
P R X  Q U A N T U M 4, 0 4 0 3 3 7 ( 2 0 2 3)

L e a r ni n g t o  P r e di ct  A r bit r a r y  Q u a nt u m  P r o c ess es

Hsi n- Y u a n  H u a n g ,1, * Sit a n  C h e n ,2 a n d J o h n Pr es kill 1, 3

1
I nstit ut e f or  Q u a nt u m I nf or m ati o n a n d  M att er a n d  D e p art m e nt of  C o m p uti n g a n d  M at h e m ati c al S ci e n c es,

C alt e c h,  P as a d e n a,  C alif or ni a,  U S A
2
D e p art m e nt of  El e ctri c al  E n gi n e eri n g a n d  C o m p ut er S ci e n c es,  U C  B er k el e y,  B er k el e y,  C alif or ni a,  U S A

3
A W S  C e nt er f or  Q u a nt u m  C o m p uti n g,  P as a d e n a,  C alif or ni a,  U S A

 ( R e c ei v e d 1 4  A pril 2 0 2 3; r e vis e d 1 1  N o v e m b er 2 0 2 3; a c c e pt e d 1 5  N o v e m b er 2 0 2 3; p u blis h e d 6  D e c e m b er 2 0 2 3)

We pr es e nt a n e ffi ci e nt  m a c hi n e-l e ar ni n g ( M L) al g orit h m f or pr e di cti n g a n y u n k n o w n q u a nt u m pr o c ess

E o v er n q u bits. F or a  wi d e r a n g e of distri b uti o ns D o n ar bitr ar y n - q u bit st at es,  w e s h o w t h at t his  M L

al g orit h m c a n l e ar n t o pr e di ct a n y l o c al pr o p ert y of t h e o ut p ut fr o m t h e u n k n o w n pr o c ess E ,  wit h a s m all

a v er a g e err or o v er i n p ut st at es dr a w n fr o m D .  T h e  M L al g orit h m is c o m p ut ati o n all y e ffi ci e nt e v e n  w h e n

t h e u n k n o w n pr o c ess is a q u a nt u m cir c uit  wit h e x p o n e nti all y  m a n y g at es.  O ur al g orit h m c o m bi n es e ffi-

ci e nt pr o c e d ur es f or l e ar ni n g pr o p erti es of a n u n k n o w n st at e a n d f or l e ar ni n g a l o w- d e gr e e a p pr o xi m ati o n

t o a n u n k n o w n o bs er v a bl e.  T h e a n al ysis hi n g es o n pr o vi n g n e w n or m i n e q u aliti es, i n cl u di n g a q u a nt u m

a n al o g u e of t h e cl assi c al  B o h n e n bl ust- Hill e i n e q u alit y,  w hi c h  w e d eri v e b y gi vi n g a n i m pr o v e d al g orit h m

f or o pti mi zi n g l o c al  H a milt o ni a ns.  N u m eri c al e x p eri m e nts o n pr e di cti n g q u a nt u m d y n a mi cs  wit h e v ol u-

ti o n ti m e u p t o 1 06 a n d s yst e m si z e u p t o 5 0 q u bits c orr o b or at e o ur pr o of.  O v er all, o ur r es ults hi g hli g ht t h e

p ot e nti al f or  M L  m o d els t o pr e di ct t h e o ut p ut of c o m pl e x q u a nt u m d y n a mi cs  m u c h f ast er t h a n t h e ti m e

n e e d e d t o r u n t h e pr o c ess its elf.
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I. I N T R O D U C TI O N

L e ar ni n g c o m pl e x q u a nt u m d y n a mi cs is a f u n d a m e nt al
pr o bl e m at t h e i nt ers e cti o n of  m a c hi n e l e ar ni n g ( M L) a n d
q u a nt u m p h ysi cs.  Gi v e n a n u n k n o w n n - q u bit c o m pl et el y
p ositi v e tr a c e- pr es er vi n g ( C P T P)  m a p E t h at r e pr es e nts a
p h ysi c al pr o c ess h a p p e ni n g i n n at ur e or i n a l a b or at or y,
w e c o nsi d er t h e t as k of l e ar ni n g t o pr e di ct f u n cti o ns of t h e
f or m

f ( ρ , O ) = tr(O E ( ρ )), (1 )

w h er e ρ is a n n - q u bit st at e a n d O is a n n - q u bit o bs er v-
a bl e.  R el at e d pr o bl e ms aris e i n  m a n y fi el ds of r es e ar c h,
i n cl u di n g q u a nt u m  m a c hi n e l e ar ni n g [1 – 1 0 ], v ari ati o n al
q u a nt u m al g orit h ms [ 1 1 – 1 7 ],  m a c hi n e l e ar ni n g f or q u a n-
t u m p h ysi cs [1 8 – 2 9 ], a n d q u a nt u m b e n c h m ar ki n g [3 0 – 3 6 ].
As a n e x a m pl e, f or pr e di cti n g o ut c o m es of q u a nt u m e x p er-
i m e nts [8 ,3 7 ,3 8 ],  w e c o nsi d er ρ t o b e p ar a m et eri z e d b y a
cl assi c al i n p ut x , E is a n u n k n o w n pr o c ess h a p p e ni n g i n

* hsi n y u a n @ c alt e c h. e d u

P u blis h e d b y t h e  A m eri c a n  P h ysi c al S o ci et y u n d er t h e t er ms of
t h e Cr e ati v e  C o m m o ns  Attri b uti o n 4. 0 I nt er n ati o n al li c e ns e.  F ur-
t h er distri b uti o n of t his  w or k  m ust  m ai nt ai n attri b uti o n t o t h e
a ut h or(s) a n d t h e p u blis h e d arti cl e’s titl e, j o ur n al cit ati o n, a n d
D OI.

t h e l a b, a n d O is a n o bs er v a bl e  m e as ur e d at t h e e n d of
t h e e x p eri m e nt.  A n ot h er e x a m pl e is  w h e n  w e  w a nt t o us e
a q u a nt u m  M L al g orit h m t o l e ar n a  m o d el of a c o m pl e x
q u a nt u m e v ol uti o n  wit h t h e h o p e t h at t h e l e ar n e d  m o d el
c a n b e f ast er [ 7 ,1 1 ,1 2 ].

As a n n - q u bit  C P T P  m a p E c o nsists of e x p o n e nti all y
m a n y p ar a m et ers, pri or  w or ks, i n cl u di n g t h os e b as e d
o n c o v eri n g n u m b er b o u n ds [ 4 ,7 ,8 ,3 7 ], cl assi c al s h a d o w
t o m o gr a p h y [3 3 ,3 9 ], or q u a nt u m pr o c ess t o m o gr a p h y [3 0 –
3 2 ], r e q uir e a n e x p o n e nti al n u m b er of d at a s a m pl es t o
g u ar a nt e e a s m all c o nst a nt err or f or pr e di cti n g o ut c o m es
of a n ar bitr ar y e v ol uti o n E u n d er a g e n er al i n p ut st at e
ρ .  T o i m pr o v e u p o n t his, r e c e nt  w or ks [4 ,7 ,8 ,3 7 ,4 0 ] h a v e
c o nsi d er e d q u a nt u m pr o c ess es E t h at c a n b e g e n er at e d i n
p ol y n o mi al ti m e a n d s h o w n t h at a p ol y n o mi al a m o u nt of
d at a s a m pl es s u ffi c es t o l e ar n tr (O E ( ρ )) i n t his r estri ct e d
cl ass.  H o w e v er, t h es e r es ults still r e q uir e e x p o n e nti al c o m-
p ut ati o n ti m e.

I n t his  w or k,  w e pr es e nt a c o m p ut ati o n all y e ffi ci e nt  M L
al g orit h m t h at c a n l e ar n a  m o d el of a n ar bitr ar y u n k n o w n
n - q u bit pr o c ess E , s u c h t h at, gi v e n ρ s a m pl e d fr o m a
wi d e r a n g e of distri b uti o ns o v er ar bitr ar y n - q u bit st at es
a n d a n y O i n a l ar g e p h ysi c all y r el e v a nt cl ass of o bs er v-
a bl es, t h e  M L al g orit h m c a n a c c ur at el y pr e di ct f ( ρ , O ) =
tr(O E ( ρ )). S e e Fi g. 1 f or a n ill ustr ati o n.  T h e  M L  m o d el
c a n pr e di ct o ut c o m es f or hi g hl y e nt a n gl e d st at es ρ aft er
l e ar ni n g fr o m a tr ai ni n g s et t h at o nl y c o nt ai ns d at a f or
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FI G. 1.  L e ar ni n g t o pr e di ct a n ar bitr ar y u n k n o w n q u a nt u m pr o c ess E .  C o nsi d er a n u n k n o w n q u a nt u m pr o c ess E wit h ar bitr aril y
hi g h c o m pl e xit y, a n d a cl assi c al d at as et o bt ai n e d fr o m e v ol vi n g r a n d o m pr o d u ct st at es u n d er E a n d p erf or mi n g r a n d o mi z e d P a uli
m e as ur e m e nts o n t h e o ut p ut st at es.  We gi v e a n al g orit h m t h at c a n l e ar n a l o w- c o m pl e xit y  m o d el f or pr e di cti n g t h e l o c al pr o p erti es of
t h e o ut p ut st at es gi v e n t h e l o c al pr o p erti es of t h e i n p ut st at es.

r a n d o m pr o d u ct i n p ut st at es a n d r a n d o mi z e d P a uli  m e a-
s ur e m e nts o n t h e c orr es p o n di n g o ut p ut st at es.  T h e tr ai ni n g
a n d pr e di cti o n of t h e pr o p os e d  M L  m o d el ar e b ot h e ffi-
ci e nt e v e n if t h e u n k n o w n pr o c ess E is a  H a milt o ni a n
e v ol uti o n o v er a n e x p o n e nti all y l o n g ti m e, a q u a nt u m cir-
c uit  wit h e x p o n e nti all y  m a n y g at es, or a q u a nt u m pr o c ess
arisi n g fr o m c o nt a ct  wit h a n i n ü nit el y l ar g e e n vir o n m e nt
f or a n ar bitr aril y l o n g ti m e. F urt h er m or e, gi v e n f e w- b o d y
r e d u c e d d e nsit y  m atri c es of t h e i n p ut st at e ρ , t h e  M L
al g orit h m us es o nl y cl assi c al c o m p ut ati o n t o pr e di ct o ut p ut
pr o p erti es tr (O E ( ρ )).

T h e pr o p os e d  M L  m o d el is a c o m bi n ati o n of e ffi ci e nt
M L al g orit h ms f or t w o l e ar ni n g pr o bl e ms: ( 1) pr e di cti n g
tr(O ρ ) gi v e n a k n o w n o bs er v a bl e O a n d a n u n k n o w n st at e
ρ , a n d ( 2) pr e di cti n g tr(O ρ ) gi v e n a n u n k n o w n o bs er v-
a bl e O a n d a k n o w n st at e ρ .  We gi v e s a m pl e- e ffi ci e nt
a n d c o m p ut ati o n all y e ffi ci e nt l e ar ni n g al g orit h ms f or b ot h
pr o bl e ms.  T h e n  w e s h o w h o w t o c o m bi n e t h e t w o l e ar ni n g
al g orit h ms t o a d dr ess t h e pr o bl e m of l e ar ni n g t o pr e di ct
tr(O E ( ρ )) f or a n ar bitr ar y u n k n o w n n - q u bit q u a nt u m pr o-
c ess E .  T o g et h er, t h e s a m pl e a n d c o m p ut ati o n al e ffi ci e n c y
of t h e t w o l e ar ni n g al g orit h ms i m pli es t h e e ffi ci e n c y of t h e
c o m bi n e d  M L al g orit h m.

I n or d er t o est a blis h t h e ri g or o us g u ar a nt e e f or t h e
pr o p os e d  M L al g orit h ms,  w e c o nsi d er a di û er e nt t as k: o pti-
mi zi n g a k -l o c al  H a milt o ni a n H = P ∈{ I ,X ,Y ,Z }⊗ n α P P . We
pr es e nt a n i m pr o v e d a p pr o xi m at e o pti mi z ati o n al g orit h m
t h at ü n ds eit h er a  m a xi mi zi n g or  mi ni mi zi n g st at e |ψ

wit h a ri g or o us l o w er or u p p er b o u n d g u ar a nt e e o n t h e
e n er g y ψ | H |ψ i n t er ms of t h e P a uli c o e ffi ci e nts α P

of H .  T h e ri g or o us b o u n ds i m pr o v e u p o n e xisti n g r es ults
o n o pti mi zi n g k -l o c al  H a milt o ni a ns [4 1 – 4 4 ].  We t h e n us e
t h e i m pr o v e d o pti mi z ati o n al g orit h m t o gi v e a c o nstr u c-
ti v e pr o of of s e v er al us ef ul n or m i n e q u aliti es r el ati n g t h e
s p e ctr al n or m O of a n o bs er v a bl e O a n d t h e p n or m
of t h e P a uli c o e ffi ci e nts α P ass o ci at e d  wit h t h e o bs er v-
a bl e O .  T h e pr o of r es ol v es a r e c e nt c o nj e ct ur e i n  R ef. [4 5 ]
a b o ut t h e e xist e n c e of q u a nt u m  B o h n e n bl ust- Hill e i n e q u al-
iti es.  T h es e n or m i n e q u aliti es ar e t h e n us e d t o est a blis h t h e
e ffi ci e n c y of t h e pr o p os e d  M L al g orit h ms.

II.  L E A R NI N G  Q U A N T U M S T A T E S,
O B S E R V A B L E S,  A N D  P R O C E S S E S

B ef or e pr o c e e di n g t o st at e o ur  m ai n r es ults i n gr e at er
d et ail,  w e i nf or m all y d es cri b e t h e l e ar ni n g t as ks dis c uss e d
i n t his p a p er:  w h at d o  w e  m e a n b y l e ar ni n g a q u a nt u m
st at e, o bs er v a bl e, a n d pr o c ess ?

A.  L e a r ni n g a n u n k n o w n st at e

It is p ossi bl e, i n pri n ci pl e, t o pr o vi d e a c o m pl et e cl as-
si c al d es cri pti o n of a n n - q u bit q u a nt u m st at e ρ .  H o w e v er,
t his  w o ul d r e q uir e a n e x p o n e nti al n u m b er of e x p eri m e nts,
w hi c h is n ot pr a cti c al at all.  T h er ef or e,  w e s et a  m or e  m o d-
est g o al: t o l e ar n e n o u g h a b o ut ρ t o pr e di ct  m a n y of its
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p h ysi c all y r el e v a nt pr o p erti es.  We s p e cif y a f a mil y of t ar-
g et o bs er v a bl es {O i} a n d a s m all t ar g et a c c ur a c y . T h e
l e ar ni n g pr o c e d ur e is j u d g e d t o b e s u c c essf ul if  w e c a n pr e-
di ct t h e e x p e ct ati o n v al u e tr (O iρ ) of e v er y o bs er v a bl e i n
t h e f a mil y  wit h err or.

S u p p os e t h at ρ is a n ar bitr ar y a n d u n k n o w n n - q u bit
q u a nt u m st at e, a n d t h at  w e h a v e a c c ess t o N i d e nti c al
c o pi es of ρ .  We a c q uir e i nf or m ati o n a b o ut ρ b y  m e as uri n g
t h es e c o pi es. I n pri n ci pl e,  w e c o ul d c o nsi d er p erf or mi n g
c oll e cti v e  m e as ur e m e nts a cr oss  m a n y c o pi es at o n c e.  Or
w e  mi g ht p erf or m si n gl e- c o p y  m e as ur e m e nts s e q u e nti all y
a n d a d a pti v el y ; t h at is, t h e c h oi c e of  m e as ur e m e nt p er-
f or m e d o n c o p y j c o ul d d e p e n d o n t h e o ut c o m es o bt ai n e d
i n  m e as ur e m e nts o n c o pi es 1, 2, 3, . . . , j − 1.  T h e t ar g et
o bs er v a bl es  w e c o nsi d er ar e b o u n d e d- d e gr e e o bs er v a bl es .
A b o u n d e d- d e gr e e n - q u bit o bs er v a bl e O is a s u m of l o c al
o bs er v a bl es ( e a c h  wit h s u p p ort o n a c o nst a nt n u m b er of
q u bits i n d e p e n d e nt of n ) s u c h t h at o nl y a c o nst a nt n u m b er
(i n d e p e n d e nt of n ) of t er ms i n t h e s u m a ct o n e a c h q u bit.
M ost t h er m o d y n a mi c q u a ntiti es t h at aris e i n q u a nt u m
m a n y- b o d y p h ysi cs c a n b e  writt e n as a b o u n d e d- d e gr e e
o bs er v a bl e O , s u c h as l o c al o bs er v a bl es, f e w- b o d y c orr e-
l ati o n f u n cti o ns, g e o m etri c all y l o c al  H a milt o ni a ns, a n d t h e
a v er a g e  m a g n eti z ati o n.

I n t h e l e ar ni n g pr ot o c ols dis c uss e d i n t his p a p er, t h e
m e as ur e m e nts ar e n eit h er c oll e cti v e n or a d a pti v e. I nst e a d,
w e ü x a n e ns e m bl e of p ossi bl e si n gl e- c o p y  m e as ur e m e nts,
a n d f or e a c h c o p y of ρ ,  w e i n d e p e n d e ntl y s a m pl e fr o m t his
e ns e m bl e a n d p erf or m t h e s el e ct e d  m e as ur e m e nt o n t h at
c o p y.  T h us, t h er e ar e t w o s o ur c es of r a n d o m n ess i n t h e pr o-
t o c ol —t h e r a n d o ml y c h os e n  m e as ur e m e nt o n e a c h c o p y
a n d t h e i ntri nsi c r a n d o m n ess of t h e q u a nt u m  m e as ur e m e nt
o ut c o m es. If  w e ar e u nl u c k y, t h e c h os e n  m e as ur e m e nts
a n d/ or t h e  m e as ur e m e nt o ut c o m es  mi g ht n ot b e s u þ ci e ntl y
i nf or m ati v e t o all o w a c c ur at e pr e di cti o ns.  We s ettl e f or a
pr ot o c ol t h at a c hi e v es t h e d esir e d pr e di cti o n t as k  wit h a
hi g h s u c c ess pr o b a bilit y.

F or t h e pr ot o c ol t o b e pr a cti c al, it is hi g hl y a d v a nt a g e o us
f or t h e s a m pl e d  m e as ur e m e nts t o b e e as y t o p erf or m i n t h e
l a b or at or y, a n d e as y t o d es cri b e i n cl assi c al l a n g u a g e.  T h e
m e as ur e m e nts  w e c o nsi d er, r a n d o m  P a uli  m e as ur e m e nts ,
m e et b ot h of t h es e crit eri a. F or e a c h c o p y of ρ a n d e a c h of
t h e n q u bits,  w e c h o os e u nif or ml y at r a n d o m t o  m e as ur e
o n e of t h e t hr e e si n gl e- q u bit P a uli o bs er v a bl es X , Y , or
Z .  T his l e ar ni n g  m et h o d, c all e d cl assi c al s h a d o w t o m o g-
r a p h y ,  w as a n al y z e d i n  R ef. [4 6 ],  w h er e a n u p p er b o u n d
o n t h e s a m pl e c o m pl e xit y (t h e n u m b er N of c o pi es of ρ
n e e d e d t o a c hi e v e t h e t as k)  w as e x pr ess e d i n t er ms of a
q u a ntit y c all e d t h e s h a d o w n or m of t h e t ar g et o bs er v a bl es.

I n t his  w or k, usi n g a n e w n or m i n e q u alit y d eri v e d h er e,
w e i m pr o v e o n t h e r es ult i n  R ef. [ 4 6 ] b y o bt ai ni n g a
ti g ht er u p p er b o u n d o n t h e s h a d o w n or m f or b o u n d e d-
d e gr e e o bs er v a bl es.  T h e u ps h ot is t h at, f or a ü x e d t ar g et
a c c ur a c y ,  w e c a n pr e di ct all b o u n d e d- d e gr e e o bs er v a bl es
wit h s p e ctr al n or m l ess t h a n B b y p erf or mi n g r a n d o m P a uli

m e as ur e m e nt o n

N = O (l o g(n )B 2 / 2 ) ( 2)

c o pi es of ρ .  T his r es ult i m pr o v es u p o n t h e pr e vi o usl y
k n o w n b o u n d of O (n l o g(n )B 2 / 2 ). F urt h er m or e,  w e
d eri v e a  m at c hi n g l o w er b o u n d o n t h e n u m b er of c o pi es
r e q uir e d f or t his t as k,  w hi c h a p pli es e v e n if c oll e cti v e
m e as ur e m e nts a cr oss  m a n y c o pi es ar e all o w e d.

B.  L e a r ni n g a n u n k n o w n o bs e r v a bl e

N o w s u p p os e t h at O is a n ar bitr ar y a n d u n k n o w n n -
q u bit o bs er v a bl e.  We als o c o nsi d er a distri b uti o n D o n
n - q u bit q u a nt u m st at es.  T his distri b uti o n, t o o, n e e d n ot b e
k n o w n, a n d it  m a y i n cl u d e hi g hl y e nt a n gl e d st at es.  O ur
g o al is t o ü n d a f u n cti o n h ( ρ ) t h at pr e di cts t h e e x p e ct a-
ti o n v al u e tr(O ρ ) of o bs er v a bl e O o n st at e ρ wit h a s m all
m e a n s q u ar e d err or:

E
ρ ∼ D

|h ( ρ ) − tr(O ρ ) |2 ≤ .

T o d e ü n e t his l e ar ni n g t as k, it is c o n v e ni e nt t o ass u m e t h at
w e c a n a c c ess tr ai ni n g d at a of t h e f or m

{ρ , tr(O ρ )} N
= 1 , (3 )

w h er e ρ is s a m pl e d fr o m distri b uti o n D . I n pr a cti c e,
t h o u g h,  w e c a n n ot dir e ctl y a c c ess t h e e x a ct v al u e of t h e
e x p e ct ati o n v al u e tr (O ρ ); i nst e a d,  w e  mi g ht  m e as ur e O
m ulti pl e ti m es i n st at e ρ t o o bt ai n a n a c c ur at e esti m at e of
t h e e x p e ct ati o n v al u e. F urt h er m or e,  w e d o n ot n e c ess aril y
n e e d t o s a m pl e st at es fr o m D t o a c hi e v e t h e t as k.  We  mi g ht
pr ef er t o l e ar n a b o ut O b y a c c essi n g its e x p e ct ati o n v al u e
i n st at es dr a w n fr o m a di û er e nt e ns e m bl e.

A cr u ci al i d e a of t his  w or k is t h at  w e c a n l e ar n O
e þ ci e ntl y if distri b uti o n D h as s uit a bl y ni c e f e at ur es.
S p e ci ü c all y,  w e c o nsi d er distri b uti o ns t h at ar e i n v ari a nt
u n d er si n gl e- q u bit  Cli û or d g at es a p pli e d t o a n y o n e of t h e
n q u bits.  We s a y t h at s u c h distri b uti o ns ar e l o c all y ý at,
m e a ni n g t h at t h e pr o b a bilit y  w ei g ht assi g n e d t o a n n - q u bit
st at e is u n m o di ü e d (i. e., t h e distri b uti o n a p p e ars ý at)  w h e n
w e l o c all y r ot at e a n y o n e of t h e q u bits.  L o c all y ý at distri-
b uti o ns i n cl u d e r a n d o m pr o d u ct st at es, gr o u n d a n d t h er m al
st at es of r a n d o m l o c al  H a milt o ni a ns, a n d a n y st at e t h at is
g e n er at e d b y a cir c uit,  w h er e t h e l ast cir c uit l a y er c o nsists
of r a n d o m si n gl e- q u bit g at es. F urt h er m or e, a n y distri b u-
ti o n t h at is at  m ost p ol y n o mi all y f ar fr o m a l o c all y ý at
distri b uti o n ( m e as ur e d i n t er ms of t h e  m a xi m u m li k eli h o o d
r ati o) c a n b e pr e di ct e d e þ ci e ntl y a n d a c c ur at el y.

A n ar bitr ar y o bs er v a bl e O c a n b e e x p a n d e d i n t er ms of
t h e P a uli o p er at or b asis:

O =

P ∈{ I ,X ,Y ,Z }⊗ n

α P P . ( 4)
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T h o u g h t h er e ar e 4 n P a uli o p er at ors, if distri b uti o n D is
l o c all y ü at a n d O h as a c o nst a nt s p e ctr al n or m,  w e c a n
a p pr o xi m at e t h e s u m o v er P b y a tr u n c at e d s u m,

O (k ) =

P ∈{ I ,X ,Y ,Z }⊗ n : |P | ≤k

α P P , ( 5)

i n cl u di n g o nl y t h e P a uli o p er at ors P wit h  w ei g ht |P | u p
t o k , t h os e a cti n g n o ntri vi all y o n n o  m or e t h a n k q u bits.
T h e  m e a n s q u ar e d err or i n c urr e d b y t his tr u n c ati o n d e c a ys
e x p o n e nti all y  wit h k .  T h er ef or e, t o l e ar n O wit h  m e a n
s q u ar e d err or , it s u ý c es t o l e ar n t his tr u n c at e d a p pr o x-
i m ati o n t o O ,  w h er e k = O (l o g(1 / )). F urt h er m or e, usi n g
n or m i n e q u aliti es d eri v e d i n t his p a p er,  w e s h o w t h at, f or
t h e p ur p os e of pr e di cti n g t h e e x p e ct ati o n v al u e of t his tr u n-
c at e d o p er at or, it s u ý c es t o l e ar n o nl y a f e w r el ati v el y
l ar g e c o e ý ci e nts α P ,  w hil e s etti n g t h e r est t o z er o.  T h e
u ps h ot is t h at, f or a û x e d t ar g et err or , a n o bs er v a bl e  wit h
c o nst a nt s p e ctr al n or m c a n b e l e ar n e d fr o m tr ai ni n g d at a
wit h si z e O (l o g n ),  w h er e t h e cl assi c al c o m p ut ati o n al c ost
of tr ai ni n g a n d pr e di cti n g is n O (k ) .

Us u all y, i n  m a c hi n e l e ar ni n g, aft er l e ar ni n g fr o m a tr ai n-
i n g s et s a m pl e d fr o m a distri b uti o n D ,  w e c a n o nl y pr e di ct
n e w i nst a n c es s a m pl e d fr o m t h e s a m e distri b uti o n D . We
û n d, t h o u g h, t h at, f or t h e p ur p os e of l e ar ni n g a n u n k n o w n
o bs er v a bl e, t h er e is a p arti c ul ar l o c all y ü at distri b uti o n D
s u c h t h at l e ar ni n g t o pr e di ct u n d er D s u ý c es f or pr e di ct-
i n g u n d er a n y ot h er l o c all y ü at distri b uti o n as  w ell as a n y
ot h er distri b uti o n t h at is at  m ost p ol y n o mi all y f ar a w a y
fr o m a l o c all y ü at distri b uti o n.  N a m el y,  w e s a m pl e fr o m
t h e n - q u bit st at e distri b uti o n D b y pr e p ari n g e a c h o n e of
t h e n q u bits i n o n e of t h e si x P a uli o p er at or ei g e nst at es
{|0 , |1 , | + , | − , |y + , |y − }, c h os e n u nif or ml y at r a n-
d o m. Pl e asi n gl y, pr e p ari n g s a m pl es fr o m D is n ot o nl y
s u ý ci e nt f or o ur t as k, b ut als o e as y t o d o  wit h e xisti n g
q u a nt u m d e vi c es.

Aft er tr ai ni n g is c o m pl et e d, t o pr e di ct tr (O ρ ) f or a n e w
st at e ρ dr a w n fr o m distri b uti o n D ,  w e n e e d t o k n o w
s o m e i nf or m ati o n a b o ut ρ . St at e ρ , li k e o p er at or O , c a n
b e e x p a n d e d i n t er ms of P a uli o p er at ors, a n d  w h e n  w e
r e pl a c e O b y its  w ei g ht- k tr u n c ati o n, o nl y t h e tr u n c at e d
p art of ρ c o ntri b ut es t o its e x p e ct ati o n v al u e.  T h us, if t h e
k - b o d y r e d u c e d d e nsit y  m atri c es ( R D Ms) f or st at es dr a w n
fr o m D ar e k n o w n cl assi c all y t h e n t h e pr e di cti o ns c a n
b e c o m p ut e d cl assi c all y. If t h e st at es dr a w n fr o m D ar e
pr es e nt e d as u n k n o w n q u a nt u m st at es t h e n  w e c a n l e ar n
t h es e k - b o d y  R D Ms e ý ci e ntl y (f or s m all k ) usi n g cl assi c al
s h a d o w t o m o gr a p h y a n d t h e n pr o c e e d  wit h t h e cl assi c al
c o m p ut ati o n t o o bt ai n a pr e di ct e d v al u e of tr (O ρ ) .

C.  L e a r ni n g a n u n k n o w n p r o c ess

N o w s u p p os e t h at E is a n ar bitr ar y a n d u n k n o w n q u a n-
t u m pr o c ess  m a p pi n g n q u bits t o n q u bits.  L et {O i} b e a
f a mil y of t ar g et o bs er v a bl es a n d D b e a distri b uti o n o n

q u a nt u m st at es.  We ass u m e t h e a bilit y t o r e p e at e dl y a c c ess
E f or a t ot al of N ti m es.  E a c h ti m e,  w e c a n a p pl y E t o a n
i n p ut st at e of o ur c h oi c e, a n d p erf or m t h e  m e as ur e m e nt of
o ur c h oi c e o n t h e r es ulti n g o ut p ut. I n pri n ci pl e,  w e c o ul d
all o w i n p ut st at es t h at ar e e nt a n gl e d a cr oss t h e N c h a n-
n el us es, a n d all o w c oll e cti v e  m e as ur e m e nts a cr oss t h e N
c h a n n el o ut p uts.  B ut h er e  w e c o n û n e o ur att e nti o n t o t h e
c as e  w h er e t h e N i n p uts ar e u n e nt a n gl e d, a n d t h e c h a n-
n el o ut p uts ar e  m e as ur e d i n di vi d u all y.  O ur g o al is t o û n d a
f u n cti o n h ( ρ , O ) t h at pr e di cts,  wit h a s m all  m e a n s q u ar e d
err or, t h e e x p e ct ati o n v al u e of O i i n t h e o ut p ut st at e E ( ρ )
f or e v er y o bs er v a bl e O i i n t h e f a mil y {O i}:

E
ρ ∼ D

|h ( ρ , O i) − tr(O iE ( ρ ))|2 ≤ . ( 6)

O ur  m ai n r es ult is t h at t his t as k c a n b e a c hi e v e d e ý ci e ntl y
if O i is a b o u n d e d- d e gr e e o bs er v a bl e a n d D is l o c all y ü at.
T h at is, N , t h e n u m b er of ti m es  w e a c c ess E , a n d t h e
c o m p ut ati o n al c o m pl e xit y of tr ai ni n g a n d pr e di cti o n s c al e
r e as o n a bl y  wit h t h e s yst e m si z e n a n d t h e t ar g et a c c ur a c y
. F or e x a m pl e, a n y g e n eri c i n p ut pr o d u ct st at e c a n b e pr e-

di ct e d e ý ci e ntl y a n d a c c ur at el y. Fr o m  E q. ( 6), it is als o
e as y t o s e e t h at a s m all a v er a g e err or c a n b e a c hi e v e d f or
a n y distri b uti o n D t h at is at  m ost p ol y n o mi all y f ar a w a y
fr o m a l o c all y ü at distri b uti o n  wit h dist a n c e  m e as ur e d b y
t h e  m a xi m u m li k eli h o o d r ati o.

T o pr o v e t his r es ult,  w e o bs er v e t h at t h e t as k of l e ar ni n g
a n u n k n o w n q u a nt u m pr o c ess c a n b e r e d u c e d t o l e ar ni n g
u n k n o w n st at es a n d l e ar ni n g u n k n o w n o bs er v a bl es. If ρ
is s a m pl e d fr o m distri b uti o n D t h e n, si n c e E is u n k n o w n,
E ( ρ ) s h o ul d b e r e g ar d e d as a n u n k n o w n q u a nt u m st at e.
S u p p os e t h at  w e l e ar n t his st at e; t h at is, aft er pr e p ari n g a n d
m e as uri n g E ( ρ ) s u ý ci e ntl y  m a n y ti m es  w e c a n a c c ur at el y
pr e di ct t h e e x p e ct ati o n v al u e tr (O iE ( ρ )) f or e a c h t ar g et
o bs er v a bl e O i.

N o w n ot e t h at tr (O iE ( ρ )) = tr(E † (O i) ρ ),  w h er e E †

is t h e ( H eis e n b er g- pi ct ur e)  m a p d u al t o E . Si n c e E † is
u n k n o w n, E † (O i) s h o ul d b e r e g ar d e d as a n u n k n o w n
o bs er v a bl e. S u p p os e t h at  w e l e ar n t his o bs er v a bl e; t h at is,
usi n g t h e d at as et {ρ , tr(E † (O i) ρ )} as tr ai ni n g d at a,  w e c a n
pr e di ct tr (E † (O i) ρ ) f or ρ dr a w n fr o m D wit h a s m all  m e a n
s q u ar e d err or.  T his a c hi e v es t h e t as k of l e ar ni n g pr o c ess E
f or st at e distri b uti o n D a n d t ar g et o bs er v a bl e O i.

H a vi n g alr e a d y s h o w n t h at ar bitr ar y q u a nt u m st at es
c a n b e l e ar n e d e ý ci e ntl y f or t h e p ur p os e of pr e di cti n g
e x p e ct ati o n v al u es of b o u n d e d- d e gr e e o bs er v a bl es a n d t h at
ar bitr ar y o bs er v a bl es c a n b e l e ar n e d e ý ci e ntl y f or a n y
i n p ut st at e distri b uti o n t h at is n ot s u p er p ol y n o mi all y f ar
a w a y fr o m a l o c all y ü at distri b uti o n,  w e o bt ai n o ur  m ai n
r es ult. Si n c e distri b uti o n D is n ot t o o f ar fr o m l o c all y
ü at, it s u ý c es t o l e ar n t h e l o w- d e gr e e tr u n c at e d a p pr o x-
i m ati o n t o t h e u n k n o w n o p er at or E † (O i), i n c urri n g o nl y
a s m all  m e a n s q u ar e d err or.  T o pr e di ct tr (E † (O i) ρ ), t h e n,
it s u ý c es t o k n o w o nl y t h e f e w- b o d y  R D Ms of t h e i n p ut
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st at e ρ . F or a n y i n p ut st at e ρ , t h es e f e w- b o d y d e nsit y
m atri c es c a n b e l e ar n e d e ý ci e ntl y usi n g cl assi c al s h a d o w
t o m o gr a p h y.

As n ot e d a b o v e i n t h e dis c ussi o n of l e ar ni n g o bs er v-
a bl es, st at es ρ i n t h e tr ai ni n g d at a n e e d n ot b e s a m pl e d
fr o m D .  T o l e ar n a l o w- d e gr e e a p pr o xi m ati o n t o E † (O i),
it s u ý c es t o s a m pl e fr o m t h e u nif or m distri b uti o n o v er
pr o d u ct st at es.  E v e n if  w e s a m pl e o nl y pr o d u ct st at es d ur-
i n g tr ai ni n g,  w e c a n  m a k e a c c ur at e pr e di cti o ns f or hi g hl y
e nt a n gl e d i n p ut st at es.  We als o e m p h asi z e a g ai n t h at t h e
u n k n o w n pr o c ess E is ar bitr ar y.  E v e n if E h as q u a nt u m
c o m p ut ati o n al c o m pl e xit y e x p o n e nti al i n n ,  w e c a n l e ar n t o
pr e di ct tr (O E ( ρ )) a c c ur at el y a n d e ý ci e ntl y f or b o u n d e d-
d e gr e e o bs er v a bl es O a n d f or a n y distri b uti o n o n t h e i n p ut
st at e ρ t h at is at  m ost p ol y n o mi all y f ar fr o m s o m e l o c all y
ü at distri b uti o n.

