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We present an efficient machine-learning (ML) algorithm for predicting any unknown quantum process
& over n qubits. For a wide range of distributions 7 on arbitrary n-qubit states, we show that this ML
algorithm can learn to predict any local property of the output from the unknown process £, with a small
average error over input states drawn from D. The ML algorithm is computationally efficient even when
the unknown process is a quantum circuit with exponentially many gates. Our algorithm combines effi-
cient procedures for learning properties of an unknown state and for learning a low-degree approximation
to an unknown observable. The analysis hinges on proving new norm inequalities, including a quantum
analogue of the classical Bohnenblust-Hille inequality, which we derive by giving an improved algorithm
for optimizing local Hamiltonians. Numerical experiments on predicting quantum dynamics with evolu-
tion time up to 10 and system size up to 50 qubits corroborate our proof. Overall, our results highlight the
potential for ML models to predict the output of complex quantum dynamics much faster than the time

needed to run the process itself.

DOL: 10.1103/PRXQuantum.4.040337

L. INTRODUCTION

Learning complex quantum dynamics is a fundamental
problem at the intersection of machine learning (ML) and
quantum physics. Given an unknown n-qubit completely
positive trace-preserving (CPTP) map £ that represents a
physical process happening in nature or in a laboratory,
we consider the task of learning to predict functions of the
form

1 (p, 0) = tr(0E(p)), (1

where p is an n-qubit state and O is an n-qubit observ-
able. Related problems arise in many fields of research,
including quantum machine learning [1-10], variational
quantum algorithms [11-17], machine learning for quan-
tum physics [18-29], and quantum benchmarking [30-36].
As an example, for predicting outcomes of quantum exper-
iments [8,37,38], we consider p to be parameterized by a
classical input x, £ is an unknown process happening in
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the lab, and O is an observable measured at the end of
the experiment. Another example is when we want to use
a quantum ML algorithm to learn a model of a complex
quantum evolution with the hope that the learned model
can be faster [7,11,12].

As an n-qubit CPTP map & consists of exponentially
many parameters, prior works, including those based
on covering number bounds [4,7,8,37], classical shadow
tomography [33,39], or quantum process tomography [30—
32], require an exponential number of data samples to
guarantee a small constant error for predicting outcomes
of an arbitrary evolution £ under a general input state
p. To improve upon this, recent works [4,7,8,37,40] have
considered quantum processes £ that can be generated in
polynomial time and shown that a polynomial amount of
data samples suffices to learn tr(O£(p)) in this restricted
class. However, these results still require exponential com-
putation time.

In this work, we present a computationally efficient ML
algorithm that can learn a model of an arbitrary unknown
n-qubit process &£, such that, given p sampled from a
wide range of distributions over arbitrary n-qubit states
and any O in a large physically relevant class of observ-
ables, the ML algorithm can accurately predict f (p, O) =
tr(OE(p)). See Fig. 1 for an illustration. The ML model
can predict outcomes for highly entangled states p after
learning from a training set that only contains data for
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FIG. 1.

Learning to predict an arbitrary unknown quantum process £. Consider an unknown quantum process £ with arbitrarily

high complexity, and a classical dataset obtained from evolving random product states under £ and performing randomized Pauli
measurements on the output states. We give an algorithm that can learn a low-complexity model for predicting the local properties of

the output states given the local properties of the input states.

random product input states and randomized Pauli mea-
surements on the corresponding output states. The training
and prediction of the proposed ML model are both effi-
cient even if the unknown process £ is a Hamiltonian
evolution over an exponentially long time, a quantum cir-
cuit with exponentially many gates, or a quantum process
arising from contact with an infinitely large environment
for an arbitrarily long time. Furthermore, given few-body
reduced density matrices of the input state p, the ML
algorithm uses only classical computation to predict output
properties tr(O€ (p)).

The proposed ML model is a combination of efficient
ML algorithms for two learning problems: (1) predicting
tr(Op) given a known observable O and an unknown state
p, and (2) predicting tr(Op) given an unknown observ-
able O and a known state p. We give sample-efficient
and computationally efficient learning algorithms for both
problems. Then we show how to combine the two learning
algorithms to address the problem of learning to predict
tr(O&(p)) for an arbitrary unknown n-qubit quantum pro-
cess £. Together, the sample and computational efficiency
of the two learning algorithms implies the efficiency of the
combined ML algorithm.

