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ABSTRACT
We consider the problem of learning high dimensional polynomial

transformations of Gaussians. Given samples of the form 𝑓 (𝑥),
where 𝑥 ∼ N(0, Id𝑟 ) is hidden and 𝑓 : R𝑟 → R𝑑 is a function where

every output coordinate is a low-degree polynomial, the goal is to

learn the distribution over 𝑓 (𝑥). One can think of this as a simple

model for learning deep generative models, namely pushforwards

of Gaussians under two-layer neural networks with polynomial

activations, though the learning problem is mathematically natural

in its own right.

Our first main result is a polynomial-time algorithm for learn-

ing quadratic transformations of Gaussians in a smoothed setting.

Our second main result is a polynomial-time algorithm for learn-

ing constant-degree polynomial transformations of Gaussian in a

smoothed setting, when the rank of the associated tensors is small.

In fact our results extend to any rotation-invariant input distribu-

tion, not just Gaussian. These are the first end-to-end guarantees

for learning a pushforward under a neural network with more than

one layer.

While our work aims to take an initial step towards understand-

ing why generative models perform so well in practice, the algorith-

mic problems that we solve along the way are also of independent

interest. We give the first provably efficient algorithms for tensor

ring decomposition, a popular non-commutative generalization of

tensor decomposition that is used in practice to implicitly store

large tensors, as well as for a new variant of matrix factorization

where the factors arise from low-rank tensors.
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1 INTRODUCTION
We consider the problem of learning a polynomial transforma-

tion. Suppose there is an unknown low-degree polynomial 𝑓 :

R𝑟 → R𝑑 , where 𝑟 ≪ 𝑑 , and we are given samples of the form

𝑓 (𝑥1), . . . , 𝑓 (𝑥𝑛), where 𝑥1, . . . , 𝑥𝑛 are independent samples, not

revealed to the learner, from some simple seed distribution 𝐷 . The

goal is to approximately learn the distribution of 𝑓 (𝑥) for 𝑥 ∼ 𝐷 ,

perhaps even by approximately recovering 𝑓 . When 𝑓 is linear

and 𝐷 is a product distribution, this is the well-studied problem of

independent component analysis [49].

While this problem is natural in its own right, it also has rele-

vance to the theory of deep generative models such as variational

auto-encoders (VAEs) [76] and generative adversarial networks

(GANs) [55]. Indeed, a polynomial transformation is nothing more

than a generative model computed by a two-layer neural network

with polynomial activations. Despite their apparent simplicity, push-

forwards of simple distributions like Gaussians under such net-

works can already be used to generate images of nontrivial quality

[83, Figure 2]. Understanding the learnability of such polynomial

transformations can thus be thought of as a first step towards un-

derstanding the learnability of real-world generative models.

Unfortunately, despite the fundamental nature of this question,

very little is known. The only provable results for this problem [83]

only hold for extremely structured instances, and only under a

certain conjectured structural result. To the best of our knowledge,

to date, there are no algorithms with end-to-end provable guar-

antees for learning polynomial transformations of degree strictly
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larger than 1. Indeed, more generally, there are no algorithms with

such guarantees for learning pushforwards of neural networks with

more than one layer in any non-trivial setting. Therefore, in this

paper, we ask:

When can we provably learn polynomial transformations?

We will focus on the setting where 𝐷 = N(0, Id), a standard choice

of seed distribution in both the theoretical and applied generative

modeling literature.

Tensor problems. Our approach to learning polynomial trans-

formations is based on the method of moments. For example, in the

special case where the output coordinates of 𝑓 are computed by qua-

dratic polynomials, i.e. 𝑓 (𝑥) = (𝑥⊤𝑄∗
1
𝑥, . . . , 𝑥⊤𝑄∗

𝑑
𝑥) for unknown

symmetric matrices 𝑄∗
1
, . . . , 𝑄∗

𝑑
∈ R𝑟×𝑟 , the task of recovering the

parameters of 𝑓 from the low-order moments of the polynomial

transformation turns out to give rise to the following intriguing

tensor problem (see Section 5):

There are unknown matrices 𝑄∗
1
, . . . , 𝑄∗

𝑑
∈ R𝑟×𝑟 , and the goal is

to recover them up to trivial symmetries, given noisy estimates for

Tr(𝑄∗
𝑎𝑄

∗
𝑏
) and Tr(𝑄∗

𝑎𝑄
∗
𝑏
𝑄∗
𝑐 ) for all 𝑎, 𝑏, 𝑐 . When {𝑄∗

𝑎} are diagonal,
this is equivalent to (degree-3) symmetric tensor decomposition (see

Appendix in full version), a problem which has received consider-

able attention, especially in recent years, in the theoretical computer

science and learning theory literature [16, 18, 51, 60, 64, 65, 82, 86].

The problem for general {𝑄∗
𝑎} is thus the natural “non-commutative”

generalization of tensor decomposition.

In other communities, this tensor problem goes by the name of

tensor ring decomposition [107]. Tensor ring decomposition, and

related concepts such as hierarchical Tucker rank [15, 89] and tensor

train decomposition [90, 91], were first proposed in the condensed

matter physics community [101], and were later adopted in the

neural network community as ways to concisely represent large

tensors in a way which still allows for efficient linear algebraic

computations [107]. Various heuristics have been proposed for this

problem [75, 107], though to date, none of these come with provable

guarantees for tensor ring decomposition in any nontrivial regime

of parameters, and even in the noiseless setting where one has exact

access to Tr(𝑄∗
𝑎𝑄

∗
𝑏
) and Tr(𝑄∗

𝑎𝑄
∗
𝑏
𝑄∗
𝑐 ). This is in stark contrast to

the state of affairs with traditional tensor decomposition, where for

many settings, often in the presence of considerable noise, there

are many polynomial time algorithms with provable guarantees.

This begs the natural question:

When can we efficiently solve tensor ring decomposition?

While this is of tremendous interest in its own right, our interest

comes from the fact that this is fundamentally related to learning

quadratic transformations of Gaussians. Indeed, recovering the pa-

rameters of such a distribution from its moments of degree at most

3 is exactly equivalent to solving tensor ring decomposition (see

Section 5). Understanding tensor ring decomposition thus seems

like an important step towards understanding our central learning

problem.

We also give algorithms based on method of moments for learn-

ing higher-degree polynomial transformations. Naturally, this gives

rise to other tensor problems of even greater complexity, and we

defer a discussion of these to Sections 2 and 5. We view the design

of algorithms for tensor ring decomposition and these other tensor

problems as one of our primary contributions.

Our Contributions. In this paper, we give the first efficient algo-

rithms for learning high dimensional polynomial transformations of

Gaussians, under mild non-degeneracy conditions that we demon-

strate are satisfied with negligible failure probability in reasonable

smoothed analysis settings. Along the way, we also provide the

first efficient algorithms for tensor ring decomposition and related

tensor problems under analogous conditions.

Efficient algorithms for quadratic transformations and ten-
sor ring decomposition. Our first result is a polynomial time

algorithm for learning smoothed (homogeneous) quadratic trans-

formations of Gaussians, in sufficiently high dimensions:

Theorem 1.1 (Informal). For any 𝑑 ∈ N sufficiently large and

any 𝜀 > 0, 1/poly(𝑑)-smoothed quadratic transformations of Gauss-

ian with input dimension 𝑟 = 𝑂 (
√
𝑑) are learnable (both in parameter

distance and Wasserstein distance) to error 𝜀 in poly(𝑟, 1/𝜀) · 𝑑 time

and poly(𝑟, 1/𝜀) samples with probability at least 1− exp(−poly(𝑟 ))
over the smoothing.

To the best of our knowledge, this is the first end-to-end provable

algorithmic result for learning pushforwards given by a neural

network with more than a single layer (see Section 4 for further

discussion). Note that the condition 𝑟 = 𝑂 (
√
𝑑) here means that

the pushforward distribution is supported on a low-dimensional

manifold, which is quite natural in practice [92].

Our smoothed model is the standard one in which the instance

is given by a small random perturbation of a worst-case instance

(see Section 2). As with many results in smoothed analysis, our re-

sults hold more generally under mild deterministic non-degeneracy

conditions.

We remark that while our guarantee holds for all 𝑑 which are

at least quadratic in 𝑟 , standard dimension reduction arguments

(see full version) show that the hardest case is really when 𝑑 is

exactly quadratic in 𝑟 . This is the threshold at which the 𝑑 polyno-

mials defining the transformation first span the space of quadratic

polynomials in 𝑟 variables.

We complement Theorem 1.1 with an information-theoretic

lower bound (see Appendix in the full version), which states that

in the worst case, parameter learning for quadratic transforma-

tions requires exponentially many samples, even in one dimension.

Combined with computational hardness results for improper den-

sity estimation of worst-case ReLU network transformations of

Gaussians [28–30], this suggests that some beyond-worst-case as-

sumptions are necessary to obtain efficient algorithms. Intuitively,

our non-degeneracy assumptions give us a “blessing of dimension-

ality” phenomenon which allows us to obtain multiple linearly

independent “views” of the underlying transformation.

Theorem 1.1 is based on the following new algorithm for tensor

ring decomposition:

Theorem 1.2 (Informal, see Theorem 6.3). For any 𝑑 ∈ N
sufficiently large and any 𝜀 > 0, given a 1/poly(𝑑)-smoothed instance

of 𝜀-noisy tensor ring decomposition in dimension 𝑟 = 𝑂 (
√
𝑑), there is

a polynomial time algorithm which recovers the unknown matrices to

error poly(𝜀, 𝑟 ) up to trivial symmetries in poly(𝑟, 1/𝜀) · 𝑑 time with

probability at least 1 − exp(−poly(𝑟 )) over the smoothing.

Our algorithms for Theorems 1.1 and Theorems 1.2 are based on the

Sum-of-Squares (SoS) “proofs to algorithms” framework, which in
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recent years has been applied to solve a number of high-dimensional

statistical problems. However, the design of our algorithm differs

quite substantially from prior techniques used within this literature.

As we explain in Section 3, the Tr(𝑄∗
𝑎𝑄

∗
𝑏
)’s in tensor ring decompo-

sition give us the unknown 𝑟 ×𝑟 matrices𝑄∗
1
, . . . , 𝑄∗

𝑑
, up to a shared,

unknown rotation, but as vectors in 𝑟2 dimensions. The heart of our

algorithm is an SoS proof that the only such rotations which can

additionally match the Tr(𝑄∗
𝑎𝑄

∗
𝑏
𝑄∗
𝑐 )’s are in fact Kronecker powers

of 𝑟 × 𝑟 -dimensional rotation matrices. In other words, up to gauge

symmetry in the 𝑟 × 𝑟 -dimensional space, the 𝑟2 × 𝑟2-dimensional

rotations which respect our constraints are unique, and moreover,

SoS witnesses this fact. Consequently, this implies that we can

search for these rotations using an SoS program, and the result can

be easily rounded to solve the overall problem.

Efficient algorithms for low-rank polynomial transforma-
tions. For our final result, we turn to polynomial transformations

of higher degree. We show that (homogeneous) polynomial trans-

formations of odd constant degree can be learned efficiently, as long

as the transformation can be represented using low rank tensors.