III.  A L G O RI T H M  F O R  L E A R NI N G  A N
U N K N O W N  Q U A N T U M  P R O C E S S

C o nsi d er a n u n k n o w n n - q u bit q u a nt u m pr o c ess E ( a
C P T P  m a p). S u p p os e t h at  w e h a v e o bt ai n e d a cl assi-
c al d at as et b y p erf or mi n g N r a n d o mi z e d e x p eri m e nts
o n E .  E a c h e x p eri m e nt pr e p ar es a r a n d o m pr o d u ct st at e

|ψ (i n) = n
i= 1 |s (i n)

i , p ass es t hr o u g h E , a n d p erf or ms
a r a n d o mi z e d P a uli  m e as ur e m e nt [ 4 6 ,4 7 ] o n t h e o ut-
p ut st at e.  R e c all t h at a r a n d o mi z e d P a uli  m e as ur e m e nt
m e as ur es e a c h q u bit of a st at e i n a r a n d o m P a uli
b asis ( X , Y , or Z ) a n d pr o d u c es a  m e as ur e m e nt o ut-

c o m e of |ψ (o ut ) = n
i= 1 |s (o ut )

i ,  w h er e |s (o ut )
i ∈ st a b 1

{|0 , |1 , | + , | − , |y + , |y − }.  We d e n ot e t h e cl assi c al
d at as et of si z e N b y

S N (E ) |ψ (i n) =

n

i= 1

|s (i n)
,i , |ψ (o ut ) =

n

i= 1

|s (o ut )
,i

N

= 1

,

( 7)

w h er e |s (i n)
,i , |s (o ut )

,i ∈ st a b 1 .  E a c h pr o d u ct st at e is r e p-
r es e nt e d cl assi c all y  wit h O (n ) bits.  H e n c e, t h e cl assi c al
d at as et S N (E ) is of si z e O (n N ) bits.  T h e cl assi c al d at as et
c a n b e s e e n as o n e  w a y t o g e n er ali z e t h e n oti o n of cl assi-
c al s h a d o ws of q u a nt u m st at es [ 4 6 ] t o q u a nt u m pr o c ess es.
O ur g o al is t o d esi g n a n  M L al g orit h m t h at c a n l e ar n a n
a p pr o xi m at e  m o d el of E fr o m t h e cl assi c al d at as et S N (E ),
s u c h t h at, f or a  wi d e r a n g e of st at es ρ a n d o bs er v a bl es
O , t h e  M L  m o d el c a n pr e di ct a r e al v al u e h ( ρ , O ) t h at is
a p pr o xi m at el y e q u al t o tr (O E ( ρ )).

A.  M L al g o rit h m

We ar e n o w r e a d y t o st at e t h e pr o p os e d  M L al g orit h m.
At a hi g h l e v el, t h e  M L al g orit h m l e ar ns a l o w- d e gr e e
a p pr o xi m ati o n t o t h e u n k n o w n n - q u bit  C P T P  m a p E .
D es pit e t h e si m pli cit y of t h e  M L al g orit h m, s e v er al i d e as
g o i nt o t h e d esi g n of t h e  M L al g orit h m a n d t h e pr o of of t h e
ri g or o us p erf or m a n c e g u ar a nt e e.  T h es e i d e as ar e pr es e nt e d
i n S e c. I V b el o w.

L et O b e a n o bs er v a bl e  wit h O ≤ 1 t h at is  writt e n as
a s u m of f e w- b o d y o bs er v a bl es,  w h er e e a c h q u bit is a ct e d
o n b y O (1 ) of t h e f e w- b o d y o bs er v a bl es.  We d e n ot e t h e
P a uli r e pr es e nt ati o n of O as Q ∈{ I ,X ,Y ,Z }⊗ n a Q Q .  B y t h e
d e û niti o n of O , t h er e ar e O (n ) n o n z er o P a uli c o e ý ci e nts
a Q .  We c o nsi d er a h y p er p ar a m et er ˜ > 0; r o u g hl y s p e a k-
i n g, ˜ will s c al e i n v ers e p ol y n o mi all y i n t h e d at as et si z e
N fr o m  E q. ( 1 2) b el o w. F or e v er y P a uli o bs er v a bl e P ∈
{I , X , Y , Z } ⊗ n wit h |P | ≤ k = (l o g(1 / )), t h e al g orit h m
c o m p ut es a n e m piri c al esti m at e f or t h e c orr es p o n di n g
P a uli c o e ý ci e nt α P vi a

x̂ P (O ) =
1

N

N

= 1

tr P

n

i= 1

|s (i n)
,i s (i n)

,i |

× tr O

n

i= 1

(3 |s (o ut )
,i s (o ut )

,i | − I ) , ( 8)

α̂ P (O ) =

§
¨

©

3 |P |x̂ P (O ), 1
3

|P |
> 2 ˜ a n d |x̂ P (O )| > 2 · 3 |P |/ 2

√
˜ Q : a Q = 0 |a Q |,

0, ot h er wis e.
( 9)

T h e c o m p ut ati o n of x̂ P (O ) a n d α̂ P (O ) c a n b e d o n e cl as-
si c all y.  T h e b asi c i d e a of α̂ P (O ) is t o s et t h e c o e ý ci e nt
3 |P |x̂ P (O ) t o z er o  w h e n t h e i n ü u e n c e of P a uli o bs er v a bl e
P is n e gli gi bl e.  Gi v e n a n n - q u bit st at e ρ , t h e al g orit h m
o ut p uts

h ( ρ , O ) =
P : |P | ≤k

α̂ P (O ) tr(P ρ ) . ( 1 0)

Wit h a pr o p er i m pl e m e nt ati o n, t h e c o m p ut ati o n al ti m e
is O (k n k N ).  N ot e t h at, t o  m a k e pr e di cti o ns, t h e  M L
al g orit h m o nl y n e e ds t h e k - b o d y r e d u c e d d e nsit y  m atri-
c es ( k - R D Ms) of ρ . T h e k - R D Ms of ρ c a n b e e ý ci e ntl y
o bt ai n e d b y p erf or mi n g r a n d o mi z e d P a uli  m e as ur e m e nt
o n ρ a n d usi n g t h e cl assi c al s h a d o w f or m alis m [ 4 6 ,4 7 ].
E x c e pt f or t his st e p,  w hi c h  m a y r e q uir e q u a nt u m c o m p u-
t ati o n, all ot h er st e ps of t h e  M L al g orit h m o nl y r e q uir e
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cl assi c al c o m p ut ati o n.  H e n c e, if t h e k - R D Ms of ρ c a n
b e c o m p ut e d cl assi c all y t h e n  w e h a v e a cl assi c al  M L
al g orit h m t h at c a n pr e di ct a n ar bitr ar y q u a nt u m pr o c ess E
aft er l e ar ni n g fr o m d at a.

B.  Ri g o r o us g u a r a nt e e

T o  m e as ur e t h e pr e di cti o n err or of t h e  M L  m o d el,  w e
c o nsi d er t h e a v er a g e- c as e pr e di cti o n p erf or m a n c e u n d er
a n ar bitr ar y n - q u bit st at e distri b uti o n D i n v ari a nt u n d er
si n gl e- q u bit  Cli û or d g at es,  w hi c h  m e a ns t h at t h e pr o b a-
bilit y distri b uti o n fD ( ρ ) of s a m pli n g a st at e ρ is e q u al t o
fD (U ρ U † ) of s a m pli n g U ρ U † f or a n y si n gl e- q u bit  Cli û or d
g at e U .  We c all s u c h a distri b uti o n l o c all y ý at.

T h e or e m 1 ( L e ar ni n g a n u n k n o w n q u a nt u m pr o c ess). 4
S u p p os e t h at , = (1 ) a n d t h at t h er e is a tr ai ni n g
s et S N (E ) of si z e N = O (l o g n ) as s p e ci ü e d i n  E q. ( 7).
Wit h hi g h pr o b a bilit y, t h e  M L  m o d el c a n l e ar n a f u n cti o n
h ( ρ , O ) fr o m S N (E ) s u c h t h at, f or a n y distri b uti o n D o v er
n - q u bit st at es i n v ari a nt u n d er si n gl e- q u bit  Cli û or d g at es,
a n d f or a n y b o u n d e d- d e gr e e o bs er v a bl e O wit h O ≤ 1,

E
ρ ∼ D

|h ( ρ , O ) − tr(O E ( ρ ))|2 ≤ + m a x ( O 2 , 1) ,

( 1 1)

w h er e O is t h e l o w- d e gr e e tr u n c ati o n [ of d e gr e e k =
l o g1. 5 (1 / ) ] of o bs er v a bl e O aft er t h e  H eis e n b er g e v o-

l uti o n u n d er E .  T h e tr ai ni n g a n d pr e di cti o n ti m e of
h ( ρ , O ) ar e b ot h p ol y n o mi al i n n .  W h e n is s m all a n d

= 0, t h e d at a si z e N a n d c o m p ut ati o n al ti m e s c al e as
2 O (l o g(1 / ) l o g(n )) .

T h e d et ail e d t h e or e m st at e m e nt a n d t h e pr o of of t h e
t h e or e m ar e gi v e n i n  A p p e n di x E .  A n i nt er esti n g as p e ct
of t h e a b o v e t h e or e m is t h at t h e st at es s a m pl e d fr o m distri-
b uti o n D c a n b e hi g hl y e nt a n gl e d, e v e n t h o u g h t h e tr ai ni n g
d at a S N (E ) o nl y c o nt ai ns i nf or m ati o n a b o ut r a n d o m pr o d-
u ct st at es. Fr o m t h e t h e or e m,  w e c a n s e e t h at if O =
O (1 ) t h e n  w e o nl y n e e d O (l o g(n )) s a m pl es t o o bt ai n a
c o nst a nt pr e di cti o n err or.  Ot h er wis e, O (l o g(n )) s a m pl es
ar e still e n o u g h t o g u ar a nt e e a c o nst a nt pr e di cti o n err or
r el ati v e t o O 2 .  T h e pr e cis e s c ali n g is gi v e n as f oll o ws.
C o nsi d er d at a si z e

N = l o g(n ) mi n 2 O {l o g(1 / )[l o g l o g(1 / )+ l o g(1 / )]} ,

2 O [l o g(1 / ) l o g(n )] . ( 1 2)

T h e c o m p ut ati o n al ti m e t o l e ar n a n d pr e di ct h ( ρ , O ) is
b o u n d e d a b o v e b y O (k n k N ) a n d t h e pr e di cti o n err or is
b o u n d e d as

E
ρ ∼ D

|h ( ρ , O ) − tr(O E ( ρ ))|2 ≤ + m a x ( O 2 , 1) .

( 1 3)

As  w e t a k e t o b e z er o,  w e c a n r e m o v e t h e d e p e n d e n c e
o n t h e l o w- d e gr e e tr u n c ati o n O . I n t his s etti n g, N a n d

c o m p ut ati o n ti m e b ot h b e c o m e 2 O (l o g(1 / ) l o g(n )) ,  w hi c h is
p ol y n o mi al i n n if = (1 ) a n d is q u asi p ol y n o mi al i n n if

= 1 / p ol y (n ).
F or a distri b uti o n D t h at is n ot l o c all y ý at,  w e c a n c o n-

si d er a l o c all y ý at distri b uti o n D ∗ t h at is cl os est t o D
u n d er t h e dist a n c e d e ü n e d b y t h e  m a xi m u m li k eli h o o d
r ati o := s u p ρ [p D ( ρ ) /p D ∗ ( ρ )],  w h er e p D ( ρ ) is t h e pr o b-
a bilit y d e nsit y of ρ u n d er D .  We c a n s e e t h at t h e a v er a g e
pr e di cti o n err or u n d er D s atis ü es

E
ρ ∼ D

|h ( ρ , O ) − tr(O E ( ρ ))|2

≤ E
ρ ∼ D ∗

|h ( ρ , O ) − tr(O E ( ρ ))|2 . ( 1 4)

H e n c e, if t h e dist a n c e is at  m ost p ol y(n ) t h e n t h e pr e di c-
ti o n err or u n d er D is s m all usi n g a q u asi p ol y n o mi al s a m pl e
c o m pl e xit y a n d c o m p ut ati o n al ti m e.

I V.  P R O O F I D E A S

T h e pr o of of t h e ri g or o us p erf or m a n c e g u ar a nt e e f or t h e
pr o p os e d  M L al g orit h m c o nsists of ü v e p arts.  T h e ürst
t w o p arts pr es e nt e d i n  A p p e n di c es A a n d B ar e a d et o ur
t o est a blis h a f e w f u n d a m e nt al a n d us ef ul n or m i n e q u ali-
ti es a b o ut  H a milt o ni a ns a n d o bs er v a bl es.  T h e l att er t hr e e
p arts gi v e n i n  A p p e n di c es C , D , a n d E a p pl y t h e n e wl y
est a blis h e d n or m i n e q u aliti es t o t hr e e l e ar ni n g t as ks. I n t h e
f oll o wi n g,  w e pr es e nt t h e b asi c i d e as i n e a c h p art.

A. I m p r o v e d a p p r o xi m ati o n al g o rit h ms f o r o pti mi zi n g
l o c al  H a milt o ni a ns

We b e gi n  wit h a di û er e nt t as k, n a m el y, o pti mi zi n g l o c al
H a milt o ni a ns.  We ar e gi v e n a n n - q u bit k -l o c al  H a milt o ni a n

H =

P ∈{ I ,X ,Y ,Z }⊗ n : |P | ≤k

α P P , ( 1 5)

w h er e |P | is t h e  w ei g ht of t h e P a uli o p er at or P , t h e n u m b er
of q u bits u p o n  w hi c h P a cts n o ntri vi all y.  O ur g o al is t o ü n d
a st at e |ψ t h at  m a xi mi z es or  mi ni mi z es ψ | H |ψ .  T his
t as k is r el at e d t o s ol vi n g gr o u n d st at es [4 8 ,4 9 ]  w h e n  w e
c o nsi d er  mi ni mi zi n g ψ | H |ψ a n d q u a nt u m o pti mi z ati o n
[4 3 ,4 4 ,5 0 3 5 4 ]  w h e n  w e c o nsi d er  m a xi mi zi n g ψ | H |ψ .

We gi v e a g e n er al r a n d o mi z e d a p pr o xi m ati o n al g orit h m
i n  A p p e n di x A f or pr o d u ci n g a r a n d o m pr o d u ct st at e
|ψ t h at eit h er a p pr o xi m at el y  mi ni mi z es or a p pr o xi m at el y
m a xi mi z es a k -l o c al  H a milt o ni a n H wit h a ri g or o us u p p er
or l o w er b o u n d b as e d o n t h e P a uli c o e þ ci e nts α P of H .
T h e pr o p os e d o pti mi z ati o n al g orit h m a p pli es t o v ari o us
cl ass es of  H a milt o ni a ns a n d is i ns pir e d b y t h e pr o ofs of
Littl e w o o d’s 4/ 3 i n e q u alit y [ 5 5 ] a n d t h e  B o h n e n bl ust- Hill e
i n e q u alit y [5 6 ]. F or cl ass es t h at h a v e b e e n st u di e d pr e vi-
o usl y [ 4 1 3 4 4 ], t h e pr o p os e d al g orit h m yi el ds a n i m pr o v e d
b o u n d.  O ur i m pr o v e m e nt cr u ci all y st e ms fr o m o ur c o n-
str u cti o n f or t h e r a n d o m st at e |ψ . I n  R efs. [4 1 3 4 3 ] t h e
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a ut h ors utili z e a r a n d o m r estri cti o n a p pr o a c h,  w h er e s o m e
r a n d o m s u bs et of q u bits is fi x e d  wit h s o m e r a n d o m v al-
u es a n d t h e r est of t h e q u bits ar e o pti mi z e d.  O n t h e ot h er
h a n d,  w e utili z e a p ol ari z ati o n a p pr o a c h,  w h er e  w e r e pli-
c at e e a c h q u bit  m a n y ti m es, r a n d o ml y fi x all e x c e pt t h e
l ast r e pli c a, o pti mi z e t h e l ast r e pli c a, a n d c o m bi n e usi n g a
r a n d o m-si g n e d a v er a gi n g.  A d et ail e d c o m p aris o n is gi v e n
i n  A p p e n di c es A 1 c a n d A 2 .

T w o cl ass es of  H a milt o ni a ns us e d i n o ur l e ar ni n g a p pli-
c ati o ns ar e g e n er al k -l o c al  H a milt o ni a ns a n d b o u n d e d-
d e gr e e k -l o c al  H a milt o ni a ns.  A k -l o c al  H a milt o ni a n  wit h
d e gr e e at  m ost d is a  H er miti a n o p er at or t h at c a n b e  writ-
t e n as a s u m of k - q u bit o bs er v a bl es,  w h er e e a c h q u bit is
a ct e d o n b y at  m ost d of t h e k - q u bit o bs er v a bl es.

C or oll ar y 1 ( O pti mizi n g t h e g e n er al k-l o c al  H a milt o-
ni a n). — C o nsi d er a n n - q u bit k -l o c al  H a milt o ni a n

H =
P : |P | fk

α P P . ( 1 6)

T h er e is a r a n d o mi z e d al g orit h m t h at r u ns i n ti m e O (n k )
a n d pr o d u c es eit h er a r a n d o m  m a xi mi zi n g st at e |ψ =
|ψ 1 ⊗ · · · ⊗ | ψ n s atisf yi n g

E
|ψ

[ ψ | H |ψ ] g E
|φ :  H a ar

[ φ | H |φ ]

+ C (k )
P = I

|α P |2 k /( k + 1 )
(k + 1 ) /(2 k )

( 1 7)

or a r a n d o m  mi ni mi zi n g st at e |ψ = | ψ 1 ⊗ · · · ⊗ | ψ n

s atisf yi n g

E
|ψ

[ ψ | H |ψ ] f E
|φ :  H a ar

[ φ | H |φ ]

− C (k )
P = I

|α P |2 k /( k + 1 )
(k + 1 ) /(2 k )

,

( 1 8)

w h er e C (k ) = 1 / e x p ( (k l o g k )).
C or oll ar y 2 ( O pti mizi n g t h e b o u n d e d- d e gr e e k-l o c al

H a milt o ni a n). — C o nsi d er a n n - q u bit k -l o c al  H a milt o ni a n
H = P : |P | fk α P P wit h b o u n d e d d e gr e e d , |α P | f 1 f or
all P , a n d k = O (1 ).  T h er e is a r a n d o mi z e d al g orit h m
t h at r u ns i n ti m e O (n d ) a n d pr o d u c es eit h er a r a n d o m
m a xi mi zi n g st at e |ψ = | ψ 1 ⊗ · · · ⊗ | ψ n s atisf yi n g

E
|ψ

[ ψ | H |ψ ] g E
|φ :  H a ar

[ φ | H |φ ] +
C

√
d P = I

|α P | ( 1 9)

or a r a n d o m  mi ni mi zi n g st at e |ψ = | ψ 1 ⊗ · · · ⊗ | ψ n

s atisf yi n g

E
|ψ

[ ψ | H |ψ ] f E
|φ :  H a ar

[ φ | H |φ ] −
C

√
d P = I

|α P | ( 2 0)

f or s o m e c o nst a nt C .
We n ot e t h at i n t h e a b o v e r es ults,  w e c a n n ot c o ntr ol

w h et h er o ur al g orit h m o ut p uts a n a p pr o xi m at e  m a xi mi z er
or  mi ni mi z er.  T his c a v e at st e ms fr o m t h e us e of p ol ari z a-
ti o n,  w h er e t h e r a n d o m-si g n e d a v er a gi n g o nl y g u ar a nt e es
i m pr o v e m e nt i n o n e of t h e t w o dir e cti o ns.  M o dif yi n g o ur
a p pr o a c h t o a d dr ess t his iss u e is a n i nt er esti n g dir e cti o n f or
f ut ur e  w or k.

B.  N o r m i n e q u aliti es f r o m a p p r o xi m at e o pti mi z ati o n
al g o rit h ms

T h e bri d g e t h at c o n n e cts t h e o pti mi z ati o n of k -l o c al
H a milt o ni a ns a n d e ffi ci e nt l e ar ni n g of q u a nt u m st at es a n d
pr o c ess es is a s et of n or m i n e q u aliti es.  A n or m t h at c h ar-
a ct eri z es t h e e ffi ci e n c y of l e ar ni n g is t h e P a uli- p n or m,
d e fi n e d as t h e p n or m o n t h e P a uli c o e ffi ci e nts of a
H a milt o ni a n H = P α P P ,

H P a uli, p

P ∈{ I ,X ,Y ,Z }⊗ n

|α P |p
1 / p

. ( 2 1)

T h e ri g or o us g u ar a nt e es fr o m t h e pr e vi o us s e cti o n, n a m el y,
o n fi n di n g a st at e |ψ w h os e e n er g y is hi g h er or l o w er t h a n
a  H a ar-r a n d o m st at e b y a  m ar gi n t h at d e p e n ds o n t h e P a uli
c o e ffi ci e nts α P , gi v e a n al g orit h mi c pr o of t h at t h e s p e ctr al
n or m H a n d t h e P a uli c o e ffi ci e nts α P ar e r el at e d.  T h e
pr o of of t his r el ati o n is gi v e n i n  A p p e n di x B . I n p arti c u-
l ar, f or g e n er al a n d b o u n d e d- d e gr e e k -l o c al  H a milt o ni a ns,
w e c a n us e t h e ri g or o us g u ar a nt e e fr o m t h e a p pr o xi m a-
ti o n al g orit h ms t o o bt ai n t h e f oll o wi n g n or m i n e q u aliti es.
C or oll ar y 3 pr o v es t h e c o nj e ct ur e gi v e n i n  R ef. [ 4 5 ].

C or oll ar y 3 ( N or m i n e q u alit y f or t h e g e n er al k-l o c al
H a milt o ni a n). — Gi v e n a n n - q u bit k -l o c al  H a milt o ni a n H ,
w e h a v e

1
3
C (k ) H P a uli, 2 k /( k + 1 ) f H , ( 2 2)

w h er e C (k ) = 1 / e x p ( (k l o g k )).
C or oll ar y 4 ( N or m i n e q u alit y f or t h e b o u n d e d- d e gr e e

l o c al  H a milt o ni a n). —Gi v e n a n n - q u bit k -l o c al  H a milt o-
ni a n H wit h b o u n d e d d e gr e e d ,  w e h a v e

1
3
C (k , d ) H P a uli, 1 f H , ( 2 3)

w h er e C (k , d ) = 1 /(
√

d e x p ( (k l o g k ))).

C. S a m pl e- o pti m al al g o rit h m f o r p r e di cti n g
b o u n d e d- d e g r e e o bs e r v a bl es

As t h e first a p pli c ati o n of t h e a b o v e n or m i n e q u aliti es
t o l e ar ni n g,  w e c o nsi d er t h e b asi c pr o bl e m of pr e di cti n g
m a n y pr o p erti es of a n u n k n o w n n - q u bit st at e ρ .  Gi v e n M
o bs er v a bl es O 1 , . . . , O M , aft er p erf or mi n g  m e as ur e m e nts
o n  m ulti pl e c o pi es of ρ ,  w e  w o ul d li k e t o pr e di ct tr(O iρ )
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t o err or f or all i ∈ { 1, . . . , M }.  T his is t h e t as k k n o w n as
s h a d o w t o m o gr a p h y [ 4 6 ,5 7 ,5 8 ].  O n e a p pr o a c h f or o bt ai n-
i n g pr a cti c all y e ffi ci e nt al g orit h ms f or s h a d o w t o m o gr a p h y
is vi a t h e cl assi c al s h a d o w f or m alis m [4 6 ].

We c o nsi d er a p h ysi c all y r el e v a nt cl ass of o bs er v a bl es,
w h er e t h e o bs er v a bl e O i = j O ij is a s u m of f e w- b o d y
o bs er v a bl es O ij a n d e a c h q u bit is a ct e d o n b y O (1 ) of t h e
f e w- b o d y o bs er v a bl es.  D es pit e si g ni ü c a nt r e c e nt pr o gr ess
i n s h a d o w t o m o gr a p h y [8 ,3 3 ,5 7 ,5 9 3 7 0 ], t h e s a m pl e c o m-
pl e xit y ( n u m b er of c o pi es of ρ ) f or pr e di cti n g t his cl ass
of o bs er v a bl es h as n ot b e e n est a blis h e d.  T h e c e ntr al c h al-
l e n g e is t h e a p p e ar a n c e of t h e P a uli- 1 n or m O i P a uli, 1

w h e n c h ar a ct eri zi n g t h e s a m pl e c o m pl e xit y. I n p arti c ul ar,
o n e c a n b o u n d t h e s h a d o w n or m O i s h a d o w [4 6 ],  w hi c h
gi v es a n u p p er b o u n d o n t h e s a m pl e c o m pl e xit y i n t er ms of
t h e P a uli- 1 n or m O i P a uli, 1 u p t o a c o nst a nt f a ct or.  Usi n g
t h e n e w n or m i n e q u alit y est a blis h e d i n t his  w or k,  w e gi v e
a s a m pl e- o pti m al al g orit h m f or pr e di cti n g b o u n d e d- d e gr e e
o bs er v a bl es.

T h e s a m pl e- o pti m al al g orit h m is e q ui v al e nt t o p erf or m-
i n g cl assi c al s h a d o w t o m o gr a p h y b as e d o n r a n d o mi z e d
P a uli  m e as ur e m e nts [ 4 6 ,4 7 ], a n d is ess e nti all y t h e  M L
al g orit h m gi v e n i n S e c. III  A wit h a ü x e d i n p ut st at e.  C o n-
si d er a n u n k n o w n n - q u bit st at e ρ .  Aft er p erf or mi n g N
r a n d o mi z e d P a uli  m e as ur e m e nts o n N c o pi es of ρ ,  w e h a v e
a cl assi c al d at as et d e n ot e d as

S N ( ρ ) |ψ (o ut ) =

n

i= 1

|s (o ut )
,i

N

= 1

, ( 2 4)

w h er e |s (o ut )
,i ∈ st a b 1 is a si n gl e- q u bit st a bili z er st at e.

Gi v e n a n o bs er v a bl e O , t h e al g orit h m pr e di cts

h (O ) =
1

N

N

= 1

tr O

n

i= 1

(3 |s (o ut )
,i s (o ut )

,i | − I ) . ( 2 5)

It is n ot h ar d t o s e e t h at c o m p uti n g h (O ) r e q uir es o nl y
O (n N ) cl assi c al c o m p ut ati o n ti m e.  H e n c e, as  w e s h o w
l at er t h at N = O (l o g(n ) / 2 ), t h e l e ar ni n g al g orit h m is v er y
e ffi ci e nt.  Usi n g t h e n or m i n e q u alit y f or b o u n d e d- d e gr e e
l o c al  H a milt o ni a n H P a uli, 1 ≤ C H f or a c o nst a nt C i n
C or oll ar y 4, a n d t h e cl assi c al s h a d o w f or m alis m [ 4 6 ,4 7 ],
w e o bt ai n t h e f oll o wi n g p erf or m a n c e g u ar a nt e e.

T h e or e m 2 ( S a m pl e c o m pl e xit y u p p er b o u n d). 4 C o n-
si d er a n u n k n o w n n - q u bit st at e ρ a n d a n y n - q u bit o bs er v-
a bl e O 1 , . . . , O M wit h O i ≤ B ∞ . S u p p os e t h at e a c h
o bs er v a bl e O i is a s u m of f e w- b o d y o bs er v a bl es,  w h er e
e a c h q u bit is a ct e d o n b y O (1 ) of t h e f e w- b o d y o bs er v-
a bl es.  Usi n g a cl assi c al d at as et S N ( ρ ) of si z e

N = O
l o g(mi n (M , n ))B 2

∞
2

, ( 2 6)

w e h a v e |h (O i) − tr(O iρ ) | ≤ f or all i ∈ { 1, . . . , M } wit h
hi g h pr o b a bilit y.  T h e c o nst a nt f a ct or i n t h e O (·) n ot ati o n

a b o v e s c al es p ol y n o mi all y i n t h e d e gr e e a n d e x p o n e nti all y
i n t h e l o c alit y of t h e o bs er v a bl es.

T h e f oll o wi n g t h e or e m s h o ws t h at t h e a b o v e al g orit h m
a c hi e v es t h e o pti m al s a m pl e c o m pl e xit y of a n y al g orit h m
t h at c a n p erf or m c oll e cti v e  m e as ur e m e nt o n  m a n y c o pi es
of ρ .

T h e or e m 3 ( S a m pl e c o m pl e xit y l o w er b o u n d). 4 C o n-
si d er t h e f oll o wi n g t as k.  T h er e is a n u n k n o w n n - q u bit
st at e ρ , a n d  w e ar e gi v e n M o bs er v a bl es O 1 , . . . , O M wit h
m a x i O i ≤ B ∞ .  E a c h o bs er v a bl e O i is a s u m of f e w- b o d y
o bs er v a bl es,  w h er e e v er y q u bit is a ct e d o n b y O (1 ) of t h e
f e w- b o d y o bs er v a bl es.  We  w o ul d li k e t o esti m at e tr(O iρ )
t o err or f or all i ∈ [M ]  wit h hi g h pr o b a bilit y b y p erf or m-
i n g ar bitr ar y c oll e cti v e  m e as ur e m e nts o n N c o pi es of ρ .
T h e n u m b er of c o pi es N m ust b e at l e ast

N =
l o g(mi n (M , n ))B 2

∞
2

( 2 7)

f or a n y al g orit h m t o s u c c e e d i n t his t as k.
T h e d et ail e d pr o ofs of t h e s a m pl e c o m pl e xiti es st at e d i n

t h e a b o v e t h e or e ms ar e gi v e n i n  A p p e n di x C .

D.  E ffi ci e nt al g o rit h ms f o r l e a r ni n g a n u n k n o w n
o bs e r v a bl e f r o m l o g (n ) s a m pl es

As a s e c o n d l e ar ni n g a p pli c ati o n of t h e n or m i n e q u ali-
ti es,  w e c o nsi d er t h e t as k of l e ar ni n g a n u n k n o w n n - q u bit
o bs er v a bl e O (u n k ) = P ∈{ I ,X ,Y ,Z }⊗ n α P P .  We c a n t hi n k of

t his u n k n o w n o bs er v a bl e as E † (O ), i. e., t h e o bs er v a bl e
O aft er  H eis e n b er g e v ol uti o n u n d er t h e u n k n o w n pr o-
c ess E . S u p p os e t h at  w e ar e gi v e n a tr ai ni n g d at as et of
{ρ , tr(O (u n k ) ρ )} N

= 1 ,  w h er e ρ is s a m pl e d fr o m a n ar bitr ar y
distri b uti o n D o v er n - q u bit st at es t h at is i n v ari a nt u n d er
si n gl e- q u bit  Cli û or d g at es.  Gi v e n a n i nt e g er k > 0,  w e
d e ü n e t h e  w ei g ht- k tr u n c ati o n of O (u n k ) t o b e t h e  H er miti a n
o p er at or

O (u n k, k )

P ∈{ I ,X ,Y ,Z }⊗ n : |P | ≤k

α P P , ( 2 8)

w h er e |P | is t h e n u m b er of q u bits u p o n  w hi c h P a cts
n o ntri vi all y. F or a s m all k ,  w e c a n t hi n k of O (u n k, k ) as a l o w-
w ei g ht a p pr o xi m ati o n of t h e u n k n o w n o bs er v a bl e O (u n k ) .
B y d e ü niti o n, O (u n k, k ) is a k -l o c al  H a milt o ni a n; h e n c e, t h e
n or m i n e q u alit y i n  C or oll ar y 3 s h o ws t h at

1

3
C (k ) O (u n k, k )

P a uli, 2 k /( k + 1 )

=
1

3
C (k )

P ∈{ I ,X ,Y ,Z }⊗ n :|P | ≤k

|α P |r
1 / r

≤ O (u n k, k ) ,

( 2 9)

w h er e r = 2 k /( k + 1 ) ∈ [ 1, 2). A n r - n or m b o u n d (r < 2)
o n t h e P a uli c o e ffi ci e nts i m pli es t h at  w e c a n r e m o v e  m ost
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of t h e s m all P a uli c o e ffi ci e nts  wit h o ut i n c urri n g t o o  m u c h
c h a n g e u n d er t h e 2 n or m.  As a n e x a m pl e, c o nsi d er a n M -
di m e nsi o n al v e ct or x wit h x r ≤ 1.  Gi v e n > 0, l et x b e
t h e M - di m e nsi o n al v e ct or  wit h x i = x i if |x i| > a n d x i =
0 if |x i| ≤ .  We h a v e

x − x 2
2 =

i: |x i| ≤

|x i|
2 ≤ 2 − r

i: |x i| ≤

|x i|
r

≤ 2 − r

i

|x i|
r ≤ 2 − r . ( 3 0)

I n  A p p e n di x D 1 ,  w e s h o w t h at t h e a v er a g e err or ( b ot h t h e
m e a n s q u ar e d err or a n d t h e  m e a n a bs ol ut e err or) is c h ar a c-
t eri z e d b y t h e 2 n or m.  H e n c e,  E q. ( 2 9) i m pli es t h at  w e c a n
s et  m ost of t h e P a uli c o e ffi ci e nts i n O (u n k, k ) t o z er o  wit h o ut
i n c urri n g t o o  m u c h err or o n a v er a g e.

Usi n g t h e a b o v e r e as o ni n g, l e ar ni n g t h e l o w- w ei g ht
tr u n c ati o n O (u n k, k ) a m o u nts t o l e ar ni n g t h e l ar g e P a uli c o ef-
ü ci e nts of O (u n k, k ) a n d s etti n g all s m all P a uli c o e ffi ci e nts t o
z er o.  T his e ns ur es t h at t h e l e ar ni n g c a n b e d o n e v er y e ffi-
ci e ntl y.  T his a p pr o a c h is pr es e nt e d i n  A p p e n di x D 2 wit h
t h e  m ai n r es ult st at e d i n  L e m m a 1 8. It is i ns pir e d b y t h e
l e ar ni n g al g orit h m of  R ef [7 1 ] t h at a c hi e v es a l o g arit h-
mi c s a m pl e c o m pl e xit y f or l e ar ni n g cl assi c al l o w- d e gr e e
f u n cti o ns.

T h e l ast st e p i n t h e pr o of is t o ar g u e t h at t h e l o w- w ei g ht
tr u n c ati o n O (u n k, k ) is a g o o d s urr o g at e f or t h e u n k n o w n
o bs er v a bl e O (u n k ) w h e n t h e g o al is t o pr e di ct tr (O (u n k ) ρ ) .
T h e k e y i nsi g ht h er e is t h at, f or distri b uti o ns D t h at ar e
i n v ari a nt u n d er si n gl e- Cli û or d g at es, t h e c o ntri b uti o n of
a n y P a uli t er m P i n O (u n k ) t o E ρ ∼ D [tr(O (u n k ) ρ ) 2 ] is e x p o-
n e nti all y d e c a yi n g i n  w ei g ht |P |.  T his all o ws us t o pr o v e
t h at E ρ ∼ D [tr((O (u n k ) − O (u n k, k ) ) ρ ) 2 ] is s m all.

P utti n g t h es e i n gr e di e nts t o g et h er,  w e arri v e at t h e f ol-
l o wi n g t h e or e m.  As st at e d i n t h e t h e or e m, t h e l e ar ni n g
al g orit h m is c o m p ut ati o n all y e ffi ci e nt.

T h e or e m 4 ( L e ar ni n g a n u n k n o w n o bs er v a bl e). — S u p-
p os e t h at , , δ > 0.  L et k = l o g1. 5 (1 / ) a n d r = 2 k /
(k + 1 ) ∈ [ 1, 2). Fr o m tr ai ni n g d at a {ρ , tr(O (u n k ) ρ )} N

= 1 of
si z e

N = l o g(n / δ ) mi n 2 O {l o g(1 / )[l o g l o g(1 / )+ l o g(1 / )]} ,

2 O [l o g(1 / ) l o g(n )] , ( 3 1)

w h er e ρ is s a m pl e d fr o m D ,  w e c a n l e ar n a f u n cti o n h ( ρ )
s u c h t h at

E
ρ ∼ D

|h ( ρ ) − tr(O (u n k ) ρ ) |2 ≤ ( + ) O (u n k ) 2

+ O (u n k, k ) r O (u n k ) 2 − r

( 3 2)

wit h pr o b a bilit y at l e ast 1 − δ .  T h e tr ai ni n g a n d pr e di cti o n
ti m es of h ( ρ ) ar e O (N n k ).