In order to establish the rigorous guarantee for the
proposed ML algorithms, we consider a different task: opti-
mizing a k-local Hamiltonian H =} 'p_; y y 710 @pP. We
present an improved approximate optimization algorithm
that finds either a maximizing or minimizing state |y)

with a rigorous lower or upper bound guarantee on the
energy (Y| H |¢¥) in terms of the Pauli coefficients ap
of H. The rigorous bounds improve upon existing results
on optimizing k-local Hamiltonians [41-44]. We then use
the improved optimization algorithm to give a construc-
tive proof of several useful norm inequalities relating the
spectral norm ||O|| of an observable O and the £, norm
of the Pauli coefficients ap associated with the observ-
able O. The proof resolves a recent conjecture in Ref. [45]
about the existence of quantum Bohnenblust-Hille inequal-
ities. These norm inequalities are then used to establish the
efficiency of the proposed ML algorithms.

II. LEARNING QUANTUM STATES,
OBSERVABLES, AND PROCESSES

Before proceeding to state our main results in greater
detail, we informally describe the learning tasks discussed
in this paper: what do we mean by learning a quantum
state, observable, and process?

A. Learning an unknown state

It is possible, in principle, to provide a complete clas-
sical description of an n-qubit quantum state p. However,
this would require an exponential number of experiments,
which is not practical at all. Therefore, we set a more mod-
est goal: to learn enough about p to predict many of its
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physically relevant properties. We specify a family of tar-
get observables {O;} and a small target accuracy €. The
learning procedure is judged to be successful if we can pre-
dict the expectation value tr(Q;p) of every observable in
the family with € error.

Suppose that p is an arbitrary and unknown n-qubit
quantum state, and that we have access to N identical
copies of p. We acquire information about p by measuring
these copies. In principle, we could consider performing
collective measurements across many copies at once. Or
we might perform single-copy measurements sequentially
and adaptively; that is, the choice of measurement per-
formed on copy j could depend on the outcomes obtained
in measurements on copies 1,2,3,...,j—1. The target
observables we consider are bounded-degree observables.
A bounded-degree n-qubit observable O is a sum of local
observables (each with support on a constant number of
qubits independent of n) such that only a constant number
(independent of n) of terms in the sum act on each qubit.
Most thermodynamic quantities that arise in quantum
many-body physics can be written as a bounded-degree
observable O, such as local observables, few-body corre-
lation functions, geometrically local Hamiltonians, and the
average magnetization.

In the learning protocols discussed in this paper, the
measurements are neither collective nor adaptive. Instead,
we fix an ensemble of possible single-copy measurements,
and for each copy of p, we independently sample from this
ensemble and perform the selected measurement on that
copy. Thus, there are two sources of randomness in the pro-
tocol—the randomly chosen measurement on each copy
and the intrinsic randomness of the quantum measurement
outcomes. If we are unlucky, the chosen measurements
and/or the measurement outcomes might not be sufficiently
informative to allow accurate predictions. We settle for a
protocol that achieves the desired prediction task with a
high success probability.

For the protocol to be practical, it is highly advantageous
for the sampled measurements to be easy to perform in the
laboratory, and easy to describe in classical language. The
measurements we consider, random Pauli measurements,
meet both of these criteria. For each copy of p and each of
the n qubits, we choose uniformly at random to measure
one of the three single-qubit Pauli observables X, Y, or
Z. This learning method, called classical shadow tomog-
raphy, was analyzed in Ref. [46], where an upper bound
on the sample complexity (the number N of copies of p
needed to achieve the task) was expressed in terms of a
quantity called the shadow norm of the target observables.

In this work, using a new norm inequality derived here,
we improve on the result in Ref. [46] by obtaining a
tighter upper bound on the shadow norm for bounded-
degree observables. The upshot is that, for a fixed target
accuracy €, we can predict all bounded-degree observables
with spectral norm less than B by performing random Pauli

measurement on
N = O(log(n)B*/€%) (2)

copies of p. This result improves upon the previously
known bound of QO(n log(n)Bz/ez). Furthermore, we
derive a matching lower bound on the number of copies
required for this task, which applies even if collective
measurements across many copies are allowed.

B. Learning an unknown observable

Now suppose that O is an arbitrary and unknown n-
qubit observable. We also consider a distribution D on
n-qubit quantum states. This distribution, too, need not be
known, and it may include highly entangled states. Our
goal is to find a function h(p) that predicts the expecta-
tion value tr(Op) of observable O on state p with a small
mean squared error:

E _|h(p) —tr(Op)* <e.
p~D

To define this leamning task, it is convenient to assume that
we can access training data of the form

{pe, tr(Ope) Yo, 3)

where py is sampled from distribution D. In practice,
though, we cannot directly access the exact value of the
expectation value tr(Opy); instead, we might measure O
multiple times in state p; to obtain an accurate estimate of
the expectation value. Furthermore, we do not necessarily
need to sample states from D to achieve the task. We might
prefer to learn about O by accessing its expectation value
in states drawn from a different ensemble.

