟨𝜑|𝑍1 |𝜑⟩ = −1 in hypothesis B. If an algorithm in the conventional scenario
can predict ⟨𝜓|𝑍1 |𝜓⟩ up to 0.25 error with probability at least 0.8, then we can use the output from the algorithm
to distinguish between hypotheses A and B with a success probability of at least 0.8.

Similarly, we have tr(𝑍1𝜌
2)/ tr(𝜌2) = (2𝑛−1 − 1)/(2𝑛−1 + 1) in hypothesis A and tr(𝑍1𝜌

2)/ tr(𝜌2) = −(2𝑛−1 −
1)/(2𝑛−1 + 1) in hypothesis B. If an algorithm in the conventional scenario can predict tr(𝑍1𝜌

2)/ tr(𝜌2) up to 0.25
error with probability at least 0.8, then we can use the output from the algorithm to distinguish between hypothesis
A and B with a success probability of at least 0.8.

Together, a lower bound for distinguishing hypotheses A and B using conventional experiments immediately
implies a lower bound for both Theorem 8 and Theorem 9.

E.1.b. Total variation distance

As in previous sections, let 𝑝𝜌(ℓ) denote the probability to arrive at the leaf node ℓ using the learning algorithm
in the conventional setting when the unknown state is 𝜌. If the algorithm can distinguish between hypotheses A
and B with success probability 0.8, then using Eq. (C10) we have

TV

(︂
E
|𝜓⟩
𝑝𝜌𝐴(|𝜓⟩), E

|𝜓⟩
𝑝𝜌𝐵(|𝜓⟩)

)︂
≥ 0.6. (E3)

From the triangle inequality, we have

TV

(︂
E
|𝜓⟩
𝑝𝜌𝐴(|𝜓⟩), 𝑝𝐼/2𝑛

)︂
+TV

(︂
E
|𝜓⟩
𝑝𝜌𝐵(|𝜓⟩), 𝑝𝐼/2𝑛

)︂
≥ 0.6. (E4)

For each leaf node ℓ, we consider the path from the root to ℓ,

𝑢0 = 𝑟
𝑠1−→ 𝑢1

𝑠2−→ 𝑢2
𝑠3−→ . . .

𝑠𝑇−1−−−→ 𝑢𝑇−1
𝑠𝑇−−→ 𝑢𝑇 = ℓ. (E5)

At each node 𝑢, we perform a POVM measurement {𝑤𝑢𝑠 |𝜑𝑢𝑠 ⟩⟨𝜑𝑢𝑠 |}𝑠 on 𝜌 to obtain an outcome 𝑠 with probability

𝑤𝑢𝑠 ⟨𝜑𝑢𝑠 | 𝜌 |𝜑𝑢𝑠 ⟩ . (E6)

Hence, we can write down the probability to arrive at the leaf ℓ as

𝑝𝜌(ℓ) =
𝑇∏︁
𝑡=1

𝑤𝑢𝑡−1
𝑠𝑡 ⟨𝜑𝑢𝑡−1

𝑠𝑡 | 𝜌 |𝜑𝑢𝑡−1
𝑠𝑡 ⟩ . (E7)

We will use 𝜌(|𝜓⟩) to denote either 𝜌𝐴(|𝜓⟩) or 𝜌𝐵(|𝜓⟩). Then recalling (D16), we have

TV

(︂
E
|𝜓⟩
𝑝𝜌(|𝜓⟩), 𝑝𝐼/2𝑛

)︂
=
∑︁
ℓ

𝑝𝐼/2𝑛(ℓ)max

(︃
0, 1− E

|𝜓⟩

𝑇∏︁
𝑡=1

2𝑛 ⟨𝜑𝑢𝑡−1
𝑠𝑡 | 𝜌(|𝜓⟩) |𝜑𝑢𝑡−1

𝑠𝑡 ⟩
)︃
. (E8)

E.1.c. Upper bound for total variation distance

The central quantity to control in our bound on the total variation distance is

E
|𝜓⟩

𝑇∏︁
𝑡=1

2𝑛 ⟨𝜑𝑢𝑡−1
𝑠𝑡 | 𝜌(|𝜓⟩) |𝜑𝑢𝑡−1

𝑠𝑡 ⟩ . (E9)
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Without loss of generality, let us consider 𝜌(|𝜓⟩) = 𝜌𝐴(|𝜓⟩) = 1
2 |0⟩⟨0|⊗ |𝜓⟩⟨𝜓|+ 1

2 |1⟩⟨1|⊗ 𝐼
2𝑛−1 . Suppose each |𝜑𝑢𝑡−1

𝑠𝑡 ⟩
takes the form

|𝜑𝑢𝑡−1
𝑠𝑡 ⟩ = 𝛼𝑢𝑡−1

𝑠𝑡 |0⟩ ⊗ |𝜑𝑢𝑡−1,0
𝑠𝑡 ⟩+ 𝛽𝑢𝑡−1

𝑠𝑡 |1⟩ ⊗ |𝜑𝑢𝑡−1,1
𝑠𝑡 ⟩ , (E10)

where 𝛼𝑢𝑡−1
𝑠𝑡 , 𝛽

𝑢𝑡−1
𝑠𝑡 ∈ C and

⃒⃒
𝛼
𝑢𝑡−1
𝑠𝑡

⃒⃒2
+
⃒⃒
𝛽
𝑢𝑡−1
𝑠𝑡

⃒⃒2
= 1. Then we have

E
|𝜓⟩

𝑇∏︁
𝑡=1

2𝑛 ⟨𝜑𝑢𝑡−1
𝑠𝑡 | 𝜌(|𝜓⟩) |𝜑𝑢𝑡−1

𝑠𝑡 ⟩ = E
|𝜓⟩

𝑇∏︁
𝑡=1

(︁
2𝑛−1

⃒⃒
𝛼𝑢𝑡−1
𝑠𝑡

⃒⃒2 ⃒⃒⟨𝜓|𝜑𝑢𝑡−1,0
𝑠𝑡 ⟩

⃒⃒2
+
⃒⃒
𝛽𝑢𝑡−1
𝑠𝑡

⃒⃒2)︁ (E11)

=
∑︁

𝑆⊆{1,...,𝑇}

∏︁
𝑡 ̸∈𝑆

⃒⃒
𝛽𝑢𝑡−1
𝑠𝑡

⃒⃒2 [︃ E
|𝜓⟩

∏︁
𝑡∈𝑆

2𝑛−1
⃒⃒
𝛼𝑢𝑡−1
𝑠𝑡

⃒⃒2 ⃒⃒⟨𝜓|𝜑𝑢𝑡−1,0
𝑠𝑡 ⟩

⃒⃒2]︃
. (E12)

We need to lower bound the above quantity in order to upper bound the total variation distance. In order to do
so, we utilize the following lemma. The proof of the lemma is based on Haar integration. For readers unfamiliar
with Haar integration, we would suggest skipping the proof of this lemma.

Lemma 2 (High moment bound for Haar-random state). Consider any 𝑚-qubit pure states |𝜑1⟩ , . . . , |𝜑𝐾⟩ and an
𝑚-qubit pure state |𝜓⟩ sampled from the Haar measure, we have

E
|𝜓⟩

𝐾∏︁
𝑘=1

|⟨𝜓|𝜑𝑘⟩|2 ≥
1

(2𝑚 +𝐾 − 1) . . . (2𝑚 + 1)(2𝑚)
. (E13)

Proof. The Haar integration over states shows that

E
|𝜓⟩
|𝜓⟩⟨𝜓|⊗𝐾 =

1

(2𝑚 +𝐾 − 1) . . . (2𝑚 + 1)(2𝑚)

∑︁
𝜋∈𝒮𝐾

𝜋, (E14)

where 𝒮𝐾 is the permutation group of 𝐾 items, and 𝜋 is the permutation operator over the 𝐾 tensor-product
space. From Lemma 5.12 in [12], we have

∑︁
𝜋∈𝒮𝐾

tr

(︃
𝜋

𝐾⨂︁
𝑘=1

|𝜑𝑘⟩⟨𝜑𝑘|
)︃
≥ 1. (E15)

Therefore, we find

E
|𝜓⟩

𝐾∏︁
𝑘=1

|⟨𝜓|𝜑𝑘⟩|2 ≥
1

(2𝑚 +𝐾 − 1) . . . (2𝑚 + 1)(2𝑚)
. (E16)

This concludes the proof.