Recall that any homogeneous degree 𝜔 polynomial 𝑝 : R𝑟 → R can

be associated with a symmetric tensor 𝑇 : R𝑟 → (R𝑟 )⊗𝜔 , so that

𝑝 (𝑥) = ⟨𝑇, 𝑥⊗𝜔 ⟩. We say that a polynomial is rank ℓ if the associ-

ated tensor has symmetric rank ℓ , and we say that a polynomial

transformation 𝑓 : R𝑟 → R𝑑 has rank ℓ , if each output coordinate

is computed by a rank-ℓ polynomial. From the perspective of neural

networks, ℓ corresponds to the channels of the hidden layer per

neuron. Our main result here is:

Theorem 1.3 (Informal). There is an absolute constant 𝑐 > 0

such that for any 𝑑 ∈ N sufficiently large and any 𝜀 > 0, 1/poly(𝑑)-
smoothed rank-ℓ = 𝑂 (1) transformations of odd degree 𝜔 = 𝑂 (1)
with seed length 𝑟 = 𝑂 (𝑑𝑐/(𝜔ℓ) ) are learnable (both in parameter

distance and Wasserstein distance) to error 𝜀 in poly(𝑟, 1/𝜀) · 𝑑 time

and poly(𝑟, 1/𝜀) samples with probability at least 1− exp(−poly(𝑟 ))
over the smoothing.

At its heart, our algorithm follows the same rough structure as

the one for the quadratic case, that is, we must show in SoS that

the unknown rotation over 𝑟𝜔 dimensions which maps the ground

truth to our estimates must arise as a Kronecker power of a rotation

over 𝑟 dimensions. However, the arguments here are much more

subtle. For starters, for a high-degree polynomial transformation,

even the low-order moments are unwieldy even to write down, let

alone work with.

For this reason, unlike in the quadratic case, here we only work

with second-order moments. In place of tensor ring decomposition,

this leads to a new inverse problem that we call low-rank factor-

ization, which may be of independent interest: given unknown

low-rank symmetric tensors 𝑇 ∗
1
, . . . ,𝑇 ∗

𝑑
, recover them from esti-

mates of every ⟨𝑇 ∗
𝑎 ,𝑇

∗
𝑏
⟩ up to the trivial 𝑟 × 𝑟 rotational symmetry

(see Definition 2.8). A priori it is unclear why this should be possi-

ble, e.g. if 𝑇 ∗
1
, . . . ,𝑇 ∗

𝑑
weren’t constrained to be low-rank, then one

could only hope to recover them up to a global 𝑟𝜔 ×𝑟𝜔 rotation. We

show that surprisingly, the low-rank constraints force this rotation

to be the Kronecker power of an 𝑟 × 𝑟 rotation. The proof of this is

the most involved part of this work: the difficulty comes in large

part from the fact that symmetric tensor rank, unlike matrix rank, is

notoriously difficult to capture using simple polynomial constraints

[80]. We refer the reader to Section 3 for more details.

Finally, we remark that all of our guarantees for learning trans-

formations (Theorem 1.1 and 1.3) in fact hold for transformations

of any rotation-invariant seed distribution with suitable moment

bounds (see Sections 5.1 and 5.2), not just of N(0, Id𝑟 ).

2 GENERATIVE MODEL AND INVERSE
PROBLEMS

In this section, we formally define the models we study throughout

this paper.

Definition 2.1 (Polynomial Transformations). For 𝜔 ≥ 2, a 𝑑-

dimensional degree-𝜔 transformation with seed length 𝑟 is a dis-

tribution D over R𝑑 specified by tensors 𝑇 ∗
1
, . . . ,𝑇 ∗

𝑑
∈ (R𝑟 )⊗𝑑 . To

sample from D, one samples 𝑥 ∼ N(0, Id𝑟 ) and outputs

(⟨𝑇 ∗
1
, 𝑥⊗ℓ ⟩, . . . , ⟨𝑇 ∗

𝑑
, 𝑥⊗ℓ ⟩) .

Equivalently,D is the pushforward of the standard Gaussianmeasure

on R𝑟 under the map 𝑥 ↦→ (⟨𝑇 ∗
1
, 𝑥⊗ℓ ⟩, . . . , ⟨𝑇 ∗

𝑑
, 𝑥⊗ℓ ⟩).

We will collectively refer to the tensors 𝑇 ∗
1
, . . . ,𝑇 ∗

𝑑
as the polyno-

mial network specifying D. If 𝜔 = 2, we will use 𝑄∗
1
, . . . , 𝑄∗

𝑑
∈ R𝑟×𝑟

in place of 𝑇 ∗
1
, . . . ,𝑇 ∗

𝑑
. If 𝑇 ∗

1
, . . . ,𝑇 ∗

𝑑
are of rank ℓ , then we say that

(𝑇 ∗
1
, . . . ,𝑇 ∗

𝑑
) is a rank-ℓ polynomial network.

We will study the learnability of polynomial transformations in the

following smoothed analysis settings. For quadratic transforma-

tions, we consider entrywise Gaussian perturbations.

Definition 2.2 (Smoothed Quadratic Networks). Let 𝜌 > 0. We

say a degree-2 polynomial network 𝑄∗
1
, . . . , 𝑄∗

𝑑
∈ R𝑟×𝑟 is 𝜌-fully-

smoothed if 𝑄∗
1
, . . . , 𝑄∗

𝑑
were generated as follows: for some (possibly

worst-case) matrices 𝑄
1
, . . . , 𝑄𝑑 ∈ R𝑟×𝑟 , each 𝑄∗

𝑎 is obtained by

independently sampling a symmetric matrix 𝐺𝑎 whose diagonal and

upper triangular entries are independent draws from N(0, 1) and
forming 𝑄∗

𝑎 ≜ 𝑄𝑎 + 𝜌
𝑟 ·𝐺𝑎 . We refer to the matrices 𝑄

1
, . . . , 𝑄𝑑 as

the base network.

For low-rank transformations, we consider perturbations of the

rank-1 tensor components.

Definition 2.3 (Smoothed Low-Rank Networks). Let 𝜌 > 0. We

say that a rank-ℓ polynomial network 𝑇 ∗
1
, . . . ,𝑇 ∗

𝑑
∈ (R𝑟 )⊗𝜔 is 𝜌-

componentwise-smoothed if 𝑇 ∗
1
, . . . ,𝑇 ∗

𝑑
were generated as follows:

for some (possibly worst-case) 𝑟 -dimensional vectors {𝑣𝑎,𝑖 }𝑎∈[𝑑 ],𝑖∈[ℓ ] ,
each 𝑇 ∗

𝑎 is obtained by independently sampling 𝑔𝑎,1, . . . , 𝑔𝑎,ℓ from

N(0, Id𝑟 ) and forming𝑇 ∗
𝑎 ≜

∑ℓ
𝑖=1 (𝑣𝑎,𝑖 +

𝜌√
𝑟
·𝑔𝑎,𝑖 )⊗𝜔 . Similar to Def-

inition 2.2, we refer to the tensors𝑇 1, . . . ,𝑇𝑑 given by𝑇𝑎 ≜
∑ℓ
𝑖=1 𝑣

⊗ℓ
𝑎,𝑖

as the base network.

In this paper we give guarantees for parameter learning polynomial

transformations. There are some basic symmetries to be aware

of. First, if 𝑇 and 𝑇 ′
differ by a skew-symmetric form, that is if∑

𝜋 ∈S𝜔
(𝑇 −𝑇 ′)𝑖𝜋 (1) · · ·𝑖𝜋 (𝜔 ) = 0 for all 𝑖1, . . . , 𝑖𝜔 ∈ [𝑟 ], then ⟨𝑇, 𝑥⊗𝜔 ⟩

and ⟨𝑇 ′, 𝑥⊗𝜔 ⟩ are identical as polynomials in 𝑥 . For this reason, we

will henceforth assume without loss of generality that the network

𝑇 ∗
1
, . . . ,𝑇 ∗

𝑑
consists of symmetric tensors.
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Additionally, because the seed distribution N(0, Id𝑟 ) that is be-
ing pushed forward through the polynomial network is rotation-

invariant, the network of a polynomial transformation is only iden-

tifiable up to a gauge symmetry. Let 𝑂 (𝑟 ) denote the group of or-

thogonal 𝑟 ×𝑟 matrices. Given a tensor𝑇 ∈ (R𝑟 )⊗𝜔 and orthogonal

matrix𝑈 ∈ 𝑂 (𝑟 ), define the tensor 𝐹𝑈 (𝑇 ) ∈ (R𝑟 )⊗𝜔 by

𝐹𝑈 (𝑇 )𝑖1 · · ·𝑖𝜔 =
∑︁

𝑗1,..., 𝑗𝜔 ∈[𝑟 ]
𝑈𝑖1 𝑗1 · · ·𝑈𝑖𝜔 𝑗𝜔𝑇𝑗1 · · · 𝑗𝜔 (1)

for all 𝑖1, . . . , 𝑖𝜔 ∈ [𝑟 ]. Note that when 𝜔 = 2 so that 𝑇 is an 𝑟 × 𝑟

matrix, then 𝐹𝑈 (𝑇 ) = 𝑈𝑇𝑈⊤
. The following is immediate:

Lemma 2.4 (Gauge symmetry). For any network 𝑇 ∗
1
, . . . ,𝑇 ∗

𝑑
∈

(R⊗𝑟 )⊗𝜔 and any orthogonal matrix 𝑈 ∈ 𝑂 (𝑟 ), the transforma-

tion specified by the polynomial network 𝑇 ∗∗
1
, . . . ,𝑇 ∗∗

𝑑
, where 𝑇 ∗∗

𝑎 ≜

𝐹𝑈 ⊗𝜔 (𝑇 ∗
𝑎 ) is identical in distribution to the one specified by𝑇 ∗

1
, . . . ,𝑇 ∗

𝑑
.

In this work we study parameter learning and thus formulate this

learning task as recovering the polynomial network modulo this

freedom:

Definition 2.5 (Parameter Distance). Given polynomial networks

𝑇1, . . . ,𝑇𝑑 and 𝑇 ′
1
, . . . ,𝑇 ′

𝑑
, define parameter distance 𝑑G ({𝑇𝑎}, {𝑇 ′

𝑎 })
by 𝑑G ({𝑇𝑎}, {𝑇 ′

𝑎 }) ≜ min𝑈 ∈𝑂 (𝑟 ) max𝑎∈[𝑑 ] ∥𝐹𝑈 ⊗𝜔 (𝑇𝑎) −𝑇 ′
𝑎 ∥𝐹 .

It is not hard to see that parameter learning implies proper density

estimation.

We note that in general it is not true that the parameters of

a polynomial transformation must be uniquely determined up to

gauge symmetry. For example, it was shown in [57] that there exist

cubic polynomials 𝑝, 𝑞 : R2 → R for which the corresponding push-

forwards ofN(0, Id2) are identical as distributions, but for which 𝑝
and 𝑞 are not equivalent up to gauge symmetry. Nevertheless, the

fact that we are able to show parameter learning up to gauge sym-

metry is possible in smoothed settings suggests that such examples

are quite pathological.