A crucial idea of this work is that we can learn O
efficiently if distribution D has suitably nice features.
Specifically, we consider distributions that are invariant
under single-qubit Clifford gates applied to any one of the
n qubits. We say that such distributions are locally flat,
meaning that the probability weight assigned to an n-qubit
state is unmodified (i.e., the distribution appears flat) when
we locally rotate any one of the qubits. Locally flat distri-
butions include random product states, ground and thermal
states of random local Hamiltonians, and any state that is
generated by a circuit, where the last circuit layer consists
of random single-qubit gates. Furthermore, any distribu-
tion that is at most polynomially far from a locally flat
distribution (measured in terms of the maximum likelihood
ratio) can be predicted efficiently and accurately.

An arbitrary observable O can be expanded in terms of
the Pauli operator basis:

o- ¥

Pe{lX Y,Zy®"

apP. (4)
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Though there are 4" Pauli operators, if distribution D is
locally flat and O has a constant spectral norm, we can
approximate the sum over P by a truncated sum,

ok — Z

Pe{lX,Y.Z)®n: |P|<k

apP, (5)

including only the Pauli operators P with weight |P| up
to k, those acting nontrivially on no more than & qubits.
The mean squared error incurred by this truncation decays
exponentially with k. Therefore, to learn O with mean
squared error e, it suffices to learn this truncated approx-
imation to O, where k = O(log(1/¢)). Furthermore, using
norm inequalities derived in this paper, we show that, for
the purpose of predicting the expectation value of this trun-
cated operator, it suffices to learn only a few relatively
large coefficients ap, while setting the rest to zero. The
upshot is that, for a fixed target error €, an observable with
constant spectral norm can be learned from training data
with size O(logn), where the classical computational cost
of training and predicting is n®®.

Usually, in machine learning, after learning from a train-
ing set sampled from a distribution D, we can only predict
new instances sampled from the same distribution D. We
find, though, that, for the purpose of learning an unknown
observable, there is a particular locally flat distribution D’
such that learning to predict under D’ suffices for predict-
ing under any other locally flat distribution as well as any
other distribution that is at most polynomially far away
from a locally flat distribution. Namely, we sample from
the n-qubit state distribution D’ by preparing each one of
the n qubits in one of the six Pauli operator eigenstates
{10y, 1), |4+) 4 | =) s [v+) . [¥v—)}, chosen uniformly at ran-
dom. Pleasingly, preparing samples from D’ is not only
sufficient for our task, but also easy to do with existing
quantum devices.

After training is completed, to predict tr(Op) for a new
state p drawn from distribution D, we need to know
some information about p. State p, like operator O, can
be expanded in terms of Pauli operators, and when we
replace O by its weight-k truncation, only the truncated
part of p contributes to its expectation value. Thus, if the
k-body reduced density matrices (RDMs) for states drawn
from D are known classically then the predictions can
be computed classically. If the states drawn from D are
presented as unknown quantum states then we can learn
these k-body RDMs efficiently (for small k) using classical
shadow tomography and then proceed with the classical
computation to obtain a predicted value of tr(Op).

C. Learning an unknown process
Now suppose that £ is an arbitrary and unknown quan-
tum process mapping n qubits to n qubits. Let {O;} be a
family of target observables and D be a distribution on

quantum states. We assume the ability to repeatedly access
& for a total of N times. Each time, we can apply £ to an
input state of our choice, and perform the measurement of
our choice on the resulting output. In principle, we could
allow input states that are entangled across the N chan-
nel uses, and allow collective measurements across the N
channel outputs. But here we confine our attention to the
case where the N inputs are unentangled, and the chan-
nel outputs are measured individually. Our goal is to find a
function h(p, O) that predicts, with a small mean squared
error, the expectation value of O; in the output state £(p)
for every observable O; in the family {O;}:

E |h(p,0;) — tr(0:£(p))|* < €. (6)
p~D

Our main result is that this task can be achieved efficiently
if O; is a bounded-degree observable and D is locally flat.
That is, N, the number of times we access £, and the
computational complexity of training and prediction scale
reasonably with the system size n and the target accuracy
€. For example, any generic input product state can be pre-
dicted efficiently and accurately. From Eq. (6), it is also
easy to see that a small average error can be achieved for
any distribution D that is at most polynomially far away
from a locally flat distribution with distance measured by
the maximum likelihood ratio.