We apply this lemma with

𝑚 ≡ 𝑛− 1, 𝐾 ≡ |𝑆|, |𝜑𝑘⟩ ≡ |𝜑𝑢𝑡−1,0
𝑠𝑡 ⟩ (E17)

to obtain the following lower bound,

E
|𝜓⟩

∏︁
𝑡∈𝑆

2𝑛−1
⃒⃒
𝛼𝑢𝑡−1
𝑠𝑡

⃒⃒2 ⃒⃒⟨𝜓|𝜑𝑢𝑡−1,0
𝑠𝑡 ⟩

⃒⃒2 ≥∏︁
𝑡∈𝑆

⃒⃒
𝛼
𝑢𝑡−1
𝑠𝑡

⃒⃒2
(1 + |𝑆|−1

2𝑛−1 ) . . . (1 +
1

2𝑛−1 )(1)
(E18)

≥
∏︁
𝑡∈𝑆

⃒⃒
𝛼
𝑢𝑡−1
𝑠𝑡

⃒⃒2(︁
1 + |𝑆|−12𝑛−1

)︁|𝑆|−1 (E19)

≥
(︂
1 +

𝑇 − 1

2𝑛−1

)︂−(𝑇−1)∏︁
𝑡∈𝑆

⃒⃒
𝛼𝑢𝑡−1
𝑠𝑡

⃒⃒2
. (E20)
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Combining with Eq. (E12), we have

E
|𝜓⟩

𝑇∏︁
𝑡=1

2𝑛 ⟨𝜑𝑢𝑡−1
𝑠𝑡 | 𝜌(|𝜓⟩) |𝜑𝑢𝑡−1

𝑠𝑡 ⟩ ≥
(︂
1 +

𝑇 − 1

2𝑛−1

)︂−(𝑇−1) ∑︁
𝑆⊆{1,...,𝑇}

∏︁
𝑡̸∈𝑆

⃒⃒
𝛽𝑢𝑡−1
𝑠𝑡

⃒⃒2∏︁
𝑡∈𝑆

⃒⃒
𝛼𝑢𝑡−1
𝑠𝑡

⃒⃒2 (E21)

=

(︂
1 +

𝑇 − 1

2𝑛−1

)︂−(𝑇−1) 𝑇∏︁
𝑡=1

(︁⃒⃒
𝛽𝑢𝑡−1
𝑠𝑡

⃒⃒2
+
⃒⃒
𝛼𝑢𝑡−1
𝑠𝑡

⃒⃒2)︁ (E22)

=

(︂
1 +

𝑇 − 1

2𝑛−1

)︂−(𝑇−1)
. (E23)

Next we leverage Eq. (E8) to obtain

TV

(︂
E
|𝜓⟩
𝑝𝜌(|𝜓⟩), 𝑝𝐼/2𝑛

)︂
≤
∑︁
ℓ

𝑝𝐼/2𝑛(ℓ)max

(︃
0, 1−

(︂
1 +

𝑇 − 1

2𝑛−1

)︂−(𝑇−1))︃
(E24)

= 1−
(︂
1 +

𝑇 − 1

2𝑛−1

)︂−(𝑇−1)
. (E25)

The second line follows from
∑︀
ℓ 𝑝𝐼/2𝑛(ℓ) = 1 because 𝑝𝐼/2𝑛(ℓ) is a probability distribution.

E.1.d. Lower bound for the number of measurements

We can now utilize the lower bound on the total variation distance given in Eq. (E4) and the upper bound
obtained above to find

2

(︃
1−

(︂
1 +

𝑇 − 1

2𝑛−1

)︂−(𝑇−1))︃
≥ TV

(︂
E
|𝜓⟩
𝑝𝜌𝐴(|𝜓⟩), 𝑝𝐼/2𝑛

)︂
+TV

(︂
E
|𝜓⟩
𝑝𝜌𝐵(|𝜓⟩), 𝑝𝐼/2𝑛

)︂
≥ 0.6. (E26)

Hence, we have the inequality

0.7 ≥
(︂
1 +

𝑇 − 1

2𝑛−1

)︂−(𝑇−1)
, (E27)

=⇒ (𝑇 − 1) log

(︂
1 +

𝑇 − 1

2𝑛−1

)︂
≥ log(10/7). (E28)

Because log(1 + 𝑥) ≤ 𝑥 for all 𝑥 > −1, we have

(𝑇 − 1)2 ≥ 2𝑛−1 log(10/7) =⇒ 𝑇 ≥ 1 +

√︃
log
(︀
10
7

)︀
2

2𝑛/2. (E29)

Finally, we have established the lower bound 𝑇 = Ω(2𝑛/2) stated in Theorem 8.

E.2. An exponential lower bound using pseudorandomness

In our exponential lower bound in the previous subsection, we relied on a state that was in part constructed
using a Haar-random (𝑛− 1)-qubit state |𝜓⟩. However, preparing a Haar-random state from a simple initial state
(say, a product state) requires circuit depth exponential in 𝑛. As such, we can not prepare Haar-random states in
practice. Accordingly we cannot prepare either 𝜌𝐴(|𝜓⟩) or 𝜌𝐵(|𝜓⟩) in realistic circumstances.

However, we could instead efficiently construct pseudorandom states |𝜓⟩ which are (very plausibly) indistinguish-
able from Haar-random states if we probe with any POVM instantiated by a poly(𝑛)-time quantum algorithm [49].
We will elaborate on this shortly. The parenthetical caveat ‘very plausibly’ is due to the fact that the construction
we use relies on cryptographic assumptions which are not proven, but are widely believed. In particular, we need
to suppose the existence of quantum-secure one-way functions [49]; these are functions which are efficient to eval-
uate but are hard to invert even with a quantum computer. Making such an assumption is standard practice in
computational complexity theory, and so we proceed apace.

Let us recall the definition of a pseudorandom quantum state:
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Definition 3 (Pseudorandom quantum states; paraphrased from Definition 3 of [49]). Given a set 𝒦, a family of
pseudorandom quantum states on 𝑛 qubits is a family of states {|𝜑𝑘⟩}𝑘∈𝒦 and a probability distribution 𝒟 over 𝒦
such that:

• There is a poly(𝑛)-time quantum algorithm that samples a single element 𝑘 from 𝒦 according to 𝒟 and
generates the corresponding state |𝜑𝑘⟩;

• For any polynomial 𝑡(𝑛) and any poly(𝑛)-time quantum algorithm 𝒜 with outputs in {0, 1}, we have⃒⃒⃒
Pr𝑘←𝒦

[︀
𝒜(|𝜑𝑘⟩⊗𝑡(𝑛)) = 1

]︀
− Pr|𝜓⟩←Haar

[︀
𝒜(|𝜓⟩⊗𝑡(𝑛)) = 1

]︀⃒⃒⃒
≤ negl(𝑛). (E30)

Here negl(𝑛) is a function such that for all constants 𝑐 > 0 we have negl(𝑛) < 𝑛−𝑐 for 𝑛 sufficiently large.

We can interpret the above definition as follows. Eq. (E30) says that if we are given a polynomial 𝑡(𝑛) number of
copies of either (i) a fixed pseudorandom state, or (ii) a fixed Haar random state, any polynomial time quantum
algorithm with binary outputs cannot distinguish between the two cases. Since an exponential depth quantum
algorithm can distinguish between the two cases, (E30) describes a notion of computational indistinguishability,
i.e. we cannot distinguish with polynomial time computational resources.

A key question is: do pseudorandom quantum states exist? We recall the following, contingent result.

Lemma 3 (Existence of pseudorandom quantum states [49]). If there exist quantum-secure one-way functions,
then they can be used to construct pseudorandom quantum states.

Explicit details of the construction can be found in [49]; there have also been refinements and generalizations in
follow-up work (see e.g. [50, 51]).

Before stating the main result of this section, we require the following definition:

Definition 4 (Polynomial-time algorithms in the conventional scenario). A polynomial-time algorithm 𝒜 in the
conventional scenario is constructed as follows. We consider a learning tree 𝒯 in the conventional scenario with
leaves ℓ, and require that the protocol described by the learning tree can be implemented by an at most poly(𝑛)-time
quantum algorithm. (As such, the depth of 𝒯 is at most polynomial in 𝑛.) Then let 𝒟 be a poly(𝑛)-time classical
algorithm which, given the transcript of measurements encoded into the leaves ℓ of 𝒯 , provides a binary output 0
or 1. We let 𝒜 be a map from 𝑛-qubit density matrices 𝜌 to {0, 1}, corresponding to instantiating the learning tree
𝒯 on copies of 𝜌, followed by using 𝒟 on the measurement transcript to determine a binary outcome.

We can now leverage the putative pseudorandom states and the above definition to establish the following result:

Theorem 10 (Lower bound many-versus-many distinguishing task using pseudorandom states). Let {|𝜑𝑘⟩}𝑘∈𝒦
be a family of pseudorandom states on 𝑛− 1 qubits. Then any polynomial-time algorithm 𝒜 in the conventional
scenario with binary output cannot distinguish 𝜌𝐴(|𝜑𝑘⟩) from 𝜌𝐵(|𝜑𝑘⟩) for 𝑘 sampled from the probability distribution
over 𝒦. That is: ⃒⃒

Pr𝑘←𝒦
[︀
𝒜(𝜌𝐴(|𝜑𝑘⟩)) = 1

]︀
− Pr𝑘←𝒦

[︀
𝒜(𝜌𝐵(|𝜑𝑘⟩)) = 1

]︀⃒⃒
≤ negl(𝑛) . (E31)

Proof. Using the triangle inequality several times we have⃒⃒
Pr𝑘←𝒦

[︀
𝒜(𝜌𝐴(|𝜑𝑘⟩)) = 1

]︀
− Pr𝑘←𝒦

[︀
𝒜(𝜌𝐵(|𝜑𝑘⟩)) = 1

]︀⃒⃒
(E32)

≤
⃒⃒
Pr|𝜓⟩←Haar

[︀
𝒜(𝜌𝐴(|𝜓⟩)) = 1

]︀
− Pr|𝜓⟩←Haar

[︀
𝒜(𝜌𝐵(|𝜓⟩)) = 1

]︀⃒⃒
+
⃒⃒
Pr𝑘←𝒦

[︀
𝒜(𝜌𝐴(|𝜑𝑘⟩)) = 1

]︀
− Pr|𝜓⟩←Haar

[︀
𝒜(𝜌𝐴(|𝜓⟩)) = 1

]︀⃒⃒
+
⃒⃒
Pr𝑘←𝒦

[︀
𝒜(𝜌𝐵(|𝜑𝑘⟩)) = 1

]︀
− Pr|𝜓⟩←Haar

[︀
𝒜(𝜌𝐵(|𝜓⟩)) = 1

]︀⃒⃒
.