Inverse Problems. Our algorithms for learning polynomial trans-

formations are based on the method of moments. In general, the

intricate combinatorial structure of the higher-order moments of a

polynomial transformation makes them quite difficult to work with,

especially when the degree of the transformation itself is large. In

this work however, we show that for smoothed networks, it suffices

to work with moments up to degree at most three. That is, we show

how to recover the parameters of a smoothed polynomial trans-

formation D using only estimates of the form E[𝑧𝑎𝑧𝑏𝑧𝑐 ], E[𝑧𝑎𝑧𝑏 ],
E[𝑧𝑎] for 𝑧 ∼ D. As we show in Section 5, these moments take

a particular form so that the problem of reconstructing parame-

ters from moments naturally gives rise to the following inverse

problems.

Definition 2.6 (Tensor Ring Decomposition). Let 𝜂 > 0, and let

𝑄∗
1
, . . . , 𝑄∗

𝑑
∈ R𝑟×𝑟 be unknown symmetric matrices. Given as input

a matrix 𝑆 ∈ R𝑑×𝑑 and a tensor 𝑇 ∈ R𝑑×𝑑×𝑑 satisfying��
Tr(𝑄∗

𝑎𝑄
∗
𝑏
) − 𝑆𝑎,𝑏

�� ≤ 𝜂��
Tr(𝑄∗

𝑎𝑄
∗
𝑏
𝑄∗
𝑐 ) −𝑇𝑎,𝑏,𝑐

�� ≤ 𝜂

𝑎, 𝑏, 𝑐 ∈ [𝑑], the goal is to output matrices 𝑄1, . . . , 𝑄𝑑 for which the

parameter distance 𝑑G ({𝑄∗
𝑎}, {𝑄𝑎}) is small.

Remark 2.7. This is slightly different from how tensor ring decom-

position is traditionally posed [107] as usually one only assumes that

𝑇 is given. For learning polynomial transformations however, it is

easy to get access to both 𝑆 and 𝑇 , so we work with Definition 2.6.

This specializes to the well-studied problem of symmetric tensor

decomposition when𝑄∗
𝑎 are diagonal: if 𝑣𝑖 ∈ R𝑑 denotes the vector

with 𝑎-th entry (𝑄∗
𝑎)𝑖𝑖 , then𝑇 ≈ ∑

𝑖 𝑣
⊗3
𝑖

(see full version for details).

We also study the following (to our knowledge, new) variant of

matrix factorization:

Definition 2.8 (Low-Rank Factorization). Let 𝜂 > 0, and let 𝑇 ∗
1
,

..., 𝑇 ∗
𝑑

∈ (R𝑟 )⊗𝜔 be unknown symmetric tensors of rank ℓ . Given

a known positive definite matrix Σ ∈ R𝑟𝜔×𝑟𝜔
, let ⟨·, ·⟩Σ denote the

associated inner product. Given as input a matrix 𝑆 ∈ R𝑑×𝑑 satisfying��⟨vec(𝑇 ∗
𝑎 ), vec(𝑇 ∗

𝑏
)⟩Σ − 𝑆𝑎,𝑏

�� ≤ 𝜂 ∀ 𝑎, 𝑏 ∈ [𝑑],

the goal is to output 𝑇1, . . . ,𝑇𝑑 for which 𝑑G ({𝑇 ∗
𝑎 }, {𝑇𝑎}) is small.

A priori, it is not even clear that such a recovery guarantee is

possible. Indeed, without the extra condition that 𝑇 ∗
1
, . . . ,𝑇 ∗

𝑑
are

low rank, the recovery goal in Definition 2.8 is impossible, even for

𝜂 = 0 and Σ = Id. In that case, the constraints ⟨𝑇 ∗
𝑎 ,𝑇

∗
𝑏
⟩ = 𝑆𝑎,𝑏 at best

specify {𝑇 ∗
𝑎 } up to an 𝑟𝜔 × 𝑟𝜔 rotation, whereas in Definition 2.8

we are interested in recovery up to an 𝑟 × 𝑟 rotation!

In view of our application to polynomial transformations, we

will be interested in Σ given by Σ = E𝑥∼𝐷 [vec(𝑥)⊗𝜔vec(𝑥)⊗𝜔⊤]
for rotation-invariant distributions 𝐷 over R𝑟 , e.g. 𝐷 = N(0, Id).

3 TECHNICAL OVERVIEW
In this section we give a high-level overview of the key algorithmic

ideas in this work. As our reduction from polynomial pushforwards

to the inverse problems defined in Section 2 is straightforward

(see Section 5), here we focus on describing our algorithms for

the inverse problems, namely tensor ring decomposition and low-

rank factorization. For both of these, we will sketch how to prove

that the underlying parameters ({𝑄∗
𝑎} and {𝑇 ∗

𝑎 } respectively) are
information-theoretically identifiable from the input, modulo gauge

symmetry. As we show partially in Sections 6 and completely in

the full version, with significant care, these proofs of identifiability

can be implemented in the SoS proof system and thus yield efficient

algorithms; we discuss the main challenges for doing so at the

end of this overview. Along the way, we also discuss why existing

approaches in the tensor decomposition literature like simultaneous

diagonalization appear to fall short of solving the tensor problems

we consider.

For simplicity, in this overview we focus on the noiseless setting,

i.e. when 𝜂 = 0 in Definitions 2.6 and 2.8, though in later sections

we prove our guarantees for general 𝜂.

Overview notation. Subscripts/superscripts denote row/column

indices for matrices. Given 𝑄 ∈ R𝑟×𝑟 , vec(𝑄) ∈ R𝑟 2 denotes its
flattening. 𝑒𝑖 ∈ R𝑟 denotes the 𝑖-th standard basis vector.

3.1 Tensor Ring Decomposition
Hidden 𝑟2 × 𝑟2 rotation. Recall that in tensor ring decomposi-

tion, there are unknown symmetric matrices 𝑄∗
1
, . . . , 𝑄∗

𝑑
, and we
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want to recover them up to gauge symmetry given Tr(𝑄∗
𝑎𝑄

∗
𝑏
) and

Tr(𝑄∗
𝑎𝑄

∗
𝑏
𝑄∗
𝑐 ) for all 𝑎, 𝑏, 𝑐 .

First, as discussed above, the only information the Tr(𝑄∗
𝑎𝑄

∗
𝑏
)’s

provide is the angle between every pair of matrices regarded as an

𝑟2-dimensional vector. In particular, given only the Tr(𝑄∗
𝑎𝑄

∗
𝑏
)’s, the

best we can hope for is to estimate {𝑄∗
𝑎} up to an 𝑟2×𝑟2 rotation1 (see

Section 6.3). More formally, we can only hope to produce matrices

𝑄1, . . . , 𝑄𝑑 for which there exists some 𝑟2 × 𝑟2 orthogonal matrix𝑈

satisfying 𝑈 vec(𝑄∗
𝑎) = vec(𝑄𝑎) for 𝑎 = 1, . . . , 𝑑 . Recalling (1), we

denote this by

𝐹𝑈 (𝑄∗
𝑎) = 𝑄𝑎 (2)

An example of such a 𝑈 would be one corresponding to an 𝑟 × 𝑟

rotation. That is, consider a 𝑟 ×𝑟 orthogonal matrix𝑉 . We can check

that the transformation sending any 𝑄 to 𝑉𝑄𝑉⊤
can be expressed

in terms of 𝐹𝑈 for 𝑈 given by the Kronecker square of 𝑉 . That

is, if we index the rows and columns of 𝑈 by [𝑟 ] × [𝑟 ] and let

the (𝑖, 𝑗)-th column be given by the flattening of 𝑉 𝑖 (𝑉 𝑗 )⊤, then
𝐹𝑈 (𝑄) = 𝑉𝑄𝑉⊤

. In this case, we say that 𝑈 arises from 𝑉 .

Note that 𝑈 ’s of this form comprise a vanishing fraction of all

𝑟2×𝑟2 orthogonal matrices. The bulk of our analysis is thus centered

around proving that the remaining third-order constraints in tensor

ring decomposition, i.e. the Tr(𝑄∗
𝑎𝑄

∗
𝑏
𝑄∗
𝑐 )’s, force 𝑈 to take this

special form.

Using third-order constraints. Note that we can interpret the

Tr(𝑄∗
𝑎𝑄

∗
𝑏
𝑄∗
𝑐 )’s as telling us the angle between the vectors vec(𝑄∗

𝑎)
and vec(𝑄∗

𝑏
𝑄∗
𝑐 ) for any 𝑎, 𝑏, 𝑐 . Using this, we can ensure that in

addition to𝑈 sending every 𝑄∗
𝑎 to 𝑄𝑎 ,𝑈 also sends every 𝑄∗

𝑏
𝑄∗
𝑐 to

𝑄𝑏𝑄𝑐 , i.e.

𝐹𝑈 (𝑄∗
𝑏
𝑄∗
𝑐 ) = 𝑄𝑏𝑄𝑐 .

To unpack what additional information this implies about 𝑈 , let

us pretend for a moment that 𝑄∗
1
, . . . , 𝑄∗

𝑑
consisted of the matrices

{𝐸𝑖 𝑗 }, where 𝐸𝑖 𝑗 = 𝑒𝑖𝑒
⊤
𝑗
. For any 𝑖, 𝑗 , we will refer to the corre-

sponding𝑄𝑎 as𝑄𝑖 𝑗 so that𝑄𝑖 𝑗 = 𝐹𝑈 (𝐸𝑖 𝑗 ). Note that 𝐹𝑈 (𝐸𝑖 𝑗 ) is the
(𝑖, 𝑗)-th column of𝑈 , reshaped into an 𝑟 × 𝑟 matrix. We will refer

to this as𝑈 𝑖 𝑗
.

Now what do the constraints 3.1 tell us? For any 𝑖, 𝑗, 𝑗 ′, 𝑘 ∈ [𝑟 ],
note that 𝐸𝑖 𝑗𝐸 𝑗 ′𝑘 = 1[ 𝑗 = 𝑗 ′] · 𝐸𝑖𝑘 . So the fact that 𝑄𝑖 𝑗𝑄 𝑗 ′𝑘 =

𝐹𝑈 (𝐸𝑖 𝑗𝐸 𝑗 ′𝑘 ) implies that

𝑈 𝑖 𝑗𝑈 𝑗 ′𝑘 = 1[ 𝑗 = 𝑗 ′] ·𝑈 𝑖𝑘 . (3)

It turns out that even if {𝑄∗
𝑎} are not given by {𝐸𝑖 𝑗 }, under mild

conditions on {𝑄∗
𝑎} that hold in the smoothed setting (Part 2 of

Assumption 1),𝑈 will still satisfy (3).

Using the relations (3). We now sketch how to argue, using the

relations (3), that 𝑈 must arise from an 𝑟 × 𝑟 rotation. Recall this

means we must argue that the matrices 𝑈 𝑖 𝑗
are each given by the

outer product of a pair of columns of some orthogonal matrix.