To prove this result, we observe that the task of learning
an unknown quantum process can be reduced to learning
unknown states and learning unknown observables. If pg
is sampled from distribution D then, since £ is unknown,
&(p¢) should be regarded as an unknown quantum state.
Suppose that we learn this state; that is, after preparing and
measuring £ (p,) sufficiently many times we can accurately
predict the expectation value tr(O;€(pg)) for each target
observable O;.

Now note that tr(0;E(pp)) = tr(E1(0;))p,), where EF
is the (Heisenberg-picture) map dual to &. Since &7 is
unknown, £Y(0;) should be regarded as an unknown
observable. Suppose that we learn this observable; that is,
using the dataset {p¢, tr(EY(0;) pe)} as training data, we can
predict tr(£7(0;) p) for p drawn from D with a small mean
squared error. This achieves the task of learning process £
for state distribution D and target observable O;.

Having already shown that arbitrary quantum states
can be learned efficiently for the purpose of predicting
expectation values of bounded-degree observables and that
arbitrary observables can be learned efficiently for any
input state distribution that is not superpolynomially far
away from a locally flat distribution, we obtain our main
result. Since distribution D is not too far from locally
flat, it suffices to learn the low-degree truncated approx-
imation to the unknown operator £¥(0;), incurring only
a small mean squared error. To predict tr(€ t(0;)p), then,
it suffices to know only the few-body RDMs of the input
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state p. For any input state p, these few-body density
matrices can be learned efficiently using classical shadow
tomography.

As noted above in the discussion of learning observ-
ables, states p; in the training data need not be sampled
from D. To learn a low-degree approximation to £7(0;),
it suffices to sample from the uniform distribution over
product states. Even if we sample only product states dur-
ing training, we can make accurate predictions for highly
entangled input states. We also emphasize again that the
unknown process £ is arbitrary. Even if £ has quantum
computational complexity exponential in n, we can learn to
predict tr(O£ (p)) accurately and efficiently for bounded-
degree observables O and for any distribution on the input
state p that is at most polynomially far from some locally
flat distribution.

III. ALGORITHM FOR LEARNING AN
UNKNOWN QUANTUM PROCESS

Consider an unknown n-qubit quantum process £ (a
CPTP map). Suppose that we have obtained a classi-
cal dataset by performing N randomized experiments
on £. Each experiment prepares a random product state
[y = @7, |s™), passes through &, and performs
a randomized Pauli measurement [46,47] on the out-
put state. Recall that a randomized Pauli measurement
measures each qubit of a state in a random Pauli
basis (X, Y, or Z) and produces a measurement out-
come of [y©0) = Q™ |s), where |s") € stab) £
{10), 1), |4+) . |—=) s v+) . ly—)}. We denote the classical
dataset of size N by

SN<£>é{|w?“’)=®|s§'t’:)>, lpe) = ®|s(°u0] ,
i=1

(7)

3P12p(0),
ap(0) =
otherwise.

The computation of xp(0) and &p(O0) can be done clas-
sically. The basic idea of &p(O) is to set the coefficient
3PI%p(0) to zero when the influence of Pauli observable
P is negligible. Given an n-qubit state p, the algorithm
outputs

h(p,0)= ) @p(0)tr(Pp). (10)

P: |P|<k

P 5 W =
(5)" > 22 and |5p(0)] > 2-3M2VE S, 20 lagl,

where |S(mJ P |S(°“t)) € stab;. BEach product state is rep-
resented classwally with Q(n) bits. Hence, the classical
dataset Sy (€) is of size O(nN) bits. The classical dataset
can be seen as one way to generalize the notion of classi-
cal shadows of quantum states [46] to quantum processes.
Our goal is to design an ML algorithm that can learn an
approximate model of £ from the classical dataset Sy (E),
such that, for a wide range of states p and observables
O, the ML model can predict a real value h(p, O) that is
approximately equal to tr(O€(p)).

A. ML algorithm

We are now ready to state the proposed ML algorithm.
At a high level, the ML algorithm learns a low-degree
approximation to the unknown n-qubit CPTP map £.
Despite the simplicity of the ML algorithm, several ideas
go into the design of the ML algorithm and the proof of the
rigorous performance guarantee. These ideas are presented
in Sec. IV below.