Let 𝒯 be the learning tree corresponding to 𝒜, and let 𝒟 be the binary decision function mapping leaves of 𝒯 to
{0, 1}. The depth 𝑇 of 𝒯 is necessarily at most polynomial in 𝑛; let us denote the depth by 𝑇 (𝑛). Then the first
term on the right-hand side of (E32) is upper bounded by⃒⃒

Pr|𝜓⟩←Haar
[︀
𝒜(𝜌𝐴(|𝜓⟩)) = 1

]︀
− Pr|𝜓⟩←Haar

[︀
𝒜(𝜌𝐵(|𝜓⟩)) = 1

]︀⃒⃒
(E33)

=

⃒⃒⃒⃒
⃒⃒ ∑︁
ℓ∈ leaf(𝒯 ) :𝒟(ℓ)=1

(︂
E
|𝜓⟩
𝑝𝜌𝐴(|𝜓⟩)(ℓ)− E

|𝜓⟩
𝑝𝜌𝐵(|𝜓⟩)(ℓ)

)︂⃒⃒⃒⃒⃒⃒
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≤
∑︁

ℓ∈ leaf(𝒯 )

⃒⃒⃒⃒
E
|𝜓⟩
𝑝𝜌𝐴(|𝜓⟩)(ℓ)− E

|𝜓⟩
𝑝𝜌𝐵(|𝜓⟩)(ℓ)

⃒⃒⃒⃒

≤ 2TV

(︂
E
|𝜓⟩
𝑝𝜌𝐴(|𝜓⟩), 𝑝𝐼/2𝑛

)︂
+ 2TV

(︂
E
|𝜓⟩
𝑝𝜌𝐵(|𝜓⟩), 𝑝𝐼/2𝑛

)︂
≤ 4

(︃
1−

(︂
1 +

𝑇 (𝑛)− 1

2𝑛−1

)︂−(𝑇 (𝑛)−1)
)︃

(E34)

where the last inequality comes from (E26).
Next we turn to bounding the second term on the right-hand side of the inequality in (E32), namely⃒⃒

Pr𝑘←𝒦
[︀
𝒜(𝜌𝐴(|𝜑𝑘⟩)) = 1

]︀
− Pr|𝜓⟩←Haar

[︀
𝒜(𝜌𝐴(|𝜓⟩)) = 1

]︀⃒⃒
.

First, we observe that every 𝒜 takes in 𝑇 (𝑛) copies of 𝜌𝐴. Accordingly, there is a polynomial-time algorithm ̃︀𝒜
such that ̃︀𝒜(𝜌⊗𝑇 (𝑛)

𝐴 ) = 𝒜(𝜌𝐴) for all inputs 𝜌𝐴; this just amounts to a slightly different way of notating the domain
of the algorithm 𝒜. Then we can rewrite our term of interest as⃒⃒⃒

Pr𝑘←𝒦
[︀ ̃︀𝒜(𝜌𝐴(|𝜑𝑘⟩)⊗𝑇 (𝑛)) = 1

]︀
− Pr|𝜓⟩←Haar

[︀ ̃︀𝒜(𝜌𝐴(|𝜓⟩)⊗𝑇 (𝑛)) = 1
]︀⃒⃒⃒
. (E35)

But now observe that for any state |𝜔⟩, there is a polynomial-time quantum algorithm which takes |𝜔⟩ as input and
produces 𝜌𝐴(|𝜔⟩) as output. Accordingly, repeating this algorithm on 𝑇 (𝑛) copies of |𝜔⟩, we produce 𝑇 (𝑛) copies
of 𝜌𝐴(|𝜔⟩); let us denote this 𝑇 (𝑛)-copy algorithm by ℬ. We have ℬ(|𝜔⟩⊗𝑇 (𝑛)) = 𝜌𝐴(|𝜔⟩)⊗𝑇 (𝑛), where ℬ runs in
polynomial time (recalling that 𝑇 (𝑛) is polynomial in 𝑛). Then we can write (E35) as⃒⃒⃒

Pr𝑘←𝒦
[︀
( ̃︀𝒜 ∘ ℬ)(|𝜑𝑘⟩⊗𝑇 (𝑛)) = 1

]︀
− Pr|𝜓⟩←Haar

[︀
( ̃︀𝒜 ∘ ℬ)(|𝜓⟩⊗𝑇 (𝑛)) = 1

]︀⃒⃒⃒
. (E36)

Since ̃︀𝒜∘ℬ is itself a polynomial-time quantum algorithm, Definition 3 tells us that (E36) above is upper bounded
by negl(𝑛). So in summary, we find⃒⃒

Pr𝑘←𝒦
[︀
𝒜(𝜌𝐴(|𝜑𝑘⟩)) = 1

]︀
− Pr|𝜓⟩←Haar

[︀
𝒜(𝜌𝐴(|𝜓⟩)) = 1

]︀⃒⃒
≤ negl(𝑛) . (E37)

In an identical manner we can show that the third term on the right-hand side of (E32) satisfies the bound⃒⃒
Pr𝑘←𝒦

[︀
𝒜(𝜌𝐵(|𝜑𝑘⟩)) = 1

]︀
− Pr|𝜓⟩←Haar

[︀
𝒜(𝜌𝐵(|𝜓⟩)) = 1

]︀⃒⃒
≤ negl(𝑛) . (E38)

Putting together the inequalities in (E32), (E33), (E37) and (E38), as well as observing that 𝑇 (𝑛) is at most
polynomially large in 𝑛, we achieve the desired bound.

The above Theorem immediately implies that the exponential advantage for quantum principal component
analysis in Theorem 8 has a counterpart for pseudorandom states. We note that in the pseudorandom context
the advantage is not strictly exponential; rather, the advantage holds for arbitrary polynomial -time quantum
learning algorithms in the quantum-enhanced scenario versus in the conventional scenario.

F. Learning a polynomial-time quantum process

Here we consider the problem of learning a polynomial-time quantum process, and provide a rigorous exponential
separation between the conventional and quantum-enhanced learning settings.

F.1. Problem setting

We consider an unknown quantum process ℰ on 𝑛 qubits generated as follows.

• An 𝑛-qubit state 𝜎 is accompanied by an 𝑚 ancillary qubits initialized at |0𝑛⟩⟨0𝑛|.

• 𝑝 unknown two-qubit unitary gates are applied on the (𝑛+𝑚)-qubit system 𝜌⊗ |0𝑛⟩⟨0𝑛|.
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• The ancillary qubits are hidden, resulting in an 𝑛-qubit mixed state.

When 𝑚, 𝑝 = poly(𝑛), we refer to ℰ as a polynomial-time quantum process. Next, we consider an input probability
distribution 𝒟 over 𝑛-qubit mixed states 𝜎. The goal is to learn an approximate model ℰ̃ of ℰ , such that we can
accurately predict the output state on average:

E
𝜎∼𝒟

⃦⃦⃦
ℰ̃(𝜎)− ℰ(𝜎)

⃦⃦⃦
1
≤ 𝜖. (F1)

In the above, ‖𝑋‖1 = max𝑂:‖𝑂‖∞≤1 | tr(𝑂𝑋)| is the trace norm.

F.2. Rigorous statements

We have the following theorem for quantum-enhanced experiments showing that they can efficiently learn a
polynomial-time quantum process. We will prove the theorem later in Appendix F.3.

Theorem 11 (Approximate learning of quantum processes – polynomial upper bound). For any distribution 𝒟
and any 𝜖, 𝛿 > 0, there exists a learning algorithm in the quantum-enhanced setting that can learn an approximate
model ℰ̃ such that with probability at least 1− 𝛿,

E
𝜎∼𝒟

⃦⃦⃦
ℰ̃(𝜎)− ℰ(𝜎)

⃦⃦⃦
1
≤ 𝜖 (F2)

from at most ̃︀𝒪(poly(𝑛) log(1/𝛿)/𝜖4) accesses to ℰ, where ̃︀𝒪(·) hides factors of log(1/𝜖).

In contrast, our hardness results for predicting properties of physical states in the conventional setting (see Theo-
rem 6 in Appendix D.1) immediately implies the following exponential lower bound.

Corollary 2 (Approximate learning of quantum processes – exponential lower bound). Let 𝒟 be any distribution
and ℰ be the quantum process that always generates a state 𝜌 considered in Def. 2. Any algorithm in the conventional
setting that learns an approximate model ℰ̃ such that

E
𝜎∼𝒟

⃦⃦⃦
ℰ̃(𝜎)− ℰ(𝜎)

⃦⃦⃦
1
≤ 0.25, (F3)

must use at least Ω(2𝑛) accesses to ℰ.

Proof. We consider 𝑚 = 2𝑛. The two-qubit gates swap the input state 𝜎 to the first 𝑛 ancillary qubits. Then we
use the rest of the 𝑛 ancillary qubits and the 𝑛 system qubits (i.e. the qubits in the input state 𝜌) to prepare a
state 𝜌 considered in Def. 2. To prepare the maximally mixed state 𝐼/2𝑛, we entangle each of the system qubits
with the corresponding ancillary qubit to prepare a Bell state 1√

2
(|00⟩ + |11⟩). To prepare the alternative state

(𝐼 + 0.9𝑠𝑃 )/2𝑛, we perform the following procedure.

1. For qubit 𝑖, where 𝑃𝑖 is not the last non-identity Pauli operator (i.e. last in terms of having the largest
index 𝑖), we entangle the 𝑖-th system qubit with the corresponding ancillary qubit to prepare a Bell state
1√
2
(|00⟩+ |11⟩).