The main step is to argue that the matrices 𝑈 𝑖 𝑗
are rank-1 ma-

trices. From (3), we have that 𝑈 𝑖 𝑗 = 𝑈 𝑖𝑖𝑈 𝑖 𝑗
. Right-multiplying by

𝑈 𝑖 𝑗⊤
on both sides and taking traces, we get

Tr(𝑈 𝑖 𝑗𝑈 𝑖 𝑗⊤) = Tr(𝑈 𝑖𝑖𝑈 𝑖 𝑗𝑈 𝑖 𝑗⊤)

≤ ∥𝑈 𝑖𝑖 ∥𝐹 ∥𝑈 𝑖 𝑗𝑈 𝑖 𝑗⊤∥𝐹 = ∥𝑈 𝑖 𝑗𝑈 𝑖 𝑗⊤∥𝐹 , (4)

1
Technically this is not quite true as {𝑄∗

𝑎 } do not span the space of all 𝑟 × 𝑟 matrices

as they are symmetric. We defer the discussion of how we circumvent this issue to

later in the overview.

where in the third step we used the fact that 𝑈 is orthogonal to

conclude that ∥𝑈 𝑖𝑖 ∥𝐹 = 1. As 𝑈 𝑖 𝑗𝑈 𝑖 𝑗⊤
is psd, the above inequality

holds with equality, so 𝑈 𝑖 𝑗𝑈 𝑖 𝑗⊤
is a rank-1 matrix, implying that

𝑈 𝑖 𝑗
is as well.

Having showed there exist unit vectors {𝑣𝑖 𝑗 ,𝑤𝑖 𝑗 } for which

𝑈 𝑖 𝑗 = 𝑣𝑖 𝑗𝑤
⊤
𝑖 𝑗
, we can use (3) to conclude. For instance, (3) implies

that (𝑈 𝑖𝑖 )2 = 𝑈 𝑖𝑖
, so 𝑣𝑖𝑖 = 𝑤𝑖𝑖 . It also tells us that 𝑈 𝑖𝑖𝑈 𝑗 𝑗 = 0 for

𝑖 ≠ 𝑗 , so {𝑣𝑖𝑖 } are orthonormal. Lastly, it tells us that 𝑈 𝑖𝑖𝑈 𝑖 𝑗 = 𝑈 𝑖 𝑗

and 𝑈 𝑖 𝑗𝑈 𝑗 𝑗 = 𝑈 𝑗𝑖
, so 𝑣𝑖 𝑗 = 𝑣𝑖𝑖 and 𝑤𝑖 𝑗 = 𝑣 𝑗 𝑗 . These show that 𝑈

arises from an 𝑟 × 𝑟 rotation with columns {𝑣𝑖𝑖 }.

A catch: working with symmetric matrices. Thus far, an im-

portant detail that we have elided is that because 𝑄∗
1
, . . . , 𝑄∗

𝑑
are

symmetric, there is actually some ambiguity in how to define the

𝑟2 × 𝑟2 matrix𝑈 mapping every 𝑄∗
𝑎 to 𝑄𝑎 . For instance, given any

such𝑈 , we could interchange the (𝑖, 𝑗)-th and ( 𝑗, 𝑖)-th columns (or

more generally, replace them with arbitrary affine combinations of

each other) and get a new matrix with the same property.

To resolve this ambiguity, we insist that 𝑈 satisfy 𝑈 𝑖 𝑗 = 𝑈 𝑗𝑖

for every 𝑖 = 𝑗 . Unfortunately, this comes at a cost: 𝑈 is no longer

orthogonal. Additionally, because {𝑄∗
𝑎} are symmetric and thus

span a smaller space than {𝐸𝑖 𝑗 }, we end up with weaker relations

than (3).

We nevertheless show how to use these weaker relations to

bootstrap a new matrix out of 𝑈 with all the desired properties

from the discussion above, i.e. orthogonality, (2), and (3).

Failure of other approaches. Given that tensor ring decom-

position is a direct generalization of tensor decomposition, one

might wonder whether there are straightforward ways to tailor

off-the-shelf algorithms for the latter to our setting. While it is un-

clear how to adapt algorithms like tensor power method to tensor

ring decomposition, one promising candidate is Jennrich’s algo-

rithm [60, 82]. Unfortunately, it turns out that because {𝑄∗
𝑎} are

constrained to be generic symmetric matrices rather than generic

matrices (a distinction which is irrelevant in the special case where

{𝑄∗
𝑎} are diagonal which corresponds to tensor decomposition),

the fact that {𝑄∗
𝑎} don’t span all of R𝑟×𝑟 breaks natural ways of

adapting approaches based on simultaneous diagonalization. As

discussed in the preceding paragraphs, the constraint that {𝑄∗
𝑎}

must be symmetric, which is necessary for avoiding one of the triv-

ial symmetries inherent in the problem, is a key technical hurdle

that we overcome.

3.2 Low-Rank Factorization
We now turn to our second inverse problem. Here, while we also

employ the general strategy of showing some unknown rotation

between the ground truth {𝑇 ∗
𝑎 } to our estimates {𝑇𝑎} arises from

an 𝑟 × 𝑟 rotation, there are a number of essential differences in how

we implement this approach.

Hidden mapping respecting Σ norm. Recall there are un-

known symmetric tensors {𝑇 ∗
𝑎 } of symmetric rank ℓ , and we want

to recover them up to gauge symmetry given ⟨𝑇 ∗
𝑎 ,𝑇

∗
𝑏
⟩Σ. While the

Σ-norm is no longer Euclidean, we can still readily obtain estimates

{𝑇𝑎} which agree with {𝑇 ∗
𝑎 } up to some 𝑟𝜔 × 𝑟𝜔 map𝑈 preserving

the Σ-norm, and as before, we want to show that 𝑈 arises from an
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𝑟 × 𝑟 rotation. If we index the rows and columns of𝑈 by [𝑟 ]𝜔 , this
amounts to showing that there is some orthogonal 𝑉 ∈ R𝑟×𝑟 such
that every column of 𝑈 is given by some vec(𝑉 𝑖1 ⊗ · · · ⊗ 𝑉 𝑖𝜔 ).

Rank-ℓ-preserving transformations. The key challenge that

arises in low-rank factorization and not tensor ring decomposition

is that we only have access to pairwise information about {𝑇 ∗
𝑎 }. In

the absence of third-order constraints which might have helped us

to prove an identity like (3), we need to exploit the assumption that

the unknown tensors {𝑇 ∗
𝑎 } are low-rank.

In particular, the fact that {𝑇 ∗
𝑎 } are low-rank and the fact that

the estimates 𝑇𝑎 that we output should also be low-rank places

nontrivial constraints on𝑈 . Intuitively, because {𝑇 ∗
𝑎 } are “random-

looking” in the smoothed setting, if 𝑑 is sufficiently large then we

expect that 𝑈 should send any rank-ℓ tensor to a rank-ℓ tensor.

Reasoning about this, especially in a way amenable to efficient

algorithms, is quite delicate, because tensor rank is notoriously

worse-behaved than matrix rank. We sidestep this by devising a

relaxed notion of tensor rank that plays nicely with our algorithmic

techniques (see Section 3.3) and show that𝑈 is “rank-ℓ-preserving.”

That is, it sends any tensor of symmetric rank ℓ to a tensor with

“relaxed rank” ℓ .

Rank-ℓ-preserving implies rank-1-preserving. The reason it

is useful for 𝑈 to be rank-ℓ-preserving is that, as we show in the

full version, it additionally implies that𝑈 is rank-(ℓ −1)-preserving
and thus, by induction, rank-1 preserving! Before we process the

implications of the latter, we sketch the argument. For simplicity,

suppose here that 𝑟 = ℓ + 1 and consider the special case of 𝜔 = 2,

where our relaxed notion of rank agrees with symmetric rank (i.e.

matrix rank), though the argument also extends to any 𝜔 > 2.

Starting with any rank-(ℓ−1) matrix𝑀 ∈ R(ℓ+1)×(ℓ+1) , consider
some rank-1 perturbation 𝑐 · 𝑧𝑧⊤ that we will vary. By assumption,

𝐹𝑈 (𝑀 +𝑐 ·𝑧𝑧⊤) = 𝐹𝑈 (𝑀) + 𝐹𝑈 (𝑐 ·𝑧𝑧⊤) has rank ℓ , so det(𝐹𝑈 (𝑀) +
𝐹𝑈 (𝑐 · 𝑧𝑧⊤)) = 0. Formally differentiating this with respect to 𝑐 at

𝑐 = 0 yields

ℓ+1∑︁
𝑖=1

det

(
𝐹𝑈 (𝑀)1:𝑖−1 𝐹𝑈 (𝑧𝑧⊤)𝑖 𝐹𝑈 (𝑀)𝑖+1:ℓ+1

)
= 0, (5)

where𝐴𝑖:𝑗
denotes the matrix consisting of the 𝑖-th to 𝑗-th columns

of 𝐴. In particular, we can take the Laplace expansion of the 𝑖-th

determinant in (5) along the 𝑖-th column, and (5) then becomes a

linear combination of all ℓ × ℓ minors of 𝐹𝑈 (𝑀), where the coeffi-

cients of this linear combination are given by entries of 𝐹𝑈 (𝑧𝑧⊤). By
taking many choices of 𝑧, we can ensure that sufficiently many dif-

ferent linear combinations of these minors vanish to imply that the

minors themselves vanish. This shows that 𝐹𝑈 (𝑀) is rank-(ℓ − 1)
as desired.

Using rank-1-preservation to conclude. It turns out our re-

laxed notion of rank aligns with symmetric rank for rank-1 tensors,

so rank-1-preservation implies 𝑈 sends any symmetric rank-1 ten-

sor to a symmetric rank-1 tensor. Note that if𝑈 mapped any rank-1

tensor (not necessarily symmetric) to a rank-1 tensor, then𝑈 would

map any 𝑒𝑖1 ⊗· · ·⊗𝑒𝑖𝜔 to a rank-1 tensor, implying that the columns

of𝑈 are flattenings of rank-1 tensors. At this point we would practi-

cally be done. Indeed, with some work, one could combine this with

the fact that 𝑈 preserves the Σ-norm to conclude that 𝑈 indeed

arises from an 𝑟 × 𝑟 rotation.

On the other hand, using only the fact that 𝑈 sends symmetric

rank-1 tensors to symmetric rank-1 tensors to show the same is far

more involved and out of the scope of this overview. We give the

full details in the full version.

3.3 Sum-of-Squares Algorithms
Proofs to algorithms. Our general approach for getting an algo-

rithm out of all of this follows the usual SoS proofs-to-algorithms

pipeline for statistical problems [62]. While our setting introduces a

multitude of new conceptual twists to implementing this approach

which we will explain below, we begin by outlining the basic setup.

First, we introduce SoS variables {𝑄𝑎} (resp. {𝑇𝑎}) corresponding
to our estimates for the ground truth {𝑄∗

𝑎} (resp. {𝑇 ∗
𝑎 }) and con-

strain them to possess the same properties as the ground truth.

For instance, for low-rank factorization, we require that {𝑇𝑎} are
symmetric and satisfy ⟨𝑇𝑎,𝑇𝑏⟩Σ = ⟨𝑇 ∗

𝑎 ,𝑇
∗
𝑏
⟩Σ, and to constrain them

to be low-rank, we also introduce SoS variables {𝑣𝑎,𝑡 }𝑎∈[𝑑 ],𝑡 ∈[ℓ ]
and insist that 𝑇𝑎 =

∑ℓ
𝑡=1 𝑣

⊗ℓ
𝑎,𝑡 . The hope is to turn the arguments

above into a low-degree SoS proof that {𝑇𝑎} and {𝑇 ∗
𝑎 } are equivalent

up to gauge symmetry, and then to apply some simple rounding

procedure to a pseudoexpectation satisfying the aforementioned

constraints to extract estimates for {𝑇 ∗
𝑎 }.

This raises a number of challenges. How do we capture the

𝑟𝜔 × 𝑟𝜔 transformation 𝑈 from the preceding discussion in SoS?