Let O be an observable with ||O| < 1 that is written as
a sum of few-body observables, where each qubit is acted
on by O(1) of the few-body observables. We denote the
Pauli. I:epresentation of O as de{J.X.Y.Z}@‘ (.IQQ. B){ the
definition of O, there are (O(n) nonzero Pauli coefficients
ag. We consider a hyperparameter € > 0; roughly speak-
ing, € will scale inverse polynomially in the dataset size
N from Eq. (12) below. For every Pauli observable P €
{I,X,Y,Z}®" with |P| < k = ©O(log(1/¢)), the algorithm
computes an empirical estimate for the corresponding

Pauli coefficient ap via
®|sg,))( "“’|)

(e
=l
= (O ®(3| (ou'r) (out) [)), (8}

xp(0) =

9)

With a proper implementation, the computational time
is O(kn*N). Note that, to make predictions, the ML
algorithm only needs the k-body reduced density matri-
ces (k-RDMs) of p. The k-RDMs of p can be efficiently
obtained by performing randomized Pauli measurement
on p and using the classical shadow formalism [46,47].
Except for this step, which may require quantum compu-
tation, all other steps of the ML algorithm only require
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classical computation. Hence, if the ~-RDMs of p can
be computed classically then we have a classical ML
algorithm that can predict an arbitrary quantum process £
after learning from data.

B. Rigorous guarantee

To measure the prediction error of the ML model, we
consider the average-case prediction performance under
an arbitrary n-qubit state distribution D invariant under
single-qubit Clifford gates, which means that the proba-
bility distribution fp(p) of sampling a state p is equal to
fp(UpU") of sampling UpUT for any single-qubit Clifford
gate U. We call such a distribution locally flat.

Theorem 1 (Learning an unknown quantum process).—
Suppose that €,/ = @(1) and that there is a training
set Sy(&) of size N = O(logn) as specified in Eq. (7).
With high probability, the ML model can learn a function
h(p, O) from Sy (&) such that, for any distribution D over
n-qubit states invariant under single-qubit Clifford gates,
and for any bounded-degree observable O with ||O]| < 1,

E |h(p,0) — tr(OE (p))* < € +max(|O'|I%, )€/,
i
(11)

where @ is the low-degree truncation [of degree k =
[log; 5(1/€)7] of observable O after the Heisenberg evo-
lution under £. The training and prediction time of
h(p,O) are both polynomial in n. When € is small and
€' =0, the data size N and computational time scale as
2O(log(1/e) log(m))

The detailed theorem statement and the proof of the
theorem are given in Appendix E. An interesting aspect
of the above theorem is that the states sampled from distri-
bution D can be highly entangled, even though the training
data Sy (&) only contains information about random prod-
uct states. From the theorem, we can see that if ||O'| =
O(1) then we only need OQ(log(n)) samples to obtain a
constant prediction error. Otherwise, O(log(n)) samples
are still enough to guarantee a constant prediction error
relative to ||O'||>. The precise scaling is given as follows.
Consider data size

N = log(n) min (2Ouog(uemogrug(1/e>+1ogwe*)]1,

»OTlog(1/e) log(n)]) : (12)

The computational time to learn and predict h(p,O) is
bounded above by O(kn*N) and the prediction error is
bounded as

E 1h(0,0) - tr(0€(p))|* < € +max(|O'|I%, 1)
e
(13)

As we take €’ to be zero, we can remove the dependence
on the low-degree truncation @'. In this setting, N and

computation time both become 20Ueg(1/e)lee() ~which is
polynomial in n if e = ®(1) and is quasipolynomial in n if
€ = 1/poly(n).

For a distribution D that is not locally flat, we can con-
sider a locally flat distribution D* that is closest to D
under the distance defined by the maximum likelihood
ratio A 1= supp[pp(p)/ppt (p)], where pp(p) is the prob-
ability density of p under D. We can see that the average
prediction error under D satisfies

E_|h(p, 0) —tr(OE(p))[*
p~D

<A E. |h(p, 0) — tr(OE (p)) . (14)
s

Hence, if the distance A is at most poly(n) then the predic-
tion error under D is small using a quasipolynomial sample
complexity and computational time.

IV. PROOF IDEAS

The proof of the rigorous performance guarantee for the
proposed ML algorithm consists of five parts. The first
two parts presented in Appendices A and B are a detour
to establish a few fundamental and useful norm inequali-
ties about Hamiltonians and observables. The latter three
parts given in Appendices C, D, and E apply the newly
established norm inequalities to three learning tasks. In the
following, we present the basic ideas in each part.