T h e f a ct or of O (u n k ) 2 i n t h e pr e di cti o n err or is t h e
n at ur al s c al e of t h e s q u ar e d err or. Fr o m t h e t h e or e m,
w e c a n s e e t h at  w e o nl y n e e d O (l o g(n )) s a m pl es t o
o bt ai n a c o nst a nt pr e di cti o n err or r el ati v e t o O (u n k ) 2 +
O (u n k, k ) r O (u n k ) 2 − r .  T h e pr o of of t h e t h e or e m a n d t h e

d et ail e d d es cri pti o n of t h e  M L al g orit h m ar e gi v e n i n
A p p e n di x D .

E.  L e a r ni n g a n u n k n o w n q u a nt u m p r o c ess

T h e  M L al g orit h m f or l e ar ni n g a n u n k n o w n n - q u bit
q u a nt u m pr o c ess E is ess e nti all y t h e c o m bi n ati o n of t h e
t w o l e ar ni n g a p pli c ati o ns d es cri b e d a b o v e  wit h a f e w  m o d-
i ü c ati o ns.  At a hi g h l e v el,  w e c o nsi d er t h e f oll o wi n g.  T h er e
is a n n - q u bit st at e ρ s a m pl e d fr o m a n u n k n o w n distri b u-
ti o n D , as  w ell as a n o bs er v a bl e O t h at c a n b e  writt e n as a
s u m of f e w- b o d y o bs er v a bl es,  w h er e e a c h q u bit is a ct e d o n
b y a c o nst a nt n u m b er of t h e f e w- b o d y o bs er v a bl es. I n t h e
ürst st a g e,  w e us e t h e s a m pl e- o pti m al al g orit h m f or pr e-
di cti n g t h e b o u n d e d- d e gr e e o bs er v a bl e O ,  w h er e E ( ρ ) is
a n u n k n o w n q u a nt u m st at e, t h us tr a nsf or mi n g t h e cl assi c al
d at as et S N (E ) i n  E q. ( 7) i nt o a d at as et,

{ρ |ψ (i n) ψ (i n) |, tr(O E ( ρ ))} N
= 1 , ( 3 3)

t h at  m a ps q u a nt u m st at es t o r e al n u m b ers. I n t h e s e c-
o n d st a g e,  w e a p pl y t h e e ffi ci e nt al g orit h m f or l e ar ni n g a n
u n k n o w n o bs er v a bl e O (u n k ) = E † (O ), r e g ar di n g  E q. ( 3 3) as
t h e tr ai ni n g d at a f or t his t as k, t h us pr e di cti n g tr(E † (O ) ρ ) =
tr(O E ( ρ )) f or st at e ρ dr a w n fr o m distri b uti o n D .  B e c a us e
b ot h st a g es of t h e al g orit h m r u n i n ti m e p ol y n o mi al i n n ,
t h e o v er all r u nti m e f or t his pr o c e d ur e is p ol y n o mi al i n n .

I n o ur a ct u al pr o ofs, t h er e ar e a f e w d e vi ati o ns fr o m
t h e a b o v e hi g h-l e v el d esi g n, st e m mi n g fr o m t h e f a ct t h at
t h e i n p ut st at es ρ ar e t e ns or pr o d u cts of r a n d o m si n gl e-
q u bit st a bili z er st at es.  T his s p e ci ü c s etti n g all o ws a f e w
si m pli ü c ati o ns t o b e  m a d e.  Wit h t h e si m pli ü c ati o ns,  w e
c a n r e m o v e a n a d diti v e f a ct or of i n t h e pr e di cti o n err or.
F urt h er m or e, a s ur prisi n g f a ct is t h at l e ar ni n g fr o m r a n-
d o m pr o d u ct st at es is s u ffi ci e nt t o pr e di ct hi g hl y e nt a n gl e d
st at es s a m pl e d fr o m a n y distri b uti o n D i n v ari a nt u n d er
si n gl e- q u bit  Cli û or d u nit ari es.  T his s ur prisi n g f a ct is a
r es ult of t h e c h ar a ct eri z ati o n of t h e pr e di cti o n err or gi v e n
i n  L e m m a 1 4 b as e d o n a  m o di ü e d p urit y o n s u bs yst e ms of
a n i n p ut q u a nt u m st at e ρ ∼ D .

B y c o m bi ni n g t h e ü v e p arts,  w e c a n est a blis h  T h e or e m
1, t h e pr e cis e s a m pl e c o m pl e xit y s c ali n g i n  E q. ( 1 2), a n d
t h e pr e di cti o n err or b o u n d i n  E q. ( 1 3).  T h e f ull pr o of is
gi v e n i n  A p p e n di x E .

V.  N U M E RI C A L  E X P E RI M E N T S

We h a v e c o n d u ct e d n u m eri c al e x p eri m e nts t o ass ess t h e
p erf or m a n c e of  M L  m o d els i n l e ar ni n g t h e d y n a mi cs of
s e v er al p h ysi c al s yst e ms.  T h e r es ults c orr o b or at e o ur t h e-
or eti c al cl ai ms t h at l o n g-ti m e e v ol uti o n o v er a  m a n y- b o d y

0 4 0 3 3 7- 9



H U A N G,  C H E N, a n d P R E S KI L L P R X  Q U A N T U M 4, 0 4 0 3 3 7 ( 2 0 2 3)

s yst e m c a n b e l e ar n e d e ffi ci e ntl y.  W hil e o ur t h e or e m o nl y
g u ar a nt e es g o o d p erf or m a n c e f or r a n d o ml y s a m pl e d i n p ut
st at es,  w e als o ü n d t h at t h e  M L  m o d els  w or k v er y  w ell
f or str u ct ur e d i n p ut st at es t h at c o ul d b e of pr a cti c al i nt er-
est.  T h e s o ur c e c o d e is a v ail a bl e fr o m a p u bli c  Git H u b
r e p osit or y [7 2 ].  We n ot e t h at all pri or t o m o gr a p hi c pr o-
t o c ols t h at c a n l e ar n a n ar bitr ar y q u a nt u m pr o c ess r e q uir e
a s a m pl e c o m pl e xit y t h at s c al es e x p o n e nti all y i n n . T h e
str o n g n u m eri c al p erf or m a n c e d e m o nstr at e d h er e r ais es t h e
h o p e t h at t h e s y nt h esis of e xisti n g t o m o gr a p hi c t e c h ni q u es
a n d t h e l o w- w ei g ht tr u n c ati o n pr o p os e d i n t his  w or k  will
e n a bl e a  m or e p o w erf ul  M L  m et h o d f or pr e di cti n g ar bi-
tr ar y q u a nt u m pr o c ess es.

We f o c us o n tr ai ni n g  M L  m o d els t o pr e di ct o ut p ut st at e
pr o p erti es aft er t h e ti m e d y n a mi cs of o n e- di m e nsi o n al
( 1 D) n -s pi n X Y a n d Isi n g c h ai ns  wit h h o m o g e n e o us or dis-
or d er e d Z ü el ds.  L et H b e t h e  m a n y- b o d y  H a milt o ni a n.
T h e q u a nt u m pr o c ess E is gi v e n b y E ( ρ ) = e − it H ρ e it H

f or a si g ni ü c a ntl y l o n g e v ol uti o n ti m e t = 1 0 6 .  We c o n-
si d er t h e  M L  m o d els d es cri b e d b y  E q. ( 1 0).  W hil e  w e
utili z e t h e v er y si m pl e s p arsit y- e nf or ci n g str at e g y of s et-
ti n g s m all v al u es t o z er o t o pr o v e  T h e or e m 1, t h e st a n d ar d
s p arsit y- e nf or ci n g a p pr o a c h is t hr o u g h 1 r e g ul ari z ati o n
[7 3 ].  A d et ail e d d es cri pti o n of a p pl yi n g 1 r e g ul ari z ati o n t o
e nf or c e s p arsit y i n α P (O ) is gi v e n i n  A p p e n di x F . We ü n d
t h e b est h y p er p ar a m et ers usi n g f o urf ol d cr oss- v ali d ati o n t o

mi ni mi z e t h e r o ot- m e a n-s q u ar e err or ( R M S E) a n d r e p ort
t h e pr e di cti o ns o n a t est s et.

Fi g ur e 2 c o nsi d ers t h e p erf or m a n c e f or pr e di cti n g t h e
e x p e ct ati o n of t h e P a uli- Z o p er at or Z i o n t h e o ut p ut st at e
f or r a n d o ml y s a m pl e d pr o d u ct i n p ut st at es n ot i n t h e
tr ai ni n g d at a. Fi g ur e 2( a) ill ustr at es t h e  m a n y- b o d y  H a mil-
t o ni a n H . Fi g ur e 2( b) s h o ws t h e d e p e n d e n c e of t h e err or
o n t h e tr ai ni n g s et si z e N .  We c a n cl e arl y s e e t h at, as
t h e tr ai ni n g s et si z e N i n cr e as es, t h e pr e di cti o n err or
n ot a bl y d e cr e as es.  T his o bs er v ati o n c o n ür ms o ur t h e o-
r eti c al cl ai m t h at l o n g-ti m e q u a nt u m d y n a mi cs c o ul d b e
e ffi ci e ntl y l e ar n e d. I n Fi g. 2( c) ,  w e c o nsi d er h o w t h e e v ol u-
ti o n ti m e t a û e cts pr e di cti o n p erf or m a n c e. Fr o m t h e ü g ur e,
w e c a n s e e t h at, e v e n  w h e n  w e e x p o n e nti all y i n cr e as e t, t h e
pr e di cti o n p erf or m a n c e r e m ai ns si mil ar.  T his  m at c h es  wit h
o ur t h e or e m st ati n g t h at n o  m att er  w h at t h e q u a nt u m pr o-
c ess E is, e v e n if E is a n e x p o n e nti all y l o n g-ti m e d y n a mi cs,
t h e  M L  m o d el c a n still pr e di ct a c c ur at el y a n d e ffi ci e ntl y.
I n Fi g. 2( d) ,  w e c o nsi d er t h e d e p e n d e n c e o n t h e s yst e m
si z e n . As n i n cr e as es li n e arl y, t h e  Hil b ert s p a c e di m e nsi o n
2 n gr o ws e x p o n e nti all y.  D es pit e t h e e x p o n e nti al gr o wt h,
e v e n f or 5 0-s pi n s yst e ms, t h e  M L  m o d el still pr e di cts  w ell.
T his  m at c h es  wit h t h e l o g arit h mi c s c ali n g o n n gi v e n i n
T h e or e m 1.

I n Fi g. 3 ,  w e c o nsi d er pr e di cti n g pr o p erti es of t h e ü n al
st at e aft er l o n g-ti m e d y n a mi cs f or a hi g hl y str u ct ur e d i n p ut

n - s pi n c h ai n

H o m o g e n e o u s: h i = 0 .5

Di s or d er e d: h i ∈ [− 5 , 5]

X Y  m o d el:

I si n g m o d el: H =
1

2
i

X i X i + 1 +
1

2
i

h i Z i

H =
1

4
i

(X i X i + 1 + Y i Y i + 1 ) +
1

2
i

h i Z i

( a)

( b)

( c)

( d)

I si n g ( di s or d.)

I si n g ( h o m o g e n e o u s)

X Y  ( di s or d.)

I si n g ( di s or d er e d)

X Y  ( di s or d er e d)

X Y   ( h o m o g e n e o u s)

I si n g ( h o m o.)

X Y   ( h o m o.)

FI G. 2. Pr e di cti o n p erf or m a n c e of  M L  m o d els f or l e ar ni n g E ( ρ ) = e − it H ρ e it H f or a l ar g e ti m e t. ( a)  H a milt o ni a ns.  We c o nsi d er a n
X Y or Isi n g  m o d el  wit h a h o m o g e n e o us or dis or d er e d Z ü el d o n a n n -s pi n o p e n c h ai n. ( b)  Err or s c ali n g  wit h tr ai ni n g s et si z e (N ).  We
s h o w t h e r o ot- m e a n-s q u ar e err or ( R M S E) f or pr e di cti n g t h e P a uli- Z o p er at or Z i o n t h e o ut p ut st at e E ( ρ ) f or r a n d o m pr o d u ct st at es ρ .
( c),( d)  Err or s c ali n g  wit h e v ol uti o n ti m e (t) a n d s yst e m si z e (n ). P a n el ( d) s h o ws t h e  R M S E f or t h e X Y m o d el  wit h a h o m o g e n e o us Z
ü el d.  T h e pr e di cti o n err or r e m ai ns si mil ar as  w e e x p o n e nti all y i n cr e as e t a n d t h e  Hil b ert s p a c e di m e nsi o n 2 n .
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T r u t h ( e x a c t )

M L p r e di c ti o n

T r u t h ( e x a c t )

M L p r e di c ti o n

T r u t h ( e x a c t )

M L p r e di c ti o n

T r u t h ( e x a c t )

M L p r e di c ti o n

| ´ . . . ´ ² . . . ²

FI G. 3.  Vis u ali z ati o n of t h e  M L  m o d el’s pr e di cti o n f or a n i niti al st at e ρ = | ψ ψ | wit h a d o m ai n  w all.  We c o nsi d er t h e 1 D 5 0-s pi n
X Y c h ai n  wit h a h o m o g e n e o us Z fi el d.  We s h o w t h e e x p e ct ati o n v al u e of Z i(t) = e it H Z ie

− it H f or all t h e 5 0 s pi ns o n t h e i niti al st at e
|ψ = | ´ · · ·  ´ ² · · ·  ² .  T h e  M L  m o d el is tr ai n e d o n 1 0 0 0 0 r a n d o m pr o d u ct st at es.  We s e e t h at t h e  M L  m o d el p erf or ms a c c ur at el y f or
a si g ni fi c a ntl y l ar g e r a n g e of ti m e t.

pr o d u ct st at e

|ψ = | ´ · · ·  ´ ² · · ·  ² , ( 3 4)

w hi c h h as a si n gl e d o m ai n  w all i n t h e  mi d dl e.  We f o c us
o n pr e di cti n g t h e e x p e ct e d v al u e f or Z i(t) = e it H Z ie

− it H

o n e v er y s pi n i n t h e 1 D 5 0-s pi n X Y c h ai n  wit h a h o m o-
g e n e o us Z fi el d h i = 0. 5 a n d c o nsi d er e v ol uti o n ti m e t
fr o m 0 t o 1 06 .  We tr ai n t h e  M L  m o d el usi n g N = 1 0 0 0 0
r a n d o m i n p ut pr o d u ct st at es.  We c a n s e e t h at t h e  M L
m o d el pr e di cts v er y  w ell f or t his hi g hl y str u ct ur e d pr o d-
u ct st at e.  T h e c oll a ps e of t h e d o m ai n  w all is a c c ur at el y
pr e di ct e d b y t h e  M L  m o d el d es pit e o nl y s e ei n g o ut c o m es
fr o m r a n d o m u nstr u ct ur e d pr o d u ct st at es.  T his n u m eri c al
e x p eri m e nt s u g g ests t h at t h e p erf or m a n c e of t h e  M L  m o d el
g o es b e y o n d  T h e or e m 1,  w hi c h o nl y g u ar a nt e es a c c ur at e
pr e di cti o n o n a v er a g e.

T h e or e m 1 st at es t h at t h e  M L  m o d el c a n pr e di ct  w ell
o n hi g hl y e nt a n gl e d i n p ut st at es aft er l e ar ni n g o nl y fr o m
r a n d o m pr o d u ct st at e i n p uts.  We t est t his cl ai m i n Fi g. 4 b y
c o nsi d eri n g a n e nt a n gl e d i n p ut st at e

|ψ e =

s∈{ ± ,³} n / 2

wit h a n e v e n # of ³

1
√

2 (n / 2 )− 1
|s

×  ⊗ | ³ ´ ± ² ³ ´ ± ² · · · . ( 3 5)

T h e l eft n / 2 s pi ns of st at e |ψ e e x hi bit  Gr e e n b er g er-
H or n e- Z eili n g er ( G H Z)-li k e e nt a n gl e m e nt,  w hi c h r e q uir es

a li n e ar- d e pt h 1 D q u a nt u m cir c uit t o pr e p ar e.  T h e ri g ht n / 2
s pi ns of |ψ e f or m a pr o d u ct st at e  wit h s pi ns r ot ati n g cl o c k-
wis e fr o m l eft t o ri g ht.  C o m bi ni n g t h e l eft a n d ri g ht s pi ns,
st at e |ψ e c a n n ot b e g e n er at e d b y a s h ort- d e pt h 1 D q u a n-
t u m cir c uit.  We c a n s e e t h at, f or t his e nt a n gl e d i n p ut st at e,
t h e  M L  m o d el tr ai n e d o n r a n d o m pr o d u ct st at es still pr e-
di cts v er y  w ell a cr oss a br o a d r a n g e of t h e e v ol uti o n ti m e
t.

VI.  O U T L O O K

T h e t h e or e m est a blis h e d i n t his  w or k s h o ws t h at l e ar n-
i n g t o pr e di ct a c o m pl e x q u a nt u m pr o c ess c a n b e a c hi e v e d
wit h c o m p ut ati o n all y e ffi ci e nt  M L al g orit h ms.  O n c e  w e
h a v e o bt ai n e d tr ai ni n g d at a b y a c c essi n g t h e u n k n o w n pr o-
c ess E s u ffi ci e ntl y  m a n y ti m es, t h e pr o p os e d  M L al g orit h m
is e ntir el y cl assi c al e x c e pt f or t h e st e p of o bt ai ni n g t h e
R D M of t h e i n p ut st at e ρ ,  w hi c h  m a y r e q uir e q u a nt u m
c o m p ut ati o n.  T his al g orit h m is r e mi nis c e nt of r e c e nt pr o-
p os als f or q u a nt u m  M L b as e d o n k er n el  m et h o ds [ 2 ,3 ,2 9 ],
i n p arti c ul ar t h e pr oj e ct e d q u a nt u m k er n el [2 9 ].  T his r es ult
hi g hli g hts t h e p ot e nti al f or usi n g h y bri d q u a nt u m- cl assi c al
M L al g orit h ms t o l e ar n t o  m o d el e x oti c q u a nt u m d y n a mi cs
o c c urri n g i n n at ur e.

T h e r es ults pr es e nt e d i n t his  w or k als o h a v e i m pli c ati o ns
f or s e v er al pr e vi o usl y st u di e d pr o bl e ms. Pri or  w or ks [7 ,1 1 ,
1 2 ] h a v e pr o p os e d t o tr ai n q u a nt u m  M L  m o d els o n a gi v e n
q u a nt u m pr o c ess  wit h t h e h o p e t h at t h e l e ar n e d  m o d el c a n
b e f ast er t h a n t h e pr o c ess its elf.  O ur pr o of t h at o n e c a n
al w a ys tr ai n a n  M L  m o d el t h at r u ns i n q u asi p ol y n o mi al
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t = 1 0

t = 1 0 6

t = 0

t = 1

I niti al st at e: 
s ∈ { ± ,³ } n / 2 wi t h e v e n ³

1
√

2 n / 2 − 1
|s | ³ ´ ± ² ³ ´ ± ² . . .

Tr ut h ( e x a ct)

M L pr e di cti o n

Tr ut h ( e x a ct)

M L pr e di cti o n

Tr ut h ( e x a ct)

M L pr e di cti o n

Tr ut h ( e x a ct)

M L pr e di cti o n

FI G. 4.  Vis u ali z ati o n of t h e  M L  m o d el’s pr e di cti o n f or a hi g hl y e nt a n gl e d i niti al st at e ρ = | ψ ψ |.  We c o nsi d er t h e e x p e ct e d v al u e
of Z i(t) = e it H Z ie

− it H , w h er e H c orr es p o n ds t o t h e 1 D 5 0-s pi n X Y c h ai n  wit h a h o m o g e n e o us Z ü el d.  T h e i niti al st at e |ψ h as a  G H Z-
li k e e nt a n gl e m e nt o v er t h e l eft- h alf c h ai n a n d is a pr o d u ct st at e  wit h s pi ns r ot ati n g cl o c k wis e o v er t h e ri g ht- h alf c h ai n.  T o pr e p ar e |ψ
wit h 1 D cir c uits, a d e pt h of at l e ast (n ) is r e q uir e d.  E v e n t h o u g h t h e  M L  m o d el is tr ai n e d o nl y o n r a n d o m pr o d u ct st at es ( a t ot al of
N = 1 0 0 0 0), it still p erf or ms a c c ur at el y i n pr e di cti n g t h e hi g hl y e nt a n gl e d st at e o v er a  wi d e r a n g e of e v ol uti o n ti m e t.

ti m e, e v e n f or e x p o n e nti al-ti m e q u a nt u m d y n a mi cs, pr o-
vi d es ri g or o us s u p p ort f or s u c h a h o p e.  W h e n t h e f e w- b o d y
R D Ms of t h e i n p ut st at e ρ ar e h ar d t o c o m p ut e cl assi-
c all y, t h e pr o p os e d  M L al g orit h m c a n b e s e e n as a v ari a nt
of t h e pr oj e ct e d q u a nt u m k er n el  m et h o d [ 2 9 ].  W h e n t h e
f e w- b o d y  R D Ms of t h e i n p ut st at e ρ ar e e as y t o c o m p ut e
cl assi c all y, t h e pr o p os e d  M L  m o d el c a n e þ ci e ntl y r u n o n
a cl assi c al c o m p ut er.  H e n c e, t his r es ult pr o vi d es a ri g or-
o us f o u n d ati o n f or e m piri c al  w or ks usi n g cl assi c al  M L t o
l e ar n a n d si m ul at e q u a nt u m d y n a mi cs [2 7 ,7 4 – 7 6 ].  W h e n E
is a p ar a m et eri z e d q u a nt u m cir c uit U θ , s u c h as a q u a nt u m
n e ur al n et w or k [ 3 ,4 ,6 ,9 ,2 9 ,3 7 ], t h e e xist e n c e of a cl assi-
c al  M L  m o d el t h at c a n e þ ci e ntl y pr e di ct t h e o ut p ut of U θ

i m pli es t h at t h e f u n cti o n tr(O U θ ρ U
†
θ ) is e as y t o r e pr es e nt

a n d l e ar n o n a cl assi c al c o m p ut er.  T his ü n di n g s h o ws t h at
q u a nt u m cir c uits d o n ot h a v e str o n g r e pr es e nt ati o n al p o w er
f or v ari o us distri b uti o ns o v er q u a nt u m st at e i n p ut ρ wit h
e as y-t o- c o m p ut e  R D Ms.

S e v er al o p e n pr o bl e ms r e m ai n t o b e a ns w er e d.  W hil e  w e
f o c us o nl y o n l o c all y ý at distri b uti o ns D ,  w e b eli e v e t h at
e þ ci e nt  M L al g orit h ms als o e xist f or ot h er g e n er al cl ass es
of distri b uti o ns.  A n i m p ort a nt o p e n pr o bl e m is h e n c e t h e
f oll o wi n g: c a n  w e o bt ai n c o m p ut ati o n all y e þ ci e nt l e ar n-
i n g al g orit h ms f or a n y <s m o ot h = distri b uti o n o v er q u a nt u m
st at e s p a c e ? If n ot, h o w g e n er al c a n t h e cl ass of distri b u-
ti o ns b e ? Si mil ar q u esti o ns c a n b e as k e d a b o ut t h e cl ass
of o bs er v a bl es t h at  w e pr e di ct. F or  w h at g e n er al cl ass es

of o bs er v a bl es O c a n o n e pr e di ct e þ ci e ntl y, i n t er ms of
b ot h s a m pl e si z e a n d c o m p ut ati o n ti m e ?  T his pr o bl e m is
cl os el y r el at e d t o t h e pr o bl e m of  w h e n s h a d o w t o m o gr a p h y
[5 7 ,5 8 ,7 7 ] c a n b e  m a d e c o m p ut ati o n all y e þ ci e nt.  Ot h er
i m p ort a nt q u esti o ns i n cl u d e t h e f oll o wi n g. If  w e r estri ct
t h e q u a nt u m pr o c ess E t o b e g e n er at e d i n p ol y n o mi al ti m e,
c a n  w e o bt ai n i m pr o v e d e þ ci e n c y ?  W h at e þ ci e n c y g u ar-
a nt e es a p pl y t o f er mi o ni c or b os o ni c s yst e ms ?  A b ett er
u n d erst a n di n g of t h es e pr o bl e ms  w o ul d ill u mi n at e t h e ulti-
m at e p o w er of cl assi c al a n d q u a nt u m  M L al g orit h ms f or
l e ar ni n g a b o ut p h ysi c al d y n a mi cs.

A C K N O W L E D G M E N T S

T h e a ut h ors t h a n k  Vi ct or  V.  Al b ert,  C hi- F a n g ( A nt h o n y)
C h e n,  Br y a n  Cl ar k,  Ri c h ar d  K u e n g, a n d S pir os  Mi c h al a kis
f or v al u a bl e i n p ut a n d i ns piri n g dis c ussi o ns.  Aft er l e ar ni n g
a b o ut o ur pr o of of t h e q u a nt u m  B o h n e n bl ust- Hill e i n e q u al-
it y,  Al e x a n d er  V ol b er g a n d  H a o n a n  Z h a n g f o u n d a v er y
di û er e nt pr o of  wit h a b ett er  B o h n e n bl ust- Hill e c o nst a nt.
We t h a n k t h e m f or s h ari n g t h eir r es ults  wit h us.  H. H. is
s u p p ort e d b y a  G o o gl e P h D f ell o ws hi p. S. C. is s u p p ort e d
b y  N S F  Gr a nt  N o. 2 1 0 3 3 0 0. J. P. a c k n o wl e d g es s u p p ort
fr o m t h e  U. S.  D e p art m e nt of  E n er g y,  O þ c e of S ci e n c e,
O þ c e of  A d v a n c e d S ci e nti ü c  C o m p uti n g  R es e ar c h ( D E-
N A 0 0 0 3 5 2 5,  D E- S C 0 0 2 0 2 9 0), t h e  U. S.  D e p art m e nt of
E n er g y,  O þ c e of S ci e n c e,  N ati o n al  Q u a nt u m I nf or m ati o n
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S ci e n c e  R es e ar c h  C e nt ers,  Q u a nt u m S yst e ms  A c c el er at or,
a n d t h e  N ati o n al S ci e n c e F o u n d ati o n ( P H Y- 1 7 3 3 9 0 7).  T h e
I nstit ut e f or  Q u a nt u m I nf or m ati o n a n d  M att er is a n  N S F
P h ysi cs Fr o nti ers  C e nt er.

A P P E N DI X  A:  O P TI MI ZI N G  A k - L O C A L
H A MI L T O NI A N  WI T H  R A N D O M  P R O D U C T

S T A T E S

W hil e o ur g o al is t o d esi g n a g o o d  M L al g orit h m  wit h
l o w s a m pl e c o m pl e xit y, t his a p p e n di x is a d et o ur t o a dif-
f er e nt t as k o n t h e o pti mi z ati o n of a k -l o c al  H a milt o ni a n.
We pr es e nt a n i m pr o v e d a p pr o xi m ati o n al g orit h m f or o pti-
mi zi n g a n y k -l o c al  H a milt o ni a n.  T h e c e ntr al r es ult i n t his
d et o ur  will b e c o m e us ef ul f or s h o wi n g t h e l o w s a m pl e
c o m pl e xit y of s e v er al  M L al g orit h ms.

1.  T as k d es c ri pti o n a n d  m ai n t h e o r e m

T as k 1 ( O pti mizi n g a q u a nt u m  H a milt o ni a n). 4 Gi v e n
n , k g 1 a n d a n n - q u bit k -l o c al  H a milt o ni a n

H =

P ∈{ I ,X ,Y ,Z }⊗ n : |P | fk

α P P , ( A 1)

w h er e |P | is t h e n u m b er of n o ni d e ntit y c o m p o n e nts i n P ,
fi n d a st at e |ψ t h at  m a xi mi z es or  mi ni mi z es ψ | H |ψ .

T h e t as k gi v e n a b o v e is r el at e d t o s ol vi n g gr o u n d
st at es [ 4 8 ,4 9 ]  w h e n  w e c o nsi d er  mi ni mi zi n g ψ | H |ψ
a n d q u a nt u m o pti mi z ati o n [ 4 3 ,4 4 ,5 0 3 5 4 ]  w h e n  w e c o n-
si d er  m a xi mi zi n g ψ | H |ψ .  T h e  m a xi mi z ati o n a n d  mi n-
i mi z ati o n ar e oft e n t h e s a m e pr o bl e m si n c e  m a xi mi zi n g
ψ | H |ψ is t h e s a m e as  mi ni mi zi n g ψ | (− H ) |ψ .  Wit h-

o ut f urt h er c o nstr ai nts, e v e n f or k = 2, fi n di n g t h e o pti m al
st at e |ψ ∗ m a xi mi zi n g ψ | H |ψ is k n o w n t o b e  Q M A
h ar d [ 7 8 ]; h e n c e, it is e x p e ct e d t o h a v e n o p ol y n o mi al-
ti m e al g orit h m e v e n o n a q u a nt u m c o m p ut er.  M ost e xisti n g
w or ks c o nsi d er d et er mi nisti c or r a n d o mi z e d c o nstr u cti o ns
of |ψ wit h ri g or o us u p p er a n d l o w er b o u n d g u ar a nt e es
o n ψ | H |ψ f or  mi ni mi z ati o n a n d  m a xi mi z ati o n. S o m e
of t h es e l o w er b o u n ds [ 5 2 3 5 4 ] ar e b as e d o n t h e o pti m al
v al u e  O P T = s u p |ψ ψ | H |ψ ,  w hil e s o m e [4 3 ,4 4 ,5 1 ] ar e
b as e d o n t h e P a uli c o e ffi ci e nts α P .

a.  D e fi niti o n of e x p a nsi o n

I n t his s e cti o n,  w e pr es e nt a r a n d o m pr o d u ct st at e c o n-
str u cti o n f or t h e o pti mi z ati o n pr o bl e m,  w h er e t h e ri g or o us
u p p er or l o w er b o u n d is b as e d o n t h e P a uli c o e ffi ci e nts α P

a n d t h e e x p a nsi o n pr o p ert y d e fi n e d b el o w.  T h e e x p a nsi o n
pr o p ert y is d e fi n e d f or a n y  H a milt o ni a n H .

D e fi niti o n 1 ( E x p a nsi o n pr o p ert y). 4 Gi v e n a n n - q u bit
H a milt o ni a n H = P α P P ,  w e s a y t h at H h as a n e x p a n-
si o n c o e ffi ci e nt c e a n d e x p a nsi o n di m e nsi o n d e if, f or a n y

ϒ ⊆ { 1, . . . , n } wit h |ϒ | = d e ,

P ∈{ I ,X ,Y ,Z }⊗ n

1 [α P = 0 a n d ( ϒ ⊆ d o m (P ) or d o m (P )

⊆ ϒ ) ] f c e , ( A 2)

w h er e d o m (P ) is t h e s et of q u bits t h at P a cts n o ntri vi all y
o n.

T h e e x p a nsi o n pr o p ert y c a pt ur es t h e c o n n e cti vit y of t h e
H a milt o ni a n.  We gi v e t w o e x a m pl es, t h e g e n er al k -l o c al
H a milt o ni a n a n d t h e g e o m etri c all y l o c al  H a milt o ni a n, t o
pr o vi d e  m or e i nt uiti o n o n t h e e x p a nsi o n pr o p ert y.

F a ct 1 ( E x p a nsi o n pr o p ert y f or a g e n er al k-l o c al  H a mil-
t o ni a n). 4A n y  H a milt o ni a n gi v e n b y a s u m of k - q u bit
o bs er v a bl es h as e x p a nsi o n c o e ffi ci e nt 4 k a n d e x p a nsi o n
di m e nsi o n k .

Pr o of. 4 L et H = P α P P .  All t h e P a uli o bs er v a bl es P
wit h n o n z er o α P a ct o n at  m ost k q u bits. F or a n y ϒ wit h
|ϒ | = k , all t h e P a uli o bs er v a bl es  wit h n o n z er o α P m ust
h a v e a d o m ai n c o nt ai n e d i n ϒ .  T h er e ar e at  m ost 4k s u c h
P a uli o bs er v a bl es.  H e n c e, t h e cl ai m f oll o ws.

F a ct 2 ( E x p a nsi o n pr o p ert y f or a b o u n d e d- d e gr e e
k-l o c al  H a milt o ni a n). 4 A n y  H a milt o ni a n gi v e n b y a s u m
of k - q u bit o bs er v a bl es H = j h j ,  w h er e e a c h q u bit is
a ct e d o n b y at  m ost d of t h e k - q u bit o bs er v a bl es h j , h as
e x p a nsi o n c o e ffi ci e nt c e = 4 k d a n d e x p a nsi o n di m e nsi o n
d e = 1.

Pr o of. 4 F or e v er y ϒ wit h |ϒ |, ϒ = { i} f or s o m e q u bit
i. F or e a c h q u bit i ( c orr es p o n di n g t o ϒ = { i}),  w e h a v e at
m ost d k - q u bit o bs er v a bl es a cti n g o n i.  E a c h of t h e k - q u bit
o bs er v a bl es c a n b e e x p a n d e d i nt o at  m ost 4 k P a uli t er ms.
H e n c e  w e c a n s et c e = 4 k d a n d d e = 1.

F a ct 3 ( E x p a nsi o n pr o p ert y f or a g e o m etri c all y l o c al
H a milt o ni a n). 4 A n y  H a milt o ni a n gi v e n b y a s u m of g e o-
m etri c all y l o c al o bs er v a bl es h as e x p a nsi o n c o e ffi ci e nt c e =
O (1 ) a n d e x p a nsi o n di m e nsi o n 1.

Pr o of. 4 F or a g e o m etri c all y l o c al  H a milt o ni a n H =

P α P P , e a c h q u bit i is a ct e d o n b y at  m ost a
c o nst a nt n u m b er c i = O (1 ) of P wit h n o n z er o α P .
H e n c e, f or a n y q u bit i, P ∈{ I ,X ,Y ,Z }⊗ n 1 [α P = 0 a n d ( ϒ ⊆
d o m (P ) or d o m (P ) ⊆ ϒ ) ] = c i. T h us, w e c a n s et d e = 1
a n d c e = m a x i c i = O (1 ).

b.  M ai n t h e o r e m

Wit h t h e e x p a nsi o n pr o p ert y d e fi n e d,  w e c a n st at e t h e
ri g or o us g u ar a nt e e o n t h e p erf or m a n c e of t h e pr o p os e d
r a n d o mi z e d a p pr o xi m ati o n al g orit h m o n o pti mi zi n g a n n -
q u bit k -l o c al  H a milt o ni a n H .  We c o m p ar e  wit h t h e a v er a g e
e n er g y E |φ :  H a ar[ φ | H |φ ] = α I o v er t h e  H a ar r a n d o m
st at e.  T h e r a n d o mi z e d a p pr o xi m ati o n al g orit h m us es a n
o pti mi z ati o n o v er a si n gl e- v ari a bl e p ol y n o mi al t h at g u ar-
a nt e es i m pr o v e m e nt i n at l e ast o n e dir e cti o n ( mi ni mi z ati o n
or  m a xi mi z ati o n).
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T h e or e m 5 ( R a n d o m pr o d u ct st at es f or o pti mizi n g
a k-l o c al  H a milt o ni a n). — C o nsi d er a n n - q u bit k -l o c al
H a milt o ni a n H = P : |P | fk α P P wit h e x p a nsi o n c o e þ-
ci e nt c e a n d di m e nsi o n d e . L et r = 2 d e /( d e + 1 ) ∈ [ 1, 2)
a n d n n z (H ) |{P : α P = 0 }|.  T h er e is a r a n d o mi z e d
al g orit h m t h at r u ns i n ti m e O (n k + n n z (H )2 k ) a n d pr o-
d u c es eit h er a r a n d o m  m a xi mi zi n g st at e |ψ = | ψ 1 ⊗
· · · ⊗ |ψ n s atisf yi n g

E
|ψ

[ ψ | H |ψ ] g E
|φ :  H a ar

[ φ | H |φ ]

+ C (c e , d e , k )
P = I

|α P |r
1 / r

( A 3)

or a r a n d o m  mi ni mi zi n g st at e |ψ = | ψ 1 ⊗ · · · ⊗ | ψ n

s atisf yi n g

E
|ψ

[ ψ | H |ψ ] f E
|φ :  H a ar

[ φ | H |φ ]

− C (c e , d e , k )
P = I

|α P |r
1 / r

. ( A 4)

T h e c o nst a nt C (c e , d e , k ) is gi v e n b y

C (c e , d e , k ) =

√
2 (k !)

c
1 /( 2 d e )
e k k + 1. 5 + 1 / r (

√
6 + 2

√
3 ) k

= k
1

c
1 /( 2 d e )
e

, ( A 5)

w h er e k c o nsi d ers t h e as y m pt oti c s c ali n g  w h e n k is a
c o nst a nt.