How do we encode the condition that 𝑈 has the structure of a

Kronecker power of an 𝑟 × 𝑟 orthogonal matrix? And how do we

actually round, given that everything is only specified up to gauge

symmetry?

Implementing 𝑈 as an SoS variable. For simplicity, we illus-

trate this in the setting of tensor ring decomposition. Having im-

posed the constraints Tr(𝑄𝑎𝑄𝑏 ) = Tr(𝑄∗
𝑎𝑄

∗
𝑏
), we can rewrite these

constraints as the matrix equality

𝑁𝑁⊤ = 𝑁 ∗𝑁 ∗⊤,

where𝑀,𝑀∗ ∈ R𝑑×𝑟 2 have 𝑎-th row given by vec(𝑄𝑎) and vec(𝑄∗
𝑎)

respectively. A linear transformation mapping every 𝑄∗
𝑎 into 𝑄𝑎

can be thought of as a matrix 𝑈 for which 𝑈𝑁 ∗⊤ = 𝑁⊤
. A natural

way to construct such a matrix𝑈 would be to define𝑈 = 𝑁−1𝑁 ∗⊤
.

Note that because 𝑁𝑁⊤ = 𝑁 ∗𝑁 ∗⊤
, it would follow that 𝑈 is an

orthogonal matrix.

Of course this doesn’t quite work as 𝑁 is an SoS variable and

thus does not have a left-inverse, but this is easy to remedy by intro-

ducing an additional variable 𝐿 to the SoS program corresponding

to this left-inverse and requiring that 𝐿𝑁 = Id. We could then define

𝑈 to be 𝐿𝑁 ∗⊤
. We emphasize that 𝑈 should not be thought of as

another variable in our SoS program; after all, 𝑁 ∗
is unknown to the

algorithm designer, so the entries of𝑈 are merely unknown linear

forms in the SoS variable 𝐿. For this reason, 𝑈 is only referenced

throughout the analysis of our SoS relaxation.

Finally, as discussed at the end of Section 3.1, there are some sub-

tleties as 𝑁 has repeated columns because {𝑄𝑎} are symmetric, so

strictly speaking it should not have a left-inverse.We discuss how to

circumvent these issues in Section 6.3 for tensor ring decomposition

and in the full version for low-rank factorization.
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Expressing Kronecker structure of𝑈 . While most of the steps

outlined in Sections 3.1 and 3.2 proving various properties of 𝑈

are relatively straightforward to implement in SoS, e.g. (3) and (4)

for tensor ring decomposition and rank preservation for low-rank

factorization, it is less clear how to even express in SoS the main

conclusion that we want to show about 𝑈 , namely that it is the

Kronecker power of an 𝑟 × 𝑟 orthogonal matrix 𝑉 .

In particular, how do we express 𝑉 ? That is, how do we use

the existing program variables to design a matrix 𝑉 for which we

could hope to prove 𝑈 is its Kronecker power? For tensor ring

decomposition, a natural candidate would be to take the 𝑟 × 𝑟

matrix𝑈 𝑖𝑖
for every 𝑖 ∈ [𝑟 ], pick one of its nonzero columns and

normalize it to a unit vector 𝑉 𝑖
, and take 𝑉 ’s columns to consist

of 𝑉 𝑖
’s. This does not quite work because the normalization step

involves a rational function of the entries of the program variables.

To fix this, we need to carry around these normalization factors

when expressing the 𝑈 𝑖 𝑗
’s as outer products.

While this turns out to be manageable for tensor ring decompo-

sition, such an approach quickly becomes unwieldy for low-rank

factorization where the degree 𝜔 can be arbitrary. Fortunately, for

odd 𝜔 , there is a simpler workaround. Heuristically, because we

expect to have𝑈 𝑖 · · ·𝑖 = 𝑉 𝑖 ⊗ · · · ⊗𝑉 𝑖
for 𝑟 × 𝑟 orthogonal matrix𝑉 ,

we also expect that 𝑉 𝑖
is equal to the vector, call it 𝑈 𝑖

, whose 𝑗-th

entry is given by

𝑈 𝑖
𝑗 ≜

∑︁
𝑗1,..., 𝑗⌊𝜔/2⌋ ∈[𝑟 ]

𝑈 𝑖 · · ·𝑖
𝑗1 𝑗1 · · · 𝑗⌊𝜔/2⌋ 𝑗⌊𝜔/2⌋ 𝑗

.

In particular, the entries of 𝑈 are simply linear forms in those of𝑈 .

For general odd 𝜔 , our SoS proof that𝑈 is a Kronecker power thus

entails proving that 𝑈 is the Kronecker power of 𝑈 and that 𝑈 is

orthogonal.

Rounding by breaking gauge symmetry. Finally, we describe

how to take a pseudodistribution satisfying the constraints of our

SoS program and round to an integral solution. This is complicated

by the fact that we can only hope to recover the ground truth

up to gauge symmetry. We address this by breaking symmetry

and imposing a small number of additional constraints to our SoS

program. These constraints will ensure that the transformation𝑈 is

not just the Kronecker power of some 𝑟 × 𝑟 orthogonal matrix, but

actually equal to the identity matrix. This shows that𝑄𝑎 and𝑄∗
𝑎 (or

𝑇𝑎 and𝑇 ∗
𝑎 ) are not only equivalent up to rotation, but equal. At that

point we can produce an integral solution simply by outputting the

pseudoexpectations of {𝑄𝑎} or {𝑇𝑎}.
In tensor ring decomposition, a natural approach to ensure that𝑈

is identity would be to further insist that one of the𝑄𝑎 ’s is diagonal

with diagonal entries sorted in increasing order. The reason is that if

the eigenvalues of𝑄𝑎 are all distinct (more precisely, well-separated

to account for noise when 𝜂 > 0), then the only way for 𝑉𝑄𝑎𝑉
⊤
to

be equal to𝑄𝑎 for some 𝑟 × 𝑟 rotation𝑉 would be for𝑉 to be equal

to ±Id (and thus for 𝑈 to be (±Id)⊗2 = Id). This approach in fact

already works in the smoothed setting.

To handle the slightly more general setting where {𝑄𝑎} are

“incoherent” but have repeated eigenvalues, we slightly modify this

by insisting that some suitable random linear combination of the

𝑄𝑎 ’s is diagonal with sorted diagonal entries. By carefully designing

how this linear combination is sampled we can ensure that it has

sufficient eigengaps with high probability.

For low-rank factorization, we use a similar approach with vari-

ous technical modifications to account for the fact that for 𝜔 > 2,

order-𝜔 tensors do not have a suitable notion of eigengap. The de-

tails here are rather thorny and involve running two SoS relaxations

in succession. We defer an overview of these workarounds to the

full version.

Roadmap. In Section 4 we describe related work. After estab-

lishing the reduction from learning polynomial transformations to

tensor ring decomposition and low-rank factorization in Section 5,

we give a more detailed overview of our algorithm for tensor ring

decomposition in Section 6, deferring many of the details of this, as

well as all the details for low-rank factorization, to the full version.

Table 1: Notation for the main parameters

input dimension output dimension degree rank

𝑟 𝑑 𝜔 ℓ

4 RELATEDWORK
There is a vast literature on density estimation of distributions,

especially in high dimensions, to which we cannot do justice here.

For conciseness we will only survey the most relevant work.

Learning latent variable models Much of the recent algorith-

mic success in high dimensional distribution learning has been

in developing efficient algorithms for a variety of latent variable

models, such as mixture models [1, 2, 4, 5, 12, 17, 18, 36, 37, 43, 44,

48, 50, 59, 63, 78, 79, 87, 88, 93, 100] and graphical models [10, 20–

26, 32, 35, 40, 42, 45, 53, 61, 72, 77, 94, 102, 104]. Of these works, we

highlight the work on learning latent variable models in smoothed

settings [4, 5, 10, 18, 19, 50, 66], where a similar “blessing of dimen-

sionality” phenomena to the one we observe can be seen.

However, there are important qualitative differences between

these settings and the one we consider. While our model can be

viewed as a latent variable model, where the hidden variable is

the unknown Gaussian, the main challenge of our work is to learn

the transformation of the hidden variable, rather than the hidden

variable itself. This makes the problem take a qualitatively different

form than much of the prior work. From a technical perspective,

another difference between our setting and much of the prior work

on learning latent variable models is that the form of the pdf for our

distributions is much more implicit; in particular, the relationship

between moments of the distribution and the pdf is much less clean

than (say) for Gaussian mixture models.

(Non-linear) independent component analysis Independent

component analysis as first proposed in [33] is the question of

learning an (unknown) linear transformation of a non-Gaussian,

coordinate-wise independent random variable. Here, the goal is

to recover the underlying transformation as well as the original

random variable (note that non-Gaussianity is necessary for this to

be possible). The literature on ICA is incredibly large, so we refer

the reader to surveys of [34, 67, 69] and references within for a more
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detailed literature review. We briefly note that to our knowledge,

one cannot black-box apply a kernelized version of the algorithms

for ICA such as [9, 11, 49, 84, 98] to solve our problem, because in

the polynomial kernel space, the resulting random variable does

not satisfy coordinate-wise independence.

Of particular interest to us is the literature on non-linear ICA,

which is very closely related to the learning problem we consider.

However, in non-linear ICA, the goal is not just to learn a distri-

bution which is close to the ground truth, but in fact to recover

the original (i.e. pre-transformation) latent variables. Despite a sub-

stantial amount of interest in this model from the more applied

side (see e.g. [68, 71, 74] and references therein), from a theoreti-

cal perspective, the problem remains relatively poorly understood

without additional assumptions. it is known that in the worst case,

the latent variable is not identifiable [70]. As another example of

this phenomenon, note that the aforementioned counterexample

of [57] from Section 2 implies that for cubic transformations of

Gaussians, the latent variable is not always identifiable.

Consequently, much of the literature has shifted to consider data

with temporal structure, see e.g. [68, 71]. In contrast, we consider the

standard i.i.d. model, but we make stronger parametric assumptions

about the transformation, namely, that it is a low-degree polynomial.

In addition, we do not require that the latent variable be identifiable,

as we only care about learning the underlying distribution, and not

recovering the the latent variable.

Learning deep generative models A full literature on the the-

ory of learning deep generative models, and GANs in particular, is

beyond the scope of this paper. See e.g. [58] for a more in depth

survey. In terms of end-to-end learning guarantees with efficient

algorithms, the literature is somewhat sparser. To our knowledge,

results are only known for relatively simple networks. Much of

the literature focuses on understanding when stochastic first or-

der methods can learn the distribution on toy generative mod-

els [3, 39, 47, 52, 73, 81]. One line of work considers the problem

of learning distributions generated by pushforwards of Gaussians

one-layer neural networks with ReLU activations [81, 103]. How-

ever, such distributions have a much simpler structure than the

ones we consider in this paper, which correspond to two-layer neu-

ral networks (i.e. with one hidden layer). Indeed, when the neural

networks only have one layer, this means that the output of the

distribution is very similar to a truncated Gaussian, and one can

leverage techniques from the literature of learning from truncated

samples [38]. However, such structure completely disappears with

two layer neural networks. In that sense, our guarantee is the first

end-to-end provable result for learning pushforwards under neural

networks beyond a single layer.

Arguably the closest paper to ours is the recent work of [83].