2. For the last remaining qubit 𝑖, which corresponds to the index 𝑖 such that 𝑃𝑖 is the last non-identity Pauli
operator, we apply a sequence of two-qubit gates entangling qubit 𝑖 to qubit 𝑗 with 𝑃𝑗 ̸= 𝐼. The sequence
of two-qubit gates stores the parity (or 1 − parity) of all qubits 𝑗 with 𝑃𝑗 ̸= 𝐼. After this step, when we
trace over the ancillary qubits, we have generated (𝐼 + 𝑠𝑃 (𝑍))/2𝑛, where 𝑃 (𝑍) =

⨂︀𝑛
𝑖=1 𝐹 (𝑃𝑖) and 𝐹 (𝐼) =

𝐼, 𝐹 (𝑋) = 𝑍,𝐹 (𝑌 ) = 𝐼, 𝐹 (𝑍) = 𝐼. Then, we rotate the corresponding ancillary qubit for qubit 𝑖 from |0⟩
to
√
0.95 |0⟩ +

√
0.05 |1⟩ and apply a controlled-not gate from the ancillary qubit (control) to qubit 𝑖. The

system qubits are now in the state (𝐼 + 0.9𝑠𝑃 (𝑍))/2𝑛.

3. Finally, for each qubit 𝑖 with 𝑃𝑖 = 𝑋, we rotate the system qubit from |0⟩ to |+⟩ = 1√
2
(|0⟩ + |1⟩) and from

|1⟩ to |−⟩ = 1√
2
(|0⟩ − |1⟩). For each qubit 𝑖 with 𝑃𝑖 = 𝑌 , we rotate from 0 to 𝑦+ and from 1 to 𝑦−. Tracing

over the ancillary qubits, the system qubits are now in the state (𝐼 + 0.9𝑠𝑃 )/2𝑛.
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Supplementary Figure 13: Illustration for the proof of Theorem 11 on learning polynomial-time quantum processes. We first
form a covering net (all dark blue dots) for the space of all polynomial-time quantum processes (the cloud shape). Any
polynomial-time quantum process is close to an element in the covering net. Then we perform quantum hypothesis selection
[47] using a quantum dataset stored in the quantum memory to find the approximate physical process.

We can see that the number of gates 𝑝 is 𝒪(𝑛). Furthermore, no matter what the input state 𝜎 is, the above
quantum process always produces a state 𝜌 considered in Def. 2.

When an algorithm in the conventional setting has learned an approximate model ℰ̃ with

E
𝜎∼𝒟

⃦⃦⃦
ℰ̃(𝜎)− ℰ(𝜎)

⃦⃦⃦
1
≤ 0.25, (F4)

we can use Jensen’s inequality to conclude⃦⃦⃦
E

𝜎∼𝒟
ℰ̃(𝜎)− 𝜌

⃦⃦⃦
1
≤ E
𝜎∼𝒟

⃦⃦⃦
ℰ̃(𝜎)− ℰ(𝜎)

⃦⃦⃦
1
≤ 0.25. (F5)

Because ‖𝑋‖1 = max𝑂:‖𝑂‖∞≤1 | tr(𝑂𝑋)|, the above implies that the algorithm can predict tr(𝑂𝜌) up to an error
of 0.25. From Theorem 6, we conclude that the learning algorithm must use at least Ω(2𝑛) copies of 𝜌, which
corresponds to Ω(2𝑛) accesses to ℰ .

F.3. Proof of polynomial upper bound in Theorem 11

Theorem 11 establishes an upper bound on the number of times we must access the unknown process ℰ in the
quantum-enhanced setting to construct an approximate model of ℰ . Note that the theorem only concerns the
number of times we run the process ℰ ; it does not address the computational complexity of the learning procedure.
Our strategy for proving the theorem is as follows. First we find an upper bound on the number of elements of
an 𝜖′-covering net for the set of all quantum processes that can be constructed using up to 𝑝 two-qubit quantum
gates, with distance defined by the diamond norm. Next we explain how to use a quantum hypothesis testing
algorithm to find a process ℰ̃ in the covering net that approximates ℰ as specified in (F2), if 𝜖′ is appropriately
chosen. This quantum hypothesis testing method can be carried out in the quantum-enhanced setting, but not
in the conventional setting. The number of times we must access ℰ depends on the size of the covering net, and
can be shown to scale polynomially with the number of gates 𝑝, proving the theorem. An illustration is given in
Supp. Fig. 13.

F.3.a. Covering net

First, we construct the covering net for the set 𝒮 of quantum processes with a fixed 𝑛,𝑚, 𝑝. An 𝜖-covering net
of a set 𝒮 is a subset 𝒩𝜖 ⊆ 𝒮 such that for every point 𝑥 ∈ 𝒮, there exists a point 𝑦 ∈ 𝒩 with ‖𝑥− 𝑦‖ ≤ 𝜖 in an



45

appropriate norm.
Recall that a unitary 𝑈 corresponds to a unitary channel 𝒰 defined as

𝒰(𝜌) = 𝑈𝜌𝑈 †. (F6)

Because two-qubit unitary channels form a bounded set in a finite-dimensional space, the 𝜖-covering net for two-
qubit unitary channels has a size of at most (︁𝑐1

𝜖

)︁𝑐2
, (F7)

where 𝑐1, 𝑐2 are two constants (see, e.g., Section 4.2 in [52]). Here, we consider the norm to be the diamond norm
‖·‖◇ (see Section 3.3 in [53]). The bound in (F7) only pertains to the covering net size when the unitary acts on
a fixed set of two qubits. Let us now consider two-qubit unitary channels that can act on any two of the 𝑛 +𝑚
qubits. Because there are

(︀
𝑛+𝑚

2

)︀
pairs of qubits that the unitary could act on, the size of the 𝜖-covering net 𝒩𝜖,𝑛+𝑚

of all two-qubit gates on an (𝑛+𝑚)-qubit system is upper bounded as follows,

|𝒩𝜖,𝑛+𝑚| ≤
(︂
𝑛+𝑚

2

)︂(︁𝑐1
𝜖

)︁𝑐2
. (F8)

To construct an 𝜖-covering net for the composed quantum process ℰ , we need to consider 𝜖 = 𝜖′/𝑝 in 𝒩𝜖,𝑛+𝑚.
Consider any sequence of two-qubit unitary channels 𝒰1, . . . ,𝒰𝑝 on an (𝑛 +𝑚)-qubit system. For each 𝑈𝑖 in the
sequence, we find the closest unitary channel 𝒰𝑖 in 𝒩𝜖,𝑛+𝑚, hence

⃦⃦⃦
𝒰𝑖 − 𝒰𝑖

⃦⃦⃦
◇
≤ 𝜖. Then we can use a telescoping

sum and the triangle inequality to see that⃦⃦⃦
tr𝑛+1,...,𝑛+𝑚 (𝒰𝑝 . . .𝒰1(𝜌⊗ |0𝑚⟩⟨0𝑚|))− tr𝑛+1,...,𝑛+𝑚

(︁
𝒰𝑝 . . .𝒰1(𝜌⊗ |0𝑚⟩⟨0𝑚|)

)︁⃦⃦⃦
1

(F9)

≤
⃦⃦⃦
𝒰𝑝 . . .𝒰1(𝜌⊗ |0𝑚⟩⟨0𝑚|)− 𝒰𝑝 . . .𝒰1(𝜌⊗ |0𝑚⟩⟨0𝑚|)

⃦⃦⃦
1

(F10)

≤
⃦⃦⃦
𝒰𝑝 . . .𝒰1(𝜌⊗ |0𝑚⟩⟨0𝑚|)− 𝒰𝑝𝒰𝑝−1 . . .𝒰1(𝜌⊗ |0𝑚⟩⟨0𝑚|)

⃦⃦⃦
1

+
⃦⃦⃦
𝒰𝑝𝒰𝑝−1 . . .𝒰1(𝜌⊗ |0𝑚⟩⟨0𝑚|)− 𝒰𝑝𝒰𝑝−1 . . .𝒰1(𝜌⊗ |0𝑚⟩⟨0𝑚|)

⃦⃦⃦
1

(F11)

≤
⃦⃦⃦
𝒰𝑝−1 . . .𝒰1(𝜌⊗ |0𝑚⟩⟨0𝑚|)− 𝒰𝑝−1 . . .𝒰1(𝜌⊗ |0𝑚⟩⟨0𝑚|)

⃦⃦⃦
1
+
⃦⃦⃦
𝒰𝑝 − 𝒰𝑝

⃦⃦⃦
◇

(F12)

≤
⃦⃦⃦
𝒰𝑝−2 . . .𝒰1(𝜌⊗ |0𝑚⟩⟨0𝑚|)− 𝒰𝑝−2 . . .𝒰1(𝜌⊗ |0𝑚⟩⟨0𝑚|)

⃦⃦⃦
1
+
⃦⃦⃦
𝒰𝑝−1 − 𝒰𝑝−1

⃦⃦⃦
◇
+
⃦⃦⃦
𝒰𝑝 − 𝒰𝑝

⃦⃦⃦
◇

(F13)

≤ . . . (F14)

≤
𝑝∑︁
𝑖=1

⃦⃦⃦
𝒰𝑖 − 𝒰𝑖

⃦⃦⃦
◇

(F15)

≤ 𝑝𝜖 = 𝜖′. (F16)

The first inequality uses the fact that taking partial trace does not increase the trace norm. The second inequality
uses ‖𝐴−𝐵‖ ≤ ‖𝐴− 𝐶‖ + ‖𝐶 −𝐵‖. The third inequality uses ‖ℰ(𝑋)‖1 ≤ ‖𝑋‖1 for any CPTP map ℰ , and
‖ℰ(𝜌)‖1 ≤ ‖ℰ‖◇ ‖𝜌‖1 = ‖ℰ‖◇. The fourth inequality considers the same steps taken in the second and third
inequality. Then, using induction, we obtain the formula given in the second-to-last line. The last line uses the
fact that

⃦⃦⃦
𝒰𝑖 − 𝒰𝑖

⃦⃦⃦
◇
≤ 𝜖 for all 𝑖 and 𝜖 = 𝜖′/𝑝.