A. Improved approximation algorithms for optimizing
local Hamiltonians

We begin with a different task, namely, optimizing local
Hamiltonians. We are given an n-qubit k-local Hamiltonian

He ¥

Pe{l.X.Y,Z)®n: |P|<k

apP, (15)

where |P| is the weight of the Pauli operator P, the number
of qubits upon which P acts nontrivially. Our goal is to find
a state |Y) that maximizes or minimizes (Y| H [¢). This
task is related to solving ground states [48,49] when we
consider minimizing (Y| H |{) and quantum optimization
[43,44,50-54] when we consider maximizing (Y| H |).
We give a general randomized approximation algorithm
in Appendix A for producing a random product state
[) that either approximately minimizes or approximately
maximizes a k-local Hamiltonian H with a rigorous upper
or lower bound based on the Pauli coeflicients ap of H.
The proposed optimization algorithm applies to various
classes of Hamiltonians and is inspired by the proofs of
Littlewood’s 4/3 inequality [55] and the Bohnenblust-Hille
inequality [56]. For classes that have been studied previ-
ously [41-44], the proposed algorithm yields an improved
bound. Our improvement crucially stems from our con-
struction for the random state |y). In Refs. [41—43] the
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authors utilize a random restriction approach, where some
random subset of qubits is fixed with some random val-
ues and the rest of the qubits are optimized. On the other
hand, we utilize a polarization approach, where we repli-
cate each qubit many times, randomly fix all except the
last replica, optimize the last replica, and combine using a
random-signed averaging. A detailed comparison is given
in Appendices A lcand A 2.

Two classes of Hamiltonians used in our learning appli-
cations are general k-local Hamiltonians and bounded-
degree k-local Hamiltonians. A k-local Hamiltonian with
degree at most d is a Hermitian operator that can be writ-
ten as a sum of k-qubit observables, where each qubit is
acted on by at most d of the k-qubit observables.

Corollary 1 (Optimizing the general k-local Hamilto-
nian)—Consider an n-qubit k-local Hamiltonian

P: |P|<k

There is a randomized algorithm that runs in time O
and produces either a random maximizing state [{) =

[¥1) ® - - - ® |Y,) satisfying
E{(¢IH[¥)]= E [¢lH )]
[¥r) l¢): H

I Haar

+ C(k) ( VB e

) (k+1)/(2k)
P

(17)

or a random minimizing state [¢) = Y1) @ - ® |¥)
satisfying

EvIHIY)I< E [¢IH][)]
i) I#): Haar

—Ck) ( Z |ap|2kf(k+l)

) (k+1)/(2k)
P

(18)

where C(k) = 1/ exp(®(klogk)).

Corollary 2 (Optimizing the bounded-degree k-local
Hamiltonian).—Consider an n-qubit k-local Hamiltonian
H =} p. pj<x@pP with bounded degree d, |ap| <1 for
all P, and k= O(1). There is a randomized algorithm
that runs in time O(nd) and produces either a random
maximizing state |¥) = |{1) @ - - - @ [¥,) satisfying

C
H > H + — 19
I]E]}[(WI Y)] = |¢$>:IE%LW[(QE’JI [@)] W7 PZ# lep| (19)
or a random minimizing state [¢) = Y1) @ --- @ |¥)
satisfying

C
H H iy 20
ﬂ%“‘“ |w)15|¢};EHw[(¢| p)] ﬁ;#mpu )

for some constant C.

We note that in the above results, we cannot control
whether our algorithm outputs an approximate maximizer
or minimizer. This caveat stems from the use of polariza-
tion, where the random-signed averaging only guarantees
improvement in one of the two directions. Modifying our
approach to address this issue is an interesting direction for
future work.

B. Norm inequalities from approximate optimization
algorithms

The bridge that connects the optimization of k-local
Hamiltonians and efficient learning of quantum states and
processes is a set of norm inequalities. A norm that char-
acterizes the efficiency of learning is the Pauli-p norm,
defined as the £, norm on the Pauli coefficients of a
Hamiltonian H = ) p apP,

lp
IH [[pauiip = ( >, |ap|P) L@
Pe{lX,Y,Z)y®n

The rigorous guarantees from the previous section, namely,
on finding a state |) whose energy is higher or lower than
a Haar-random state by a margin that depends on the Pauli
coefficients ap, give an algorithmic proof that the spectral
norm [|H| and the Pauli coefficients ap are related. The
proof of this relation is given in Appendix B. In particu-
lar, for general and bounded-degree k-local Hamiltonians,
we can use the rigorous guarantee from the approxima-
tion algorithms to obtain the following norm inequalities.
Corollary 3 proves the conjecture given in Ref. [45].