S o m e o bs er v ati o ns c a n b e  m a d e. First, t h e i m pr o v e-
m e nt o v er  H a ar r a n d o m st at es i n  T h e or e m 5 b e c o m es
l ar g er  w h e n t h e e x p a nsi o n c o e þ ci e nt c e is s m all er. S e c-
o n d, ( P = I |α P |r ) 1 / r is t h e r n or m o n t h e n o ni d e n-
tit y P a uli c o e þ ci e nts, s o b y  m o n ot o ni cit y of r n or ms,
( P = I |α P |r ) 1 / r b e c o m es s m all er as r b e c o m es l ar g er ( c or-
r es p o n di n g t o l ar g er d e ).  H e n c e, t h e i m pr o v e m e nt is gr e at er
f or s m all er e x p a nsi o n di m e nsi o n d e . I n p arti c ul ar, it is h el p-
f ul t o c o ntr ast  E qs. ( A 3) a n d ( A 4) wit h t h e f oll o wi n g b asi c
esti m at e c orr es p o n di n g t o r = 2 t h at h ol ds r e g ar dl ess of
c e , d e , k :

s u p
|ψ

ψ | H |ψ − E
|φ :  H a ar

[ φ | H |φ ] g
P = I

|α P |2
1 / 2

.

( A 6)

T his h ol ds f or a n y  H a milt o ni a n H = P α P P b e c a us e
( P = I |α P |2 ) 1 / 2 = 1 / 2 n / 2 H − α I I F f H − α I I ∞ ,  w h er e
· d e n ot es t h e s p e ctr al n or m a n d α I = E |ψ :  H a ar[ φ | H |φ ].

T his b asi c esti m at e s h o ws t h at  w e c a n al w a ys ü n d a st at e
t h at i m pr o v es b y at l e ast t h e 2 n or m of α P , alt h o u g h t h e
o pti mi z ati o n pr o c ess c a n b e c o m p ut ati o n all y h ar d.

c.  A n alt e r n ati v e v e rsi o n of t h e  m ai n t h e o r e m

B y f oll o wi n g t h e pr o of of  T h e or e m 5 a n d r e pl a ci n g t h e
us e of  C or oll ar y 9 b y  L e m m a 5,  w e c a n est a blis h t h e f ol-
l o wi n g alt er n ati v e t h e or e m st at e m e nt t h at d o es n ot utili z e
t h e e x p a nsi o n pr o p ert y.

T h e or e m 6 ( R a n d o m pr o d u ct st at es f or o pti mizi n g a
k-l o c al  H a milt o ni a n; alt er n ati v e). — C o nsi d er a n n - q u bit
k -l o c al  H a milt o ni a n H = P : |P | fk α P P wit h k = O (1 ).

L et n n z (H ) |{P : α P = 0 }|.  T h er e is a r a n d o mi z e d
al g orit h m t h at r u ns i n ti m e O (n k + n n z (H )2 k ) a n d pr o-
d u c es a r a n d o m st at e |ψ = | ψ 1 ⊗ · · · ⊗ | ψ n s atisf yi n g

E
|ψ

[ ψ | H |ψ ] − E
|φ :  H a ar

[ φ | H |φ ]

g D
i∈ [n ], p ∈{ X ,Y ,Z } P : P i= p

α 2
P ( A 7)

f or s o m e c o nst a nt D .
We c a n c o m p ar e t h e a b o v e t h e or e m  wit h a cl os el y

r el at e d r es ult i n  R ef. [4 3 ].  T h e f oll o wi n g is a r est at e m e nt of
t h e a p pr o xi m ati o n g u ar a nt e e fr o m  T h e or e m 2 a n d  L e m m a
3 of R ef. [ 4 3 ],  w hi c h is a c or oll ar y of a p o w erf ul r es ult i n
B o ol e a n f u n cti o n a n al ysis [ 4 1 ,4 2 ] r el ati n g t h e  m a xi m u m
i n ý u e n c e a n d t h e a bilit y t o s a m pl e a bitstri n g fr o m t h e
B o ol e a n h y p er c u b e  wit h a l ar g e  m a g nit u d e i n t h e f u n cti o n
v al u e.  We c a n d e ü n e t h e i n ý u e n c e of q u bit i u n d er P a uli
m atri x p ∈ { X , Y , Z } as I (i, p ) = P : P i= p α 2

P .
T h e or e m 7 ( A p pr o xi m ati o n g u ar a nt e e fr o m  R ef. [ 4 3 ]

f or o pti mizi n g a k-l o c al  H a milt o ni a n). —Gi v e n a n n - q u bit
k -l o c al  H a milt o ni a n H = P : |P | fk α P P wit h k = O (1 ),
t h er e is a p ol y n o mi al-ti m e r a n d o mi z e d al g orit h m t h at pr o-
d u c es a r a n d o m st at e |ψ = | ψ 1 ⊗ · · · ⊗ | ψ n s atisf yi n g

E
|ψ

[ ψ | H |ψ ] − E
|φ :  H a ar

[ φ | H |φ ]

g D
i∈ [n ], p ∈{ X ,Y ,Z }

P : P i= p α 2
P

m a x j ,q P : P j = q α 2
P

( A 8)

f or s o m e c o nst a nt D .
T h e g u ar a nt e e fr o m  R ef. [ 4 3 ] is as y m pt oti c all y o pti-

m al  w h e n t h e i n ý u e n c e I (i, p ) is of a si mil ar  m a g nit u d e
f or di û er e nt q u bits i a n d P a uli  m atri c es p .  H o w e v er, t h e
a p pr o xi m ati o n g u ar a nt e e c a n b e f ar fr o m o pti m al  w h e n
t h er e is a l ar g e v ari ati o n i n t h e i n ý u e n c e I (i, p ) o v er dif-
f er e nt q u bits i, p .  As a n e x a m pl e, c o nsi d er a 1 D n - q u bit
n e ar est- n ei g h b or c h ai n,  w h er e |α P | = 1 f or o nl y a c o nst a nt
n u m b er of P a uli o bs er v a bl es P a n d |α P | = 1 /

√
n f or t h e

r est of t h e P a uli o bs er v a bl es.  T h e i m pr o v e m e nts o v er t h e
H a ar r a n d o m st at e b y o ur al g orit h m a n d t h e al g orit h m i n
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R ef. [ 4 3 ] ar e r es p e cti v el y gi v e n b y

i∈ [n ], p ∈{ X ,Y ,Z } P : P i= p

³ 2
P = (

√
n ), ( A 9)

i∈ [n ], p ∈{ X ,Y ,Z }

P : P i= p ³ 2
P

m a x j ,q P : P j = q ³ 2
P

= (1 ). ( A 1 0)

H e n c e,  w h e n t h er e is l ar g e v ari ati o n i n t h e i n ý u e n c e,
o ur g u ar a nt e e i m pr o v es o v er t h at of  R ef. [ 4 3 ]. F or o ur
m a c hi n e-l e ar ni n g a p pli c ati o ns, t h e r e m o v al of t h e d e p e n-
d e n c e o n t h e  m a xi m u m i n ý u e n c e is c e ntr al.  B y r e m o vi n g
t h e r ati o I (i, p ) / m a x j ,q I (j , q ),  w e c a n o bt ai n t h e r

n or m d e p e n d e n c e f or a n r < 2, as gi v e n i n  T h e or e m 5.
We  will l at er s e e t h at h a vi n g t h e r - n or m b o u n d (f or
r < 2) all o ws a s u bst a nti al r e d u cti o n i n t h e s a m pl e c o m-
pl e xit y i n tr ai ni n g  m a c hi n e-l e ar ni n g  m o d els f or pr e di cti n g
pr o p erti es.

We d o  w a nt t o  m e nti o n t h at t h e i m pr o v e m e nt c o m es
at a c ost of a sli g htl y  w ors e d e p e n d e n c e o n k = O (1 ). I n
T h e or e m 7 fr o m  R ef. [ 4 3 ] b as e d o n  B o ol e a n f u n cti o n a n al-
ysis [ 4 1 ,4 2 ], t h e d e p e n d e n c e o n D is 1/ 2 (k ) .  H o w e v er,
o ur r es ult i n  T h e or e m 6 is D = 1 / 2 (k l o g k ) .  T his di û er-
e n c e st e ms fr o m t h e c o nstr u cti o n f or t h e r a n d o m st at e |ψ .
I n  R efs. [4 1 3 4 3 ] t h e a ut h ors utili z e a r a n d o m r estri cti o n
a p pr o a c h,  w h er e s o m e r a n d o m s u bs et of v ari a bl es is ü x e d
wit h s o m e r a n d o m v al u es a n d t h e r est of t h e v ari a bl es ar e
o pti mi z e d.  O n t h e ot h er h a n d,  w e utili z e a p ol ari z ati o n
a p pr o a c h,  w h er e  w e r e pli c at e e a c h v ari a bl e  m a n y ti m es,
r a n d o ml y ü x all e x c e pt t h e l ast r e pli c a, o pti mi z e t h e l ast
r e pli c a, a n d c o m bi n e usi n g a r a n d o m-si g n e d a v er a gi n g.

2.  C o r oll a ri es of t h e  m ai n t h e o r e m

H er e,  w e c o nsi d er h o w t h e  m ai n t h e or e m a p pli es t o
c ert ai n cl ass es of k -l o c al  H a milt o ni a ns a n d dis c uss t h e
r el ati o ns of t h e c or oll ari es t o r el at e d  w or ks.

a.  O pti mi zi n g a r bit r a r y k -l o c al  H a milt o ni a ns

T h e ürst c or oll ar y c o nsi d ers a g e n er al k -l o c al  H a milt o-
ni a n H = P : |P | fk ³ P P .  We c a n c o m bi n e F a ct 1 a n d t h e
m ai n t h e or e m t o o bt ai n t h e f oll o wi n g c or oll ar y.

C or oll ar y 5 ( O pti mizi n g a n ar bitr ar y k-l o c al  H a mil-
t o ni a n). 4Gi v e n a n n - q u bit k -l o c al  H a milt o ni a n H =

P : |P | fk ³ P P , t h er e is a r a n d o mi z e d al g orit h m t h at r u ns

i n ti m e O (n k ) a n d pr o d u c es a r a n d o m pr o d u ct st at e |ψ =
|ψ 1 ⊗ · · · ⊗ | ψ n wit h

E
|ψ

[ ψ | H |ψ ] − E
|φ :  H a ar

[ φ | H |φ ]

g C (k )
P = I

|³ P |2 k /( k + 1 )
(k + 1 ) /(2 k )

, ( A 1 1)

w h er e C (k ) =
√

2 (k !) /[ 2k k + 1. 5 + (k + 1 ) /(2 k ) (
√

6 + 2
√

3 ) k ].

F or k = 2,  w e h a v e 2 k /( k + 1 ) = 4 / 3 a n d t h e a b o v e
r es ult r es e m bl es  Littl e w o o d’s 4/ 3 i n e q u alit y.  R e c all t h at
Littl e w o o d’s 4 / 3 i n e q u alit y st at es t h at, gi v e n {´ i,j ∈ C } i,j ,

s u p
i,j

´ i,j x
(1 )
i x (2 )

j : x (k )
i ∈ C , |x (k )

i | f 1,

f or all i ∈ N , k ∈ { 1, 2 } g
1

√
2 i,j

|´ i,j |
4 / 3

3 / 4

.

( A 1 2)

F or k > 2, t h e a b o v e r es ult r es e m bl es t h e  B o h n e n bl ust-
Hill e i n e q u alit y,  w hi c h st at es t h at, gi v e n {´ i1 ,...,ik ∈
C } i1 ,...,ik ,

s u p
i1 ,...,ik

´ i1 ,...,ik x
(1 )
i1

· · · x (k )
ik

: x ( κ )
iκ

∈ C , |x ( κ )
iκ

| f 1,

f or all iκ ∈ N , κ ∈ [k ]

g D k

i1 ,...,ik

|´ i1 ,...,ik |
2 k /( k + 1 )

(k + 1 ) /(2 k )

( A 1 3)

f or s o m e c o nst a nt D k t h at d e p e n ds o n k . F or o pti mi zi n g a
g e n er al k -l o c al  H a milt o ni a n, t h e d esi g n of t h e r a n d o mi z e d
a p pr o xi m ati o n al g orit h m is i ns pir e d b y t h e ori gi n al pr o of
[5 6 ] of t h e  B o h n e n bl ust- Hill e i n e q u alit y fr o m 1 9 3 1,  w hi c h
is us e d t o st u d y t h e a bs ol ut e c o n v er g e n c e of t h e  Diri c hl et
s eri es.

b.  O pti mi zi n g b o u n d e d- d e g r e e k -l o c al  H a milt o ni a ns

H er e,  w e c o nsi d er a  H a milt o ni a n gi v e n b y a s u m of k -
q u bit o bs er v a bl es,  w h er e e a c h q u bit is a ct e d o n b y at  m ost
d of t h e k - q u bit o bs er v a bl es.  T his is oft e n r ef err e d t o as a
k -l o c al  H a milt o ni a n  wit h a b o u n d e d d e gr e e d .  We c a n c o m-
bi n e F a ct 2 a n d t h e  m ai n t h e or e m t o o bt ai n t h e f oll o wi n g
c or oll ar y.

C or oll ar y 6 ( O pti mizi n g a b o u n d e d- d e gr e e k-l o c al
H a milt o ni a n). 4 Gi v e n a n n - q u bit k -l o c al  H a milt o ni a n
H = P : |P | fk ³ P P wit h b o u n d e d d e gr e e d , |³ P | f 1 f or
all P , a n d k = O (1 ), t h er e is a r a n d o mi z e d al g orit h m
t h at r u ns i n ti m e O (n d ) a n d pr o d u c es eit h er a r a n d o m
m a xi mi zi n g st at e |ψ = | ψ 1 ⊗ · · · ⊗ | ψ n s atisf yi n g

E
|ψ

[ ψ | H |ψ ] g E
|φ :  H a ar

[ φ | H |φ ] +
C

√
d P = I

|³ P |

( A 1 4)
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or a r a n d o m  mi ni mi zi n g st at e |ψ = | ψ 1 ⊗ · · · ⊗ | ψ n

s atisf yi n g

E
|ψ

[ ψ | H |ψ ] f E
|φ :  H a ar

[ φ | H |φ ] −
C

√
d P = I

|³ P |

( A 1 5)

f or s o m e c o nst a nt C .
T h e t as k of o pti mi zi n g b o u n d e d- d e gr e e k -l o c al  H a mil-

t o ni a ns h as b e e n c o nsi d er e d i n pr e vi o us  w or k [4 4 ].
T h e or e m 8 ( A p pr o xi m ati o n g u ar a nt e e fr o m  R ef. [ 4 4 ]). —

Gi v e n a n n - q u bit 2-l o c al  H a milt o ni a n H = P : |P | f2 ³ P P
wit h b o u n d e d d e gr e e d a n d |³ P | f 1 f or all P , t h er e is
a p ol y n o mi al-ti m e r a n d o mi z e d al g orit h m t h at pr o d u c es a
q u a nt u m cir c uit t h at g e n er at es a r a n d o m  m a xi mi zi n g st at e
|ψ s atisf yi n g

E
|ψ

[ ψ | H |ψ ] g E
|φ :  H a ar

[ φ | H |φ ]

+
C

d
P = I

|³ P |2
P = I |³ P |2

P = I 1 [³ P = 0]

( A 1 6)

as  w ell as a r a n d o m  mi ni mi zi n g st at e |ψ s atisf yi n g

E
|ψ

[ ψ | H |ψ ] f E
|φ :  H a ar

[ φ | H |φ ]

−
C

d
P = I

|³ P |2
P = I |³ P |2

P = I 1 [³ P = 0]

( A 1 7)

f or s o m e c o nst a nt C .
T h e r es ult fr o m  R ef. [ 4 4 ] c o nsi d ers a si n gl e-st e p

gr a di e nt d es c e nt usi n g a s h all o w q u a nt u m cir c uit o n
a n i niti al r a n d o m pr o d u ct st at e.  B e c a us e P = I |³ P |2 f

P = I 1 [³ P = 0] a n d P = I |³ P | g P = I |³ P |2 , o ur r es ult
i n  C or oll ar y 6 i m pr o v es eit h er t h e  m a xi mi z ati o n pr o b-
l e m or t h e  mi ni mi z ati o n pr o bl e m o v er  T h e or e m 8. F or
e x a m pl e, if  w e c o nsi d er ³ P = (1 / d ),  w hi c h s ets t h e t ot al
i nt er a cti o n str e n gt h o n e a c h q u bit t o b e (1 ), t h e n t h e
i m pr o v e m e nt o v er t h e  H a ar r a n d o m st at e b y o ur al g orit h m
a n d t h at b y t h e al g orit h m i n  R ef. [ 4 4 ] ar e gi v e n b y

1
√

d P = I

|³ P | =
n

d 1. 5
, ( A 1 8)

1
√

d P = I

|³ P |2
P = I |³ P |2

P = I 1 [³ P = 0]
=

n

d 4. 5
.

( A 1 9)

We c a n s e e t h at o ur al g orit h m gi v es a l ar g er i m pr o v e m e nt
f or t h e s c ali n g  wit h d e gr e e d .  As a n ot h er e x a m pl e, c o nsi d er

a 1 D n - q u bit n e ar est- n ei g h b or c h ai n ( h e n c e d = 2),  w h er e
|³ P | = 1 f or o nl y a c o nst a nt n u m b er of P a uli o bs er v a bl es P
a n d |³ P | = 1 /

√
n f or t h e r est of t h e P a uli o bs er v a bl es.  T h e

i m pr o v e m e nt o v er t h e  H a ar r a n d o m st at e b y o ur al g orit h m
a n d t h at b y t h e al g orit h m i n  R ef. [ 4 4 ] ar e gi v e n b y

1
√

d P = I

|³ P | = (
√

n ), ( A 2 0)

1
√

d P = I

|³ P |2
P = I |³ P |2

P = I 1 [³ P = 0]
=

1

n
.

( A 2 1)

We c a n s e e t h at o ur al g orit h m gi v es a l ar g er i m pr o v e m e nt
f or t h e s c ali n g  wit h t h e n u m b er n of q u bits.

3.  D es c ri pti o n of t h e r a n d o mi z e d a p p r o xi m ati o n
al g o rit h m

T h er e ar e a f e w st e ps i n t h e pr o p os e d r a n d o mi z e d
al g orit h m.  T h e first st e p is t o c h o os e t h e b est sli c e of t h e
k -l o c al  H a milt o ni a n b y s plitti n g t h e k -l o c al  H a milt o ni a n
H = P : |P | fk ³ P P as

H = ³ I I +

k

κ = 1

H κ , H κ

P : |P | =κ

³ P P . ( A 2 2)

We c h o os e κ ∗ ∈ { 1, . . . , k } t o b e t h e κ t h at  m a xi mi z es

P : |P | =κ |³ P |r ,  w h er e r = 2 d e /( d e + 1 ).  T his st e p c a n b e
p erf or m e d i n ti m e O (n n z (H )k ).

I n t h e s e c o n d st e p, t h e al g orit h m s a m pl es ( κ ∗ − 1 )n
H a ar-r a n d o m si n gl e- q u bit p ur e st at es,

|ψ (s,j ) ∈ C 2 f or all s ∈ { 1, . . . , κ ∗ − 1 }, j ∈ { 1, . . . , n }.
( A 2 3)

T his st e p c a n b e p erf or m e d i n ti m e O (n k ).
T h e t hir d st e p is a l o c al o pti mi z ati o n o n e a c h q u bit b as e d

o n |ψ (s,j ) . F or e a c h q u bit i a n d P a uli  m atri x p ∈ { X , Y , Z },
w e d e fi n e a n (n − 1 )- q u bit h o m o g e n e o us ( κ ∗ − 1 )-l o c al
H er miti a n o p er at or

H κ ∗ ,i,p

P ∈{ I ,X ,Y ,Z }⊗ n : |P | =κ ∗ , P i= p

³ P

j = i

P j . ( A 2 4)

F or e a c h q u bit i a n d p ∈ { X , Y , Z }, t h e al g orit h m c o m p ut es
t h e r e al v al u e, gi v e n as

´ i,p E
σ ∈{ ± 1 }κ

∗ − 1
σ 1 · · · σ κ ∗ − 1 tr H κ ∗ ,i,p

j = i

I

2

+
1

κ ∗ − 1

κ ∗ − 1

s= 1

σ s |ψ (s,j ) ψ (s,j ) | −
I

2
. ( A 2 5)
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T h e n, f or e a c h q u bit j ,  w e c o nsi d er a si n gl e- q u bit l o c al
o pti mi z ati o n

|ψ ( κ ∗ ,j ) ar g  m a x
|φ : o n e- q u bit st at e

φ |
p ∈{ X ,Y ,Z }

´ j ,p p |φ

=
I + n X X + n Y Y + n Z Z

2
, ( A 2 6)

w h er e n p = ´ j ,p / q ´ 2
j ,q f or p ∈ { X , Y , Z }.  Aft er t h e

o pti mi z ati o n, t h e al g orit h m s a m pl es r a n d o m n u m b ers σ s ∈
{ ±1 } f or all s ∈ { 1, . . . , κ ∗ } t o d e fi n e a o n e- di m e nsi o n al
p ar a m et eri z e d f a mil y of n - q u bit pr o d u ct st at es,

Ä ( t; |ψ (·,·) , σ )

n

j = 1

I

2
+

t

κ ∗

κ ∗

s= 1

σ s |ψ (s,j ) ψ (s,j ) | −
I

2

× f or all t ∈ [− 1, 1]. ( A 2 7)

We d e n ot e t his b y Ä ( t) w h e n |ψ (·,·) , σ ar e cl e ar fr o m t h e
c o nt e xt.  T his c o n cl u d es t h e t hir d st e p.  T h e t hir d st e p c a n
b e p erf or m e d i n ti m e O (n n z (H )2 k ).

T h e f o urt h st e p p erf or ms a p ol y n o mi al o pti mi z ati o n
o v er t h e o n e- di m e nsi o n al f a mil y

m a x
t∈ [− 1, 1]

| tr(H Ä ( t; |ψ (·,·) , σ )) − ³ I |. ( A 2 8)

T h e f u n cti o n f (t) = tr(H Ä ( t)) is a p ol y n o mi al of d e gr e e
at  m ost k .  We c a n c o m p ut e f u n cti o n f (t) e ffi ci e ntl y i n ti m e
O (n n z (H )k ) as Ä ( t) is a pr o d u ct st at e.  T h e o pti mi z ati o n
c a n t h us b e p erf or m e d e ffi ci e ntl y b y s w e e pi n g t hr o u g h all
p ossi bl e v al u es of t o n a s u ffi ci e ntl y fi n e gri d.  L et t∗ b e t h e
o pti m al t.

T h e fi n al st e p c o nsi d ers t h e s a m pli n g of a r a n d o m
p ur e st at e |ψ = | ψ 1 ⊗ · · · ⊗ | ψ n fr o m t h e distri b uti o n
t h at c orr es p o n ds t o t h e  mi x e d st at e Ä ( t∗ ; |ψ (·,·) , σ ) . If
tr(H Ä ( t∗ ; |ψ (·,·) , σ )) − ³ I > 0 t h e n t h e r a n d o m pr o d u ct
st at e |ψ is a  m a xi mi zi n g st at e s atisf yi n g  E q. ( A 3).  Ot h-
er wis e, t h e r a n d o m pr o d u ct st at e |ψ is a  mi ni mi zi n g st at e
s atisf yi n g  E q. ( A 4).  T his st e p c a n b e p erf or m e d i n ti m e
O (n ).

4.  P r o of of  T h e o r e m 5

T h e first st e p of t h e al g orit h m c o nsi d ers s plitti n g t h e
k -l o c al  H a milt o ni a n H i nt o h o m o g e n e o us κ -l o c al  H a mil-
t o ni a ns H κ d e fi n e d b el o w. I n p arti c ul ar, a h o m o g e n e o us
κ ∗ -l o c al H κ ∗ is c h os e n.

D e fi niti o n 2 ( H o m o g e n e o us k l o c al). — A  H er miti a n
o p er at or H is h o m o g e n e o us k l o c al if H = P : |P | =k ³ P P .

T h e s e c o n d st e p is a r a n d o m s a m pli n g t h at g e n er at es a
si n gl e- q u bit p ur e st at e |ψ (s,j ) f or e a c h q u bit j a n d e a c h

c o p y s ∈ { 1, . . . , κ ∗ − 1 }.  T h e t hir d st e p is t h e  m ost i m p or-
t a nt p art of t h e pr o of.  We d e v ot e  A p p e n di c es A 4 a , A 4 b ,
a n d A 4 c t o est a blis hi n g t h e first i n e q u alit y i n ( C or oll ar y 9
b el o w)

E
|ψ (·,·)

E
σ ∈{ ± 1 }κ

∗
| tr(H κ ∗ Ä ( t = 1; |ψ (·,·) , σ )) |

≥

√
2 (k !)

c
1 /( 2 d e )
e k k + 1. 5

√
6

k
P : |P | =κ ∗

|³ P |r
1 / r

≥

√
2 (k !)

c
1 /( 2 d e )
e k k + 1. 5 + 1 / r

√
6

k
P = I

|³ P |r
1 / r

. ( A 2 9)

T h e s e c o n d i n e q u alit y f oll o ws fr o m k P : |P | =κ ∗ |³ P |r ≥
k
κ = 1 P : |P | =κ |³ P |r = P = I |³ P |r . F or t h e f o urt h st e p,

t h e a n al ysis of p ol y n o mi al o pti mi z ati o n gi v e n i n
A p p e n di x A 4 d ( C or oll ar y 1 0) c a n b e c o m bi n e d  wit h t h e
a b o v e i n e q u alit y t o o bt ai n

E
|ψ (·,·)

E
σ ∈{ ± 1 }κ

∗
| tr(H Ä ( t∗ ; |ψ (·,·) , σ )) − ³ I |

≥

√
2 (k !)

c
1 /( 2 d e )
e k k + 1. 5 + 1 / r (

√
6 (1 +

√
2 )) k

P = I

|³ P |r
1 / r

.

( A 3 0)

F or t h e fi n al st e p of t h e al g orit h m, usi n g E |ψ |ψ ψ | =
Ä ( t∗ ; Ä (s,j ) , σ s ) a n d c o n v e xit y,  w e h a v e

E
|ψ (·,·)

E
σ ∈{ ± 1 }κ

∗
E
|ψ

| ψ | H |ψ − ³ I |

≥ E
|ψ (·,·)

E
σ ∈{ ± 1 }κ

∗
tr H E

|ψ
|ψ ψ | − ³ I

≥

√
2 (k !)

c
1 /( 2 d e )
e k k + 1. 5 + 1 / r (

√
6 + 2

√
3 ) k

P = I

|³ P |r
1 / r

.

( A 3 1)

T h e t h e or e m f oll o ws b y n oti n g t h at E |φ :  H a ar[ φ | H |φ ] =
³ I .

a.  P ol a ri z ati o n

We j ustif y t h e d e fi niti o n of ´ i,p usi n g p ol ari z ati o n.
Gi v e n a n n - q u bit h o m o g e n e o us k -l o c al o bs er v a bl e O =

P : |P | =k ³ P P , c o nsi d er t h e f oll o wi n g n k - q u bit o bs er v a bl e.
First,  w e i n d e x t h e s et [ n k ] usi n g or d er e d t u pl es (s, i),
w h er e s ∈ [k ] a n d i ∈ [n ]. F or e v er y P a uli o p er at or P o n
n q u bits  wit h |P | = k , s u p p os e t h at it a cts n o ntri vi all y o n
q u bits i1 < · · · < ik vi a P a uli  m atri c es P i1 , . . . , P ik .  T h e n,
f or a n y p er m ut ati o n Ã ∈ S k , c o nsi d er t h e n k - q u bit o bs er v-
a bl e p ol Ã (P ) t h at a cts o n t h e ( Ã (s), is )t h q u bit vi a P is f or

0 4 0 3 3 7- 1 7
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all s ∈ [k ].  T h e n d e fi n e

p ol (P ) :=
1

k !
Ã ∈ S k

p ol Ã (P ). ( A 3 2)

We c a n e xt e n d p ol (·) li n e arl y a n d d e fi n e p ol (O )

P ³ P p ol (P ).  We r ef er t o p ol (O ) as t h e p ol ariz ati o n of O .
T h e s q u ar e d Fr o b e ni us n or m of O a n d p ol (O ) ar e r el at e d
b y

tr(O 2 ) = k ! tr(p ol (O ) 2 ). ( A 3 3)

We pr o v e t h e f oll o wi n g o p er at or a n al o g u e of t h e cl assi c al
p ol ari z ati o n i d e ntit y.

L e m m a 1 ( P ol ariz ati o n i d e ntit y). — F or a n y n k - q u bit
pr o d u ct st at e Ä = s∈ [k ][ i∈ [n ] Ä (s,i) ], a n y n - q u bit h o m o-
g e n e o us k -l o c al o bs er v a bl e O , a n d a n y t ∈ R , w e h a v e t h e
i d e ntit y

tk tr(p ol (O ) Ä ) =
k k

k !
E

σ ∈{ ± 1 }k
σ 1 · · · σ k tr O

i∈ [n ]

I

2

+
t

k

k

s= 1

σ s Ä (s,i) −
I

2
, ( A 3 4)

w h er e t h e e x p e ct ati o n is  wit h r es p e ct t o t h e u nif or m  m e a-
s ur e o n { ±1 } k .

Pr o of. — L et O = P : |P | =k ³ P P .  B y t h e  m ulti n o mi al
t h e or e m,  w e c a n e x p a n d t h e ri g ht- h a n d si d e t o g et

tk

k !
P : |P | =k

³ P E
σ

σ 1 · · · σ k

0 f s 1 ,...,s n f k

tr P

n

i= 1

I

2
1 [s i = 0]

+ σ s i Ä s i,i −
I

2
1 [s i > 0] . ( A 3 5)

F or a gi v e n P a uli o p er at or P , n ot e t h at t h e o nl y t er ms i n t h e
i n n er s u m m ati o n t h at ar e n o n z er o ar e gi v e n b y (s 1 , . . . , s n )
s atisf yi n g t h e c o n diti o n t h at if s i > 0 t h e n P a cts n o ntri v-
i all y o n t h e it h q u bit, b e c a us e ot h er wis e tr( Ä s i,i − I / 2 ) = 0
a n d t h e c orr es p o n di n g s u m m a n d v a nis h es. F urt h er m or e,
f or (s 1 , . . . , s n ) s atisf yi n g t his pr o p ert y, if {1, . . . , k } d o n ot
e a c h a p p e ar e x a ctl y o n c e t h e n

σ 1 · · · σ k

n

i= 1

I

2
1 [s i = 0] + σ s i Ä s i,i −

I

2
1 [s i > 0]

= σ
c 1
1 · · · σ

c k
k

n

i= 1

I

2
1 [s i = 0] + Ä s i,i −

I

2
1 [s i > 0]

( A 3 6)

f or 0 f c 1 , . . . , c k f k s u c h t h at c s = 1 f or s o m e s ∈ [k ].
I n t his c as e, t h e e x p e ct ati o n of t his t er m  wit h r es p e ct t o σ

v a nis h es.  Alt o g et h er,  w e c o n cl u d e t h at, f or P t h at a cts vi a
P 1 , . . . , P k o n q u bits 1 f i1 < · · · < ik f n a n d vi a i d e n-
tit y els e w h er e, t h e c orr es p o n di n g e x p e ct ati o n o v er σ i n
E q. ( A 3 5) is gi v e n b y

Ã ∈ S k

tr

k

s= 1

P j Ä Ã ( s),is −
I

2
=

Ã ∈ S k

tr

k

s= 1

P s Ä Ã ( s),is

=
Ã

tr(p ol Ã (P ) Ä ),

( A 3 7)

fr o m  w hi c h t h e l e m m a f oll o ws.
Usi n g t h e p ol ari z ati o n i d e ntit y,  w e c a n o bt ai n t h e f ol-

l o wi n g c or oll ar y,  w hi c h s h o ws t h at ´ i,p is d e fi n e d t o b e pr o-
p orti o n al t o t h e e x p e ct ati o n of t h e p ol ari z ati o n p ol (H κ ∗ ,i,p )
of t h e h o m o g e n e o us κ ∗ -l o c al o bs er v a bl e H κ ∗ ,i,p o n t h e t e n-
s or pr o d u ct of n ( κ ∗ − 1 ) si n gl e- q u bit  H a ar-r a n d o m st at es.
We  will l at er st u d y t h e e x p e ct ati o n v al u e of t h e p ol ari z e d
o bs er v a bl e o n r a n d o m pr o d u ct st at es.

C or oll ar y 7. — Fr o m t h e d e fi niti o ns gi v e n i n
A p p e n di x A 3 ,  w e h a v e

tr p ol (H κ ∗ ,i,p )
s∈ [κ ∗ − 1], i∈ [n ]

|ψ (s,j ) ψ (s,j ) |

=
( κ ∗ − 1 ) κ ∗ − 1

( κ ∗ − 1 )!
´ i,p . ( A 3 8)

Pr o of. — T h e cl ai m f oll o ws fr o m t h e p ol ari z ati o n i d e ntit y
i n  L e m m a 1 a n d t h e d e fi niti o n of ´ i,p i n  E q. ( A 2 5).

b.  K hi nt c hi n e i n e q u alit y f o r p ol a ri z e d o bs e r v a bl es

We r e c all t h e f oll o wi n g b asi c r es ult i n hi g h- di m e nsi o n al
pr o b a bilit y.

L e m m a 2 ( St a n d ar d  K hi nt c hi n e i n e q u alit y [ 7 9 ]). — C o n-
si d er ε 1 , . . . , ε n t o b e i n d e p e n d e nt a n d i d e nti c all y dis-
tri b ut e d r a n d o m v ari a bl es  wit h P ( ε i = ± 1 ) = 1 / 2. F or a n y
a 1 , . . . , a n ∈ R ,  w e h a v e

1
√

2

n

i= 1

a 2
i

1 / 2

f E
ε 1 ,...,ε n

n

i= 1

a iε i f

n

i= 1

a 2
i

1 / 2

.

( A 3 9)

We pr o v e a n a n al o g u e of t h e  K hi nt c hi n e i n e q u alit y  w h e n
w e r e pl a c e t h e r a n d o m ± 1 v ari a bl es  wit h r a n d o m pr o d u ct
st at es a n d r e pl a c e a 1 , . . . , a n wit h a h o m o g e n e o us 1-l o c al
o bs er v a bl e.

L e m m a 3 ( K hi nt c hi n e i n e q u alit y f or h o m o g e n e o us
1 -l o c al o bs er v a bl es). —L et n g 1.  C o nsi d er |ψ = n

i= 1
|ψ i ,  w h er e |ψ i is a si n gl e- q u bit  H a ar-r a n d o m p ur e st at e.
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F or a n y h o m o g e n e o us 1-l o c al n - q u bit o bs er v a bl e O ,

1
√

6
tr(O 2 ) /2 n ≤ E

|ψ
[| ψ | O |ψ |] ≤

1
√

3
tr(O 2 ) /2 n .