From the above analysis, we can see that we can find an 𝜖′-covering net 𝒩𝜖′,𝑛,𝑚,𝑝 for the space of ℰ with an
𝑛-qubit input state, 𝑚 ancillary qubits, and 𝑝 two-qubit gates that satisfies

|𝒩𝜖′,𝑛,𝑚,𝑝| ≤
[︂(︂
𝑛+𝑚

2

)︂(︁𝑝𝑐1
𝜖′

)︁𝑐2]︂𝑝
. (F17)

For any ℰ in the space, we can find an ℰ̃ ∈ 𝒩𝜖′,𝑛,𝑚,𝑝 such that for all 𝑛-qubit input states 𝜌 we have⃦⃦⃦
ℰ(𝜌)− ℰ̃(𝜌)

⃦⃦⃦
1
≤ 𝜖′. (F18)

We will then utilize the 𝜖-covering net 𝒩𝜖′,𝑛,𝑚,𝑝 in the subsequent proof. An 𝜖-covering net of quantum processes
have also been used in [8] to establish an information-theoretic bound on quantum advantage in [54] to analyze
generalization performance of quantum neural networks.
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F.3.b. Learning via Hypothesis Selection: Protocol and Analysis

We will sample 𝑁in input states 𝜌1, . . . , 𝜌𝑁in from the distribution 𝒟. For each 𝑖 ∈ [𝑁in] and every ̃︀ℰ𝑘 ∈
𝒩𝜖′,𝑛,𝑚,𝑝 (for 𝜖′ to be tuned later), we will access the true process ℰ a number of times 𝑁out using 𝜌𝑖 as the input
state, obtaining 𝑁out copies of ℰ(𝜌𝑖). We will store these 𝑁in · 𝑁out states in the quantum memory and run a
known algorithm for quantum hypothesis selection [47] to determine for which 𝑘 the product state

⨂︀𝑁in

𝑖=1
̃︀ℰ𝑘(𝜌𝑖) is

approximately closest to
⨂︀𝑁in

𝑖=1 ℰ(𝜌𝑖). We will argue that if 𝜖′ is sufficiently small and 𝑁in sufficiently large, then
the index 𝑘 that we find will satisfy

E
𝜌∼𝒟

[︁⃦⃦⃦
ℰ(𝜌)− ̃︀ℰ𝑘(𝜌)⃦⃦⃦

1

]︁
≤ 𝜖 , (F19)

as desired.
We now proceed to the analysis of this protocol. We begin with an estimate for the distance between product

states whose components are pairwise far from each other.

Lemma 4. If 𝜌1, . . . , 𝜌𝑁 and 𝜌′1, . . . , 𝜌′𝑁 satisfy 1
𝑁

∑︀𝑁
𝑖=1 ‖𝜌𝑖 − 𝜌′𝑖‖1 ≥ 𝜖, then⃦⃦⃦⃦

⃦⨂︁
𝑖

𝜌𝑖 −
⨂︁
𝑖

𝜌′𝑖

⃦⃦⃦⃦
⃦
1

≥ 2
(︁
1− (1− 𝜖2/4)𝑁/2

)︁
. (F20)

Proof. For convenience, denote 𝜖𝑖 := ‖𝜌𝑖 − 𝜌′𝑖‖1. We have that 𝐹 (𝜌𝑖, 𝜌′𝑖) ≤ 1− 𝜖2𝑖 /4, so⃦⃦⃦⃦
⃦⨂︁

𝑖

𝜌𝑖 −
⨂︁
𝑖

𝜌′𝑖

⃦⃦⃦⃦
⃦
1

≥ 2

⎛⎝1−

⎯⎸⎸⎷𝐹

(︃⨂︁
𝑖

𝜌𝑖,
⨂︁
𝑖

𝜌′𝑖

)︃⎞⎠ (F21)

≥ 2

⎛⎝1−

⎯⎸⎸⎷ 𝑁∏︁
𝑖=1

(1− 𝜖2𝑖 /4)

⎞⎠ (F22)

≥ 2

⎛⎝1−
(︃

1

𝑁

∑︁
𝑖

(1− 𝜖2𝑖 /4)
)︃𝑁/2⎞⎠ (F23)

= 2
(︁
1− (1− 𝜖2/4)𝑁/2

)︁
(F24)

where the first step follows by the standard inequality ‖𝜌− 𝜌′‖1 ≥ 2
√︀
1− 𝐹 (𝜌, 𝜌′) , the second step follows by

tensorization of fidelity, the third step follows by AM-GM and the fact that 𝜖𝑖 = ‖𝜌𝑖 − 𝜌′𝑖‖1 ≤ 2, and the last step
follows from the assumption.

Next, we elaborate on how to select 𝑁in. Consider any ̃︀ℰ ∈ 𝒩𝜖′,𝑛,𝑚,𝑝. By Hoeffding’s inequality, because
𝜌1, . . . , 𝜌𝑁in

are sampled independently and identically distribued from the distribution 𝒟, and ‖𝜌− 𝜌′‖ ≤ 2 for all
density matrices 𝜌, 𝜌′ we have ⃒⃒⃒⃒

⃒ 1

𝑁in

𝑁in∑︁
𝑖=1

⃦⃦⃦ ̃︀ℰ(𝜌𝑖)− ℰ(𝜌𝑖)⃦⃦⃦
1
− E
𝜌∼𝒟

⃦⃦⃦ ̃︀ℰ(𝜌)− ℰ(𝜌)⃦⃦⃦
1

⃒⃒⃒⃒
⃒ ≤ 𝜖/2 (F25)

with probability at least 1− 𝛿′ provided 𝑁in = Ω(log(1/𝛿′)/𝜖2). By a union bound over 𝒩𝜖′,𝑛,𝑚,𝑝, the above bound
holds simultaneously for all ̃︀ℰ ∈ 𝒩𝜖′,𝑛,𝑚,𝑝 with probability at least 1 − |𝒩𝜖′,𝑛,𝑚,𝑝|𝛿′. Henceforth, we condition on
this event holding.

The following shows that it suffices to find ̃︀ℰ ∈ 𝒩𝜖′,𝑛,𝑚,𝑝 for which the product state
⨂︀𝑁in

𝑖=1
̃︀ℰ(𝜌𝑖) is sufficiently

close to
⨂︀𝑁in

𝑖=1 ℰ(𝜌𝑖).
Lemma 5. If (F25) holds for all ̃︀ℰ ∈ 𝒩𝜖′,𝑛,𝑚,𝑝, then if⃦⃦⃦⃦

⃦
𝑁in⨂︁
𝑖=1

̃︀ℰ(𝜌𝑖)− 𝑁in⨂︁
𝑖=1

ℰ(𝜌𝑖)
⃦⃦⃦⃦
⃦
1

≤ 2
(︁
1− (1− 𝜖2/16)𝑁in/2

)︁
(F26)

for some ̃︀ℰ ∈ 𝒩𝜖′,𝑛,𝑚,𝑝, we have that E𝜌∼𝒟
⃦⃦⃦ ̃︀ℰ(𝜌)− ℰ(𝜌)⃦⃦⃦

1
≤ 𝜖.
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Proof. We prove the contrapositive. Suppose E𝜌∼𝒟
⃦⃦⃦ ̃︀ℰ(𝜌)− ℰ(𝜌)⃦⃦⃦

1
> 𝜖. Then by (F25), we have

1

𝑁in

𝑁in∑︁
𝑖=1

⃦⃦⃦ ̃︀ℰ(𝜌𝑖)− ℰ(𝜌𝑖)⃦⃦⃦
1
≥ 𝜖/2. (F27)

The lemma follows from Lemma 4.

As we show in the next lemma, there exists an ̃︀ℰ ∈ 𝒩𝜖′,𝑛,𝑚,𝑝, namely the process in the covering net which is
closest to ℰ , for which (F26) holds, provided 𝜖′ is sufficiently small.

Lemma 6. For any 𝜖′ > 0, there exists an ̃︀ℰ ∈ 𝒩𝜖′,𝑛,𝑚,𝑝 for which⃦⃦⃦⃦
⃦
𝑁in⨂︁
𝑖=1

̃︀ℰ(𝜌𝑖)− 𝑁in⨂︁
𝑖=1

ℰ(𝜌𝑖)
⃦⃦⃦⃦
⃦
1

≤ 𝑁in𝜖
′. (F28)

Proof. Take ̃︀ℰ ∈ 𝒩𝜖′,𝑛,𝑚,𝑝 satisfying
⃦⃦⃦ ̃︀ℰ(𝜌)− ℰ(𝜌)⃦⃦⃦

1
≤ 𝜖′ for all 𝜌. For convenience, let 𝜎𝑖 := ℰ(𝜌𝑖), 𝜎′𝑖 := ̃︀ℰ(𝜌𝑖),

and 𝛿𝑖 := 𝜎′𝑖 − 𝜎𝑖 for all 𝑖 ∈ {1, . . . , 𝑁in}. Then

𝑁in⨂︁
𝑖=1

𝜎′𝑖 −
𝑁in⨂︁
𝑖=1

𝜎𝑖 =

𝑁in∑︁
𝑖=1

⎡⎣⎛⎝ 𝑖−1⨂︁
𝑗=1

𝜎′𝑗

⎞⎠⊗ (𝜎′𝑖 − 𝜎𝑖)⊗

⎛⎝ 𝑁in⨂︁
𝑗=𝑖+1

𝜎𝑗

⎞⎠⎤⎦ , (F29)

so by the triangle inequality we conclude that ‖⨂︀𝑖 𝜎
′
𝑖 −
⨂︀

𝑖 𝜎𝑖‖1 ≤ 𝑁in𝜖
′ as claimed.