Corollary 3 (Norm inequality for the general k-local
Hamiltonian)—Given an n-qubit k-local Hamiltonian H,
we have

%C(k) 15 |l pauti 26/ k1) < IH (22)

where C(k) = 1/exp(®(klogk)).

Corollary 4 (Norm inequality for the bounded-degree
local Hamiltonian)—Given an n-qubit k-local Hamilto-
nian H with bounded degree d, we have

1Ck, d) | H llpautit < IH], (23)
where C(k,d) = l/(\/E exp(®@(klogk))).

C. Sample-optimal algorithm for predicting
bounded-degree observables

As the first application of the above norm inequalities
to learning, we consider the basic problem of predicting
many properties of an unknown n-qubit state p. Given M
observables Oj,..., Oy, after performing measurements
on multiple copies of p, we would like to predict tr(O;p)
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to € error for all i € {1,..., M}. This is the task known as
shadow tomography [46,57,58]. One approach for obtain-
ing practically efficient algorithms for shadow tomography
is via the classical shadow formalism [46].

We consider a physically relevant class of observables,
where the observable O; = ). Oy is a sum of few-body
observables O;; and each qubit is acted on by (1) of the
few-body observables. Despite significant recent progress
in shadow tomography [8,33,57,59—70], the sample com-
plexity (number of copies of p) for predicting this class
of observables has not been established. The central chal-
lenge is the appearance of the Pauli-1 norm [|O;paui,
when characterizing the sample complexity. In particular,
one can bound the shadow norm ||O;|shadow [46], Which
gives an upper bound on the sample complexity in terms of
the Pauli-1 norm || O;||pauti,1 up to a constant factor. Using
the new norm inequality established in this work, we give
a sample-optimal algorithm for predicting bounded-degree
observables.

The sample-optimal algorithm is equivalent to perform-
ing classical shadow tomography based on randomized
Pauli measurements [46,47], and is essentially the ML
algorithm given in Sec. Il A with a fixed input state. Con-
sider an unknown n-qubit state p. After performing N
randomized Pauli measurements on N copies of p, we have
a classical dataset denoted as

n N
Sn(p) = [ ™) = Q) Isgr”) } ,

=1

(24)

i=1
where |S§°i“t)) € stab; is a single-qubit stabilizer state.
Given an observable O, the algorithm predicts

N n
l oul oul
hO) == (0®(3|s§_f "Xsi"| —1)). (25)
=1 i=l1

It is not hard to see that computing #(O) requires only
O(nN) classical computation time. Hence, as we show
later that N = O(Iog(n)/ez), the learning algorithm is very
efficient. Using the norm inequality for bounded-degree
local Hamiltonian || H||pauii1 < C||H|| for a constant C in
Corollary 4, and the classical shadow formalism [46,47],
we obtain the following performance guarantee.

Theorem 2 (Sample complexity upper bound)—Con-
sider an unknown n-qubit state p and any n-qubit observ-
able Oy,...,0y with ||O;|| < By. Suppose that each
observable O; is a sum of few-body observables, where
each qubit is acted on by O(1) of the few-body observ-
ables. Using a classical dataset Sy (p) of size

. 2
— O(log(mm(M, n))B2, ),

- (26)

we have |h(0;) — tr(O;p)| < e foralli € {1,...,M} with
high probability. The constant factor in the O(-) notation

above scales polynomially in the degree and exponentially
in the locality of the observables.

The following theorem shows that the above algorithm
achieves the optimal sample complexity of any algorithm
that can perform collective measurement on many copies
of p.

Theorem 3 (Sample complexity lower bound)—Con-
sider the following task. There is an unknown n-qubit
state p, and we are given M observables Oy,..., Oy with
max;||O;|| < Bx. Each observable O; is a sum of few-body
observables, where every qubit is acted on by O(1) of the
few-body observables. We would like to estimate tr(O;p)
to € error for all i € [M] with high probability by perform-
ing arbitrary collective measurements on N copies of p.
The number of copies N must be at least

. 2
A Q(log(mm(M,n))Boo) a7

2

for any algorithm to succeed in this task.
The detailed proofs of the sample complexities stated in
the above theorems are given in Appendix C.