This paper considers a very similar setting to ours, however, their

result has a number of drawbacks compared to ours. First, they

assume that the hidden weight matrices are orthonormal; that is,

the coordinates of their generative model are of the form 𝑝 (𝑥) =∑ℓ
𝑖=1 𝑎𝑖 ⟨𝑢𝑖 , 𝑥⟩𝜔 , where the 𝑢𝑖 are orthogonal unit vectors. This is

an incredibly brittle assumption, and their algorithm breaks even if

the 𝑢𝑖 have inverse polynomially small correlations. In particular,

their assumption does not even hold in the smoothed setting we

consider. In contrast, we handle arbitrary low-rank tensors. Sec-

ond, their bounds scale exponentially with scale of 𝑎𝑖 , whereas our

bounds do not. Finally, their provable guarantees are contingent on

a conjectured identifiability assumption which they do not prove

(see discussion above Theorem 2 in [83]). Therefore, they do not

give end-to-end provable guarantees for their learning task. In con-

trast, we give fully provable results for a significantly more general

setting. Indeed, much of the technical work in our paper comes

down to giving a proof of identifiability for a more involved tensor

decomposition-style problem.

The relative lack of algorithms for these learning tasks may be

inherent, at least in some worst case sense. Indeed, recent work

of [29, 30] demonstrates that learning pushforwards of Gaussians

under low-depth ReLU networks in Wasserstein distance is com-

putationally intractable, either under standard cryptographic as-

sumptions or in the statistical query model. The starting point for

the former result is the observation that the assumption that “lo-

cal pseudorandom generators” exist [6, 7, 54] implies that learning

polynomial transformations of the uniform distribution over the hy-

percube is computationally intractable. The idea behind the result of

[29] is that even depth-2 ReLU network pushforwards can match all

low-order moments of a standard Gaussian distribution. Alongside

our information theoretic lower bound against parameter estima-

tion for polynomial pushforwards (see Appendix of full version),

these hardness results give evidence that some sort of smoothing

assumptions are necessary to make the problem algorithmically

tractable.

On the flip side, there has been a lot of work on scrutinizing the

ways in which the training dynamics for learning generative models

in practice are aligned or misaligned with traditional statistical

notions of distribution learning [8, 13, 46, 97], and relatedly, what

it takes for minimax optimality (e.g. under the Wasserstein GAN

objective) to actually ensure distribution learning [14, 27, 30, 85, 95,

96, 99]. While this suggests that a satisfactory theory for generative

models may ultimately involve more than just distribution learning

in the traditional sense, the basic algorithmic question considered

in the present work, in addition to being natural in its own right,

seems like a natural stepping stone towards such a theory.

Tensor ring decomposition Tensor ring decomposition is an

important instance of tensor network decomposition and arises

as a prototypical model for periodic one-dimensional physical sys-

tems [101]. As alluded to previously, the tensor ring format, along

with other dimension-reduced tensor representations such as the

tensor train format [90, 91], or those associated with Tucker rank

or hierarchical Tucker rank [15, 89], arose as ways of representing

large tensors implicitly. Unfortunately, unlike Tucker decomposi-

tion [41, 106], hierarchical Tucker decomposition [56], or tensor-

train decomposition [91, 108], obtaining efficient algorithms with

provable guarantees for tensor ring decomposition has proven quite

challenging [31]. In part, this is because the notion of rank asso-

ciated with tensor ring decomposition—in contrast to the other

aforementioned representations—is unidentifiable in many scenar-

ios [105]. While some heuristic algorithms for tensor ring decom-

position have been proposed, such as those based on alternating

least squares [75, 107], prior to our work, there were no known

algorithms for the problem with end-to-end theoretical guarantees.
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SoS for learning From a technical point of view, our algorithms

fit into the recent SoS “proofs-to-algorithms” paradigm for statisti-

cal inference problems (see e.g. [62] for a more thorough overview).

From a technical perpective, our problem is closest to the line of

work using SoS and SoS-inspired algorithms to obtain efficient algo-

rithms for a variety of tensor decomposition tasks [16, 51, 64, 65, 86].

However, our problem setting appears to be significantly more tech-

nically challenging, in large part because in addition to the usual

permutational symmetry among components in tensor decomposi-

tion, there is an extra gauge symmetry inherent to the problems we

consider. Even for tensor ring decomposition, which generalizes

tensor decomposition, to our knowledge the techniques in these

papers do not apply.

5 LEARNING POLYNOMIAL
TRANSFORMATIONS

In this section, we establish the connection between the inverse

problems of tensor ring decomposition and low-rank factorization,

to the problem of learning polynomial transformations:

Theorem 5.1. Let 𝜀 > 0. Suppose there is an algorithm for tensor

ring decomposition (Definition 2.6) that, given as input 𝑆,𝑇 satisfying��
Tr(𝑄∗

𝑎𝑄
∗
𝑏
) − 𝑆𝑎,𝑏

�� ≤ 𝜂 ∀ 𝑎, 𝑏 ∈ [𝑑] (6)��
Tr(𝑄∗

𝑎𝑄
∗
𝑏
𝑄∗
𝑐 ) −𝑇𝑎,𝑏,𝑐

�� ≤ 𝜂 ∀ 𝑎, 𝑏, 𝑐 ∈ [𝑑] . (7)

for some 𝜂 = 𝜂 (𝜀), runs in time 𝑇 and with high probability outputs

symmetric matrices 𝑄1, . . . , 𝑄𝑑 for which 𝑑G ({𝑄∗
𝑎}, {𝑄𝑎}) ≤ 𝜀.

Then there is an algorithm for parameter learning the transfor-

mation D given by quadratic network 𝑄∗
1
, . . . , 𝑄∗

𝑑
to error 𝜀 with

high probability that draws 𝑂 (𝑟3R6
log

3 (2𝑑/𝛿)/𝜂 (𝜀)2) samples and

runs in time 𝑇 . Furthermore, this algorithm also solves proper density

estimation to Wasserstein error 𝑂 (𝜀𝑟
√
𝑑) with high probability.

Theorem 5.2. Let 𝜀 > 0 and define

Σ ≜ E
𝑔∼N(0,Id𝑟 )

[𝑔⊗𝜔 (𝑔⊗𝜔 )⊤] . (8)

Suppose there is an algorithm for low-rank factorization (Defini-

tion 2.8) that, given as input 𝑆 satisfying��⟨𝑇 ∗
𝑎 ,𝑇

∗
𝑏
⟩Σ − 𝑆𝑎,𝑏

�� ≤ 𝜂 ∀ 𝑎, 𝑏 ∈ [𝑑] (9)

for some 𝜂 = 𝜂 (𝜀), runs in time 𝑇 and with high probability outputs

𝑇1, . . . ,𝑇𝑑 for which we have 𝑑G ({𝑇 ∗
𝑎 }, {𝑇𝑎}) ≤ 𝜀.

Then there is an algorithm for parameter learning the transfor-

mation D given by low-rank polynomial network 𝑇 ∗
1
, . . . ,𝑇 ∗

𝑑
to error

𝜀 with high probability that draws 𝑂 (𝜔𝑟 )2𝜔R4
log

2𝜔 (𝛿/𝑑)/𝜂 (𝜀)2
samples and runs in time 𝑇 . Furthermore, this algorithm also solves

proper density estimation to Wasserstein error 𝑂 (𝜀𝑟
√
𝑑) with high

probability.

5.1 Quadratic Transformations
Here we establish the connection between method of moments

for learning quadratic transformations and tensor ring decompo-

sition, and tensor ring decomposition and low-rank factorization.

Throughout this section, let D be a 𝑑-dimensional degree-2 trans-

formation with seed length 𝑟 that is specified by the polynomial

network 𝑄∗
1
, . . . , 𝑄∗

𝑑
∈ R𝑟×𝑟 .

Lemma 5.3. If 𝑧 is a sample from D, then for any 𝑎, 𝑏, 𝑐 ∈ [𝑑],
2Tr(𝑄∗

𝑎𝑄
∗
𝑏
) = E[(𝑧𝑎 − E[𝑧𝑎]) (𝑧𝑏 − E[𝑧𝑏 ])]

8Tr(𝑄∗
𝑎𝑄

∗
𝑏
𝑄∗
𝑐 ) = E[(𝑧𝑎 − E[𝑧𝑎]) (𝑧𝑏 − E[𝑧𝑏 ]) (𝑧𝑐 − E[𝑧𝑐 ])]

Proof. For any 𝑎, 𝑏, 𝑐 ∈ [𝑑], we have by Isserlis’ theorem that

E[𝑧𝑎] = E
𝑥∼N(0,Id)

[𝑥⊤𝑄∗
𝑎𝑥] = Tr(𝑄∗

𝑎) .

E[𝑧𝑎𝑧𝑏 ] = E
𝑥
[(𝑥⊤𝑄∗

𝑎𝑥) · (𝑥⊤𝑄∗
𝑏
𝑥)] = Tr(𝑄∗

𝑎) Tr(𝑄∗
𝑏
) + 2Tr(𝑄∗

𝑎𝑄
∗
𝑏
) .

E[𝑧𝑎𝑧𝑏𝑧𝑐 ] = E
𝑥
[(𝑥⊤𝑄∗

𝑎𝑥) · (𝑥⊤𝑄∗
𝑏
𝑥) · (𝑥⊤𝑄∗

𝑐𝑥)]

= Tr(𝑄∗
𝑎) Tr(𝑄∗

𝑏
) Tr(𝑄∗

𝑐 ) + 2Tr(𝑄∗
𝑎) Tr(𝑄∗

𝑏
𝑄∗
𝑐 )

+ 2Tr(𝑄∗
𝑏
) Tr(𝑄∗

𝑎𝑄
∗
𝑐 ) + 2Tr(𝑄∗

𝑐 ) Tr(𝑄∗
𝑎𝑄

∗
𝑏
)

+ 8Tr(𝑄∗
𝑎𝑄

∗
𝑏
𝑄∗
𝑐 ),

where 𝑥 ∼ N(0, Id) and for the last identity, we used the fact that

for any symmetric matrices 𝐴1, 𝐴2, 𝐴3,

Tr(𝐴1𝐴2𝐴3) = Tr(𝐴𝜋 (1)𝐴𝜋 (2)𝐴𝜋 (3) ) ∀ 𝜋 ∈ S3 .

The lemma follows immediately from the above moment calcula-

tions. □

Lemma 5.4 (Empirical moment estimation). For any 𝜂, 𝛿 > 0,

if ∥𝑄∗
𝑎 ∥2𝐹 ≤ R2

for all 𝑎 ∈ [𝑑], there is an algorithm that takes

𝑂 (𝑟3R6
log

3 (2𝑑/𝛿)/𝜂2) samples from D and with probability at

least 1 − 𝛿 outputs 𝑆 ∈ R𝑑×𝑑 and 𝑇 ∈ R𝑑×𝑑×𝑑 satisfying (6) and (7).

We defer the proof of this to the Appendix of the full version.

Theorem 5.1 now immediately follows from Lemma 5.4.