( A 4 0)

Pr o of. — A h o m o g e n e o us 1-l o c al o bs er v a bl e O is
n
i= 1

3
j = 1 α ij P

j
i ,  w h er e P

j
i is t h e P a uli  m atri x σ j ∈

{X , Y , Z } o n t h e it h q u bit.  Gi v e n n si n gl e- q u bit u nit ari es
U 1 , . . . , U n ,  w e c o nsi d er O u n d er t h e r ot at e d P a uli b asis

O =

n

i= 1

3

j = 1

α U
ij U

†
i P

j
i U i. ( A 4 1)

Usi n g t h e ort h o g o n alit y of P a uli  m atri c es,  w e h a v e

tr(O 2 ) /2 n =

n

i= 1

3

j = 1

(a U
ij )

2
1 / 2

( A 4 2)

u n d er a n y r ot at e d P a uli b asis.  We utili z e t h e r ot at e d P a uli
b asis t o est a blis h t h e cl ai m e d r es ults.

A si n gl e- q u bit  H a ar-r a n d o m p ur e st at e |ψ i c a n b e s a m-
pl e d as f oll o ws. First,  w e s a m pl e a r a n d o m si n gl e- q u bit
u nit ar y U i.  T h e n,  w e c o nsi d er |ψ i t o b e s a m pl e d u nif or ml y
fr o m t h e s et of ei g ht p ur e st at es,

ϒ U i =
I + (1 /

√
3 )(s X

i U iX U
†
i + s Y

i U iY U
†
i + s Z

i U iZ U
†
i )

2

× s X
i , s Y

i , s Z
i ∈ { ± 1 } . ( A 4 3)

Usi n g t his s a m pli n g f or m ul ati o n a n d t h e r ot at e d P a uli b asis
r e pr es e nt ati o n f or O ,  w e h a v e

E
|ψ

[| ψ | O |ψ |]

= E
U i

E
|ψ i ∼ ϒ U i

n

i= 1

3

j = 1

α U
ij tr(U

†
i P

j
i U i|ψ i ψ i|)

=
1

√
3

E
U i

E
s Xi ,s Yi ,s Zi ∼{ ± 1 }

n

i= 1

α U
i1 s

X
i + α U

i2 s
Y
i + α U

i3 s
Z
i .

( A 4 4)

Usi n g t h e st a n d ar d  K hi nt c hi n e i n e q u alit y gi v e n i n  L e m m a
2,  w e h a v e

1
√

2

n

i= 1

3

j = 1

(a U
ij )

2
1 / 2

≤ E
s Xi ,s Yi ,s Zi ∼{ ± 1 }

×

n

i= 1

α U
i1 s

X
i + α U

i2 s
Y
i + α U

i3 s
Z
i ≤

n

i= 1

3

j = 1

(a U
ij )

2
1 / 2

.

( A 4 5)

Usi n g  E q. ( A 4 2),  w e c a n o bt ai n

1
√

6
E
U i

tr(O 2 ) /2 n ≤ E
|ψ

[| ψ | O |ψ |]

≤
1

√
3

E
U i

tr(O 2 ) /2 n , ( A 4 6)

w hi c h i m pli es t h e cl ai m e d r es ult.
We pr o v e t h e l eft h alf of t h e  K hi nt c hi n e i n e q u alit y f or

p ol ari z e d o bs er v a bl es.  T h e ri g ht h alf c a n b e s h o w n usi n g
a si mil ar pr o of, b ut  w e ar e o nl y g oi n g t o us e t h e l eft h alf
st at e d b el o w.

L e m m a 4 ( K hi nt c hi n e i n e q u alit y f or p ol ariz e d o bs er v-
a bl es). — L et n , k > 0.  C o nsi d er a n n k - q u bit o bs er v a bl e
O = p ol (O ),  w hi c h is t h e p ol ari z ati o n of a n n - q u bit
h o m o g e n e o us k -l o c al o bs er v a bl e O .  C o nsi d er |ψ =

s∈ [k ],i∈ [n ] |ψ (s,i) ,  w h er e |ψ (s,i) is a si n gl e- q u bit  H a ar-
r a n d o m p ur e st at e.  We h a v e

1
√

6

k

tr(O 2 ) /2 n ≤ E
|ψ

[| ψ | O |ψ |]. ( A 4 7)

Pr o of. — F or ∈ [ 3n ], d e fi n e P ( ) t o b e a n n - q u bit
o bs er v a bl e e q u al t o t h e P a uli  m atri x σ 1 + ( m o d 3 ) ∈ { X , Y , Z }
a cti n g o n t h e / 3 t h q u bit. Fr o m t h e d e fi niti o n of p ol ar-
i z ati o n,  w e c a n r e pr es e nt O as

O =

1 ,..., k ∈ [ 3n ]

α
1 ,..., k P

( 1 ) ⊗ · · · ⊗ P ( k ) . ( A 4 8)

F or ar bitr ar y c o e ffi ci e nts α
1 ,..., k ∈ R ,  w e pr o v e t h e f ol-

l o wi n g cl ai m b y i n d u cti o n o n k :

1
√

6

k

1 ,..., k ∈ [ 3n ]

α 2
1 ,..., k

1 / 2

≤ E
|ψ

ψ |

1 ,..., k ∈ [ 3n ]

α
1 ,..., k P

( 1 ) ⊗ · · · ⊗ P ( k ) |ψ .

( A 4 9)

It is n ot h ar d t o s e e t h at t h e l eft- h a n d si d e of  E q. ( A 4 9) is

1 /
√

6
k

tr(O 2 ) /2 n a n d t h e ri g ht- h a n d si d e of  E q. ( A 4 9)

is E |ψ [| ψ | O |ψ |].  H e n c e, t h e l e m m a f oll o ws fr o m
E q. ( A 4 9).

We n o w pr o v e t h e b as e c as e a n d t h e i n d u cti v e st e p.  T h e
b as e c as e of k = 1 f oll o ws fr o m t h e  K hi nt c hi n e i n e q u al-
it y f or h o m o g e n e o us 1-l o c al o bs er v a bl es gi v e n i n  L e m m a
3.  Ass u m e b y t h e i n d u cti o n h y p ot h esis t h at t h e cl ai m h ol ds
f or k − 1.  D e n oti n g b y |ψ (k ) t h e pr o d u ct of n H a ar-r a n d o m
si n gl e- q u bit st at es,  w e c a n t h e n a p pl y t h e  K hi nt c hi n e
i n e q u alit y f or h o m o g e n e o us 1-l o c al o bs er v a bl es ( L e m m a
3) t o o bt ai n
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1
√

6

k

1 ,..., k ∈ [ 3n ]

α 2
1 ,..., k

1 / 2

=

1 ,..., k − 1 ∈ [ 3n ] k ∈ [ 3n ]

α 2
1 ,..., k

1 / 2 2 1 / 2

f

1 ,..., k − 1 ∈ [ 3n ]

E
|ψ (k )

ψ (k ) |

k ∈ [ 3n ]

α
1 ,..., k P

( k ) |ψ (k )
2 1 / 2

. ( A 5 0)

We c a n t h e n a p pl y  Mi n k o ws ki’s i nt e gr al i n e q u alit y t o t h e u p p er b o u n d a b o v e a n d yi el d

1
√

6

k

1 ,..., k ∈ [ 3n ]

α 2
1 ,..., k

1 / 2

f E
|ψ (k )

1 ,..., k − 1 ∈ [ 3n ]

ψ (k ) |

k ∈ [ 3n ]

α
1 ,..., k P

( k ) |ψ (k )
2 1 / 2

f E
|ψ (k )

E
|ψ (1, ...,k − 1 )

ψ (1, ...,k − 1 ) | ψ (k ) |

1 ,..., k ∈ [ 3n ]

α
1 ,..., k P

( 1 ) ⊗ · · ·

⊗ P ( k ) |ψ (1, ...,k − 1 ) |ψ (k ) . ( A 5 1)

T h e l ast i n e q u alit y c o nsi d ers ψ (k ) |
k ∈ [ 3n ] α

1 ,..., k P
( k )

|ψ (k ) t o b e a s c al ar i n d e x e d b y 1 , . . . , k − 1 a n d us es
t h e i n d u cti o n h y p ot h esis.  We h a v e t h us est a blis h e d t h e
i n d u cti o n st e p.  T h e cl ai m i n  E q. ( A 4 9) f oll o ws.

T h e  K hi nt c hi n e i n e q u alit y f or p ol ari z e d o bs er v a bl es
all o ws us t o s h o w t h at t h e a v er a g e  m a g nit u d e of
p ol (H κ ∗ ,i,p ) f or t h e t e ns or pr o d u ct of si n gl e- q u bit  H a ar-
r a n d o m st at es is at l e ast as l ar g e as t h e Fr o b e ni us n or m
of H κ ∗ ,i,p u p t o a c o nst a nt d e p e n di n g o n κ ∗ .  Usi n g t h e d ef-
i niti o ns fr o m t h e d esi g n of t h e a p pr o xi m at e o pti mi z ati o n
al g orit h m,  w e c a n o bt ai n t h e f oll o wi n g c or oll ar y.

C or oll ar y 8. — Fr o m t h e d e fi niti o ns gi v e n i n
A p p e n di x A 3 ,  w e h a v e

E
|ψ (·,·)

tr p ol (H κ ∗ ,i,p )
s∈ [κ ∗ − 1], i∈ [n ]

|ψ (s,j ) ψ (s,j ) |

g
1

√
6

κ ∗ − 1 tr(H 2
κ ∗ ,i,p )

2 n ( κ ∗ − 1 )!
. ( A 5 2)

Pr o of. — T h e cl ai m f oll o ws i m m e di at el y fr o m  L e m m a 4
a n d  E q. ( A 3 3).

c.  C h a r a ct e ri z ati o n of t h e l o c all y o pti mi z e d r a n d o m
st at e

R e c all t h at ρ ( 1; |ψ (·,·) , σ ) is cr e at e d b y s a m pli n g r a n-
d o m pr o d u ct st at es a n d p erf or mi n g l o c al si n gl e- q u bit o pti-
mi z ati o ns.  T h e l o c all y o pti mi z e d r a n d o m st at e s atis fi es t h e
f oll o wi n g i n e q u alit y.

L e m m a 5 ( C h ar a ct eriz ati o n of ρ ( t) f or t = 1 ). —Fr o m
t h e d e fi niti o ns gi v e n i n  A p p e n di x A 3 ,  w e h a v e

E
|ψ (·,·)

E
σ ∈{ ± 1 }κ

∗
| tr(H κ ∗ ρ ( 1; |ψ (·,·) , σ )) |

g

√
2 ( κ ∗ !)

( κ ∗ ) κ ∗ + 1. 5
√

6
κ ∗

i∈ [n ], p ∈{ X ,Y ,Z }

×

P ∈{ I ,X ,Y ,Z }⊗ n : |P | =κ ∗ , P i= p

α 2
P . ( A 5 3)

Pr o of. — Fr o m t h e p ol ari z ati o n i d e ntit y gi v e n i n  L e m m a
1,  w e h a v e

( κ ∗ ) κ ∗

κ ∗ !
E

σ ∈{ ± 1 }κ
∗
[σ 1 · · · σ κ ∗ tr(H κ ∗ ρ ( 1; |ψ (·,·) , σ )) ]

= tr p ol (H κ ∗ )
s∈ [κ ∗ ], j ∈ [n ]

|ψ (s,j ) ψ (s,j ) | . ( A 5 4)

N e xt, usi n g t h e d e fi niti o n of H κ ∗ ,i,p i n  E q. ( A 2 4),  w e h a v e

p ol (H κ ∗ ) =
1

κ ∗

2

i∈ [n ] p ∈{ X ,Y ,Z }

p ol (H κ ∗ ,i,p )

⊗ (I ⊗ i− 1 ⊗ p ⊗ I ⊗ n − i). ( A 5 5)

We c a n s e e t his b y c o nsi d eri n g t h e c as e  w h e n H κ ∗ is a
si n gl e P a uli o bs er v a bl e P ∈ { I , X , Y , Z } ⊗ n wit h |P | = κ ∗ ,
a n d t h e n e xt e n di n g li n e arl y t o a n y h o m o g e n e o us κ ∗ -l o c al
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H a milt o ni a n H κ ∗ .  E q u ati o ns ( A 5 4) a n d ( A 5 5) gi v e

( κ ∗ ) κ ∗

κ ∗ !
E

σ ∈{ ± 1 }κ
∗
[σ 1 · · · σ κ ∗ tr(H κ ∗ Ä ( 1; |ψ (·,·) , σ )) ]

=
1

( κ ∗ ) 2
i∈ [n ], p ∈{ X ,Y ,Z }

ψ ( κ ∗ ,i) | p |ψ ( κ ∗ ,i)

× tr p ol (H κ ∗ ,i,p )
s∈ [κ ∗ − 1], j ∈ [n ]

|ψ (s,j ) ψ (s,j ) | .

( A 5 6)

Fr o m  C or oll ar y 7,  w e c a n r e writ e t h e ri g ht- h a n d si d e as

1

( κ ∗ ) 2

( κ ∗ − 1 ) κ ∗ − 1

( κ ∗ − 1 )!
i∈ [n ]

ψ ( κ ∗ ,i) |
p ∈{ X ,Y ,Z }

´ i,p p |ψ ( κ ∗ ,i) .

( A 5 7)

Fr o m t h e l o c al o pti mi z ati o n of |ψ ( κ ∗ ,i) gi v e n i n  E q. ( A 2 6),
w e h a v e, f or e v er y i ∈ [n ],

ψ ( κ ∗ ,i) |
p ∈{ X ,Y ,Z }

´ i,p p |ψ ( κ ∗ ,i) =
p ∈{ X ,Y ,Z }

´ 2
i,p

g
1

√
3 p ∈{ X ,Y ,Z }

|´ i,p |. ( A 5 8)

Usi n g  C or oll ar y 7 yi el ds t h e l o w er b o u n d

( κ ∗ ) κ ∗

κ ∗ !
E

|ψ (·,·)

E
σ ∈{ ± 1 }κ

∗
[σ 1 · · · σ κ ∗ tr(H κ ∗ Ä ( 1; |ψ (·,·) , σ )) ]

g
1

√
3 ( κ ∗ ) 2

i∈ [n ], p ∈{ X ,Y ,Z }

E
|ψ (·,·)

× tr p ol (H κ ∗ ,i,p )
s∈ [κ ∗ − 1], j ∈ [n ]

|ψ (s,j ) ψ (s,j ) | .

( A 5 9)

Fr o m  C or oll ar y 8,  w e c a n f urt h er o bt ai n

( κ ∗ ) κ ∗

κ ∗ !
E

|ψ (·,·)

E
σ ∈{ ± 1 }κ

∗
[σ 1 · · · σ κ ∗ tr(H κ ∗ Ä ( 1; |ψ (·,·) , σ )) ]

g
1

√
3 ( κ ∗ ) 2

i∈ [n ], p ∈{ X ,Y ,Z }

1
√

6

κ ∗ − 1 tr(H 2
κ ∗ ,i,p )

2 n ( κ ∗ − 1 )!
.

( A 6 0)

T h e d e fi niti o n of H κ ∗ ,i,p , t h e a b o v e i n e q u alit y, a n d t h e
i n e q u alit y

E
|ψ (·,·)

E
σ ∈{ ± 1 }κ

∗
| tr(H κ ∗ Ä ( 1; |ψ (·,·) , σ )) |

g E
|ψ (·,·)

E
σ ∈{ ± 1 }κ

∗
[σ 1 · · · σ κ ∗ tr(H κ ∗ Ä ( 1; |ψ (·,·) , σ )) ]

( A 6 1)

c a n b e us e d t o est a blis h t h e cl ai m.
Gi v e n t h e e x p a nsi o n pr o p ert y,  w e ar e g oi n g t o us e t h e

f oll o wi n g i m pli c ati o n,  w hi c h c o nsi d ers a n ar bitr ar y or d er-
i n g Ã of t h e n q u bits.  T h e i n e q u alit y all o ws us t o c o ntr ol
t h e gr o wt h f or t h e n u m b er of P a uli o bs er v a bl es t h at a ct o n
q u bits b ef or e t h e it h q u bit u n d er or d eri n g Ã .  T h e pr e cis e
st at e m e nt is gi v e n b el o w.

L e m m a 6 ( A c h ar a ct eriz ati o n of e x p a nsi o n). — S u p p os e
t h at t h er e is a n n - q u bit  H a milt o ni a n H = P ³ P P wit h
e x p a nsi o n c o e ffi ci e nt c e a n d e x p a nsi o n di m e nsi o n d e .  C o n-
si d er a n y p er m ut ati o n Ã ∈ S n o v er n q u bits. F or a n y i ∈
[n ],

P ∈{ I ,X ,Y ,Z }⊗ n

1 [³ P = 0] 1 [P Ã ( i) = I ]1 [P Ã ( j )

= I f or all j > i] f c e i
d e − 1 . ( A 6 2)

Pr o of. — C o nsi d er a p er m ut ati o n Ã ∈ S n o v er n q u bits
a n d a n i ∈ [n ].  We s e p ar at el y c o nsi d er t w o c as es: ( 1)
i < d e a n d ( 2) i g d e . F or t h e first c as e, l et ϒ =
{Ã ( 1 ), . . . , Ã ( d e )};  w e h a v e

P ∈{ I ,X ,Y ,Z }⊗ n

1 [³ P = 0] 1 [P Ã ( i) = I ]1 [P Ã ( j ) = I f or all j > i]

f

P ∈{ I ,X ,Y ,Z }⊗ n

1 [³ P = 0 a n d (d o m (P ) ⊆ ϒ ) ]

f c e . ( A 6 3)

T h e s e c o n d i n e q u alit y f oll o ws fr o m t h e d e fi niti o n of t h e
e x p a nsi o n c o e ffi ci e nt c e . F or t h e s e c o n d c as e,  w e c o n-

si d er all s u bs ets ϒ ⊆ Ã ( [i]) {Ã ( 1 ), Ã ( 2 ), . . . , Ã ( i)} wit h
|ϒ | = d e − 1 a n d Ã ( i) ∈ ϒ ;  w e h a v e

P ∈{ I ,X ,Y ,Z }⊗ n

1 [³ P = 0] 1 [P Ã ( i) = I ]1 [P Ã ( j ) = I f or all j > i]

f

P ∈{ I ,X ,Y ,Z }⊗ n ϒ ⊆ Ã ( [i]),
|ϒ | =d e , Ã ( i)∈ ϒ

1 [³ P = 0 a n d (d o m (P )

⊆ ϒ or ϒ ⊆ d o m (P ))]

f
ϒ ⊆ Ã ( [i]),

|ϒ | =d e , Ã ( i)∈ ϒ

c e f c e (i − 1 ) d e − 1

f c e i
d e − 1 . ( A 6 4)
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T h e s e c o n d i n e q u alit y a g ai n f oll o ws fr o m t h e d e fi niti o n of c e .
Usi n g t h e a b o v e i m pli c ati o n of t h e e x p a nsi o n pr o p ert y,  w e c a n o bt ai n t h e f oll o wi n g i n e q u alit y r el ati n g t w o n or ms.

B asi c all y,  w e c a n us e t h e li mit o n t h e gr o wt h of t h e n u m b er of P a uli o bs er v a bl es t o t ur n t h e s u m of t h e 2 n or m i nt o a n r

n or m,  w h er e r d e p e n ds o n t h e e x p a nsi o n di m e nsi o n d e .
L e m m a 7 ( N or m i n e q u alit y usi n g t h e e x p a nsi o n pr o p ert y). — C o nsi d er a n n - q u bit  H a milt o ni a n H = P α P P wit h a n

e x p a nsi o n c o e ffi ci e nt c e a n d e x p a nsi o n di m e nsi o n d e . L et r = 2 d e /( d e + 1 ). F or a n y κ ∗ g 1,  w e h a v e

i∈ [n ] P ∈{ I ,X ,Y ,Z }⊗ n : |P | =κ ∗ , P i= I

α 2
P

1 / 2

g
1

c
1 /( 2 d e )
e P ∈{ I ,X ,Y ,Z }⊗ n : |P | =κ ∗

|α P |r
1 / r

. ( A 6 5)

Pr o of. — We b e gi n b y c o nsi d eri n g a p er m ut ati o n Ã o v er n q u bits s u c h t h at

P ∈{ I ,X ,Y ,Z }⊗ n : |P | =κ ∗ , P Ã ( i) = I

α 2
P f

P ∈{ I ,X ,Y ,Z }⊗ n : |P | =κ ∗ , P Ã ( j ) = I

α 2
P f or all i < j ∈ [n ]. ( A 6 6)

P er m ut ati o n Ã c a n b e o bt ai n e d b y s orti n g t h e n q u bits.  T h e a b o v e e ns ur es t h at, f or all i ∈ [n ],

i

P ∈{ I ,X ,Y ,Z }⊗ n : |P | =κ ∗ , P Ã ( i) = I

α 2
P f

j ∈ [n ] P ∈{ I ,X ,Y ,Z }⊗ n : |P | =κ ∗ , P Ã ( j ) = I

α 2
P . ( A 6 7)

B y g oi n g t hr o u g h t h e n q u bits b as e d o n p er m ut ati o n Ã ,  w e h a v e t h e i d e ntit y

P : |P | =κ ∗

|α P |r =

n

i= 1 p ∈{ X ,Y ,Z } P ∈{ I ,X ,Y ,Z }⊗ n :
|P | =κ ∗ , P Ã ( i) = p

|α P |r 1 [α P = 0] 1 [P Ã ( j ) = I f or all j > i]. ( A 6 8)

H ol d er’s i n e q u alit y a n d 1 /( d e + 1 ) = 1 − r/ 2 all o ws us t o o bt ai n t h e f oll o wi n g u p p er b o u n d o n P : |P | =κ ∗ |α P |r :

n

i= 1 P ∈{ I ,X ,Y ,Z }⊗ n : |P | =κ ∗ , P Ã ( i) = I

α 2
P

r/ 2

P ∈{ I ,X ,Y ,Z }⊗ n : |P | =κ ∗

1 [α P = 0] 1 [P Ã ( i) = I ]1 [P Ã ( j ) = I f or all j > i]
1 /( d e + 1 )

.

( A 6 9)

We c a n t h e n us e  L e m m a 6 t o o bt ai n

P : |P | =κ ∗

|α P |r f

n

i= 1 P ∈{ I ,X ,Y ,Z }⊗ n : |P | =κ ∗ , P Ã ( i) = I

α 2
P

r/ 2

(c e i
d e − 1 ) 1 /( d e + 1 ) . ( A 7 0)

Usi n g r − 1 = (d e − 1 ) /(d e + 1 ) g 0,  w e h a v e

P : |P | =κ ∗

|α P |r f c 1 /( d e + 1 )
e

n

i= 1

i

P ∈{ I ,X ,Y ,Z }⊗ n : |P | =κ ∗ , P Ã ( i) = I

α 2
P

r− 1

P ∈{ I ,X ,Y ,Z }⊗ n : |P | =κ ∗ , P Ã ( i) = I

α 2
P . ( A 7 1)

T h e c h oi c e of Ã e ns ur es  E q. ( A 6 7),  w hi c h gi v es ris e t o

P : |P | =κ ∗

|α P |r f c 1 /( d e + 1 )
e

i∈ [n ] P ∈{ I ,X ,Y ,Z }⊗ n : |P | =κ ∗ , P i= I

α 2
P

1 / 2 r

. ( A 7 2)

T h e cl ai m f oll o ws fr o m 1 /( r(d e + 1 )) = 1 /( 2 d e ).
T o g et h er,  w e c a n o bt ai n t h e r - n or m l o w er b o u n d f or t h e e x p e ct ati o n v al u e of t h e h o m o g e n e o us κ ∗ -l o c al  H a milt o ni a n

H κ ∗ o n t h e c o nstr u ct e d pr o d u ct st at e Ä ( 1; |ψ (·,·) , σ ) .

0 4 0 3 3 7- 2 2



L E A R NI N G  T O P R E DI C T  A R BI T R A R Y  Q U A N T U M P R O C E S S E S P R X  Q U A N T U M 4, 0 4 0 3 3 7 ( 2 0 2 3)

C or oll ar y 9. — Fr o m t h e d e ü niti o ns gi v e n i n
A p p e n di x A 3 ,  w e h a v e

E
|ψ (·,·)

E
σ ∈{ ± 1 }κ

∗
| tr(H κ ∗ ρ ( 1; |ψ (·,·) , σ )) |

g

√
2 ( κ ∗ !)

c
1 /( 2 d e )
e ( κ ∗ ) κ ∗ + 1. 5

√
6

κ ∗

P ∈{ I ,X ,Y ,Z }⊗ n : |P | =κ ∗

|α P |r
1 / r

g

√
2 (k !)

c
1 /( 2 d e )
e k k + 1. 5

√
6

k

P ∈{ I ,X ,Y ,Z }⊗ n : |P | =κ ∗

|α P |r
1 / r

.

( A 7 3)

Pr o of. — Fr o m  L e m m a 5,  w e h a v e

E
|ψ (·,·)

E
σ ∈{ ± 1 }κ

∗
| tr(H κ ∗ ρ ( 1; |ψ (·,·) , σ )) |

g

√
2 ( κ ∗ !)

( κ ∗ ) κ ∗ + 1. 5
√

6
κ ∗

i∈ [n ], p ∈{ X ,Y ,Z }

×

P ∈{ I ,X ,Y ,Z }⊗ n : |P | =κ ∗ , P i= p

α 2
P . ( A 7 4)

B y t h e el e m e nt ar y i n e q u alit y
√

x +
√

y +
√

z g√
x + y + z f or n o n- n e g ati v e x , y , z ,

i∈ [n ], p ∈{ X ,Y ,Z } P ∈{ I ,X ,Y ,Z }⊗ n : |P | =κ ∗ , P i= p

α 2
P

g
i∈ [n ] p ∈{ X ,Y ,Z } P ∈{ I ,X ,Y ,Z }⊗ n : |P | =κ ∗ , P i= p

α 2
P . ( A 7 5)

C o m bi ni n g t his r es ult  wit h  L e m m a 7 a n d t h e f a ct t h at k g
κ ∗ yi el ds t h e st at e d r es ult.

d.  H o m o g e n e o us t o i n h o m o g e n e o us t h r o u g h
p ol y n o mi al o pti mi z ati o n

We n e e d t h e f oll o wi n g b asi c r es ult fr o m r e al a n al ysis.
L e m m a 8 ( M ar k o v br ot h ers’ i n e q u alit y; s e e, e. g., [ 8 0 , p.

2 4 8). — ]

F or a n y r e al p ol y n o mi al p (t) = k
κ = 1 a κ x κ ,

|a κ | f (1 +
√

2 ) k s u p
|t| f1

|p (t)| ( A 7 6)

f or all 1 f κ f k .
Usi n g t h e  M ar k o v br ot h ers’ i n e q u alit y,  w e c a n s h o w

t h at p erf or mi n g t h e o n e- di m e nsi o n al p ol y n o mi al o pti-
mi z ati o n o v er t a c hi e v es a g o o d a d v a nt a g e o v er α I =
E |ψ :  H a ar ψ | H |ψ .

C or oll ar y 1 0. — Fr o m t h e d e ü niti o ns gi v e n i n
A p p e n di x A 3 ,  w e h a v e

| tr(H ρ ( t∗ ; |ψ (·,·) , σ )) − α I |

g
1

(1 +
√

2 ) k
| tr(H κ ∗ ρ ( 1; |ψ (·,·) , σ )) |. ( A 7 7)

Pr o of. — R e c all t h at H = α I I + k
κ = 1 H κ fr o m

E q. ( A 2 2).  We c a n us e t h e p ol ari z ati o n i d e ntit y
gi v e n i n  L e m m a 1 t o s e e t h at t h e f u n cti o n f (t) =
tr(H ρ ( t; |ψ (·,·) , σ )) is a p ol y n o mi al:

tr(H ρ ( t; |ψ (·,·) , σ )) = α I +

k

κ = 1

tr(H κ ρ ( 1; |ψ (·,·) , σ )) tκ .

( A 7 8)

R e c all t h at t∗ is c h os e n b as e d o n t h e o pti mi z ati o n

m a x
t∈ [− 1, 1]

| tr(H ρ ( t; |ψ (·,·) , σ )) − α I |. ( A 7 9)

B y c o nsi d eri n g  L e m m a 8  wit h a κ = tr(H κ ρ ( 1; |ψ (·,·) , σ )) ,
w e h a v e

(1 +
√

2 ) k | tr(H ρ ( t∗ ; |ψ (·,·) , σ )) − α I |

g | tr(H κ ρ ( 1; |ψ (·,·) , σ )) |. ( A 8 0)

T his c o n cl u d es t h e pr o of of t his c or oll ar y.

A P P E N DI X  B:  N O R M I N E Q U A LI TI E S  F R O M  T H E
A P P R O XI M A T E  O P TI MI Z A TI O N  A L G O RI T H M

T h e a p pr o xi m at e o pti mi z ati o n al g orit h m d es cri b e d i n
t h e pr e vi o us s e cti o n is n ot us e d dir e ctl y i n t h e  M L
al g orit h m, b ut us e d t o d eri v e n or m i n e q u aliti es, i. e.,
i n e q u aliti es r el ati n g di û er e nt n or ms o v er  H er miti a n o p er a-
t ors.  A n i m p ort a nt n or m t h at  w e us e i n t h e  M L al g orit h ms
is t h e P a uli-p n or m d e ü n e d b el o w.  T h e P a uli- p n or m is
e q ui v al e nt t o t h e v e ct or- p n or m o n t h e P a uli c o e ffi ci e nt of
a n o bs er v a bl e H .

D e ü niti o n 3 ( P a uli- p n or m). — Gi v e n H = P ∈{ I ,X ,Y ,Z }⊗ n

α P P a n d p g 1, t h e P a uli- p n or m of H is

H P a uli, p =
P

|α P |p
1 / p

. ( B 1)

R e c all t h at t h e s p e ctr al n or m H = m a x |ψ | ψ | H |ψ |
= m a x ρ | tr(H ρ ) |. I n t his s e cti o n,  w e us e t h e a p pr o xi m at e
o pti mi z ati o n al g orit h m t o d eri v e s e v er al n or m i n e q u aliti es
r el ati n g t h e P a uli-p n or m · P a uli, p t o t h e s p e ctr al n or m ·
f or c o m m o n cl ass es of o bs er v a bl es.

We b e gi n  wit h a  w ell- k n o w n f a ct t h at e q u at es t h e Fr o b e-
ni us n or m a n d t h e P a uli- 2 n or m.  T his pr o p ositi o n f oll o ws
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dir e ctl y fr o m t h e ort h o n or m alit y of t h e P a uli o bs er v a bl es
{I , X , Y , Z } ⊗ n .

Pr o p ositi o n 1 ( Fr o b e ni us n or m). — Gi v e n a n y n - q u bit
H er miti a n o p er at or H ,  w e h a v e

1
√

2 n
H F = H P a uli, 2 f H . ( B 2)

Pr o of. — L et n b e t h e n u m b er of q u bits t h at H a cts o n,
a n d l et λ 1 , . . . , λ 2 n b e t h e ei g e n v al u es of O . Fr o m t h e f a ct
t h at tr(P Q ) = 2 n δ P = Q ,  w e h a v e

H 2
F = tr(H 2 ) =

P

|α P |2 2 n = 2 n H 2
P a uli, 2 . ( B 3)

Si n c e H 2
F = 2 n

i= 1 |λ i|
2 f 2 n m a x i |λ i|

2 = 2 n H 2
∞ , w e

h a v e P |α P |2 = H 2
F / 2 n f H 2

∞ .
We n o w utili z e  T h e or e m 5 t o o bt ai n t h e f oll o wi n g us ef ul

n or m i n e q u alit y.
T h e or e m 9 ( N or m i n e q u alit y fr o m T h e or e m 5). — C o n-

si d er a n n - q u bit k -l o c al  H a milt o ni a n H wit h e x p a nsi o n
c o e ffi ci e nt c e a n d di m e nsi o n d e . L et r = 2 d e /( d e + 1 ) ∈
[ 1, 2).  We h a v e

1
3
C (c e , d e , k ) H P a uli, r f H , ( B 4)

w h er e C (c e , d e , k ) =
√

2 (k !) /[c
1 /( 2 d e )
e k k + 1. 5 + 1 / r (

√
6

+ 2
√

3 ) k ] is t h e s a m e as i n  T h e or e m 5.
Pr o of. — C o nsi d er t h e P a uli r e pr es e nt ati o n H = P : |P | fk

α P P . If  w e c o nsi d er ρ = I / 2 n t h e n  w e h a v e

H g | tr(H ) /2 n | g E
|φ :  H a ar

[ φ | H |φ ] = | α I |. ( B 5)

If  w e c o nsi d er t h e r a n d o m pr o d u ct st at e |ψ fr o m  T h e or e m
5 t h e n  w e h a v e

E
|ψ

ψ | H |ψ − E
|φ :  H a ar

[ φ | H |φ ]

g C (c e , d e , k )
P = I

|α P |r
1 / r

. ( B 6)

Usi n g E |φ :  H a ar[ φ | H |φ ] = α I a n d E |ψ | ψ | H |ψ −
α I | f E |ψ | ψ | H |ψ | + |α I |,  w e h a v e

H g E
|ψ

| ψ | H |ψ |  g C (c e , d e , k )
P = I

|α P |r
1 / r

− | α I |.

( B 7)

N e xt,  w e utili z e t h e i n e q u alit y

m a x (x 1 , c x 2 − x 1 ) g
c

c + 2
(x 1 + x 2 ) f or all x 1 , x 2 , c g 0,

( B 8)

w hi c h c a n b e s h o w n b y c o nsi d eri n g t h e t w o c as es x 1 g
(c / 2 )x 2 a n d x 1 < ( c / 2 )x 2 , as  w ell as t h e l o w er b o u n ds o n

H t o s h o w t h at

H g
C (c e , d e , k )

C (c e , d e , k ) + 2
|α I | +

P = I

|α P |r
1 / r

g
C (c e , d e , k )

3
|α I | +

P = I

|α P |r
1 / r

. ( B 9)

T h e s e c o n d i n e q u alit y us es k , c e , d e g 1,  w hi c h i m pli es t h at
C (c e , d e , k ) ∈ [ 0, 1]. Fi n all y, t h e i n e q u alit y

|α I | +
P = I

|α P |r
1 / r

g
P

|α P |r
1 / r

( B 1 0)

c a n b e us e d t o est a blis h t h e cl ai m.
Usi n g F a cts 1 a n d 2 t h at c h ar a ct eri z e t h e e x p a nsi o n

pr o p ert y f or g e n er al k -l o c al  H a milt o ni a ns a n d b o u n d e d-
d e gr e e k -l o c al  H a milt o ni a ns (i. e., e a c h q u bit is a ct e d o n
b y at  m ost d of t h e k - q u bit o bs er v a bl es),  w e c a n est a blis h
t h e f oll o wi n g c or oll ari es.

C or oll ar y 1 1 ( N or m i n e q u alit y f or a k-l o c al  H a mil-
t o ni a n). —Gi v e n a n n - q u bit k -l o c al  H a milt o ni a n H , w e
h a v e

1
3
C (k ) H P a uli, 2 k /( k + 1 ) f H , ( B 1 1)

w h er e C (k ) =
√

2 (k !) /[ 2k k + 1. 5 + (k + 1 ) /(2 k ) (
√

6 + 2
√

3 ) k ] is
t h e s a m e as i n  C or oll ar y 5.

C or oll ar y 1 2 ( N or m i n e q u alit y f or a b o u n d e d- d e gr e e
H a milt o ni a n). — Gi v e n a n n - q u bit k -l o c al  H a milt o ni a n H
wit h b o u n d e d d e gr e e d ,  w e h a v e

1
3
C (k , d ) H P a uli, 1 f H , ( B 1 2)

w h er e C (k , d ) =
√

2 (k !) /[
√

d k k + 2. 5 (2
√

6 + 4
√

3 ) k ].

A P P E N DI X  C: S A M P L E- O P TI M A L  A L G O RI T H M S
F O R  P R E DI C TI N G  B O U N D E D- D E G R E E

O B S E R V A B L E S

I n t his a p p e n di x,  w e c o nsi d er o n e of t h e  m ost b asi c
l e ar ni n g pr o bl e ms i n q u a nt u m i nf or m ati o n t h e or y: pr e di ct-
i n g pr o p erti es of a n u n k n o w n n - q u bit st at e ρ .  T his h as b e e n
st u di e d e xt e nsi v el y i n t h e lit er at ur e o n s h a d o w t o m o gr a p h y
[5 7 ,5 8 ] a n d cl assi c al s h a d o ws [4 6 ].