Lemma 5 and Lemma 6 guarantee the existence of a process in 𝒩𝜖′,𝑛,𝑚,𝑝 satisfying the desired bound of (F19).
To complete the proof of Theorem 11, we will use the following special case of a result from [47] to find a process
in the covering net which performs comparably.

Theorem 12 ([47], Theorem 1.5). Suppose we are given 𝑚 fixed hypothesis states 𝜎1, . . . , 𝜎𝑀 ∈ C𝑑×𝑑, parameters
0 < 𝜖, 𝛿 < 1/2, and access to copies of a state 𝜌 ∈ C𝑑×𝑑. Then there is an algorithm that uses

𝑁 = 𝒪
(︂

1

𝜖2
(︀
log3𝑀 + 𝛼 log𝑀

)︀
· 𝛼
)︂

(F30)

copies of 𝜌 for 𝛼 := log(log(1/𝜂)/𝛿) and 𝜂 := min𝑖 ‖𝜌− 𝜎𝑖‖1 such that with probability at least 1− 𝛿 the algorithm
outputs a 𝑘 ∈ {1, . . . ,𝑀} for which ‖𝜌− 𝜎𝑘‖1 ≤ 4𝜂.

We can now put together the ingredients assembled in this section to complete the proof of Theorem 11.

Proof of Theorem 11. We first prove the theorem for constant 𝛿. Take 𝜖′ = 𝑐/𝑁in for a sufficiently small constant
𝑐 > 0, 𝛿′ = 1/(10|𝒩𝜖′,𝑛,𝑚,𝑝|), and 𝑁in = ̃︀𝒪(𝑝/𝜖2), where ̃︀𝒪(·) hides factors of log 𝑛, log𝑚, log 𝑝, log 1/𝜖, so that
𝑁in ≥ Ω(log(1/𝛿′)/𝜖2) and (F25) holds for all ̃︀ℰ ∈ 𝒩𝜖′,𝑛,𝑚,𝑝 with probability at least 4/5. Note that for some
absolute constant 𝐶 > 0,

1− (1− 𝜖2/16)𝑁in/2 ≥ 1− 𝑒−𝑁in𝜖
2/32 = 1− 𝛿′𝐶 ≥ Ω(1) . (F31)

In contrast, by Lemma 6 and our choice of 𝜖′, there exists some ̃︀ℰ ∈ 𝒩𝜖′,𝑛,𝑚,𝑝 for which⃦⃦⃦⃦
⃦
𝑁in⨂︁
𝑖=1

̃︀ℰ(𝜌𝑖)− 𝑁in⨂︁
𝑖=1

ℰ(𝜌𝑖)
⃦⃦⃦⃦
⃦
1

≤ 𝑐 . (F32)

Applying Theorem 12 to 𝜎𝑘 =
⨂︀

𝑖
̃︀ℰ𝑘(𝜌𝑖) where ̃︀ℰ𝑘 is the 𝑘-th element of 𝒩𝜖′,𝑛,𝑚,𝑝, using 𝑁out copies of 𝜌 =

⨂︀
𝑖 ℰ(𝜌𝑖)

where

𝑁out = 𝒪
(︂

1

𝜖2
(︀
log3 |𝒩𝜖′,𝑛,𝑚,𝑝|+ 𝛼 log |𝒩𝜖′,𝑛,𝑚,𝑝|

)︀
· 𝛼
)︂
, 𝛼 := 𝒪(log log(1/𝑐)), (F33)
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we can output a 𝑘 for which ‖𝜎𝑘 − 𝜌‖1 ≤ 4𝑐 with probability 4/5. By taking the constant 𝑐 sufficiently small, we
can leverage (F31) and Lemma 5 to conclude that

E
𝜌∼𝒟

[︁⃦⃦⃦
ℰ(𝜌)− ̃︀ℰ𝑘(𝜌)⃦⃦⃦

1

]︁
≤ 𝜖 . (F34)

Note that 𝑁out in (F33) is dominated by the 𝜖−2 log |𝒩𝜖′,𝑛,𝑚,𝑝| term since 𝛼 = 𝒪(1), and so recalling (F17) and
our choice of 𝜖′ = 𝑐/𝑁in we obtain

𝑁out = 𝒪
(︂
𝑝3

𝜖2
log3 ((𝑛+𝑚)𝑝𝑁in)

)︂
= 𝒪

(︂
𝑝3

𝜖2
log3 ((𝑛+𝑚)𝑝𝑁in)

)︂
= ̃︀𝒪(︂𝑝3

𝜖2

)︂
, (F35)

where again ̃︀𝒪(·) hides logarithmic factors in 𝑛,𝑚, 𝑝, 1/𝜖.
As we require 𝑁out copies of

⨂︀𝑁in

𝑖=1 ℰ(𝜌𝑖), we must make 𝑁out ·𝑁in = ̃︀𝒪(𝑝4/𝜖4) accesses to ℰ . By union bounding
over (F25) holding for all ̃︀ℰ ∈ 𝒩𝜖′,𝑛,𝑚,𝑝 and over the success of the algorithm in Theorem 12, we obtain Theorem 11
for 𝛿 = 2/5 from the assumption that 𝑝 = poly(𝑛).

We now describe how to extend this result to general 𝛿 by a standard clustering argument. We can run 𝑟 :=
Θ(log(1/𝛿)) independent copies of the above protocol, resulting in indices 𝑘1, . . . , 𝑘𝑟 into 𝒩𝜖′,𝑛,𝑚,𝑝 such that for
any fixed 𝑖 ∈ [𝑟], ‖𝜎𝑘𝑖 − 𝜌‖1 ≤ 4𝑐 with probability at least 3/5. If 𝑆 ⊂ [𝑟] denotes the set of 𝑖 ∈ [𝑟] for which
‖𝜎𝑘𝑖 − 𝜌‖1 ≤ 4𝑐, then by a Chernoff bound, |𝑆| ≥ 𝑟/2 with probability at least 1− 𝛿 provided the constant factor
in the definition of 𝑟 is sufficiently large. Condition on the event that |𝑆| ≥ 𝑟/2.

Let 𝑘 be an index into 𝒩𝜖′,𝑛,𝑚,𝑝 for which there are at least 𝑟/2 indices 𝑖 ∈ [𝑟] for which ‖𝜎𝑘 − 𝜎𝑘𝑖‖1 ≤ 8𝑐, and
output the channel ̃︀ℰ𝑘. Such a 𝑘 certainly exists: take any 𝑖 ∈ 𝑆 and note that by triangle inequality, for any other
𝑗 ∈ 𝑆 we have ⃦⃦

𝜎𝑘𝑖 − 𝜎𝑘𝑗
⃦⃦
1
≤ ‖𝜎𝑘𝑖 − 𝜌‖1 +

⃦⃦
𝜎𝑘𝑗 − 𝜌

⃦⃦
1
≤ 8𝑐. (F36)

Now observe that regardless of which 𝑘 we choose that meets the criterion that at least 𝑟/2 indices 𝑖 ∈ [𝑟] satisfy
‖𝜎𝑘 − 𝜎𝑘𝑖‖1 ≤ 8𝑐, we must have

‖𝜎𝑘 − 𝜌‖1 ≤ 12𝑐. (F37)

Indeed, suppose to the contrary. Then for any 𝑖 ∈ 𝑆,

‖𝜎𝑘 − 𝜎𝑘𝑖‖1 ≥ ‖𝜎𝑘 − 𝜌‖1 − ‖𝜎𝑘𝑖 − 𝜌‖1 > 12𝑐− 4𝑐 = 8𝑐, (F38)

where the second step is by the definition of 𝑆 and the assumption that (F37) does not hold. As |𝑆| ≥ 𝑟/2, this
yields a contradiction of the fact that there are at least 𝑟/2 indices 𝑖 ∈ [𝑟] for which ‖𝜎𝑘 − 𝜎𝑘𝑖‖1 ≤ 8𝑐.

If we take the constant 𝑐 sufficiently small, then (F37) together with (F31) and Lemma 5 allow us to conclude
that E𝜌∼𝒟

[︁⃦⃦⃦
ℰ(𝜌)− ̃︀ℰ𝑘(𝜌)⃦⃦⃦

1

]︁
≤ 𝜖. As we ran 𝑟 := Θ(log(1/𝛿)) independent copies of the protocol that we used for

constant failure probability 𝛿, we merely incur an additional Θ(log(1/𝛿)) multiplicative overhead in the number of
access to ℰ we must make for general failure probability 𝛿.

G. Predicting highly-incompatible observables with bounded quantum memory

Here we will substantively generalize our results for predicting highly-incompatible observables, given in Ap-
pendix D. We show an exponential lower bound on the number of experiments when the size of the additional
quantum memory is not large enough.

G.1. Background and statement of results

Let us first recapitulate the setting of our previous results, so as to draw a contrast with our generalization.
We have so far considered an experimentalist who is given sequential access to copies of an unknown state 𝜌. In
each measurement round, the experimentalist receives a copy of 𝜌, and can measure with a POVM. The residual
post-measurement state is then discarded, and only the classical data of the POVM outcome is kept. This classical
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data can be used to inform the choice of POVM measurement employed in subsequent rounds, i.e. the protocol can
be adaptive. This kind of protocol is emblematic of most contemporary and historical experiments in physics.