General rotation-invariant seeds. While it would appear that

the reduction above makes use of the special structure of Gaussian

moments, our approach easily extends to any rotation-invariant

seed distribution 𝐷 which is reasonably concentrated so that the

corresponding transformation moments can be estimated from sam-

ples as in Lemma 5.4. The reason for this comes from the following

elementary observation about moments of rotation-invariant dis-

tributions, whose proof we defer to the full version

Lemma 5.5. For any rotation-invariant distribution 𝐷 over R𝑟 and
any degree-𝑒 homogeneous polynomial 𝑞 : R𝑟 → R, E𝑥∼𝐷 [𝑞(𝑥)] =
𝐶𝐷,𝑒 · E𝑔∼N(0,Id) [𝑞(𝑔)] for 𝐶𝐷,𝑒 ≜

Γ (𝑒/2)
2
𝑒 ·Γ ( (𝑟+𝑒)/2) · E𝑥∼𝐷 [∥𝑥 ∥𝑒 ].

So from the second-, fourth-, and sixth-order moments of any

rotation-invariant 𝐷 , we can extract the quantities Tr(𝑄∗
𝑎𝑄

∗
𝑏
) and

Tr(𝑄∗
𝑎𝑄

∗
𝑏
𝑄∗
𝑐 ) as in Lemma 5.3 even when 𝐷 is not N(0, Id), pro-

vided we know E𝑥∼𝐷 [∥𝑥 ∥𝑒 ] for 𝑒 = 2, 4, 6. Regarding this last point,

we note that it is entirely reasonable to assume that these quantities,

in fact even a description of 𝐷 itself, is known to the algorithm

designer: in the practice of generative models one has complete

control over the seed distribution/prior that is used.

5.2 Low-Rank Transformations
Here we establish the connection between method of moments

for learning low-rank transformations and low-rank factorization.

Throughout this section, let D be a 𝑑-dimensional degree-𝜔 trans-

formation with seed length 𝑟 that is specified by the low-rank

polynomial network 𝑇 ∗
1
, . . . ,𝑇 ∗

𝑑
∈ (R𝑟 )⊗𝜔 .
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Lemma 5.6. If 𝑧 is a sample from D, then for any 𝑎, 𝑏 ∈ [𝑑],
⟨𝑇 ∗
𝑎 ,𝑇

∗
𝑏
⟩Σ = E[𝑧𝑎𝑧𝑏 ],

where Σ is defined in (8).

Proof. This follows from

E[𝑧𝑎𝑧𝑏 ] = E
𝑔∼N(0,Id𝑟 )

[⟨𝑇 ∗
𝑎 , 𝑔

⊗𝜔 ⟩⟨𝑇 ∗
𝑏
, 𝑔⊗𝜔 ⟩]

= vec(𝑇 ∗
𝑎 ) E[𝑔⊗𝜔 (𝑔⊗𝜔 )⊤] vec(𝑇 ∗

𝑏
) . □

Lemma 5.7 (Empirical moment estimation). For any 𝜂, 𝛿 > 0,

if ∥𝑇 ∗
𝑎 ∥2𝐹 ≤ R2

for all 𝑎 ∈ [𝑑], there is an algorithm that takes

𝑂 (𝜔𝑟 )2𝜔R4
log

2𝜔 (𝛿/𝑑)/𝜂2 samples from D and with probability at

least 1 − 𝛿 outputs 𝑆 ∈ R𝑑×𝑑 satisfying (9).

We defer the proof of this to the Appendix of the full version.

Theorem 5.2 now immediately follows from Lemma 5.7.

General rotation-invariant seeds. Note that Lemma 5.6 makes

no use of the fact that the transformation has seed distribution given

by N(0, Id), so our reduction from learning low-rank transforma-

tions to low-rank factorization easily carries over to any known

seed distribution 𝐷 which is sufficiently well-concentrated that

the pairwise moments of D can be estimated from samples as in

Lemma 5.7 and for which the corresponding low-rank factoriza-

tion problem with Σ now given by E𝑥∼𝐷 [vec(𝑥⊗𝜔 ) vec(𝑥⊗𝜔 )⊤] is
tractable. As we show in the full version, our algorithm for low-

rank factorization applies to any Σ of this form for which the seed

distribution 𝐷 is rotation-invariant and for which very mild con-

dition number bounds hold. In the full version, we also give an

algorithm for low-rank factorization when Σ = Id, which yields

a learning algorithm for a certain family of inhomogeneous poly-

nomial transformations given by one hidden layer networks with

Hermite polynomial activations.

6 TENSOR RING DECOMPOSITION
Recall that in tensor ring decomposition (Definition 2.6), we are

given 𝑆 ∈ R𝑑×𝑑 and 𝑇 ∈ R𝑑×𝑑×𝑑 such that there exist unknown

symmetric matrices 𝑄∗
1
, . . . , 𝑄∗

𝑑
∈ R𝑟×𝑟 satisfying

|𝑆𝑎,𝑏 − Tr(𝑄∗
𝑎𝑄

∗
𝑏
) | ≤ 𝜂 and |𝑇𝑎,𝑏,𝑐 − Tr(𝑄∗

𝑎𝑄
∗
𝑏
𝑄∗
𝑐 ) | ≤ 𝜂 (10)

for all 𝑎, 𝑏, 𝑐 ∈ [𝑑]. In this section we give a polynomial-time al-

gorithm for recovering 𝑄∗
1
, . . . , 𝑄∗

𝑑
from 𝑆,𝑇 under the following

assumptions:

Assumption 1. For parameters R ≥ 1, 𝜅 > 0,

(1) (Scaling) ∥𝑄∗
𝑎 ∥𝐹 ≤ R for all 𝑎 ∈ [𝑑].

(2) (Condition number bound) 𝜎(𝑟+1
2
) (𝑀

∗) ≥ 𝜅, where 𝑀∗ ∈

R𝑑×(
𝑟+1
2
)
is the matrix whose (𝑎, (𝑖1, 𝑖2))-th entry, for 𝑎 ∈ [𝑑]

and 1 ≤ 𝑖1 ≤ 𝑖2 ≤ 𝑟 , is given by (𝑄∗
𝑎)𝑖1𝑖2 .

Remark 6.1. Readers familiar with the standard guarantees for

Jennrich’s algorithm will recognize that Part 2 of Assumption 1 is the

tensor ring analogue of the condition number assumption in tensor

decomposition. Namely, given an estimate of

∑
𝑖 𝑣

⊗3
𝑖

, Jennrich’s algo-

rithm can recover {𝑣𝑖 } provided the matrix whose columns consist of

𝑣𝑖 is well-conditioned (see e.g. [18, Condition 2.2]).
2

2
Technically if {𝑄∗

𝑎 } are all diagonal with (𝑄∗
𝑎)𝑖𝑖 = (𝑣𝑖 )𝑎 , Part 2 of Assumption 1

does not apply because𝑀∗
will have many zero entries, but it is straightforward to

One can readily check that Assumption 1 is gauge-invariant (see

Appendix of full version for proof):

Lemma 6.2. If {𝑄∗
𝑎} satisfy (10) and Assumption 1 with parameters

R, 𝜅 , then {𝑉𝑄∗
𝑎𝑉

⊤} also satisfy (10) and Assumption 1 with the same

parameters for any 𝑉 ∈ 𝑂 (𝑟 ).

Under Assumption 1, we give an algorithm for tensor ring decom-

position that runs in time polynomial in all parameters:

Theorem 6.3. For 𝑑 ≥
(𝑟+1
2

)
, suppose 𝑄∗

1
, . . . , 𝑄∗

𝑑
∈ R𝑟×𝑟 satisfy

Assumption 1 and 𝜂 ≤ 𝑂 ( 𝜅2

𝑟𝑑3/2 ), and we are given 𝑆 ∈ R𝑑×𝑑 and

𝑇 ∈ R𝑑×𝑑×𝑑 satisfying (10).

Then there is an algorithm TensorRingDecompose(𝑆,𝑇 ) which

runs in time poly(𝑑, 𝑟 ) and outputs𝑄1, . . . , 𝑄𝑑 for which we have the

bound 𝑑G ({𝑄∗
𝑎}, {𝑄𝑎}) ≤ poly(𝑑, 𝑟,R, 1/𝜅) · 𝜂𝑐 for some absolute

constant 𝑐 > 0, with high probability.

Section overview. Our algorithm is based on rounding the solu-

tion to a suitable sum-of-squares relaxation. As such, our analysis is

centered around exhibiting a low-degree sum-of-squares proof that

the ground truth {𝑄∗
𝑎} is identifiable from 𝑆,𝑇 . As discussed in Sec-

tion 3, the gauge symmetry inherent in tensor ring decomposition

poses a major challenge for this, because {𝑄∗
𝑎} is only identifiable

up to a global rotation in R𝑟 . In Section 6.1 we outline our strategy

for “breaking symmetry” by imposing certain constraints on {𝑄∗
𝑎}

that are without loss of generality but which will uniquely identify

{𝑄∗
𝑎}. In Section 6.2 we then formulate our sum-of-squares program

which incorporates this symmetry-breaking strategy.

The high-level strategy will be to introduce SoS variables {𝑄𝑎}
that are constrained to have the same pairwise and three-wise

moment bounds as in (10), and we would like to prove the {𝑄𝑎} are
close to {𝑄∗

𝑎} in Frobenius norm. To show this, we would like to

show that the 𝑟2×𝑟2 linear transformation that maps every vec(𝑄∗
𝑎)

to vec(𝑄𝑎) behaves like the Kronecker power Id⊗2𝑟 . Because every

𝑄∗
𝑎 and 𝑄𝑎 is symmetric, there is some ambiguity in formulating

this transformation as an SoS variable (recall the discussion at the

end of Section 3.1 of the technical overview).

In Section 6.3 we make a first attempt by constructing a certain

auxiliary 𝑟2 × 𝑟2 matrix variable 𝑈 that, as we show in the full ver-

sion, behaves in some respects like this 𝑟2 × 𝑟2 transformation. The

remaining details we defer to the full version. Namely, in the full

version, we then use the third-order constraints in (10) to show that

the entries of 𝑈 satisfy a certain collection of quadratic relations.

We use these quadratic relations to refine 𝑈 to give another SoS

auxiliary variable𝑊 which better captures the 𝑟2 × 𝑟2 transfor-

mation and which also satisfies a similar collection of quadratic

relations as𝑈 . We then complete the analysis by implementing the

aforementioned symmetry-breaking strategy in SoS to show that

𝑊 is approximately Id
⊗2
𝑟 . Finally, in the full version we use this to

give our main algorithm TensorRingDecompose and prove Theo-

rem 6.3. We also show how to improve the runtime of Theorem 6.3

to only depend linearly on 𝑑 .

modify our sum-of-squares algorithm to incorporate the assumption that {𝑄∗
𝑎 } are

diagonal to recover the guarantees of Jennrich’s algorithm.
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6.1 Breaking Gauge Symmetry for the Ground
Truth

A natural approach for breaking symmetry would be to insist with-

out loss of generality that, for instance, 𝑄∗
1
is diagonal with sorted

entries. If the eigenvalues of 𝑄∗
1
are well-separated, then one can

check that the only rotations 𝑉 ∈ 𝑂 (𝑟 ) for which 𝑉⊤𝑄∗
𝑎𝑉 = 𝑄∗

𝑎 for

all 𝑎 ∈ [𝑑] are those for which 𝑉 is diagonal with diagonal entries

in {±1}. If we could additionally insist that, say, the first row of 𝑄∗
2

consisted entirely of strictly positive entries, this would force 𝑉 to

be the identity and completely break the gauge symmetry.