1.  R e vi e w of cl assi c al s h a d o w f o r m alis m

We r e c all t h e f oll o wi n g d e fi niti o n a n d t h e or e m fr o m
cl assi c al s h a d o w t o m o gr a p h y [ 4 6 ] b as e d o n r a n d o mi z e d
P a uli  m e as ur e m e nts.  E a c h r a n d o mi z e d P a uli  m e as ur e m e nt
is p erf or m e d o n a si n gl e c o p y of ρ a n d  m e as ur es e a c h q u bit
of ρ i n a r a n d o m P a uli b asis (X , Y , or Z ).

D e fi niti o n 4 ( S h a d o w n or m fr o m r a n d o miz e d  P a uli  m e a-
s ur e m e nts). — C o nsi d er a n n - q u bit o bs er v a bl e O . L et U b e
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t h e distri b uti o n o v er t h e t e ns or pr o d u ct of n si n gl e- q u bit
r a n d o m  Cli û or d u nit ari es, a n d l et M − 1

P = n
i= 1 M − 1

1

wit h M − 1
1 (A ) = 3 A − tr(A )I .  T h e s h a d o w n or m of O is

d e ü n e d as

O s h a d o w = m a x
σ : st at e

E
U ∼ U

b ∈{ 0, 1 }n

b | U σ U †

|b b | U M − 1
P (O )U † |b 2

1 / 2

. ( C 1)

T h e or e m 1 0 ( Cl assi c al s h a d o w t o m o gr a p h y usi n g r a n-
d o miz e d  P a uli  m e as ur e m e nts [ 4 6 ]). — Gi v e n a n u n k n o w n
n - q u bit st at e ρ a n d M o bs er v a bl es O 1 , . . . , O M wit h
B s h a d o w = m a x i∈ [M ] O i s h a d o w , aft er N r a n d o mi z e d P a uli
m e as ur e m e nts o n c o pi es of ρ s atisf yi n g

N = O
l o g(M )B 2

s h a d o w
2

, ( C 2)

w e c a n esti m at e tr (O iρ ) t o err or f or all i ∈ [M ]  wit h hi g h
pr o b a bilit y.

We c a n s e e t h at t h e s a m pl e c o m pl e xit y f or pr e di cti n g
m a n y pr o p erti es of a n u n k n o w n q u a nt u m st at e ρ d e p e n ds
o n t h e s h a d o w n or m · s h a d o w .  T h e l ar g er · s h a d o w is, t h e
m or e e x p eri m e nts ar e n e e d e d t o esti m at e t h e pr o p erti es
of ρ a c c ur at el y. Fr o m t h e ori gi n al cl assi c al s h a d o w p a p er
[4 6 ],  w e c a n o bt ai n t h e f oll o wi n g s h a d o w- n or m b o u n ds f or
P a uli o bs er v a bl es a n d f or f e w- b o d y o bs er v a bl es.

L e m m a 9 ( S h a d o w n or m f or  P a uli o bs er v a bl es [ 4 6 ]). —
F or a n y P ∈ { I , X , Y , Z } ⊗ n ,  w e h a v e

P s h a d o w = 3 |P |/ 2 . (C 3 )

L e m m a 1 0 ( S h a d o w n or m f or f e w- b o d y o bs er v a bl es
[4 6 ]). — F or a n y o bs er v a bl e O t h at a cts n o ntri vi all y o n at
m ost k q u bits,  w e h a v e

O s h a d o w ≤ 2 k O . (C 4 )

C o m bi ni n g t h e a b o v e l e m m as a n d  T h e or e m 1 0,  w e c a n
s e e t h at P a uli o bs er v a bl es a n d f e w- b o d y o bs er v a bl es c a n
b ot h b e pr e di ct e d e ffi ci e ntl y u n d er a v er y s m all n u m b er of
r a n d o mi z e d P a uli  m e as ur e m e nts.

2.  U p p e r b o u n d f o r p r e di cti n g b o u n d e d- d e g r e e
o bs e r v a bl es

C o nsi d er a n n - q u bit o bs er v a bl e O gi v e n as a s u m
of k - q u bit o bs er v a bl es O = j O j ,  w h er e e a c h q u bit is
a ct e d o n b y at  m ost d of t h es e k - q u bit o bs er v a bl es O j .
We f o c us o n k = O (1 ) a n d d = O (1 ), a n d r ef er t o s u c h
a n o bs er v a bl e as a b o u n d e d- d e gr e e o bs er v a bl e.  T h es e
b o u n d e d- d e gr e e o bs er v a bl es aris e fr e q u e ntl y i n q u a nt u m
m a n y- b o d y p h ysi cs a n d q u a nt u m i nf or m ati o n. F or e x a m-
pl e, t h e  H a milt o ni a n i n a q u a nt u m s pi n s yst e m c a n oft e n

b e d es cri b e d b y a g e o m etri c all y l o c al  H a milt o ni a n,  w hi c h
is a n i nst a n c e of b o u n d e d- d e gr e e o bs er v a bl es. F or t h es e
o bs er v a bl es, t h e s h a d o w n or m is r el at e d t o t h e P a uli- 1
n or m of t h e o bs er v a bl e:

O s h a d o w ≤
P : |P | ≤k

|α P | P s h a d o w ≤ 3 k / 2

P : |P | ≤k

|α P | = 3 k / 2 O P a uli, 1 . (C 5 )

If  w e c o nsi d er t h e n or m i n e q u alit y b et w e e n t h e 1 n or m
a n d 2 n or m a n d us e t h e st a n d ar d r es ult r el ati n g t h e Fr o b e-
ni us n or m a n d s p e ctr al n or m ( Pr o p ositi o n 1),  w e  w o ul d
o bt ai n t h e f oll o wi n g u p p er b o u n d o n t h e s h a d o w n or m:

O s h a d o w ≤ 3 k / 2 O P a uli, 1 ≤ (2
√

3 ) k
√

n d O P a uli, 2

= O (
√

n O ). (C 6 )

Usi n g  T h e or e m 1 0, t his s h a d o w- n or m b o u n d gi v es ris e t o
a n u m b er of  m e as ur e m e nts s c ali n g as

N = O
n l o g(M )B 2

∞
2

, ( C 7)

w h er e B ∞ = m a x i∈ [M ] O i ∞ is a n u p p er b o u n d o n t h e
s p e ctr al n or m · .  B e c a us e of t h e li n e ar d e p e n d e n c e o n
t h e n u m b er n of q u bits i n t h e u n k n o w n q u a nt u m st at e, t his
s c ali n g is n ot i d e al. F urt h er m or e,  w e  will l at er s h o w t h at
t his s c ali n g is a ct u all y f ar fr o m o pti m al.

T o i m pr o v e t h e s a m pl e c o m pl e xit y,  w e us e t h e
i m pr o v e d a p pr o xi m at e o pti mi z ati o n al g orit h m pr es e nt e d i n
A p p e n di x A , a n d t h e c orr es p o n di n g n or m i n e q u alit y pr e-
s e nt e d i n  A p p e n di x B .  Usi n g t h e n or m i n e q u alit y r el ati n g
t h e P a uli- 1 n or m a n d t h e s p e ctr al n or m ( C or oll ar y 1 2),  w e
c a n o bt ai n t h e f oll o wi n g s h a d o w- n or m b o u n d.

L e m m a 1 1 ( S h a d o w n or m f or b o u n d e d- d e gr e e o bs er v-
a bl es). — Gi v e n k , d = O (1 ) a n d a n n - q u bit o bs er v a bl e O
t h at is a s u m of k - q u bit o bs er v a bl es,  w h er e e a c h q u bit is
a ct e d o n b y at  m ost d of t h es e k - q u bit o bs er v a bl es,

O s h a d o w ≤ C O ( C 8)

f or s o m e c o nst a nt C > 0.
C o m bi ni n g t h e a b o v e l e m m a  wit h  T h e or e m 1 0 all o ws us

t o est a blis h t h e f oll o wi n g t h e or e m.  C o m p ar e d t o  E q. ( C 7),
t h e f oll o wi n g t h e or e m us es n ti m es f e w er  m e as ur e m e nts.

T h e or e m 1 1 ( Cl assi c al s h a d o w t o m o gr a p h y f or b o u n d-
e d- d e gr e e o bs er v a bl es). — C o nsi d er a n u n k n o w n n - q u bit
st at e ρ a n d M o bs er v a bl es O 1 , . . . , O M wit h B ∞ =
m a x i O i ∞ . S u p p os e t h at e a c h o bs er v a bl e O i is a s u m of
f e w- b o d y o bs er v a bl es O i = j O ij ,  w h er e e v er y q u bit is
a ct e d o n b y a c o nst a nt n u m b er of f e w- b o d y o bs er v a bl es
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O ij . Aft er N r a n d o mi z e d P a uli  m e as ur e m e nts o n c o pi es of
ρ wit h

N = O
l o g(mi n (M , n ))B 2

∞
2

, ( C 9)

w e c a n esti m at e tr (O iρ ) t o err or f or all i ∈ [M ]  wit h hi g h
pr o b a bilit y.

Pr o of. — T h e u p p er b o u n d of N = O (l o g(M ) m a x i∈ [M ]

O i
2
∞ / 2 ) f oll o ws i m m e di at el y fr o m  T h e or e m 1 0 a n d

L e m m a 1 1.  We c a n als o est a blis h a n u p p er b o u n d of
N = O (l o g(n ) m a x i∈ [M ] O i

2
∞ / 2 ).  T o s e e t his, c o nsi d er

t h e t as k of pr e di cti n g all k - q u bit P a uli o bs er v a bl es P ∈
{I , X , Y , Z } ⊗ n wit h |P | f k .  T h er e ar e at  m ost O (n k ) s u c h
P a uli o bs er v a bl es.  T o pr e di ct all of t h e k - q u bit P a uli
o bs er v a bl es t o err or u n d er t h e u n k n o w n st at e ρ ,  w e c a n
c o m bi n e  T h e or e m 1 0 a n d  L e m m a 9 t o s e e t h at  w e n e e d
o nl y

N = O l o g(n ) m a x
i∈ [M ]

O i
2
∞ /( ) 2 ( C 1 0)

r a n d o mi z e d P a uli  m e as ur e m e nts.  N o w, gi v e n a n y o bs er v-
a bl e O i = P α P P t h at is a s u m of f e w- b o d y o bs er v a bl es
O i = j O ij ,  w h er e e v er y q u bit is a ct e d o n b y a c o n-
st a nt n u m b er of f e w- b o d y o bs er v a bl es O ij ,  w e c a n pr e di ct
tr(O iρ ) usi n g t h e i d e ntit y

tr(O iρ ) =
P : |P | fk

α P tr(P ρ ) , ( C 1 1)

w hi c h i n c urs a pr e di cti o n err or of at  m ost P |α P | .  Usi n g
t h e n or m i n e q u alit y i n  C or oll ar y 1 2,  w e h a v e

O i P a uli, 1 =
P

|α P | f C O i ( C 1 2)

f or a c o nst a nt C .  H e n c e, b y s etti n g = / C ,  w e c a n
pr e di ct O i t o err or.  T h us  w e c a n als o est a blis h a n
u p p er b o u n d of N = O (l o g(n ) m a x i∈ [M ] O i

2
∞ / 2 ). T h e

cl ai m f oll o ws b y c o nsi d eri n g t h e c orr es p o n di n g pr e di cti o n
al g orit h m ( us e t h e st a n d ar d cl assi c al s h a d o w  w h e n M < n ,
a n d us e t h e a b o v e al g orit h m  w h e n M g n ).

3.  O pti m alit y of  T h e o r e m 1 1

H er e  w e pr o v e t h e f oll o wi n g l o w er b o u n d o n t h e s a m-
pl e c o m pl e xit y of s h a d o w t o m o gr a p h y f or b o u n d e d- d e gr e e
o bs er v a bl es, d e m o nstr ati n g t h at  T h e or e m 1 1 is o pti m al.
T h e o pti m alit y h ol ds e v e n  w h e n  w e c o nsi d er a c oll e c-
ti v e  m e as ur e m e nt pr o c e d ur e o n  m a n y c o pi es of ρ .  T his
is i n st ar k c o ntr ast t o ot h er s ets of o bs er v a bl es, s u c h as
t h e c oll e cti o n of hi g h- w ei g ht P a uli o bs er v a bl es,  w h er e
si n gl e- c o p y  m e as ur e m e nts ( e. g., cl assi c al s h a d o w t o m o g-
r a p h y) r e q uir e e x p o n e nti all y  m or e c o pi es t h a n c oll e cti v e
m e as ur e m e nts.

T h e or e m 1 2 ( L o w er b o u n d f or pr e di cti n g b o u n d e d- d e-
gr e e o bs er v a bl es). — C o nsi d er t h e f oll o wi n g t as k.  T h er e is
a n u n k n o w n n - q u bit st at e ρ a n d  w e ar e gi v e n M o bs er v-
a bl es O 1 , . . . , O M wit h B ∞ = m a x i O i .  E a c h o bs er v a bl e
O i is a s u m of f e w- b o d y o bs er v a bl es O i = j O ij ,  w h er e
e v er y q u bit is a ct e d o n b y a c o nst a nt n u m b er of f e w- b o d y
o bs er v a bl es O ij .  We  w o ul d li k e t o esti m at e tr(O iρ ) t o
err or f or all i ∈ [M ]  wit h hi g h pr o b a bilit y b y p erf or mi n g
ar bitr ar y c oll e cti v e  m e as ur e m e nts o n N c o pi es of ρ . T h e
n u m b er of c o pi es n e e ds t o b e at l e ast

N =
l o g(mi n (M , n ))B 2

∞
2

( C 1 3)

f or a n y al g orit h m t o s u c c e e d i n t his t as k.
T o s h o w  T h e or e m 1 2,  w e s h o w a l o w er b o u n d f or t h e

f oll o wi n g disti n g uis hi n g t as k , fr o m  w hi c h t h e l o w er b o u n d
f or s h a d o w t o m o gr a p h y  will f oll o w r e a dil y.  Gi v e n i ∈ [n ],
l et P i d e n ot e t h e n - b o d y P a uli o p er at or t h at a cts as Z o n t h e
it h q u bit a n d tri vi all y els e w h er e, a n d d e fi n e t h e  mi x e d st at e

ρ i 1

2 n
I +

B ∞
P i . ( C 1 4)

We s h o w a l o w er b o u n d f or disti n g uis hi n g  w h et h er ρ is
m a xi m all y  mi x e d or of t h e f or m ρ i f or s o m e i.

L e m m a 1 2 ( L o w er b o u n d f or a disti n g uis hi n g t as k). —
L et 0 f f 1 a n d δ g 2 . L et A b e a n al g orit h m t h at,
gi v e n a c c ess t o N c o pi es of a  mi x e d st at e ρ t h at is
eit h er t h e  m a xi m all y  mi x e d st at e or ρ i f or s o m e i ∈
[ mi n(M , n )], c orr e ctl y d et er mi n es  w h et h er or n ot ρ is  m a x-
i m all y  mi x e d  wit h pr o b a bilit y at l e ast 3/ 4.  T h e n N =

(l o g(mi n (M , n ))B 2
∞ / 2 ).

Pr o of of T h e or e m 1 2. — L et A b e a n al g orit h m t h at
s ol v es t h e t as k i n  T h e or e m 1 2 t o err or / 3.  We c a n us e t his
t o gi v e a n al g orit h m f or t h e t as k i n  L e m m a 1 2: a p pl yi n g A
t o t h e  mi n(M , n ) o bs er v a bl es

O 1 B ∞ P 1 , . . . , O mi n (M ,n ) B ∞ P mi n (M ,n ) , ( C 1 5)

w e c a n pr o d u c e / 3- a c c ur at e esti m at es f or tr ( ρ P j ) f or
all j ∈ [ mi n(M , n )].  N ot e t h at if ρ is  m a xi m all y  mi x e d,
tr( ρ O j ) = 0 f or all j ,  w h er e as if ρ = ρ i t h e n tr( ρ O j ) =
1 [i = j ]. I n p arti c ul ar, b y c h e c ki n g  w h et h er t h er e is a

j f or  w hi c h tr( ρ P j ) > 2 / 3,  w e c a n d et er mi n e  w h et h er
ρ is  m a xi m all y  mi x e d or e q u al t o s o m e ρ i.  T h e l o w er
b o u n d i n  L e m m a 1 2 t h us i m pli es t h e l o w er b o u n d i n
T h e or e m 1 2.

F or c o n v e ni e n c e, d e fi n e n mi n (M , n ).  N ot e t h at, f or
a n y i ∈ [n ], ( ρ i) ⊗ N is di a g o n al, s o  w e c a n ass u m e  wit h-
o ut l oss of g e n er alit y t h at A si m pl y  m a k es N i n d e p e n d e nt
m e as ur e m e nts i n t h e c o m p ut ati o n al b asis. Pr o vi n g  L e m m a
1 2 t h us a m o u nts t o s h o wi n g a l o w er b o u n d f or a cl assi c al
distri b uti o n t esti n g t as k.
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N ot e t h at distri b uti o n Ã i o v er o ut c o m es of a si n gl e
m e as ur e m e nt of Ä i i n t h e c o m p ut ati o n al b asis pl a c es

1 + (− 1 ) x i

2 n
( C 1 6)

m ass o n e a c h stri n g x ∈ { 0, 1 } n .  Distri b uti o n Ã o v er o ut-
c o m es of a si n gl e  m e as ur e m e nt of t h e  m a xi m all y  mi x e d
st at e i n t h e c o m p ut ati o n al b asis is u nif or m o v er all stri n gs
x ∈ { 0, 1 } n .  T h e f oll o wi n g b asi c r es ult i n bi n ar y h y p ot h esis
t esti n g l ets us r e d u c e pr o vi n g  L e m m a 1 2 t o u p p er b o u n di n g

d T V E
i
[( Ã i) ⊗ N ], Ã ⊗ N . ( C 1 7)

L e m m a 1 3 ( L e  C a m’s t w o- p oi nt  m et h o d [ 8 1 ]). — L et
p 0 , p 1 b e distri b uti o ns o v er a d o m ai n f or  w hi c h t h er e
e xists a distri b uti o n D s u c h t h at d T V (p 0 , p 1 ) < 1 / 3.  T h e n
t h er e is n o al g orit h m A t h at  m a ps el e m e nts of t o {0, 1 }
f or  w hi c h Prx ∼ p i[A (x ) = i] g 2 / 3 f or b ot h i = 0, 1.

Pr o of of L e m m a 1 2. — T o b o u n d t h e e x pr essi o n i n
E q. ( C 1 7), it s u ffi c es t o b o u n d t h e c hi-s q u ar e d di v er g e n c e
χ 2 (E i[( Ã i) ⊗ N ] Ã ⊗ N ) b e c a us e, f or a n y distri b uti o ns p , q ,

w e h a v e d T V (p , q ) f 2 χ 2 (p q ). F or c o n v e ni e n c e, l et us
d e fi n e t h e li k eli h o o d r ati o p ert ur b ati o n

η i(x )
d Ã i

d Ã
(x ) − 1 = (− 1 ) x i , ( C 1 8)

a n d o bs er v e t h at, f or a n y i, j ∈ [n ],

E
x ∼ Ã

[η i(x ) η j (x )] = 2 1 [i = j ]. ( C 1 9)

Als o, gi v e n stri n gs x 1 , . . . , x N ∈ { 0, 1 } n a n d S ⊆ [N ],
d e fi n e

η i(x S )
j ∈ S

η i(x j ). ( C 2 0)

We t h e n h a v e t h e st a n d ar d c al c ul ati o n (s e e, e. g., [ 8 2 ,
L e m m a 2 2. 1])

1 + χ 2
E

i∼ [n ]
[( Ã i) ⊗ N ] Ã ⊗ N

= E
x 1 ,...,x N ∼ Ã ⊗ N

E
i∼ [n ]

N

j = 1

(1 + η i,t(x j ))
2

= E
i,i ∼ [n ]

E
x 1 ,...,x N ∼ Ã ⊗ N

S ,T ⊆ [N ]

η i(x S ) η i (x T )

= E
i,i ∼ [n ]

E
x 1 ,...,x N ∼ Ã ⊗ N

S ⊆ [N ]

η i(x S ) η i (x S )

= E
i,i ∼ [n ]

E
x 1 ,...,x N ∼ Ã ⊗ N

N

j = 1

(1 + η i(x j ) η i (x j ))

= E
i,i ∼ [n ]

1 + E
x ∼ Ã

[η i(x ) η i (x )]
N

=
1

n
(1 + 2 ) N +

n − 1

n
. ( C 2 1)

We c o n cl u d e t h at

χ 2
E

i∼ [n ]
[( Ã i) ⊗ N ] Ã ⊗ N f

1

n
((1 + 2 ) N − 1 ), ( C 2 2)

s o, f or N = c l o g(n ) / 2 f or a s u ffi ci e ntl y s m all c o nst a nt
c > 0, t his q u a ntit y is l ess t h a n 1 / 3.  B y a p pl yi n g  L e m m a
1 3 t o p 0 = Ã ⊗ N a n d p 1 = E i∼ [n ][( Ã i) ⊗ N ],  w e o bt ai n t h e
cl ai m e d l o w er b o u n d.

A P P E N DI X  D:  L E A R NI N G  T O  P R E DI C T  A N
U N K N O W N  O B S E R V A B L E

We b e gi n  wit h a d e fi niti o n of i n v ari a n c e f or distri b uti o n
o v er q u a nt u m st at es.

D e fi niti o n 5 (I n v ari a n c e u n d er a u nit ar y). — A pr o b a bil-
it y distri b uti o n D o v er q u a nt u m st at es is i n v ari a nt u n d er
a u nit ar y U if t h e pr o b a bilit y d e nsit y r e m ai ns u n c h a n g e d
aft er t h e a cti o n of U , i. e.,

fD ( Ä ) = fD (U Ä U † ) ( D 1)

f or a n y st at e Ä .
I n t his a p p e n di x,  w e utili z e t h e n or m i n e q u aliti es i n

A p p e n di x B t o gi v e a l e ar ni n g al g orit h m t h at a c hi e v es
t h e f oll o wi n g g u ar a nt e e.  T h e l e ar ni n g al g orit h m c a n
l e ar n a n y u n k n o w n n - q u bit o bs er v a bl e O (u n k ) e v e n if
t h e s c al e O (u n k ) is u n k n o w n.  T h e  m e a n s q u ar e d err or
E Ä ∼ D |h ( Ä ) − tr(O (u n k ) Ä ) |2 s c al es q u a dr ati c all y  wit h t h e
s c al e of t h e u n k n o w n o bs er v a bl e O (u n k ) .  We c a n s e e t h at t h e
s a m pl e c o m pl e xit y N h as a q u asi p ol y n o mi al d e p e n d e n c e
o n t h e err ors , r el ati v e t o t h e s c al e of t h e u n k n o w n
o bs er v a bl e O (u n k ) , a n d d e p e n ds o nl y o n t h e s yst e m si z e n
a n d t h e f ail ur e pr o b a bilit y δ l o g arit h mi c all y.

T h e or e m 1 3 ( L e ar ni n g t o pr e di ct a n u n k n o w n o bs er v-
a bl e). — L et n , , , δ > 0.  C o nsi d er a n y u n k n o w n n -
q u bit o bs er v a bl e O (u n k ) = P α P P a n d a n y u n k n o w n n -
q u bit st at e distri b uti o n D t h at is i n v ari a nt u n d er si n gl e-
q u bit H a n d S g at es. S u p p os e t h at t h e tr ai ni n g d at a
{Ä , tr(O (u n k ) Ä ))} N

= 1 ar e of si z e

N = l o g
n

δ
mi n (2 O {l o g(1 / )[l o g l o g(1 / )+ l o g(1 / )]} ,

2 O [l o g(1 / ) l o g(n )]). ( D 2)
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L et k = l o g1. 5 (1 / ) , O (l o w) = |P | ≤k α P P b e t h e l o w-

d e gr e e a p pr o xi m ati o n of O (u n k ) , a n d r = 2 k /( k + 1 ) ∈
[ 1, 2).  T h e al g orit h m c a n l e ar n a f u n cti o n h ( ρ ) =

m a x (− ˆ , mi n( ˆ , tr( Ô ρ ))) f or a n o bs er v a bl e Ô a n d a r e al
n u m b er ˆ t h at a c hi e v es a pr e di cti o n err or

E
ρ ∼ D

|h ( ρ ) − tr(O (u n k ) ρ ) |2

≤ + 1 +
O (l o w)

O (u n k )

r

O (u n k ) 2 ( D 3)

wit h pr o b a bilit y at l e ast 1 − ´ .

1.  L o w- d e g r e e a p p r o xi m ati o n u n d e r t h e  m e a n s q u a r e d
e r r o r

I n or d er t o c h ar a ct eri z e t h e  m e a n s q u ar e d err or
E ρ ∼ D tr(O 1 ρ ) − tr(O 2 ) ρ b et w e e n t w o o bs er v a bl es O 1 , O 2 ,
w e n e e d t h e f oll o wi n g d e ü niti o n of a  m o di ü e d p urit y f or
q u a nt u m st at es.

D e ü niti o n 6 ( N o ni d e ntit y p urit y). — Gi v e n a k - q u bit st at e
ρ , t h e n o ni d e ntit y p urit y of ρ is

³ ( ρ )
1

2 k

Q ∈{ X ,Y ,Z }⊗ k

tr(Q ρ ) 2 . ( D 4)

N o ni d e ntit y p urit y is b o u n d e d b y p urit y:

³ ( ρ ) ≤ ³ ( ρ ) = tr( ρ 2 ) =
1

2 k

Q ∈{ I ,X ,Y ,Z }⊗ k

tr(Q ρ ) 2 .

L e m m a 1 4 ( M e a n s q u ar e d err or). — Gi v e n t w o n - q u bit
o bs er v a bl es O 1 , O 2 wit h

O 1 − O 2 =

P ∈{ I ,X ,Y ,Z }⊗ n

α P P , ( D 5)

a n d a distri b uti o n D o v er q u a nt u m st at es t h at is i n v ari a nt
u n d er si n gl e- q u bit H a n d S g at es,  w e h a v e

E
ρ ∼ D

| tr(O 1 ρ ) − tr(O 2 ρ ) |2

=

P ∈{ I ,X ,Y ,Z }⊗ n

E
ρ ∼ D

[³ ( ρ d o m (P ) )]
2

3

|P |

| α P |2 . ( D 6)

Pr o of. — C o nsi d er U 1 , . . . , U n t o b e i n d e p e n d e nt r a n d o m si n gl e- q u bit  Cli û or d u nit ari es.  B e c a us e D is i n v ari a nt
u n d er si n gl e- q u bit  H a d a m ar d a n d p h as e g at es, D is i n v ari a nt u n d er a n y t e ns or pr o d u ct of si n gl e- q u bit  Cli û or d u ni-
t ari es.  T his i m pli es t h at t h e distri b uti o n of t h e r a n d o m st at e ρ is t h e s a m e as t h e distri b uti o n of t h e r a n d o m st at e
(U 1 ⊗ · · · ⊗ U n ) ρ (U 1 ⊗ · · · ⊗ U n )

† .  Usi n g t his f a ct,  w e e x p a n d t h e  m e a n s q u ar e d err or as

E
ρ ∼ D

| tr(O 1 ρ ) − tr(O 2 ρ ) |2 = E
ρ ∼ D

E
U 1 ,...,U n

P ,Q ∈{ I ,X ,Y ,Z }⊗ n

α P α Q tr

n

i= 1

U
†
i P iU i ⊗

n

i= 1

U
†
i Q iU i ( ρ ⊗ ρ ) .

( D 7)

Usi n g t h e u nit ar y 2- d esi g n pr o p ert y of a r a n d o m  Cli û or d u nit ar y a n d S W A P = 1
2 P ∈{ I ,X ,Y ,Z } P ⊗ P ,  w e h a v e

E
U i

U
†
i P iU i ⊗ U

†
i Q iU i =

§
ªªªª̈

ªªªª©

I ⊗ I , P i = Q i = I ,

1

3
(X ⊗ X + Y ⊗ Y + Z ⊗ Z ), P i = Q i = I ,

0, P i = Q i.

( D 8)

We c a n n o w  writ e t h e t ar g et v al u e as

E
ρ ∼ D

| tr(O 1 ρ ) − tr(O 2 ρ ) |2 = E
ρ ∼ D

P ∈{ I ,X ,Y ,Z }⊗ n

1

3 |P |
| α P |2

Q ∈{ X ,Y ,Z }⊗| P |

tr(Q ρ d o m (P ) )
2 . ( D 9)

T h e cl ai m f oll o ws fr o m  D e ü niti o n 6 o n n o ni d e ntit y p urit y ³ .
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T h e f oll o wi n g l e m m a t ells us t h at t h e  m e a n a bs o-
l ut e err or c a n b e u p p er b o u n d e d b y t h e r o ot- m e a n-
s q u ar e d err or.  H e n c e, b ot h t h e  m e a n a bs ol ut e err or a n d
t h e  m e a n s q u ar e d err or ar e c h ar a ct eri z e d b y t h e 2 dis-
t a n c e b et w e e n t h e P a uli c o e ý ci e nts ( as  w ell as t h e a v er-
a g e n o ni d e ntit y p urit y).  B e c a us e of t h e f oll o wi n g r el a-
ti o n,  w e f o c us o n t h e  m e a n s q u ar e d err or t hr o u g h o ut t h e
t e xt.

L e m m a 1 5 ( M e a n a bs ol ut e err or). — Gi v e n t w o n - q u bit
o bs er v a bl es O 1 , O 2 wit h

O 1 − O 2 =

P ∈{ I ,X ,Y ,Z }⊗ n

α P P , ( D 1 0)

a n d a distri b uti o n D o v er q u a nt u m st at es t h at is i n v ari a nt
u n d er si n gl e- q u bit H a n d S g at es,  w e h a v e

E
ρ ∼ D

| tr(O 1 ρ ) − tr(O 2 ρ ) | f

P ∈{ I ,X ,Y ,Z }⊗ n

E
ρ ∼ D

[γ ( ρ d o m (P ) )]
2

3

|P |

| α P |2
1 / 2

. ( D 1 1)

Pr o of. — J e ns e n’s i n e q u alit y gi v es

E
ρ ∼ D

| tr(O 1 ρ ) − tr(O 2 ρ ) | f E
ρ ∼ D

| tr(O 1 ρ ) − tr(O 2 ρ ) |2
1 / 2

.

( D 1 2)

C o m bi ni n g  wit h  L e m m a 1 4 yi el ds t h e st at e d r es ult.
Fr o m  L e m m a 1 4,  w e c a n c o nstr u ct a l o w- d e gr e e a p pr o x-

i m ati o n b y r e m o vi n g all hi g h- w ei g ht P a uli t er ms f or a n y
o bs er v a bl e O .  T h e a p pr o xi m ati o n err or d e c a ys e x p o n e n-
ti all y  wit h t h e  w ei g ht of t h e P a uli t er ms.

C or oll ar y 1 3 ( L o w- d e gr e e a p pr o xi m ati o n). — S u p p os e
t h at w e h a v e a n n - q u bit o bs er v a bl e O = P ∈{ I ,X ,Y ,Z }⊗ n α P P
a n d a distri b uti o n D o v er q u a nt u m st at es t h at is i n v ari-
a nt u n d er si n gl e- q u bit H a n d S g at es. F or k > 0, c o nsi d er
O (k ) = P : |P |< k α P P .  We h a v e

E
ρ ∼ D

| tr(O ρ ) − tr(O (k ) ρ ) |2 f
2

3

k

O 2 . ( D 1 3)

Pr o of. — Usi n g  L e m m a 1 4 a n d t h e f a ct t h at γ ( ) f
γ ( ) f 1 f or a n y st at e ,  w e h a v e

E
ρ ∼ D

| tr(O ρ ) − tr(O (k ) ρ ) |2 f
P : |P | gk

2

3

|P |

|α P |2

f
2

3

k

P

|α P |2 . ( D 1 4)

T h e n or m i n e q u alit y gi v e n i n Pr o p ositi o n 1 est a blis h es t h e
cl ai m.

2.  T o ols f o r e xt r a cti n g a n d ûlt e ri n g  P a uli c o e ý ci e nts

I n or d er t o l e ar n t h e l o w- d e gr e e a p pr o xi m ati o n of a n
ar bitr ar y o bs er v a bl e O ,  w e n e e d t o b e a bl e t o e xtr a ct t h e
r el e v a nt α P . F urt h er m or e,  w e i m p os e crit eri a f or ûlt eri n g

o ut u ni n ü u e nti al P a uli o bs er v a bl es P t o pr e v e nt t h e m fr o m
i n cr e asi n g t h e n ois e a n d l e a di n g t o a hi g h er pr e di cti o n
err or.

a.  E xt r a cti n g t h e  P a uli c o e ý ci e nt

L e m m a 1 6 ( E xtr a cti n g t h e  P a uli c o e ý ci e nt). — S u p p os e
t h at  w e h a v e a n n - q u bit o bs er v a bl e O = P ∈{ I ,X ,Y ,Z }⊗ n α P P
a n d a distri b uti o n D o v er q u a nt u m st at es t h at is i n v ari a nt
u n d er si n gl e- q u bit H a n d S g at es. F or a n y P a uli o bs er v a bl e
P ∈ { I , X , Y , Z } ⊗ n ,  w e h a v e

E
ρ ∼ D

tr(O ρ ) tr(P ρ ) =
2

3

|P |

α P E
ρ ∼ D

γ ∗ ( ρ d o m (P ) ). ( D 1 5)

Pr o of. — Usi n g t h e i n v ari a n c e of D ,  w e h a v e

E
ρ ∼ D

tr(O ρ ) tr(P ρ )

= E
ρ ∼ D

E
U 1 ,...,U n

Q ∈{ I ,X ,Y ,Z }⊗ n

α Q tr

n

i= 1

U
†
i P iU i

⊗

n

i= 1

U
†
i Q iU i ( ρ ⊗ ρ ) . ( D 1 6)

Usi n g  E q. ( D 8),  w e c a n r e writ e t h e a b o v e e x pr essi o n as

E
ρ ∼ D

tr(O ρ ) tr(P ρ ) = E
ρ ∼ D

1

3 |P |
α P

Q ∈{ X ,Y ,Z }⊗| P |

tr(Q ρ d o m (P ) )
2 .