Note that the information maintained and processed from round to round in the protocols described above is
solely classical. With the advent of quantum computers and more flexible quantum memory architectures, a new
possibility emerges. Suppose that the unknown state 𝜌 in question is an 𝑛-qubit state. Moreover, suppose we have
𝑛 + 𝑘 qubit registers under our control. Then we can use those registers however we please, including performing
arbitrary quantum information processing. Our only constraint is that each time we receive a new copy of 𝜌, we
must necessarily use 𝑛 qubits of our registers to hold it. It is thus appropriate to say that we have 𝑘 qubits of
quantum memory, since even when we receive a new state 𝜌 we can still maintain 𝑘 qubits worth of quantum data.
We further allow ourselves to maintain and process an arbitrary amount of classical data, thought of as being stored
in a classical device external to our quantum system.

A new question immediately presents itself: are there experimental tasks which are exponentially hard with
only 𝑘 qubits of quantum memory, but easy with 𝑘′ > 𝑘 qubits of quantum memory? In [12] this question was
answered in the affirmative, but only in the sense of query complexity. That is, it was shown that there is an
experimental task which requires Ω(2(𝑛−𝑘)/3) copies of 𝜌 if there are only 𝑘 qubits of quantum memory; however,
the gate complexity of achieving the task is always exponential regardless of the size of 𝑘. Let us unpack this
result. Note that if 𝑘 = 𝑛, the bound Ω(2(𝑛−𝑘)/3) becomes trivial; indeed, it can be shown that one only requires
a modest number of copies of 𝜌 to achieve the specified task if 𝑛 = 𝑘. But even in this case, the total number of
quantum operations required is exponentially large in 𝑛. Nonetheless, the result is an interesting one: it means
that unless 𝑘 goes as 𝑛− 𝑐 log(𝑛) (i.e. unless 𝑘 is logarithmically close to 𝑛), the task is exponentially hard. When
𝑘 ∼ 𝑛− 𝑐 log(𝑛), the task is only polynomially hard in the sense of query complexity.

While the aforementioned result is theoretically interesting, it does not correspond to a quantum memory ad-
vantage that could be realized by a quantum device on account of the exponential gate complexity required to
achieve the task for a quantum memory of any size. Here we ameliorate this issue, and present the first example
of a quantum memory advantage in the sense of both query and gate complexity, and as such it can be realized
on a quantum device. Moreover, we have realized this quantum advantage in our experiments on the Sycamore
quantum computer.

Our experimental task has the form of a partially-revealed many-versus-one distinguishing task, closely related
to the one in Appendix D. A statement of the new task is as follows:

Task 3 (Expectation value with bounded quantum memory). There is an unknown state 𝜌 which is either

1. A maximally mixed state 𝐼/2𝑛 on 𝑛 qubits, or

2. The state (𝐼 + 𝑃 )/2𝑛 where 𝑃 ∈ {𝐼,𝑋, 𝑌, 𝑍}⊗𝑛 ∖ {𝐼⊗𝑛} is a random but fixed Pauli string.

The choice of whether case 1 or case 2 is instantiated is made with equal probability at the outset, and is not revealed.
The experimentalist is given access to 𝑇 copies of the unknown state 𝜌 for a 𝑇 decided by the experimentalist, and
after this an observable 𝑂 is revealed. The task of the experimentalist is to determine the value of |tr(𝑂𝜌)| using
the final state of the 𝑛 + 𝑘 qubit registers, along with any classical information that has been stored or processed
along the way. In case 1 the operator 𝑂 is chosen uniformly at random from the non-identity Pauli strings; in case
2 the 𝑂 is chosen to be the Pauli operator 𝑃 if the state 𝜌 is (𝐼 + 𝑃 )/2𝑛.

Note that if 𝑘 = 𝑛 so that the total number of registers is 2𝑛, then the task can be readily solved using the algorithm
given in Appendix D.2. This algorithm is both query and gate efficient: we only require a constant number of
copies of 𝜌 (i.e. the number of copies is independent of 𝑛) and 𝑂(𝑛) gate complexity.

What is difficult is to show that if 𝑘 < 𝑛, then the number of copies of 𝜌 we require to determine |tr(𝑂𝜌)| as per
the task above is Θ(2(𝑛−𝑘)/3). We will establish this in the subsections which follow below.

G.2. Review of learning tree framework for bounded quantum memories

Here we provide an exposition of the learning tree framework for bounded quantum memories in [12]. As
explained above, suppose we have 𝑛 + 𝑘 qubit registers, where we designate 𝑘 as the quantum memory. Suppose
for the moment that 𝑘 < 𝑛. At each round in the protocol, we receive an 𝑛-qubit state 𝜌, which we must hold on
the 𝑛 non-memory registers. (Note that we cannot receive more than one copy of 𝜌, since we do not have enough
registers to hold additional copies on account of 𝑘 < 𝑛.) Then upon receiving and holding 𝜌, the state of all of
our registers can be written as 𝜌 ⊗Σ, where Σ is the density matrix of the 𝑘-qubit quantum memory. The most
general operation we can perform on the joint system is a quantum process, followed by a POVM measurement; we
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Supplementary Figure 14: Illustration of learning tree representation for algorithms with bounded quantum memory. We
consider algorithms with unlimited classical memory and a bounded quantum memory consisting of 𝑘 qubits. To each node
in the tree (corresponding to the state of the classical memory), we associate the 𝑘-qubit state of the bounded quantum
memory.

can then apply another quantum process followed by another POVM measurement, and so on. However, we can
rewrite an alternating sequence of quantum processes and POVM measurements as a single POVM measurement,
which we denote by {𝐹𝑖}𝑁−1𝑖=1 . Writing 𝐹𝑖 = 𝑀†𝑖𝑀𝑖, suppose our measurement outputs the 𝑖th POVM element.
Defining

𝐴𝜌𝑀𝑖
(Σ) := tr1,...,𝑛

(︁
𝑀𝑖(𝜌⊗Σ)𝑀 †𝑖

)︁
, (G1)

the reduced density matrix of our quantum memory is

𝐴𝜌𝑀𝑖
(Σ)

tr(𝐴𝜌𝑀𝑖
(Σ))

(G2)

with probability tr(𝐴𝜌𝑀𝑖
(Σ)). In the next round, we can leverage our measurement output 𝑖 to adaptively inform

our choice of POVM on

𝜌⊗
𝐴𝜌𝑀𝑖

(Σ)

tr(𝐴𝜌𝑀𝑖
(Σ))

. (G3)

Indeed, we can use the information of all of our previous POVM outcomes to inform the choice of our next POVM.
An illustration is given in Supp. Fig. 14.

The above description is ripe for being cast in the learning tree framework, which we presently articulate. The
definition below is the same as Definition 6.1 of [12], albeit with slightly different notation.

Definition 6.1 of [12] (Tree representation of learning states with bounded quantum memory). Let 𝜌 be a fixed,
unknown quantum density matrix on 𝑛 qubits. Suppose we have access to 𝑛+𝑘 qubit registers. A learning algorithm
with a quantum memory of size 𝑘 can be expressed as a rooted tree 𝒯 of depth 𝑇 , where each node encodes the
current state of the quantum memory in addition to the transcript of measurement outcomes the algorithm has seen
so far. In particular, the tree satisfies the following properties:

1. Each note 𝑢 is associated with a 𝑘-qubit unnormalized density matrix Σ𝜌(𝑢) corresponding to the current state
of the quantum memory.

2. For the root 𝑟 of the tree, Σ𝜌(𝑟) is an initial state denoted by Σ0.

3. At each note 𝑢, we apply a POVM measurement {𝐹𝑢𝑠 }𝑠 on 𝜌⊗Σ𝜌(𝑢) to obtain a classical outcome 𝑠. Each
child node 𝑣 of 𝑢 is connected through the edge 𝑒𝑢,𝑠.

4. If 𝑣 is the child note of 𝑢 connected through the edge 𝑒𝑢,𝑠, then letting 𝐹𝑢𝑠 =𝑀𝑢 †
𝑠 𝑀𝑢

𝑠 we have

Σ𝜌(𝑣) := 𝐴𝑀𝑢
𝑠
(Σ𝜌(𝑢)) . (G4)
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5. Note that for any node 𝑢 we have that 𝑝𝜌(𝑢) := tr(Σ𝜌(𝑢)) is the probability that the transcript of measurement
outcomes observed by the learning algorithm is described by 𝑢. Moreover, Σ𝜌(𝑢)/𝑝𝜌(𝑢) is the (normalized)
state of the 𝑘-qubit memory at the node 𝑢.

Let us unpack the ingredients of this definition. The initial state of our quantum memory is Σ0, and we apply
some initial choice of POVM {𝐹 𝑟𝑠 }𝑠 (where 𝑟 denotes the ‘root’ of the tree). If we measure the 𝑠th POVM outcome,
then the quantum memory is in the unnormalized state 𝐴𝑀𝑟

𝑠
(Σ0) with probability tr(𝐴𝑀𝑟

𝑠
(Σ0)). Each outcome

𝑠 of the POVM corresponds to a child note of the root; thus at the next level of the tree, each node is labelled
by the POVM outcome 𝑠 and the corresponding state of the quantum memory 𝐴𝑀𝑟

𝑠
(Σ0) := Σ𝜌(𝑠). For the next

measurement, we can leverage our knowledge of the previous POVM to craft a new POVM to be applied to the
present state of the quantum memory. This type of procedure is repeated for many rounds.