Of course, it could be that 𝑄∗
1
and 𝑄∗

2
don’t meet the desired

criteria for making such assumptions:𝑄∗
1
might have some repeated

eigenvalues, or𝑄∗
2
might have a zero entry in its first row.

3
But the

above strategy is certainly not specific to 𝑄∗
1
or 𝑄∗

2
or the choice of

row in𝑄∗
2
. Indeed, it would be enough for this to hold for some fixed

linear combinations of {𝑄∗
𝑎}, instead of for𝑄∗

1
, and𝑄∗

2
respectively.

We show that under Assumption 1, there is indeed a way to

construct such linear combinations. In the Appendix in the full

version, we give an algorithm that takes in 𝑆 and outputs linear

combinations of {𝑄∗
𝑎} satisfying the desired properties, which we

formalize in the definition below:

Definition 6.4. We say that 𝜆, 𝜇 ∈ S𝑑−1 are 𝜐-non-degenerate

combinations of 𝑄∗
1
, . . . , 𝑄∗

𝑑
if the following two properties hold for

𝑄∗
𝜆
≜

∑︁
𝑎∈[𝑑 ]

𝜆𝑎𝑄
∗
𝑎

𝑄∗
𝜇 ≜

∑︁
𝑎∈[𝑑 ]

𝜇𝑎𝑄
∗
𝑎 . (11)

(1) 𝑄∗
𝜆
has minimum eigengap at least 𝜐.

(2) Let 𝑉⊤Λ𝑉 be the eigendecomposition of 𝑄∗
𝜇 . Then every entry

of 𝑉𝑄∗
𝜇𝑉

⊤
has magnitude at least 𝜐.

Because Assumption 1 is gauge-invariant by Lemma 6.2, we can

assume without loss of generality that𝑄∗
𝜆
defined in (11) is diagonal

with entries sorted in nondecreasing order. As 𝑄∗
𝜆
has minimum

eigengap at least 𝜐,

(𝑄∗
𝜆
) 𝑗 𝑗 ≥ (𝑄∗

𝜆
)𝑖𝑖 + 𝜐 ∀ 𝑗 > 𝑖 . (12)

After diagonalizing 𝑄∗
𝜆
, the second part of Definition 6.4 implies

that | (𝑄∗
𝜇 )𝑖 𝑗 | ≥ 𝜐 for all 𝑖, 𝑗 ∈ [𝑟 ].

By applying one more joint rotation to 𝑄∗
1
, . . . , 𝑄∗

𝑑
given by a

diagonal matrix of ±1 entries, we can additionally assume that the

first row of 𝑄∗
𝜇 consists of nonnegative entries. That is,

(𝑄∗
𝜇 )1𝑗 ≥ 𝜐 ∀ 𝑗 ∈ [𝑟 ] . (13)

In the sequel, we will show how to recover𝑄∗
1
, . . . , 𝑄∗

𝑑
in Frobenius

norm (as opposed to just parameter distance) by insisting that our

estimates also satisfy (12) and (13).

6.2 A Sum-of-Squares Relaxation
To prove Theorem 6.3, we will use the following sum-of-squares

program:

3
When𝑄∗

1
,𝑄∗

2
are smoothed, this will not happen, but in this section we opt for an

algorithm that can work under minimal non-degeneracy assumptions even when

{𝑄∗
𝑎 } are not smoothed.

Program 1. (Tensor Ring Decomposition)

Parameters: 𝜆, 𝜇 ∈ S𝑑−1, 𝑆 ∈ R𝑑×𝑑 , 𝑇 ∈ R𝑑×𝑑×𝑑 , R ≥ 1,

𝜅,𝜐 > 0.

Variables: Let 𝑄1, . . . , 𝑄𝑑 be 𝑟 × 𝑟 matrix-valued variables,

and let 𝐿 be an

(𝑟+1
2

)
× 𝑑 matrix-valued variable. Let𝑀 be the

𝑑 ×
(𝑟+1
2

)
matrix of indeterminates whose (𝑎, (𝑖1, 𝑖2))-th entry,

for 𝑎 ∈ [𝑑] and 1 ≤ 𝑖1 ≤ 𝑖2 ≤ 𝑟 , is given by (𝑄𝑎)𝑖1𝑖2 . Also
define 𝑄𝜆 ≜

∑𝑑
𝑎=1 𝜆𝑎𝑄𝑎 and 𝑄𝜇 ≜

∑𝑑
𝑎=1 𝜇𝑎𝑄𝑎 .

Constraints:
(1) (Symmetry): 𝑄𝑎 = 𝑄⊤

𝑎 for all 𝑎 ∈ [𝑑].
(2) (Second moments match): −𝜂 ≤ Tr(𝑄𝑎𝑄𝑏 ) − 𝑆𝑎,𝑏 ≤ 𝜂 for

all 𝑎, 𝑏 ∈ [𝑑].
(3) (Third moments match): −𝜂 ≤ Tr(𝑄𝑎𝑄𝑏𝑄𝑐 ) − 𝑇𝑎,𝑏,𝑐 ≤ 𝜂

for all 𝑎, 𝑏, 𝑐 ∈ [𝑑].
(4) (𝑄 ’s bounded): ∥𝑄𝑎 ∥2𝐹 ≤ R2

for all 𝑎 ∈ [𝑑].
(5) (Left-inverse 𝐿): 𝐿𝑀 = Id

(6) (𝐿 bounded): ∥𝐿∥2
𝐹
≤ 𝑟2/𝜅2.

(7) (𝑄𝜆 diagonal): (𝑄𝜆)𝑖 𝑗 = 0 for all 𝑖 ≠ 𝑗 .

(8) (𝑄𝜆 sorted): (𝑄𝜆) 𝑗 𝑗 ≥ (𝑄𝜆)𝑖𝑖 for all 𝑗 > 𝑖 .

(9) (𝑄𝜇 ’s first row): (𝑄𝜇 )1𝑗 ≥ 0 for all 𝑗 ∈ [𝑟 ].

We can easily verify that the ground truth is feasible.

Lemma 6.5. When 𝑑 ≥
(𝑟+1
2

)
, the pseudodistribution given by the

point distribution supported on (𝑄∗
1
, . . . , 𝑄∗

𝑑
, 𝐿∗), where 𝐿∗ is the left

inverse of𝑀∗
, is a feasible solution to Program 1.

Proof. Note that 𝐿∗ is well-defined by Part 2 of Assumption 1. It

is immediate that Constraints 1-5 are satisfied, and Constraints 7-9

are satisfied by (12) and (13). For Constraint 6, note that ∥𝐿∗∥op ≤
1/𝜅 by Part 2 of Assumption 1, so ∥𝐿∗∥2

𝐹
≤

(𝑟+1
2

)
/𝜅2 ≤ 𝑟2/𝜅2. □

The main result we will show about this sum-of-squares program

is the following:

Theorem 6.6. Suppose Assumption 1 holds, and for any 𝜆, 𝜇 ∈
S𝑑−1 let Ẽ[·] be a degree-96 pseudo-expectation over the variables

𝑄1, . . . , 𝑄𝑑 , 𝐿 satisfying the constraints of Program 1.
4

Then if 𝜆, 𝜇 are 𝜐-non-degenerate combinations of 𝑄∗
1
, . . . , 𝑄∗

𝑑
for

some 𝜐 > 0, then ∥Ẽ[𝑄𝑎] − 𝑄∗
𝑎 ∥𝐹 ≤ poly(𝑑, 𝑟,R, 1/𝜅, 1/𝜐) · 𝜂𝑐 for

all 𝑎 ∈ [𝑑] for some absolute constant 𝑐 > 0.

6.3 Hidden Rotation Variable
In this section we use the SoS variables of Program 1 to design

an auxiliary “rotation variable” 𝑈 that will play the role of the

unknown linear transformation sending every𝑄∗
𝑎 to𝑄𝑎 , after which

the focus of our analysis in subsequent sections will be to show

this transformation qualitatively behaves like Id
⊗2
𝑟 .

First, define the 𝑑×𝑟2 matrix 𝑁 ∗
(resp. 𝑁 ) to be the matrix whose

(𝑎, (𝑖1, 𝑖2))-th entry is given by (𝑄∗
𝑎)𝑖1𝑖2 (resp. (𝑄𝑎)𝑖1𝑖2 ) for all 𝑎 ∈

[𝑑], 𝑖, 𝑗 ∈ [𝑟 ]. Note that𝑀,𝑀∗
are submatrices of 𝑁, 𝑁 ∗

. Because

Tr(𝑄∗
𝑎𝑄

∗
𝑏
) = (𝑁 ∗𝑁 ∗⊤)𝑎𝑏 and Tr(𝑄𝑎𝑄𝑏 ) = (𝑁𝑁⊤)𝑎𝑏 , the first part

of Eq. (10) and Constraint 2 imply that ∥𝑁𝑁⊤ − 𝑁 ∗𝑁 ∗⊤∥max ≤ 𝜂.

4
We made no effort to optimize the degree of our SoS proof and suspect that with a

little more work, this constant can be made much smaller.
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A natural way to encode the unknown linear transformation

from 𝑄∗
𝑎 to 𝑄𝑎 as an auxiliary variable would be to consider some-

thing like 𝑁−1𝑁 ∗
, because (𝑁−1𝑁 ∗)𝑁 ∗⊤ ≈ 𝑁⊤

, and the 𝑎-th col-

umn of this approximate equality between matrices implies that

the transformation 𝑁−1𝑁 ∗
maps 𝑄∗

𝑎 to 𝑄𝑎 . By right multiplying

this approximate equality by (𝑁−1)⊤, we also see that 𝑁−1𝑁 ∗
is

approximately orthogonal.

Of course, strictly speaking such a construction isn’t well-defined:

𝑁 is an SoS variable, so there is no meaningful notion of a left in-

verse 𝑁−1
. In fact there isn’t even a suitable left inverse for the

scalar matrix 𝑁 ∗
, as 𝑁 ∗

has duplicate columns (because every 𝑄∗
𝑎

is symmetric). Nevertheless, we will use 𝐿 as a proxy for 𝑁−1
and,

with a few modifications, our construction of the “rotation variable”

𝑈 will behave like 𝑁−1𝑁 ∗
.

Formally, to construct 𝑈 , first define the

(𝑟+1
2

)
× 𝑟2 matrix𝑈 by

𝑈 ≜ 𝐿𝑁 ∗ .

Then define the 𝑟2 × 𝑟2 matrix𝑈 as follows. For any 𝑖1, 𝑖2 ∈ [𝑟 ], the
(𝑖1, 𝑖2)-th row of𝑈 is given by

𝑈𝑖1𝑖2 =


𝑈𝑖1𝑖2 if 𝑖1 = 𝑖2
1

2
𝑈𝑖1𝑖2 if 𝑖1 < 𝑖2

1

2
𝑈𝑖2𝑖1 if 𝑖1 > 𝑖2

When the context is clear, we will refer to mat(𝑈𝑖1𝑖2 ) as simply

𝑈𝑖1𝑖2 , and similarly for any 𝑗1, 𝑗2 ∈ [𝑟 ], we will refer to mat(𝑈 𝑗1 𝑗2 )
as simply 𝑈 𝑗1 𝑗2

. Note that the entries of 𝑈 are (unknown) linear

forms in the indeterminate entries of 𝐿.
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