( D 1 7)

T h e cl ai m f oll o ws fr o m t h e d e û niti o n of t h e n o ni d e ntit y
p urit y γ ∗ .
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F or e a c h P a uli o bs er v a bl e P ∈ { I , X , Y , Z } ⊗ n , d e û n e t h e
q u a ntit y  w e c a n e xtr a ct usi n g t h e l e m m a t o b e

x P =
2

3

|P |

³ P E
ρ ∼ D

µ ∗ ( ρ d o m (P ) ). ( D 1 8)

We c a n o bt ai n a n esti m at e x̂ P f or x P b y a v er a g-
i n g tr(O ρ ) tr(P ρ ) o v er t h e tr ai ni n g d at a.  H o w e v er, t o
o bt ai n a n esti m at e ³̂ P f or ³ P ,  w e n e e d t o di vi d e x̂ b y
(2 / 3 ) |P |E ρ ∼ D µ ∗ ( ρ d o m (P ) ).  T h e err or i n t h e esti m at e ³̂ P

c o ul d b e ar bitr aril y l ar g e if (2 / 3 ) |P |E ρ ∼ D µ ∗ ( ρ d o m (P ) ) is
cl os e t o z er o.  H e n c e,  w e pr es e nt a ûlt er i n  A p p e n di x D 2 b
b el o w t o h a n dl e t his iss u e. I n a d diti o n t o t his ûlt er, t h e
n or m i n e q u aliti es gi v e n i n  A p p e n di x B s h o w t h at  m ost ³ P

w o ul d b e cl os e t o z er o.  H e n c e,  w h e n ³ P is s m all,  w e c o ul d
si m pl y s et t h e m t o z er o t o a v oi d n ois e b uil d- u p.  T his gi v es
ris e t o t h e s e c o n d ûlt eri n g l a y er gi v e n i n  A p p e n di x D 2 c
b el o w.

b.  Filt e ri n g t h e s m all- w ei g ht f a ct o r

T h e ûrst ûlt er s ets t h e esti m at e ³̂ P t o b e z er o  w h e n t h e
a v er a g e n o ni d e ntit y p urit y E ρ ∼ D µ ∗ ( ρ d o m (P ) ) is cl os e t o
z er o.  We d e û n e t h e  w ei g ht f a ct or f or a P a uli o bs er v a bl e
P t o b e

´ P =
2

3

|P |

E
ρ ∼ D

µ ∗ ( ρ d o m (P ) ). ( D 1 9)

T h e  w ei g ht f a ct or ´ P d e p e n ds o n distri b uti o n D ,  w hi c h
m a y b e u n k n o w n.  H e n c e,  w e c a n o nl y o bt ai n a n esti-

m at e ˆ́
P f or ´ P b y utili zi n g t h e tr ai ni n g d at a.  R e c all fr o m

L e m m a 1 6 t h at  w e c a n o nl y o bt ai n a n esti m at e x̂ P f or
x P = ³ P ´ P .  T h e  m e a n s q u ar e d err or ( L e m m a 1 4) s h o ws
t h at t h e c o ntri b uti o n fr o m err or i n ³̂ P is

´ P |³̂ P − ³ P |2 . ( D 2 0)

T h e pr es e n c e of ´ P i n t h e  m e a n s q u ar e d err or is v er y us e-
f ul si n c e it c o u nt er a cts t h e f a ct t h at  w e c a n n ot esti m at e ³̂ P

a c c ur at el y  w h e n ´ P is cl os e t o z er o.  T h e f oll o wi n g l e m m a
s h o ws t h at esti m at es f or ´ P a n d x P ar e s u ý ci e nt t o p erf or m
ûlt eri n g a n d a c hi e v e a s m all  m e a n s q u ar e d err or.

L e m m a 1 7 ( Filt eri n g t h e s m all- w ei g ht f a ct or). — L et
˜ , η > 0.  C o nsi d er ³ ∈ [− η , η ] a n d ´ ∈ [ 0, 1].  L et x =
³ ´ ∈ [− η , η ].  Gi v e n esti m at es x̂ a n d ˆ́ wit h |x̂ − x | < η ˜
a n d | ˆ́ − ´ | < ˜ , if  w e d e û n e t h e esti m at e

³̂ =
0, ˆ́ ≤ 2 ˜ ,

x̂ / ˆ́ , ˆ́ > 2 ˜ ,
( D 2 1)

t h e n  w e h a v e ´ |³̂ − ³ |2 ≤ 3 η 2 ˜ .

Pr o of. — C o nsi d er t h e ûrst c as e i n  w hi c h ˆ́ ≤ 2 ˜ . We
h a v e

´ |³̂ − ³ |2 = ´ ³ 2 ≤ η 2 ´ ≤ η 2 ˆ́ + η 2 ˜ ≤ 3 η 2 ˜ . ( D 2 2)

F or t h e s e c o n d c as e i n  w hi c h ˆ́ > 2 ˜ ,  w e h a v e ´ > ˜ . B y
a p pl yi n g t h e tri a n gl e i n e q u alit y,  w e h a v e

| ´ ³̂ − ´ ³ | ≤

√
´

ˆ́
|x̂ − x | + | ´ x |

1

ˆ́
−

1

´
. ( D 2 3)

T h e ûrst t er m c a n b e b o u n d e d as
√

´ |x̂ − x |/ ˆ́ ≤

η
√

´ ˜ / ˆ́ .  T h e s e c o n d t er m c a n b e b o u n d e d b y t h e s a m e
e x pr essi o n

| ´ x |
1

ˆ́
−

1

´
= ´ 3 / 2 |³ |

| ˆ́ − ´ |

ˆ́ ´
≤ η

√
´

ˆ́
˜ . ( D 2 4)

Usi n g t h e f a ct t h at
√

z + ˜ / z is  m o n ot o ni c all y d e cr e asi n g
f or z > 0,  w e h a v e

√
´

ˆ́
˜ ≤

ˆ́ + ˜

ˆ́
˜ ≤

3

4
˜ . ( D 2 5)

T o g et h er, |
√

´ ³̂ −
√

´ ³ |2 ≤ 3 η 2 ˜ a n d t h e cl ai m is est a b-
lis h e d.

c.  Filt e ri n g u ni n ü u e nti al  P a uli o bs e r v a bl es

C o nsi d er a s et S ⊆ { I , X , Y , Z } ⊗ n t h at c o nt ai ns t h e P a uli
o bs er v a bl es of i nt er est. F or e x a m pl e,  w e l at er c o nsi d er S
t o b e t h e s et of all f e w- b o d y P a uli o bs er v a bl es.  Usi n g
t h e n or m i n e q u aliti es gi v e n i n  A p p e n di x B ,  w e c a n ûl-
t er o ut  m or e ³ P t o a c hi e v e a n i m pr o v e d  m e a n s q u ar e d
err or.  B el o w is t h e ûlt eri n g l e m m a t h at c o m bi n es b ot h
t h e ûlt eri n g of P a uli o bs er v a bl es  wit h a s m all  w ei g ht f a c-
t or ( L e m m a 1 7) a n d t h e ûlt eri n g of t h os e  wit h a s m all

c o ntri b uti o n ( c h ar a ct eri z e d b y |x P |/ ´
1 / 2
P ).

L e m m a 1 8 ( Filt eri n g l e m m a). — S u p p os e t h at ˜ , η > 0
a n d t h at  w e h a v e a s et S ⊆ { I , X , Y , Z } ⊗ n .  C o nsi d er ³ P ∈
[− η , η ], ´ P ∈ [ 0, 1], a n d x P = ³ P ´ P ∈ [− η , η ] f or all P ∈
S .  Ass u m e t h at t h er e e xist A > 0 a n d 1 ≤ r < 2 s u c h t h at

P ∈ S

|³ P |r ≤ A r . ( D 2 6)

Gi v e n x̂ P a n d ˆ́
P wit h |x̂ P − x P | < η ˜ a n d | ˆ́

P − ´ P | < ˜
f or all P ∈ S , if w e d e û n e

³̂ P =

§
ª̈

ª©

0, ˆ́P ≤ 2 ˜ ,

0, ˆ́
P > 2 ˜ , |x̂ P |/ ˆ́ 1 / 2

P ≤ 2 η
√

˜ ,

x̂ P / ˆ́P , ˆ́P > 2 ˜ , |x̂ P |/ ˆ́ 1 / 2
P > 2 η

√
˜ ,

( D 2 7)

t h e n  w e h a v e P ∈ S ´ P |³̂ P − ³ P |2 ≤ 6 A r η 2 − r ˜ 1 − (r/ 2 ) . We
als o h a v e ´ P |³̂ P − ³ P |2 ≤ 9 η 2 ˜ f or all P ∈ S .
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Pr o of. — We first d e fi n e S u ⊆ S t o b e t h e s et of P a uli

o bs er v a bl es P wit h ˆ́
P > 2 ˜ , |x̂ P |/ ˆ́ 1 / 2

P > 2 η
√

˜ . T h e s et S u

c o nt ai ns all t h e u n filt er e d P a uli o bs er v a bl es.  We d e fi n e S f

t o b e S \ S u ,  w hi c h c o nt ai ns all t h e filt er e d P a uli o bs er v-
a bl es.  We s e p ar at e t h e c o ntri b uti o ns of S u a n d S f i n t h e
m e a n s q u ar e d err or P ∈ S ´ P |³̂ P − ³ P |2 :

P ∈ S

´ P |³̂ P − ³ P |2 =
P ∈ S u

´ P |³̂ P − ³ P |2

+

P ∈ S f

´ P |³̂ P − ³ P |2 . ( D 2 8)

A k e y q u a ntit y f or t h e a n al ysis is ´
1 / 2
P ³ P = x P / ´

1 / 2
P . F or

P a uli P wit h ˆ́
P ≤ 2 ˜ ,  w e h a v e

|´
1 / 2
P ³ P | ≤ η ˆ́P + ˜ ≤ η

√
3 ˜ . ( D 2 9)

F or P a uli P wit h ˆ́
P > 2 ˜ ,  w e h a v e

x̂ P

ˆ́ 1 / 2
P

−
x P

´
1 / 2
P

≤
1

ˆ́ 1 / 2
P

|x̂ P − x P | + |x P |
1

ˆ́ 1 / 2
P

−
1

´
1 / 2
P

≤ η
˜

2
+ η

´ P

ˆ́ 1 / 2
P

− ´
1 / 2
P

≤ η
√

˜ . ( D 3 0)

T h e l ast i n e q u alit y us es t h e f a ct t h at ´ P > ˜ , ˆ́
P / ´ P > 2,

a n d, h e n c e,

´ P

ˆ́ 1 / 2
P

− ´
1 / 2
P =

| ˆ́
P − ´ P |

ˆ́ 1 / 2
P (1 + ( ˆ́

P / ´ P ) 1 / 2 )
≤

√
˜

2 +
√

2
.

( D 3 1)

We ar e n o w r e a d y t o a n al y z e t h e c o ntri b uti o ns of S u a n d
S f .

F or t h e u n filt er e d P a uli o bs er v a bl es (t h os e i n s et S u ),  w e
c a n us e  L e m m a 1 7 t o o bt ai n

P ∈ S u

´ P |³̂ P − ³ P |2 ≤ 3 η 2 ˜ |S u |. ( D 3 2)

E q u ati o n ( D 3 0) s h o ws t h at, f or P a uli o bs er v a bl e P wit h
ˆ́
P > 2 ˜ a n d |x̂ P |/ ˆ́ 1 / 2

P > 2 η
√

˜ ,  w e h a v e |x P |/ ´
1 / 2
P >

2 η
√

˜ − η
√

˜ .  We us e t his f a ct t o b o u n d t h e si z e of s et |S u |:

|S u | ≤
P ∈ S u

(|x P |/ ´
1 / 2
P ) r

(2 η
√

˜ − η
√

˜ ) r
=

1

η r ˜ r/ 2
P ∈ S u

|³ P |r ´
r/ 2
P

≤
1

η r ˜ r/ 2
P ∈ S

|³ P |r =
A r

η r ˜ r/ 2
. ( D 3 3)

T o g et h er,  w e h a v e t h e u p p er b o u n d

P ∈ S u

´ P |³̂ P − ³ P |2 ≤ 3 η 2 − r A r ˜ 1 − r/ 2 . ( D 3 4)

F or t h e filt er e d P a uli o bs er v a bl es (t h os e i n s et S f ),  w e h a v e

P ∈ S f

´ P |³̂ P − ³ P |2 =

P ∈ S f

|´
1 / 2
P ³ P |r |´

1 / 2
P ³ P |2 − r . ( D 3 5)

T h er e ar e t w o t y p es of P a uli o bs er v a bl es i n S f .

( 1) F or P wit h ˆ́P ≤ 2 ˜ ,  w e h a v e |´
1 / 2
P ³ P | ≤ η

√
3 ˜

fr o m  E q. ( D 2 9).

( 2) F or P wit h ˆ́P > 2 ˜ a n d |x̂ P |/ ˆ́ 1 / 2
P ≤ η 2

√
˜ , w e

h a v e |´
1 / 2
P ³ P | = |x P |/ ´

1 / 2
P ≤ 2 η

√
˜ + η

√
˜ fr o m

E q. ( D 3 0).

T o g et h er,  w e h a v e t h e u p p er b o u n d

P ∈ S f

´ P |³̂ P − ³ P |2 ≤ (3 η
√

˜ ) 2 − r

P ∈ S f

´
r/ 2
P |³ P |r

≤ A r (3 η
√

˜ ) 2 − r

≤ 3 A r η 2 − r ˜ 1 − r/ 2 . ( D 3 6)

C o m bi ni n g t h e c o ntri b uti o ns of S u a n d S f yi el ds

P ∈ S

´ P |³̂ P − ³ P |2 ≤ 6 A r η 2 − r ˜ 1 − r/ 2 . ( D 3 7)

T h us  w e h a v e est a blis h e d t h e first st at e m e nt of t h e l e m m a.
We n o w f o c us o n t h e s e c o n d st at e m e nt of t h e l e m m a.

F or P a uli o bs er v a bl e P t h at s atis fi es t h e first a n d t h e
t hir d c as es of  E q. ( D 2 7),  w e c a n us e  L e m m a 1 7 t o
o bt ai n ´ P |³̂ P − ³ P |2 ≤ 3 η 2 ˜ < 9 η 2 ˜ . F or t h e s e c o n d c as e
of  E q. ( D 2 7),  w e c a n us e  E q. ( D 3 0) t o s e e t h at

´ P |³̂ P − ³ P |2 =
x P

´
1 / 2
P

2

≤
|x̂ P |

ˆ́ 1 / 2
P

+
x̂ P

ˆ́ 1 / 2
P

−
x P

´
1 / 2
P

2

≤ 9 η 2 ˜ . ( D 3 8)

H e n c e, f or all P ∈ S ,  w e h a v e ´ P |³̂ P − ³ P |2 ≤ 9 η 2 ˜ .

3.  L e a r ni n g al g o rit h m

I n t his s e cti o n,  w e pr es e nt a l e ar ni n g al g orit h m s atis-
f yi n g t h e g u ar a nt e e gi v e n i n  T h e or e m 1 3.  C o nsi d er t h e
f ull tr ai ni n g d at a {ρ , y = tr(O (u n k ) ρ ))} N

= 1 of si z e N . T h e
l e ar ni n g al g orit h m s plits t h e f ull d at a i nt o a s m all er tr ai n-
i n g s et of si z e N tr a n d a v ali d ati o n s et of si z e N v al wit h N =
N tr + N v al .  T h e tr ai ni n g s et is us e d t o e xtr a ct P a uli c o e ffi-
ci e nts a n d p erf or m filt eri n g  wit h a h y p er p ar a m et er η . T h e
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v ali d ati o n s et is us e d t o c h o os e t h e b est h y p er p ar a m et er η .
We c a n s et N tr = (4 / 5 )N a n d N v al = (1 / 5 )N .

We c o nsi d er t w o sli g htl y di û er e nt l e ar ni n g al g orit h ms
f or t h e s a m pl e c o m pl e xit y s c ali n gs of

N = l o g
n

δ
2 O {l o g(1 / )[l o g l o g(1 / )+ l o g(1 / )]} a n d

N = l o g
n

δ
2 O [l o g(1 / ) l o g(n )]. ( D 3 9)

We c a n si m pl y l o o k at  w hi c h s a m pl e c o m pl e xit y is s m all er
a n d s el e ct t h e c orr es p o n di n g l e ar ni n g al g orit h m.

We b e gi n  wit h t h e l e ar ni n g al g orit h m f or a c hi e vi n g t h e
s a m pl e c o m pl e xit y o n t h e l eft of  E q. ( D 3 9). First, t h e
al g orit h m c o m p ut es t h e s a m pl e  m a xi m u m o v er t h e tr ai ni n g
s et,

ˆ = m a x
∈{ 1, ...,N tr}

|y | = m a x
∈{ 1, ...,N tr}

| tr(O (u n k ) ρ ))| ≤ O (u n k ) ,

( D 4 0)

t o o bt ai n a s c al e f or t h e f u n cti o n v al u e.  L et C (k ) b e t h e
c o nst a nt fr o m  C or oll ar y 1 1.  We d e ü n e

˜
1 2

k + 1 C (k )

3

2 k

. ( D 4 1)

N e xt,  w e c o nsi d er t h e gri d of h y p er p ar a m et ers

η ∈ { 2 0 ˆ , 21 ˆ , 22 ˆ , . . . , 2R ˆ }, ( D 4 2)

w h er e R = l o g2 1 / ˜ . F or e a c h h y p er p ar a m et er η , t h e
l e ar ni n g al g orit h m r u ns as f oll o ws.  T h e l e ar ni n g al g orit h m
c o nsi d ers e v er y P a uli o bs er v a bl e P ∈ { I , X , Y , Z } ⊗ n wit h
|P | ≤ l o g1. 5 (1 / ).  We d e ü n e t h e s et t h at c o nt ai ns t h e P a uli
o bs er v a bl es of i nt er est,

S = { P : |P | ≤ l o g1. 5 (1 / )}, ( D 4 3)

a n d k = l o g1. 5 (1 / ) . F or e a c h P ∈ S , t h e al g orit h m c o m-
p ut es

x̂ P =
1

N tr

N tr

= 1

tr(P ρ )y , ( D 4 4)

ˆ́
P =

1

N tr

N tr

= 1

tr(P ρ ) tr(P ρ ), ( D 4 5)

usi n g t h e tr ai ni n g s et {( ρ , y = tr(O u n k ρ ))} N tr
= 1 .  B y t h e

d e ü niti o ns of x̂ P a n d ˆ ,  w e h a v e

|x̂ P | ≤ ˆ f or all P ∈ S . ( D 4 6)

T h e n, f or e a c h P ∈ S , t h e al g orit h m c o m p ut es

³̂ P ( η ) =

§
ª̈

ª©

0, ˆ́P ≤ 2 ˜ ,

0, ˆ́
P > 2 ˜ , |x̂ P |/ ˆ́ 1 / 2

P ≤ 2 η
√

˜ ,

x̂ P / ˆ́P , ˆ́P > 2 ˜ , |x̂ P |/ ˆ́ 1 / 2
P > 2 η

√
˜ .

( D 4 7)

T h e al g orit h m c o nsi d ers t h e f u n cti o n h ( ρ ; η ) = m a x (− ˆ ,

mi n ( ˆ , tr( Ô ( η ) ρ ))),  w h er e t h e o bs er v a bl e Ô ( η ) is d e ü n e d
as

Ô ( η ) =
P ∈ S

³̂ P ( η )P . ( D 4 8)

T h e b est η is s el e ct e d usi n g t h e v ali d ati o n s et:

η ∗ = ar g  mi n
η ∈{ 2 0 ˆ ,..., 2R ˆ }

1

N v al

N tr+ N v al

= N tr+ 1

|h ( ρ ; η ) − y |2 . ( D 4 9)

T h e l e ar ni n g al g orit h m o ut p uts h ( ρ ; η ∗ ) as t h e l e ar n e d
f u n cti o n.

We n o w pr es e nt t h e l e ar ni n g al g orit h m f or a c hi e vi n g t h e
s a m pl e c o m pl e xit y o n t h e ri g ht of  E q. ( D 3 9).  We d e ü n e t h e
s et t h at c o nt ai ns t h e P a uli o bs er v a bl es of i nt er est,

S = { P : |P | ≤ l o g1. 5 (2 / )}, ( D 5 0)

a n d k = l o g1. 5 (2 / ) . F or e a c h P ∈ S , t h e al g orit h m
c o m p ut es

x̂ P =
1

N

N

= 1

tr(P ρ )y , ( D 5 1)

ˆ́
P =

1

N

N

= 1

tr(P ρ ) tr(P ρ ), ( D 5 2)

usi n g t h e f ull d at as et {( ρ , y = tr(O u n k ρ ))} N
= 1 . T h e

al g orit h m us es t h e h y p er p ar a m et er

˜
6 n k

. ( D 5 3)

T h e n, f or e a c h P ∈ S , t h e al g orit h m c o m p ut es

³̂ P =
0, ˆ́

P ≤ 2 ˜ ,

x̂ P / ˆ́
P , ˆ́

P > 2 ˜ .
( D 5 4)

T h e al g orit h m o ut p uts t h e f u n cti o n h ( ρ ) = tr( Ô ρ ) ,  w h er e

t h e o bs er v a bl e Ô i s d e ü n e d as Ô = P ∈ S ³̂ P P .
H er e,  w e ass u m e t h at tr (P ρ ) c a n b e o bt ai n e d fr o m t h e

tr ai ni n g d at a.  H o w e v er, f or e a c h tr(P ρ ),  w e o nl y n e e d
t o b e a bl e t o o bt ai n a n u n bi as e d esti m at or f or tr(P ρ )
a n d f or tr (P ρ ) 2 .  R e c all t h at a n u n bi as e d esti m at or f or a
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is a r a n d o m v ari a bl e  wit h e x p e ct ati o n v al u e e q u al t o a .
F or e x a m pl e, a n u n bi as e d esti m at or f or tr (P ρ ) 2 c a n b e
o bt ai n e d b y p erf or mi n g t w o q u a nt u m  m e as ur e m e nts o n
t w o i n di vi d u al c o pi es of ρ usi n g t h e o bs er v a bl e P a n d
m ulti pl yi n g t h e r es ults, or b y utili zi n g cl assi c al s h a d o w
f or m alis m [4 6 ] a n d r a n d o mi z e d  m e as ur e m e nt [4 7 ].

4.  Ri g o r o us p e rf o r m a n c e g u a r a nt e e

I n t his s e cti o n,  w e pr o v e t h at t h e l e ar ni n g al g orit h m pr e-
s e nt e d i n t h e l ast s e cti o n s atis fi es  T h e or e m 1 3.  We s e p ar at e
t h e pr o of f or a c hi e vi n g t h e s a m pl e c o m pl e xit y o n t h e l eft
a n d ri g ht of  E q. ( D 3 9).

T h e pr o of f or t h e s a m pl e c o m pl e xit y st at e d o n t h e l eft
of  E q. ( D 3 9) c o nsists of t hr e e p arts: ( 1) a c h ar a ct eri z ati o n
of t h e pr e di cti o n err or, ( 2) t h e e xist e n c e of a g o o d h y p er-
p ar a m et er · t h at a c hi e v es a s m all pr e di cti o n err or, ( 3) t h e
b est h y p er p ar a m et er · ∗ f o u n d b y a gri d s e ar c h o v er t h e
v ali d ati o n s et  m ust yi el d a s m all pr e di cti o n err or.

T h e pr o of f or t h e s a m pl e c o m pl e xit y st at e d o n t h e ri g ht
of  E q. ( D 3 9) is si m pl er a n d is gi v e n at t h e e n d.

a.  C h a r a ct e ri z ati o n of t h e p r e di cti o n e r r o r

We b e gi n  wit h a l e m m a a b o ut t h e s a m pl e  m a xi m u m.
L e m m a 1 9 ( S a m pl e  m a xi m u m). — L et 1 > , ¶ > 0.  C o n-

si d er a n ar bitr ar y r e al- v al u e d r a n d o m v ari a bl e X . L et
X 1 , . . . , X N b e N i n d e p e n d e nt s a m pl es of X wit h N =

l o g(1 / ¶ ) / , a n d l et ˆ = m a x i X i. T h e n

Pr[ X f ˆ ] g 1 − ( D 5 5)

wit h pr o b a bilit y at l e ast 1 − ¶ .
Pr o of. — R e c all t h at t h e c u m ul ati v e distri b uti o n f u n cti o n

is d e fi n e d as F ( ¸ ) = Pr [X f ¸ ].  We d e fi n e t h e a p pr o xi-
m at e  m a xi m u m as

i nf
¸ : F ( ¸ )g 1 −

¸ . ( D 5 6)

Usi n g t h e ri g ht c o nti n uit y of F ( ¸ ) = Pr[ X f ¸ ],  w e h a v e

F ( ) = Pr[ X f ] g 1 − . ( D 5 7)

F urt h er m or e, fr o m t h e d e fi niti o n of ,  w e h a v e

Pr[ X g ] g . ( D 5 8)

T o s e e t h e a b o v e i n e q u alit y, s u p p os e t h at Pr[ X g ] <
.  T h e n fr o m t h e l eft c o nti n uit y of F ( ¸ ) = Pr[ X g ¸ ],

w e c a n fi n d < s u c h t h at Pr[ X g ] f .  T h us,
t h er e e xists < wit h Pr[ X f ] g 1 − ,  w hi c h is a

c o ntr a di cti o n t o t h e d e fi niti o n of .  T o g et h er,  w e h a v e

Pr[ X i < f or all i ∈ [N ]] f (1 − ) N . ( D 5 9)

B y c h o osi n g N = l o g(1 / ¶ ) / ,  w e h a v e

Pr m a x
i

X i g g 1 − (1 − ) l o g(1 / ¶ ) / g 1 − ¶ . ( D 6 0)

T h us,  wit h pr o b a bilit y at l e ast 1 − ¶ ,  w e h a v e ˆ g .
Usi n g t h e  m o n ot o ni cit y of F ( ¸ ),  w e h a v e

Pr[ X f ˆ ] = F ( ˆ ) g F ( ) g 1 − , ( D 6 1)

w hi c h est a blis h es t his l e m m a.
Usi n g t h e a b o v e l e m m a,  w e c a n s h o w t h at, gi v e n a

tr ai ni n g s et of si z e

N tr g
1 2 l o g (3 / ¶ )

, ( D 6 2)

t h e r e al v al u e ˆ f O (u n k ) o bt ai n e d b y t h e al g orit h m
s atis fi es

Pr
ρ ∼ D

[| tr(O (u n k ) ρ ) | f ˆ ] g 1 −
1 2

( D 6 3)

wit h pr o b a bilit y at l e ast 1 − ¶ / 3.  H e n c e,  wit h pr o b a bilit y
at l e ast 1 − ¶ / 3,  w e h a v e

E
ρ ∼ D

|h ( ρ ; · ) − tr(O (u n k ) ρ ) |2 f E
ρ ∼ D

| tr( Ô ( · ) ρ )

− tr(O (u n k ) ρ ) |2 +
1 2

| ˆ + O (u n k ) |2 . ( D 6 4)

Usi n g  L e m m a 1 4 o n t h e  m e a n s q u ar e d err or a n d  C or oll ar y
1 3 o n t h e l o w- d e gr e e a p pr o xi m ati o n,  w e h a v e

E
ρ ∼ D

|h ( ρ ; · ) − tr(O (u n k ) ρ ) |2

f (2 / 3 ) k O (u n k ) 2

f O (u n k ) 2

+
P ∈ S

E
ρ ∼ D

[µ ∗ ( ρ d o m (P ) )]

×
2

3

|P |

|³̂ P ( · ) − ³ P |2 +
3

O (u n k ) 2 ( D 6 5)

wit h pr o b a bilit y at l e ast 1 − ¶ / 3.
L et us d e fi n e t h e v ari a bl es

x P E
ρ ∼ D

[µ ∗ ( ρ d o m (P ) )]
2

3

|P |

³ P ,

´ P E
ρ ∼ D

[µ ∗ ( ρ d o m (P ) )]
2

3

|P |

, f or all P ∈ S .

( D 6 6)

T h e n,  wit h pr o b a bilit y at l e ast 1 − ¶ / 3 o v er t h e s a m pli n g
of t h e tr ai ni n g s et,  w e h a v e t h e f oll o wi n g c h ar a ct eri z ati o n
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of t h e pr e di cti o n err or f or all η > 0:

E
ρ ∼ D

|h ( ρ ; η ) − tr(O (u n k ) ρ ) |2 ≤ O (u n k ) 2

+
3

O (u n k ) 2 +
P ∈ S

´ P |³̂ P ( η ) − ³ P |2 . ( D 6 7)

We utili z e t his f or m t o s h o w t h e e xist e n c e of a g o o d
h y p er p ar a m et er η .

b.  E xist e n c e of a g o o d h y p e r p a r a m et e r η

B y c o nsi d eri n g t h e tr ai ni n g s et si z e t o b e

N tr =
l o g(1 / ¶ )

+
l o g(|S |/ ¶ )

˜ 2
, ( D 6 8)

w e c a n g u ar a nt e e  E q. ( D 6 7) wit h pr o b a bilit y at l e ast 1 −
¶ / 3. F urt h er m or e, utili zi n g  H o e û di n g’s i n e q u alit y a n d t h e
u ni o n b o u n d,  w e c a n als o g u ar a nt e e t h at

|x̂ P − x P | ≤ O (u n k ) ˜ , | ˆ́
P − ´ P | ≤  ˜, f or all P ∈ S

( D 6 9)

wit h pr o b a bilit y at l e ast 1 − ¶ / 3.  T h e n or m i n e q u alit y
gi v e n i n  C or oll ar y 1 1 s h o ws t h at

P ∈ S

|³ P |r ≤
3

C (k )

r

O (l o w) r ( D 7 0)

f or a c o nst a nt gi v e n b y

C (k ) =

√
2 (k !)

2 k k + 1. 5 + (k + 1 ) /(2 k ) (
√

6 + 2
√

3 ) k
. ( D 7 1)

We n o w c o n diti o n o n t h e e v e nt t h at  E qs. ( D 6 7) a n d ( D 6 9)
b ot h h ol d,  w hi c h h a p p e ns  wit h pr o b a bilit y at l e ast 1 −
(2 / 3 ) ¶ .  We ar e n o w r e a d y t o d e ü n e t h e g o o d h y p er p ar a m-
et er η .

L et h y p er p ar a m et er η b el o n gi n g t o t h e gri d i n
E q. ( D 4 2) b e d e ü n e d as

η = 2 mi n (R , l o g2 ( O (u n k ) / ˆ ) ) ˆ . ( D 7 2)

We s e p ar at el y c o nsi d er t w o c as es: ( 1) η = 2 R ˆ , ( 2) η <

2 R ˆ . F or t h e ürst c as e η = 2 R ˆ ,  w e c a n us e |x̂ P | ≤ ˆ i n
E q. ( D 4 6) a n d t h e d e ü niti o n of R t o s e e t h at

³̂ P ( η ) = 0 f or all P ∈ S . ( D 7 3)

Si n c e η = 2 R ˆ ,  w e h a v e R ≤ l o g2 ( O (u n k ) / ˆ ) .  T his
yi el ds η ≤ 2 O (u n k ) ,  w hi c h i m pli es t h at

³̂ P (2 O (u n k ) ) = 0 f or all P ∈ S . ( D 7 4)

H e n c e, t h e r e c o nstr u ct e d P a uli c o e ffi ci e nts ³̂ P (·) ar e t h e
s a m e f or η a n d 2 O (u n k ) .  T h e ült eri n g l e m m a gi v e n i n

L e m m a 1 8 s h o ws t h at

P ∈ S

E
ρ ∼ D

[µ ∗ ( ρ d o m (P ) )]
2

3

|P |

|³̂ P ( η ) − ³ P |2

=
P ∈ S

E
ρ ∼ D

[µ ∗ ( ρ d o m (P ) )]
2

3

|P |

|³̂ P (2 O (u n k ) ) − ³ P |2

≤ 1 2
3

C (k )

r

O (u n k ) 2 − r O (l o w) r ˜ 1 − r/ 2 . ( D 7 5)

F or t h e s e c o n d c as e η < 2 R ˆ ,  w e h a v e t h e f oll o wi n g
b o u n d o n η :

η = 2 l o g2 ( O (u n k ) / ˆ ) ˆ ∈ [ O (u n k ) , 2 O (u n k ) ]. ( D 7 6)

T h e ült eri n g l e m m a gi v e n i n  L e m m a 1 8 s h o ws t h at

P ∈ S

E
ρ ∼ D

[µ ∗ ( ρ d o m (P ) )]
2

3

|P |

|³̂ P ( η ) − ³ P |2

≤ 6 ( η ) r 3

C (k )

r

O (l o w) r ˜ 1 − r/ 2

≤ 1 2
3

C (k )

r

O (u n k ) 2 − r O (l o w) r ˜ 1 − r/ 2 . ( D 7 7)

I n b ot h c as es ( 1) a n d ( 2), usi n g t h e d e ü niti o ns r = 2 k /( k +
1 ) a n d ˜ = ( / 1 2 ) k + 1 (C (k ) /3 ) 2 k ,  w e h a v e

P ∈ S

E
ρ ∼ D

[µ ∗ ( ρ d o m (P ) )]
2

3

|P |

|³̂ P ( η ) − ³ P |2

≤ O (u n k ) 2 − r O (l o w) r . ( D 7 8)

C o m bi ni n g  wit h  E q. ( D 6 7),  w e h a v e

E
ρ ∼ D

|h ( ρ ; η ) − tr(O (u n k ) ρ ) |2 ≤ O (u n k ) 2 +
3

O (u n k ) 2

+ O (u n k ) 2 − r O (l o w) r ( D 7 9)

wit h pr o b a bilit y at l e ast 1 − (2 / 3 ) ¶ .

c.  T h e p r e di cti o n p e rf o r m a n c e of h y p e r p a r a m et e r η ∗

Fr o m t h e d e ü niti o n of h ( ρ ; η ) , f or a n y q u a nt u m st at e ρ ,
w e h a v e

|h ( ρ ; η ) − tr(O (u n k ) ρ )) |2 ≤ | ˆ + O (u n k ) |2 ≤ 4 O (u n k ) 2 .
( D 8 0)

Usi n g  H o e û di n g’s i n e q u alit y a n d t h e u ni o n b o u n d,  w e c a n
s h o w t h at, gi v e n a v ali d ati o n s et of si z e

N v al =
l o g(R / ¶ )

( ) 2
( D 8 1)
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wit h pr o b a bilit y at l e ast 1 − δ / 3,  w e h a v e

1

N v al

N tr+ N v al

= N tr+ 1

|h ( ρ ; η ) − tr(O (u n k ) ρ ))|2 − E
ρ ∼ D

|h ( ρ ; η ) − tr(O (u n k ) ρ )) |2 ≤ O (u n k ) 2

3
( D 8 2)

f or all η ∈ { 2 0 ˆ , . . . , 2R ˆ }.  Usi n g t h e d e ü niti o ns of η ∗ a n d η ,  w e h a v e

E
ρ ∼ D

|h ( ρ ; η ∗ ) − tr(O (u n k ) ρ )) |2 ≤
1

N v al

N tr+ N v al

= N tr+ 1

|h ( ρ ; η ∗ ) − tr(O (u n k ) ρ ))|2 + O (u n k ) 2

3

≤
1

N v al

N tr+ N v al

= N tr+ 1

|h ( ρ ; η ) − tr(O (u n k ) ρ ))|2 + O (u n k ) 2

3

≤ E
ρ ∼ D

|h ( ρ ; η ) − tr(O (u n k ) ρ )) |2 + O (u n k ) 2 2

3
( D 8 3)

wit h pr o b a bilit y at l e ast 1 − δ / 3 o v er t h e s a m pli n g of t h e v ali d ati o n s et.  C o m bi ni n g  wit h  E q. ( D 7 9) a n d e m pl o yi n g t h e
u ni o n b o u n d,  w e h a v e

E
ρ ∼ D

|h ( ρ ; η ∗ ) − tr(O (u n k ) ρ )) |2 ≤ O (u n k ) 2 + O (u n k ) 2 + O (u n k ) 2 − r O (l o w) r ( D 8 4)

wit h pr o b a bilit y at l e ast 1 − δ , as cl ai m e d i n  E q. ( D 3).
Fi n all y, b y n oti n g t h at |S | = O (n k ) a n d k = l o g1. 5 (1 / ), a n d r e c alli n g t h e d e ü niti o n of ˜ i n  E q .( D 4 1) o n t h e ri g ht- h a n d

si d e of  E q. ( D 6 8),  w e h a v e

l o g(1 / δ )
+

l o g(|S |/ δ )

˜ 2
= l o g

n

δ

1 k + 1

2 O (k l o g k )

= l o g
n

δ
2 O {l o g(1 / )[l o g l o g(1 / )+ l o g(1 / )]} . ( D 8 5)

S o it s u ffi c es t o h a v e

N v al = l o g
n

δ
2 {l o g(1 / )[l o g l o g(1 / )+ l o g(1 / )]} . ( D 8 6)

F urt h er m or e, b y n oti n g t h at R = l o g2 1 / ˜ = O (k l o g( ) + k l o g2 k ) i n  E q. ( D 8 1),  w e s e e t h at it s u ffi c es t o h a v e

N v al =
l o g l o g( ) + l o g l o g( ) + l o g(1 / δ )

( ) 2
. ( D 8 7)

R e c all t h at t h e f ull d at a si z e N = N tr + N v al , a n d t h e q u a ntit y i n  E q. ( D 8 7) is d o mi n at e d b y t h at i n  E q. ( D 8 6), yi el di n g o n e
ar g u m e nt i n t h e  mi ni m u m of t h e s a m pl e c o m pl e xit y cl ai m e d i n  T h e or e m 1 3.

d.  Est a blis hi n g s a m pl e c o m pl e xit y o n t h e ri g ht of  E q. ( D 3 9)

B y c o nsi d eri n g t h e f ull d at as et si z e t o b e

N =
l o g(|S |/ δ )

( ˜ ) 2
, ( D 8 8)

H o e û di n g’s i n e q u alit y a n d t h e u ni o n b o u n d c a n b e us e d t o g u ar a nt e e t h at

|x̂ P − x P | ≤ O (u n k ) ˜ , |β̂ P − β P | ≤  ˜ , f or all P ∈ S ( D 8 9)
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wit h pr o b a bilit y at l e ast 1 − δ .  Usi n g  L e m m a 1 7 o n
filt eri n g t h e s m all- w ei g ht f a ct or,  w e h a v e

´ P |³̂ P − ³ P |2 f 3 O (u n k ) 2 ˜ . ( D 9 0)

Usi n g  L e m m a 1 4 o n t h e  m e a n s q u ar e d err or a n d  C or oll ar y
1 3 o n t h e l o w- d e gr e e a p pr o xi m ati o n,  w e h a v e

E
ρ ∼ D

| tr( Ô ρ ) − tr(O (u n k ) ρ ) |2

f (2 / 3 ) k O (u n k ) 2 +

P ∈ S

´ P |³̂ P − ³ P |2

f O (u n k ) 2

2
+ 3 n k O (u n k ) 2 ˜ . ( D 9 1)

Fr o m t h e d e fi niti o n of ˜ i n  E q. ( D 5 3),  w e h a v e

E
ρ ∼ D

| tr( Ô ρ ) − tr(O (u n k ) ρ ) |2 f O (u n k ) 2 . ( D 9 2)

T h e s a m pl e c o m pl e xit y is

N = O
l o g(|S |/ δ )

( ˜ ) 2
= l o g(n / δ ) 2 O (l o g(1 / ) l o g(n )) ,

( D 9 3)

w hi c h c o m pl et es t h e s a m pl e c o m pl e xit y cl ai m e d i n
T h e or e m 1 3.