To be explicit, suppose that the present state of the quantum memory is Σ𝜌(𝑢), where the node 𝜌 reflects a
sequence or transcript of POVM outcomes which brought us to the present state by an adaptive protocol. We can
use this transcript of previous outcomes to choose a new POVM {𝐹𝑢𝑠 }𝑠 that we use to measure 𝜌⊗Σ𝑢(𝜌), which
will result in the output 𝐴𝑀𝑢

𝑠
(Σ𝜌(𝑢)) with probability tr(𝐴𝑀𝑢

𝑠
(Σ𝜌(𝑢))). The nodes 𝑣 in the next layer encode the

data of the previous measurement outcomes and the latest outcome (i.e., determined by the location of 𝑣 in the
tree), as well as the new (conveniently unnormalized) state of the quantum memory 𝐴𝑀𝑢

𝑠
(Σ𝜌(𝑢)) := Σ𝜌(𝑣), where

here 𝑣 is connected to 𝑢 by an edge 𝑒𝑢,𝑠 (designating that 𝑣 is the consequence of the 𝑠th measurement outcome
starting from the configuration in 𝑢).

G.3. Hardness result for small quantum memories

We will prove the following result using the learning tree framework:

Theorem 13 (Shadow tomography with partial reveal using a bounded quantum memory). Consider Task 3 for
learning an expectation value with a bounded quantum memory. Any learning algorithm with 𝑛+ 𝑘 qubit registers
needs 𝑇 ≥ Ω(2(𝑛−𝑘)/3) copies of 𝜌 to determine |tr(𝑂𝜌)| with probability at least 2/3.

On account of (C15), it suffices to upper bound E𝑃
[︀
TV(𝑝𝐼/2𝑛 , 𝑝(𝐼+𝑃 )/2𝑛)

]︀
. To do so, we will leverage a key technical

result coming from Theorem 1.4 of [12]. But in order to state this technical result, we first need to introduce the
notion of good Paulis and bad Paulis. While details are provided in Definition 6.4 of [12], here we explain the
essential intuition and key properties.

In the learning protocol, we are trying to distinguish between the maximally mixed state 𝐼/2𝑛 and states of
the form (𝐼 + 𝑃 )/2𝑛. The intuition is that if the size of our quantum memory 𝑘 is small relative to 𝑛, then it
is hard to tell the two kinds of states apart. If this was the case, then any round of the protocol should only
reveal a very small amount of distinguishing information. In particular, suppose we are at node 𝑢 in the learning
tree, and so the state of the quantum memory at that node is either Σ𝐼/2𝑛(𝑢) or Σ(𝐼+𝑃 )/2𝑛(𝑢) for some Pauli
string 𝑃 . If we consider a POVM {𝐹𝑢𝑠 }𝑠 where 𝐹𝑢𝑠 = 𝑀𝑢 †

𝑠 𝑀𝑢
𝑠 , then if we measure some fixed outcome 𝑠 the

new state of the quantum memory will be either 𝐴𝐼/2
𝑛

𝑀𝑢
𝑠
(Σ𝐼/2𝑛(𝑢)) or 𝐴(𝐼+𝑃 )/2𝑛

𝑀𝑢
𝑠

(Σ(𝐼+𝑃 )/2𝑛(𝑢)). We would like for⃦⃦⃦
𝐴
𝐼/2𝑛

𝑀𝑢
𝑠
(Σ𝐼/2𝑛(𝑢))−𝐴(𝐼+𝑃 )/2𝑛

𝑀𝑢
𝑠

(Σ(𝐼+𝑃 )/2𝑛(𝑢))
⃦⃦⃦
1

to be exponentially small in 𝑛 − 𝑘, in particular relative to some
distinguishing measure between Σ𝐼/2𝑛(𝑢) and Σ(𝐼+𝑃 )/2𝑛(𝑢). This would mean that starting from node 𝑢, the next
POVM measurement will not significantly change our ability to distinguish the two possibilities for the resulting
memory registers. While we cannot guarantee that such a property holds for all states (𝐼 +𝑃 )/2𝑛, such a property
will hold for some 𝑃 ’s. Given a node 𝑢, the set of good Paulis 𝑃 [𝑢] is the set of all Pauli operators satisfying
a particular version of the above property for all edges from the root of the tree to 𝑢 (see Definition 6.4 of [12]
for details). The residual Paulis are called the set of bad Paulis. In other words, the good Paulis 𝑃 [𝑢] designate
the states (𝐼 + 𝑃 )/2𝑛 which are hard to distinguish from 𝐼/2𝑛 for a particular instantiation of the learning tree,
specifically for the sequence of POVMs that get us from the root of said learning tree to the node 𝑢. By contrast,
the bad Paulis reveal too much information.

We have the following useful Lemma about bad Paulis, which we will soon leverage in the proof of Theorem 13:

Lemma 7 (Fact 6.5 of [12]). For any edge 𝑒𝑢,𝑠, there are at most 2−(𝑛−𝑘)/3 · (4𝑛 − 1) bad Paulis 𝑃 . In particular,
along any root-to-leaf path of the learning tree, there are at most 𝑇 · 2−(𝑛−𝑘)/3 · (4𝑛 − 1) Paulis which are bad for
some edge along the path.

Equipped with our discussion of good and bad Paulis, we can now state the following technical result from [12]:
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Lemma 8 (Following from the proof of Theorem 1.4 of [12]). We have the inequality

1

4𝑛 − 1

∑︁
ℓ∈leaf(𝒯 )

∑︁
𝑃∈𝑃 [ℓ]

⃦⃦
Σ𝐼/2𝑛(ℓ)−Σ(𝐼+𝑃 )/2𝑛(ℓ)

⃦⃦
1
≤ 𝑇 · 2−(𝑛−𝑘)/3 ·

√︂
22𝑛

22𝑛 − 1
. (G5)

We are finally ready to prove Theorem 13.

Proof of Theorem 13. Let us upper bound E𝑃
[︀
TV(𝑝𝐼/2𝑛 , 𝑝(𝐼+𝑃 )/2𝑛)

]︀
. We have the inequalities

E𝑃
[︀
TV(𝑝𝐼/2𝑛 , 𝑝(𝐼+𝑃 )/2𝑛)

]︀
≤ E𝑃

[︃∑︁
ℓ

max
(︀
0, 𝑝𝐼/2𝑛(ℓ)− 𝑝(𝐼+𝑃 )/2𝑛(ℓ)

)︀]︃
(G6)

≤ E𝑃

[︃∑︁
ℓ

min
(︀
𝑝𝐼/2𝑛(ℓ), |𝑝𝐼/2𝑛(ℓ)− 𝑝(𝐼+𝑃 )/2𝑛(ℓ)|

)︀]︃
(G7)

≤ E𝑃

[︃∑︁
ℓ

min
(︀
𝑝𝐼/2𝑛(ℓ),

⃦⃦
Σ𝐼/2𝑛(ℓ)−Σ(𝐼+𝑃 )/2𝑛(ℓ)

⃦⃦
1

)︀]︃
(G8)

≤
∑︁
ℓ

Pr[𝑃 ̸∈ 𝑃 [ℓ]] 𝑝𝐼/2𝑛(ℓ) +
1

4𝑛 − 1

∑︁
𝑃∈𝑃 [ℓ]

⃦⃦
Σ𝐼/2𝑛(ℓ)−Σ(𝐼+𝑃 )/2𝑛(ℓ)

⃦⃦
1
. (G9)

In the first line, we have used that TV(𝑝, 𝑞) = 1
2

∑︀
𝑖 |𝑝𝑖 − 𝑞𝑖| =

∑︀
𝑖 : 𝑝𝑖≥𝑞𝑖(𝑝𝑖 − 𝑞𝑖) =

∑︀
𝑖max(0, 𝑝𝑖 − 𝑞𝑖). To

go from (G6) to (G7) we used max(0, 𝑎 − 𝑏) ≤ min(𝑎, |𝑎 − 𝑏|). In going from (G7) to (G8) we leveraged that
|𝑝𝐼/2𝑛(ℓ) − 𝑝(𝐼+𝑃 )/2𝑛(ℓ)| = |tr(Σ𝐼/2𝑛(ℓ) −Σ(𝐼+𝑃 )/2𝑛(ℓ))| ≤ ‖Σ𝐼/2𝑛(ℓ) −Σ(𝐼+𝑃 )/2𝑛(ℓ)‖1. Finally, to go from (G8)
to (G9) we used

∑︀
𝑖∈𝑆 min(𝑎𝑖, 𝑏𝑖) ≤

∑︀
𝑖∈𝑆∖𝑅 𝑎𝑖 +

∑︀
𝑖∈𝑅 𝑏𝑖 for any 𝑅 ⊆ 𝑆.

By Lemma 7 and the fact that
∑︀
ℓ 𝑝𝐼/2𝑛(ℓ) = 1, we have the simple bound∑︁
ℓ

Pr[𝑃 ̸∈ 𝑃 [ℓ]] 𝑝𝐼/2𝑛(ℓ) ≤ 𝑇 · 2−(𝑛−𝑘)/3 (G10)

and Lemma 8 gives us

1

4𝑛 − 1

∑︁
𝑃∈𝑃 [ℓ]

⃦⃦
Σ𝐼/2𝑛(ℓ)−Σ(𝐼+𝑃 )/2𝑛(ℓ)

⃦⃦
1
≤ 𝑇 · 2−(𝑛−𝑘)/3 ·

√︂
22𝑛

22𝑛 − 1
. (G11)

Then in total, we have

E𝑃
[︀
TV(𝑝𝐼/2𝑛 , 𝑝(𝐼+𝑃 )/2𝑛)

]︀
≤ 𝑇 · 2−(𝑛−𝑘)/3

(︃
1 +

√︂
22𝑛

22𝑛 − 1

)︃
. (G12)

If the left-hand side is Ω(1), then we must thus have 𝑇 ≥ Ω(2(𝑛−𝑘)/3), as claimed.