A P P E N DI X  E:  L E A R NI N G  Q U A N T U M
E V O L U TI O N S  F R O M  R A N D O MI Z E D

E X P E RI M E N T S

We r e c all t h e f oll o wi n g d e fi niti o ns p ert ai ni n g t o cl assi-
c al s h a d o ws f or q u a nt u m st at es a n d q u a nt u m e v ol uti o ns,
b as e d o n r a n d o mi z e d P a uli  m e as ur e m e nts a n d r a n d o m
i n p ut st at es.

D e fi niti o n 7 ( Si n gl e- q u bit st a biliz er st at e). — We d e fi n e

st a b 1 {|0 , |1 , | + , | − , |y + , |y − } ( E 1)

t o b e t h e s et of si n gl e- q u bit st a bili z er st at es.
We d e fi n e r a n d o mi z e d P a uli  m e as ur e m e nts as f oll o ws.
D e fi niti o n 8 ( R a n d o miz e d  P a uli  m e as ur e m e nt). — L et

n > 0.  A r a n d o mi z e d P a uli  m e as ur e m e nt o n a n n - q u bit
st at e is gi v e n b y a 6 n - o ut c o m e p ositi v e o p er at or- v al u e d
m e as ur e ( P O V M)

F (P a uli ) 1

3 n

n

i= 1

|s i s i|
s 1 ,...,s n ∈ st a b 1

, ( E 2)

w hi c h c orr es p o n ds t o  m e as uri n g e v er y q u bit u n d er a r a n-
d o m P a uli b asis ( X , Y , Z ).  T h e o ut c o m e of F (P a uli ) is
a n n - q u bit st at e |ψ = n

i= 1 |s i ,  w h er e |s i ∈ st a b 1 is a
si n gl e- q u bit st a bili z er st at e.

I n t h e f oll o wi n g,  w e d e fi n e t h e cl assi c al s h a d o w of a
q u a nt u m st at e b as e d o n r a n d o mi z e d P a uli  m e as ur e m e nts.
Cl assi c al s h a d o ws c o ul d als o b e d e fi n e d b as e d o n ot h er
r a n d o mi z e d  m e as ur e m e nts [4 6 ].

D e fi niti o n 9 ( Cl assi c al s h a d o w of a q u a nt u m st at e). —
L et n , N > 0.  C o nsi d er a n n - q u bit st at e ρ .  A si z e-N cl assi-
c al s h a d o w S N ( ρ ) of q u a nt u m st at e ρ is a r a n d o m s et gi v e n
b y

S N ( ρ ) {|ψ } N
= 1 , (E 3 )

w h er e |ψ = n
i= 1 |s ,i is t h e o ut c o m e of t h e t h r a n d o m-

i z e d P a uli  m e as ur e m e nt o n a si n gl e c o p y of ρ .
We c a n g e n er ali z e cl assi c al s h a d o ws fr o m q u a nt u m

st at es t o q u a nt u m pr o c ess es b y c o nsi d eri n g r a n d o m pr o d-
u ct i n p ut st at es a n d r a n d o mi z e d P a uli  m e as ur e m e nts.  A
si mil ar g e n er ali z ati o n h as b e e n st u di e d i n  R ef. [ 3 3 ].

D e fi niti o n 1 0 ( Cl assi c al s h a d o w of a q u a nt u m pr o-
c ess). — C o nsi d er a n n - q u bit  C P T P  m a p E .  A si z e-N cl assi-
c al s h a d o w S N (E ) of q u a nt u m e v ol uti o n E is a r a n d o m s et
gi v e n b y

S N (E ) {|ψ (i n) , |ψ (o ut ) } N
= 1 , ( E 4)

w h er e |ψ (i n) = n
i= 1 |s (i n)

,i is a r a n d o m i n p ut st at e

wit h |s (i n)
,i ∈ st a b 1 s a m pl e d u nif or ml y, a n d |ψ (o ut ) =

n
i= 1 |s (o ut )

,i is t h e o ut c o m e of p erf or mi n g t h e r a n d o mi z e d

P a uli  m e as ur e m e nt o n E (|ψ (i n) ψ (i n) |).
Aft er o bt ai ni n g t h e o ut c o m e fr o m N r a n d o mi z e d e x p er-

i m e nts,  w e c a n d esi g n a l e ar ni n g al g orit h m t h at l e ar ns a
m o d el of t h e u n k n o w n  C P T P  m a p E s u c h t h at, gi v e n a n
i n p ut st at e ρ a n d a n o bs er v a bl e O , t h e al g orit h m c o ul d
pr e di ct tr (O E ( ρ )).  T h e ri g or o us g u ar a nt e e is gi v e n i n t h e
f oll o wi n g t h e or e m.

T h e or e m 1 4 ( L e ar ni n g t o pr e di ct a q u a nt u m e v ol u-
ti o n). —L et n , , , δ > 0.  C o nsi d er a n y u n k n o w n n - q u bit
C P T P  m a p E , a n d a cl assi c al s h a d o w S N (E ) of E o bt ai n e d
b y N r a n d o mi z e d e x p eri m e nts  wit h

N = l o g
n

δ
mi n (2 O {l o g(1 / )[l o g l o g(1 / )+ l o g(1 / )]} ,

× 2 O [l o g(1 / ) l o g(n )]). (E 5 )

Wit h pr o b a bilit y g 1 − δ , t h e al g orit h m l e ar ns a f u n cti o n
h s u c h t h at, f or a n y n - q u bit st at e distri b uti o n D i n v ari a nt
u n d er si n gl e- q u bit H a n d S g at es, a n d a n y o bs er v a bl e O
gi v e n as a s u m of f e w- b o d y o bs er v a bl es,  w h er e e a c h q u bit
is a ct e d o n b y O (1 ) of t h e f e w- b o d y o bs er v a bl es,

E
ρ ∼ D

|h ( ρ , O ) − tr(O E ( ρ ))|2

f +
O (l o w)

O

2 l o g1. 5 (1 / ) / [ l o g1. 5 (1 / ) + 1]

O 2 .

( E 6)
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H er e, O (l o w) is t h e l o w- d e gr e e a p pr o xi m ati o n of O aft er
H eis e n b er g e v ol uti o n u n d er E .

T h e s c ali n g gi v e n i n t h e  m ai n t e xt c orr es p o n ds t o
t h e a d diti o n al ass u m pti o n t h at O ≤ 1.  B y n oti n g t h at
2 l o g1. 5 (1 / ) / [ l o g1. 5 (1 / ) + 1] ∈ [ 1, 2),  w e h a v e

O (l o w)

O

2 l o g1. 5 (1 / ) / [ l o g1. 5 (1 / ) + 1]

O 2

≤ O (l o w) 2 l o g1. 5 (1 / ) / [ l o g1. 5 (1 / ) + 1]

≤ m a x ( O (l o w) 2 , 1). (E 7 )

T h e or e m 1 f oll o ws b y c o nsi d eri n g → 0.

1.  L e a r ni n g al g o rit h m

R e c all t h at a si z e- N cl assi c al s h a d o w S N (E ) of t h e  C P T P
m a p E is a s et gi v e n b y

S N (E ) |ψ (i n) =

n

i= 1

|s (i n)
,i , |ψ (o ut ) =

n

i= 1

|s (o ut )
,i

N

= 1

.

( E 8)

Gi v e n a n o bs er v a bl e O t h at c a n b e  writt e n as a s u m of κ -
q u bit o bs er v a bl es,  w h er e e a c h q u bit is a ct e d o n b y at  m ost
d of t h e κ - q u bit o bs er v a bl es  wit h κ , d = O (1 ),  w e h a v e

O =

Q ∈{ I ,X ,Y ,Z }⊗ n : |Q | ≤κ

a Q Q , ( E 9)

w h er e Q : |Q | ≤κ 1 [a Q = 0] = O (n ).  T h e al g orit h m cr e-
at es a d at as et,

ρ = | ψ (i n) ψ (i n) |, y (O )

=
Q : |Q | ≤κ

a Q tr Q

n

i= 1

(3 |s (o ut )
,i s (o ut )

,i | − I )
N

= 1

( E 1 0)

fr o m t h e cl assi c al s h a d o w S N (E ),  w hi c h r e q uir es O (n N )
c o m p ut ati o n al ti m e.  We als o d e fi n e t h e p ar a m et er

η
Q : |Q | ≤κ

|a Q | = O P a uli, 1 ( E 1 1)

b as e d o n t h e gi v e n o bs er v a bl e O .
T h e s a m pl e c o m pl e xit y i n  E q. ( E 5) is t h e  mi ni m u m of

t w o ar g u m e nts.  E a c h of t h e t w o c orr es p o n ds t o a h y p er p a-
r a m et er s etti n g f or k a n d ˜ . L et C (k ) b e t h e f u n cti o n fr o m
C or oll ar y 1 1 a n d C (k , d ) b e t h e f u n cti o n fr o m  C or oll ar y

1 2.  T h e first h y p er p ar a m et er s etti n g c o nsi d ers

k = l o g1. 5 (1 / ) , ˜ =
6 · 2 k

k + 1

×
C ( κ , d )

3

2 C (k )

3

2 k

. ( E 1 2)

T h e s e c o n d h y p er p ar a m et er s etti n g c o nsi d ers

k = l o g1. 5 (2 / ) , ˜ =
9 · 2 k + 1 n k

C ( κ , d )

3

2

.

( E 1 3)

F or e v er y P a uli o bs er v a bl e P ∈ { I , X , Y , Z } ⊗ n wit h |P | ≤
k , t h e al g orit h m c o m p ut es

x̂ P (O ) =
1

N

N

= 1

tr(P ρ )y (O ), ( E 1 4)

ˆ́
P =

1

3

|P |

, ( E 1 5)

³̂ P (O ) =

§
ª̈

ª©

0, ˆ́P ≤ 2 ˜ ,

0, ˆ́
P > 2 ˜ , |x̂ P (O )|/ ˆ́ 1 / 2

P ≤ 2 η
√

˜ ,

x̂ P (O ) / ˆ́
P , ˆ́

P > 2 ˜ , |x̂ P (O )|/ ˆ́ 1 / 2
P > 2 η

√
˜ ,

( E 1 6)

w hi c h r e q uir es O (k N ) ti m e p er P a uli o bs er v a bl e P .
Fi n all y, gi v e n a n n - q u bit st at e ρ , t h e al g orit h m o ut p uts

h ( ρ , O )
P : |P | ≤k

³̂ P (O ) tr(P ρ ) , ( E 1 7)

w hi c h us es a c o m p ut ati o n al ti m e of O (n k ).

2.  Ri g o r o us p e rf o r m a n c e g u a r a nt e e

I n t his s e cti o n,  w e pr o v e t h at t h e l e ar ni n g al g orit h m pr e-
s e nt e d i n t h e l ast s e cti o n s atis fi es  T h e or e m 1 4.  T h e pr o of
us es t h e t o ols pr es e nt e d i n  A p p e n di x D 2 a n d is si mil ar t o
t h e pr o of of  T h e or e m 1 3.

a.  D e fi niti o ns

F or a gi v e n o bs er v a bl e t h at is a s u m of κ - q u bit o bs er v-
a bl es,  w h er e κ = O (1 ) a n d e a c h q u bit is a ct e d o n b y
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d = O (1 ) of t h e κ - q u bit o bs er v a bl es,  w e c a n  writ e

O =

Q ∈{ I ,X ,Y ,Z }⊗ n : |Q | ≤κ

a Q Q . ( E 1 8)

We d e ü n e a f e w v ari a bl es b as e d o n O as f oll o ws.  We
c o nsi d er t h e u n k n o w n o bs er v a bl e t o b e

O (u n k ) E † (O )

P ∈{ I ,X ,Y ,Z }⊗ n

³ P (O )P , ( E 1 9)

a n d t h e l o w- d e gr e e a p pr o xi m ati o n of O (u n k ) t o b e

O (l o w)

P ∈{ I ,X ,Y ,Z }⊗ n : |P | ≤k

³ P (O )P . ( E 2 0)

T h e n, f or all P a uli o bs er v a bl es P ∈ { I , X , Y , Z } ⊗ n , w e
d e ü n e

x P (O )
1

3

|P |

³ P (O ), ´ P
1

3

|P |

. ( E 2 1)

We als o d e ü n e t h e st a n d ar d n - q u bit i n p ut st at e distri b uti o n
D 0 t o b e t h e u nif or m distri b uti o n o v er t h e t e ns or pr o d u ct
of n si n gl e- q u bit st a bili z er st at es.  A ni c e pr o p ert y of D 0 is
t h at, f or a n y st at e ρ i n t h e s u p p ort of D 0 , t h e n o ni d e ntit y
p urit y f or a s u bs yst e m A of si z e L is

µ ∗ ( ρ A ) =
1

2 L
. ( E 2 2)

Usi n g t his pr o p ert y a n d  L e m m a 1 6 o n e xtr a cti n g P a uli
c o e ffi ci e nts,  w e h a v e t h e i d e ntiti es

x P (O ) = E
ρ ∼ D 0

tr(P ρ ) tr(E † (O ) ρ ), ´ P = E
ρ ∼ D 0

tr(P ρ ) 2

= E
ρ ∼ D 0

[µ ∗ ( ρ d o m (P ) )]
2

3

|P |

. ( E 2 3)

We ar e n o w r e a d y t o pr o v e  T h e or e m 1 4.

b.  P r e di cti o n e r r o r u n d e r t h e st a n d a r d dist ri b uti o n D 0

( ü rst s et of h y p e r p a r a m et e rs)

We b e gi n t h e pr o of b y c o nsi d eri n g t h e ürst s et of h y p er-
p ar a m et ers k , ˜ as gi v e n i n  E q. ( E 1 2). F or a P a uli o bs er v-
a bl e Q ∈ { I , X , Y , Z } ⊗ n wit h |Q | ≤ κ = O (1 ),  w e c o nsi d er
t h e r a n d o m v ari a bl e

x̂ P (Q ) =
1

N

N

= 1

tr(P ρ )y (Q ) =
1

N

N

= 1

tr(P ρ ) tr

× Q

n

i= 1

(3 |s (o ut )
,i s (o ut )

,i | − I ) . ( E 2 4)

B e c a us e |Q | = O (1 ),  w e h a v e | tr(Q n
i= 1 (3 |s (o ut )

,i s (o ut )
,i | −

I ))| = O (1 ) wit h pr o b a bilit y 1.  B y c o nsi d eri n g t h e si z e of

t h e cl assi c al s h a d o w S N (E ) t o b e

N =
l o g(n k + κ / ¶ )

˜ 2
, ( E 2 5)

w e c a n utili z e  H o e û di n g’s i n e q u alit y a n d t h e u ni o n b o u n d
t o g u ar a nt e e t h at

|x̂ P (Q ) − x P (Q )| ≤ ˜ f or all P , Q ∈ { I , X , Y , Z } ⊗ n , |P |

≤ k , |Q | ≤ κ ( E 2 6)

wit h pr o b a bilit y at l e ast 1 − ¶ . I n t h e f oll o wi n g pr o of,  w e
c o n diti o n o n t h e a b o v e e v e nt.

Usi n g t h e tri a n gl e i n e q u alit y,  w e h a v e

|x̂ P (O ) − x P (O )| ≤ O P a uli, 1 ˜ = η ˜ ,

| ˆ́P − ´ P | = 0, f or all P : |P | ≤ k . ( E 2 7)

T h e n or m i n e q u alit y gi v e n i n  C or oll ar y 1 1 s h o ws t h at

P : |P | ≤k

|³ P (O )|r ≤
3

C (k )

r

O (l o w) r ( E 2 8)

f or t h e c o nst a nt C (k ) d e ü n e d i n  E q. ( 5).
T h e ült eri n g l e m m a gi v e n i n  L e m m a 1 8 s h o ws t h at

P : |P | ≤k

E
ρ ∼ D 0

[µ ∗ ( ρ d o m (P ) )]
2

3

|P |

|³̂ P (O ) − ³ P (O )|2

≤ 6 η 2 − r 3

C (k )

r

O (l o w) r ˜ 1 − r/ 2 . ( E 2 9)

Fr o m t h e n or m i n e q u alit y a n d c o nst a nt C (k , d ) gi v e n i n
C or oll ar y 1 2,  w e h a v e

η = O P a uli, 1 ≤
3

C ( κ , d )
O . ( E 3 0)

C o m bi n e d  wit h t h e d e ü niti o n of ˜ gi v e n i n  E q. ( E 1 2), w e
h a v e

P : |P | ≤k

E
ρ ∼ D 0

[µ ∗ ( ρ d o m (P ) )]
2

3

|P |

|³̂ P (O ) − ³ P (O )|2

≤
O (l o w)

O

r

2 k
O 2 . ( E 3 1)

Usi n g  L e m m a 1 4 o n t h e  m e a n s q u ar e d err or a n d  C or oll ar y
1 3 o n t h e l o w- d e gr e e a p pr o xi m ati o n,  w e h a v e

E
ρ ∼ D 0

|h ( ρ , O ) − tr(O (u n k ) ρ ) |2 ≤ (2 / 3 ) k O (u n k ) 2

≤ O (u n k ) 2

+
P : |P | ≤k

E
ρ ∼ D 0

[µ ∗ ( ρ d o m (P ) )]
2

3

|P |

|³̂ P (O ) − ³ P (O )|2 .

( E 3 2)
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Usi n g t h e d e ü niti o n of O (u n k ) ,  w e h a v e O (u n k ) = E † (O ) a n d
O (u n k ) ≤ O .  H e n c e,

E
ρ ∼ D 0

|h ( ρ , O ) − tr(O E ( ρ ))|2 ≤ +
2 k

O (l o w)

O

r

O 2 ,

( E 3 3)

w hi c h est a blis h es a pr e di cti o n err or b o u n d f or distri b uti o n
D 0 .

c.  P r e di cti o n e r r o r u n d e r t h e g e n e r al dist ri b uti o n D
( ü rst s et of h y p e r p a r a m et e rs)

We n o w c o nsi d er a n ar bitr ar y n - q u bit st at e distri b u-
ti o n D i n v ari a nt u n d er si n gl e- q u bit H a n d S g at es.  Usi n g
L e m m a 1 4 o n t h e  m e a n s q u ar e d err or a n d  C or oll ar y 1 3 o n
t h e l o w- d e gr e e a p pr o xi m ati o n,  w e h a v e

E
ρ ∼ D

|h ( ρ , O ) − tr(O (u n k ) ρ ) |2 ≤ O 2

+
P : |P | ≤k

E
ρ ∼ D

[µ ∗ ( ρ d o m (P ) )]
2

3

|P |

|³̂ P (O ) − ³ P (O )|2 .

( E 3 4)

R e c all t h at µ ∗ ( ρ d o m (P ) ) ≤ 1; h e n c e,

E
ρ ∼ D

[µ ∗ ( ρ d o m (P ) )]
2

3

|P |

≤ 2 k 1

3

|P |

f or all

P ∈ { I , X , Y , Z } ⊗ n , |P | ≤ k . ( E 3 5)

F urt h er m or e,  w e h a v e E ρ ∼ D 0
[µ ∗ ( ρ d o m (P ) )](2 / 3 ) |P | =

(1 / 3 ) |P |.  T o g et h er,  w e h a v e

E
ρ ∼ D

|h ( ρ , O ) − tr(O (u n k ) ρ ) |2 ≤ O 2 + 2 k

×
P : |P | ≤k

E
ρ ∼ D 0

[µ ∗ ( ρ d o m (P ) )]
2

3

|P |

|³̂ P (O ) − ³ P (O )|2 .

( E 3 6)

C o m bi ni n g t h e a b o v e  wit h  E q. ( E 3 1),  w e h a v e

E
ρ ∼ D

|h ( ρ , O ) − tr(O E ( ρ ))|2 ≤ +
O (l o w)

O

r

O 2 ,

( E 3 7)

w hi c h is t h e pr e di cti o n err or u n d er distri b uti o n D .

d.  P utti n g e v e r yt hi n g t o g et h e r ( ü rst s et of
h y p e r p a r a m et e rs)

Fr o m  E q. ( E 1 2),  w e h a v e s et t h e p ar a m et er ˜ t o b e

˜ =
6

k + 1 C ( κ , d )

3

2 C (k )

3

2 k

. ( E 3 8)

F urt h er m or e, gi v e n t h e cl assi c al s h a d o w S N (E ) of si z e

N = O
l o g(n k + κ / ¶ )

˜ 2
= l o g

n

¶

× 2 O {l o g(1 / )[l o g l o g(1 / )+ l o g(1 / )]} , ( E 3 9)

w e c a n g u ar a nt e e t h at,  wit h pr o b a bilit y at l e ast 1 − ¶ , t h e
f oll o wi n g h ol ds. F or a n y o bs er v a bl e O t h at is a s u m of κ -
q u bit o bs er v a bl es,  w h er e κ = O (1 ) a n d e a c h q u bit is a ct e d
o n b y d = O (1 ) of t h e κ - q u bit o bs er v a bl es, a n d a n y n -
q u bit st at e distri b uti o n D i n v ari a nt u n d er si n gl e- q u bit H
a n d S g at es,  w e h a v e

E
ρ ∼ D

|h ( ρ , O ) − tr(O E ( ρ ))|2 ≤ +
O (l o w)

O

r

O 2 .

( E 4 0)

T his est a blis h es o n e of t h e ar g u m e nts f or t h e s a m pl e
c o m pl e xit y st at e d i n  T h e or e m 1 4.

e.  P r e di cti o n e r r o r u n d e r t h e st a n d a r d dist ri b uti o n D 0

(s e c o n d s et of h y p e r p a r a m et e rs)

I n t h e f oll o wi n g pr o of,  w e c o nsi d er t h e s e c o n d s et of
h y p er p ar a m et ers k , ˜ as gi v e n i n  E q. ( E 1 3).  B y c o nsi d eri n g
t h e si z e of t h e cl assi c al s h a d o w S N (E ) t o b e

N =
l o g(n k + κ / ¶ )

˜ 2
, ( E 4 1)

w e c a n utili z e  H o e û di n g’s i n e q u alit y a n d t h e u ni o n b o u n d
t o g u ar a nt e e t h at

|x̂ P (Q ) − x P (Q )| ≤ ˜ f or all P , Q ∈ { I , X , Y , Z } ⊗ n , |P |

≤ k , |Q | ≤ κ ( E 4 2)

wit h pr o b a bilit y at l e ast 1 − ¶ . I n t h e f oll o wi n g pr o of,  w e
c o n diti o n o n t h e a b o v e e v e nt.  Usi n g t h e tri a n gl e i n e q u alit y,
w e h a v e

|x̂ P (O ) − x P (O )| ≤ O P a uli, 1 ˜ = η ˜ , | ˆ́P − ´ P | = 0,

f or all P : |P | ≤ k . ( E 4 3)

T h e ült eri n g l e m m a gi v e n i n  L e m m a 1 8 s h o ws t h at

P : |P | ≤k

E
ρ ∼ D 0

[µ ∗ ( ρ d o m (P ) )]
2

3

|P |

|³̂ P (O )

− ³ P (O )|2 ≤ 9 η 2 ˜ 2 . ( E 4 4)
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Fr o m t h e n or m i n e q u alit y a n d f u n cti o n C (k , d ) gi v e n i n
C or oll ar y 1 2,  w e h a v e

η = O P a uli, 1 ≤
3

C ( κ , d )
O . ( E 4 5)

C o m bi n e d  wit h t h e d e fi niti o n of ˜ gi v e n i n  E q. ( E 1 3), w e
h a v e

P : |P | ≤k

E
ρ ∼ D 0

[³ ∗ ( ρ d o m (P ) )]
2

3

|P |

|α̂ P (O )

− α P (O )|2 ≤
2 k + 1

O 2 . ( E 4 6)

Usi n g  L e m m a 1 4 o n t h e  m e a n s q u ar e d err or a n d  C or oll ar y
1 3 o n t h e l o w- d e gr e e a p pr o xi m ati o n,  w e h a v e

E
ρ ∼ D 0

|h ( ρ , O ) − tr(O (u n k ) ρ ) |2 ≤ (2 / 3 ) k O (u n k ) 2

+
P : |P | ≤k

E
ρ ∼ D 0

[³ ∗ ( ρ d o m (P ) )]
2

3

|P |

|α̂ P (O ) − α P (O )|2

≤
2

O (u n k ) 2 +
P : |P | ≤k

E
ρ ∼ D 0

[³ ∗ ( ρ d o m (P ) )]
2

3

|P |

|α̂ P (O ) − α P (O )|2 . ( E 4 7)

Usi n g t h e d e fi niti o n of O (u n k ) ,  w e h a v e O (u n k ) = E † (O ) a n d
O (u n k ) ≤ O .  H e n c e,

E
ρ ∼ D 0

|h ( ρ , O ) − tr(O E ( ρ ))|2 ≤
1

2
+

2 k
O 2 , ( E 4 8)

w hi c h est a blis h es a pr e di cti o n err or b o u n d f or distri b uti o n
D 0 .

f.  P r e di cti o n e r r o r u n d e r t h e g e n e r al dist ri b uti o n D
(s e c o n d s et of h y p e r p a r a m et e rs)

We n o w c o nsi d er a n ar bitr ar y n - q u bit st at e distri b u-
ti o n D i n v ari a nt u n d er si n gl e- q u bit H a n d S g at es.  Usi n g
L e m m a 1 4 o n t h e  m e a n s q u ar e d err or,  C or oll ar y 1 3 o n
t h e l o w- d e gr e e a p pr o xi m ati o n, k = l o g1. 5 (2 / ) , t h e f a ct
t h at ³ ∗ ( ρ d o m (P ) ) ≤ 1, a n d E ρ ∼ D 0

[³ ∗ ( ρ d o m (P ) )](2 / 3 ) |P | =
(1 / 3 ) |P |,  w e h a v e

E
ρ ∼ D

|h ( ρ , O ) − tr(O (u n k ) ρ ) |2 ≤
2

O 2 + 2 k

×
P : |P | ≤k

E
ρ ∼ D 0

[³ ∗ ( ρ d o m (P ) )]
2

3

|P |

|α̂ P (O ) − α P (O )|2 .

( E 4 9)

C o m bi ni n g t h e a b o v e  wit h  E q. ( E 4 6),  w e h a v e

E
ρ ∼ D

|h ( ρ , O ) − tr(O E ( ρ ))|2 ≤ O 2 , ( E 5 0)

w hi c h is t h e pr e di cti o n err or u n d er distri b uti o n D .

g.  P utti n g e v e r yt hi n g t o g et h e r (s e c o n d s et of
h y p e r p a r a m et e rs)

Fr o m  E q. ( E 1 3),  w e h a v e s et t h e p ar a m et er ˜ t o b e

˜ =
9 · 2 k + 1 n k

C ( κ , d )

3

2

. ( E 5 1)

F urt h er m or e, gi v e n t h e cl assi c al s h a d o w S N (E ) of si z e

N = O
l o g(n k + κ / ´ )

˜ 2
= l o g

n

´
2 O (l o g(1 / ) l o g(n )) ,

( E 5 2)

w e c a n g u ar a nt e e t h at,  wit h pr o b a bilit y at l e ast 1 − ´ , t h e
f oll o wi n g h ol ds. F or a n y o bs er v a bl e O t h at is a s u m of κ -
q u bit o bs er v a bl es,  w h er e κ = O (1 ) a n d e a c h q u bit is a ct e d
o n b y d = O (1 ) of t h e κ - q u bit o bs er v a bl es, a n d a n y n -
q u bit st at e distri b uti o n D i n v ari a nt u n d er si n gl e- q u bit H
a n d S g at es,  w e h a v e

E
ρ ∼ D

|h ( ρ , O ) − tr(O E ( ρ ))|2 ≤ O 2 . ( E 5 3)

T his c o m pl et es t h e pr o of of  T h e or e m 1 4.

A P P E N DI X  F:  N U M E RI C A L  D E T AI L S

I n t h e n u m eri c al e x p eri m e nts,  w e c o nsi d er t w o cl ass es
of  H a milt o ni a ns:

H =
1

4
i

(X iX i+ 1 + Y iY i+ 1 ) +
1

2
i

h iZ i (X Y m o d el ),

( F 1)

H =
1

2
i

X iX i+ 1 +
1

2
i

h iZ i (Isi n g  m o d el). ( F 2)

H er e h i = 0. 5 f or t h e h o m o g e n e o us Z fi el d, a n d h i is s a m-
pl e d u nif or ml y at r a n d o m fr o m [ − 5, 5] f or t h e dis or d er e d
Z fi el d.  We s ol v e f or t h e ti m e- e v ol v e d pr o p erti es usi n g t h e
J or d a n- Wi g n er tr a nsf or m t o  m a p t h e s pi n c h ai ns t o a fr e e-
f er mi o n  m o d el a n d t h e t e c h ni q u e d es cri b e d i n  R ef. [8 3 ] t o
s ol v e t h e fr e e-f er mi o n  m o d el.

We c o nsi d er t h e tr ai ni n g s et t o b e a c oll e cti o n of N
r a n d o m pr o d u ct st at es |ψ , = 1, . . . , N , a n d t h eir ass o-
ci at e d  m e as ur e d pr o p erti es y c orr es p o n di n g t o  m e as uri n g
a n o bs er v a bl e O aft er e v ol vi n g u n d er U (t) = e x p (− it H).
T h e  m e as ur e d pr o p erti es ar e a v er a g e d o v er 5 0 0  m e as ur e-
m e nts.  H e n c e, y is a n ois y esti m at e of t h e tr u e e x p e ct ati o n
v al u e tr (O U (t)|ψ ψ |U (t) † ).  We c o nsi d er ess e nti all y t h e
s a m e  M L al g orit h m as d es cri b e d i n S e c. III  A, b ut utili z e a
m or e s o p histi c at e d a p pr o a c h t o e nf or c e s p arsit y i n α̂ P . We
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t = 1 0

t = 1 0 6

t = 0

t = 1

I niti al st at e: 
s ∈ { ← ,→ } 1 8 wi t h e v e n →

1
√

2 1 7
|s | . . .

Tr ut h ( e x a ct)

M L pr e di cti o n

Tr ut h ( e x a ct)

M L pr e di cti o n

Tr ut h ( e x a ct)

M L pr e di cti o n

Tr ut h ( e x a ct)

M L pr e di cti o n

FI G. 5.  Vis u ali z ati o n of t h e  M L  m o d el’s pr e di cti o n f or a hi g hl y e nt a n gl e d i niti al st at e ρ = | ψ ψ |.  We c o nsi d er t h e e x p e ct e d v al u e
of Z i(t) = e it H Z ie

− it H , w h er e H c orr es p o n ds t o t h e 1 D 5 0-s pi n X Y c h ai n  wit h a h o m o g e n e o us Z fi el d.  T h e i niti al st at e |ψ h as a  G H Z-
li k e e nt a n gl e m e nt o v er t h e first 1 8-s pi n c h ai n a n d is a pr o d u ct st at e  wit h s pi ns r ot ati n g cl o c k wis e o v er t h e l att er 3 2-s pi n c h ai n.  T o
pr e p ar e |ψ wit h 1 D cir c uits, a d e pt h of at l e ast (n ) is r e q uir e d.  E v e n t h o u g h t h e  M L  m o d el is tr ai n e d o nl y o n r a n d o m pr o d u ct st at es
( a t ot al of N = 1 0 0 0 0), it still p erf or ms a c c ur at el y i n pr e di cti n g t h e hi g hl y e nt a n gl e d st at e o v er a  wi d e r a n g e of e v ol uti o n ti m e t.

als o c o nsi d er α P f or P a uli o p er at or P t h at is g e o m etri c all y
l o c al. F or e as e of a n al ysis,  w e c o nsi d er a si m pl e str at e g y
of s etti n g s m all v al u es t o z er o.  T h e st a n d ar d a p pr o a c h t h at
is oft e n us e d i n pr a cti c e is  L A S S O [7 3 ].

I n t h e n u m eri c al e x p eri m e nts,  w e p erf or m a si m pl e gri d
s e ar c h f or t h e t w o h y p er p ar a m et ers usi n g t w of ol d cr oss-
v ali d ati o n o n t h e tr ai ni n g s et:

k = 1, 2, 3, 4, a = 2 − 1 5 , 2− 1 4 , 2− 1 3 , . . . , 2− 4 , 2− 3 .
( F 3)

H er e k c orr es p o n ds t o t h e  m a xi m u m n u m b er of q u bits t h at
t h e P a uli o p er at ors P a ct o n, a n d a is a h y p er p ar a m et er c or-
r es p o n di n g t o t h e str e n gt h of t h e 1 -r e g ul ari z ati o n t er m i n
L A S S O. I n p arti c ul ar, t h e o pti mi z ati o n pr o bl e m of  L A S S O
is gi v e n b y

mi n
Æα P

1

2 N

N

= 1

y −
P : |P | ≤k

Æα P tr(P |ψ ψ |)
2

+ a
P : |P | ≤k

| Æα P |, (F 4 )

w h er e |P | is t h e n u m b er of q u bits t h at t h e P a uli o bs er v a bl e
P a cts n o ntri vi all y o n.  We t h e n us e t h e v al u es Æα P f o u n d
b y t h e a b o v e o pti mi z ati o n t o f or m a s u c ci n ct a p pr o xi m at e

m o d el

P : |P | ≤k

Æα P P ( F 5)

of t h e ti m e- e v ol v e d o bs er v a bl e O (t) = U (t) † O U (t).  Gi v e n
a n e w i niti al st at e ρ ,  w e pr e di ct t h e ti m e- e v ol v e d pr o p ert y
tr(O (t) ρ ) = tr(O U (t) ρ U (t) † ) usi n g

P : |P | ≤k

Æα P tr(P ρ ) . ( F 6)

I n a d diti o n t o t h e fi g ur es gi v e n i n t h e  m ai n t e xt, Fi g. 5
s h o ws a n ot h er e x a m pl e f or pr e di cti n g a hi g hl y e nt a n gl e d
i niti al st at e.  E v e n t h o u g h t h e  M L  m o d el is tr ai n e d  wit h
r a n d o m pr o d u ct st at es, it still p erf or ms v er y  w ell o n a
str u ct ur e d e nt a n gl e d i niti al st at e.
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