D. Efficient algorithms for learning an unknown
observable from log(n) samples

As a second learning application of the norm inequali-
ties, we consider the task of learning an unknown n-qubit
observable O“™ = ", v y 71en @pP. We can think of

this unknown observable as £7(0), i.e., the observable
O after Heisenberg evolution under the unknown pro-
cess £. Suppose that we are given a training dataset of
{02, tr(0™™0 py)}Y_,, where py is sampled from an arbitrary
distribution D over n-qubit states that is invariant under
single-qubit Clifford gates. Given an integer k > 0, we
define the weight-k truncation of O™ to be the Hermitian
operator

apP, (28)

Ofunkh) A& 3

Pe{l.X.Y,Z)®n: |P|<k

where |P| is the number of qubits upon which P acts
nontrivially. For a small k, we can think of 0®“™%%) as a low-
weight approximation of the unknown observable O™,
By definition, O“"%% is a k-local Hamiltonian; hence, the
norm inequality in Corollary 3 shows that

1
3 C(k) || O™™P || pagti 24y 1)

1
= 5C(fs:)( .

l/r
|ap|”) < |o=kh,
Pe(l X.Y,Z)®n:|P|<k

(29)

where r = 2k/(k+ 1) € [1,2). An £,-norm bound (r < 2)
on the Pauli coefficients implies that we can remove most
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of the small Pauli coefficients without incurring too much
change under the £; norm. As an example, consider an M-
dimensional vector x with ||x||, < 1. Given € > 0, let X be
the M-dimensional vector withX; = x; if |x;] > € and X; =
0if |x;| <€. We have

~n2 2 ~2—
le=F3= > W’ <7 Y nl

it x| <€ i x| <€

<@ <& (30)

In Appendix D 1, we show that the average error (both the
mean squared error and the mean absolute error) is charac-
terized by the £; norm. Hence, Eq. (29) implies that we can
set most of the Pauli coefficients in O™ to zero without
incurring too much error on average.

Using the above reasoning, learning the low-weight
truncation 0% amounts to learning the large Pauli coef-
ficients of O®"% and setting all small Pauli coefficients to
zero. This ensures that the learning can be done very effi-
ciently. This approach is presented in Appendix D2 with
the main result stated in Lemma 18. It is inspired by the
learning algorithm of Ref [71] that achieves a logarith-
mic sample complexity for learning classical low-degree
functions.

The last step in the proof is to argue that the low-weight
truncation O™™&F) is a good surrogate for the unknown
observable O™ when the goal is to predict tr(O™™® p).
The key insight here is that, for distributions D that are
invariant under single-Clifford gates, the contribution of
any Pauli term P in 0“0 to E,-p[tr(0“™ p)?] is expo-
nentially decaying in weight |P|. This allows us to prove
that E,.p[tr((O®0 — OWnkb) 5)2] is small.

Putting these ingredients together, we arrive at the fol-
lowing theorem. As stated in the theorem, the learning
algorithm is computationally efficient.

Theorem 4 (Learning an unknown observable)—Sup-
pose that €,€',6 > 0. Let k = [log, 5(1/€)] and r = 2k/
(k+ 1) € [1,2). From training data {pg, tr(O“™ p;)}_| of
size

N = log(n/8) min (20”08(1/6)505 log(1/€)-+log(1/¢)]}

Ollog(1/¢) iug(rx)]) : (31)

where p, is sampled from D, we can learn a function A(p)
such that

E_|h(p) — tr(0“™p)|* < (e + €)[| 0™
p~D

Sl [ ] o] ot
(32)

with probability at least 1 — 8. The training and prediction
times of h(p) are O(Nn).

The factor of [|O®™||? in the prediction error is the
natural scale of the squared error. From the theorem,
we can see that we only need O(log(n)) samples to
obtain a constant prediction error relative to oM )12
|0 kR |7 |O®™ ) |27 The proof of the theorem and the
detailed description of the ML algorithm are given in
Appendix D.

E. Learning an unknown quantum process

The ML algorithm for learning an unknown n-qubit
quantum process £ is essentially the combination of the
two learning applications described above with a few mod-
ifications. At a high level, we consider the following. There
is an n-qubit state p sampled from an unknown distribu-
tion D, as well as an observable O that can be written as a
sum of few-body observables, where each qubit is acted on
by a constant number of the few-body observables. In the
first stage, we use the sample-optimal algorithm for pre-
dicting the bounded-degree observable O, where £ (p¢) is
an unknown quantum state, thus transforming the classical
dataset Sy (&) in Eq. (7) into a dataset,

{oe 2 19" Xu ™. (O (p)) Vi, (33)
that maps quantum states to real numbers. In the sec-
ond stage, we apply the efficient algorithm for learning an
unknown observable 0™ = £f(0), regarding Eq. (33) as
the training data for this task, thus predicting tr(€ t0)p) =
tr(O& (p)) for state p drawn from distribution D. Because
both stages of the algorithm run in time polynomial in n,
the overall runtime for this procedure is polynomial in n.

In our actual proofs, there are a few deviations from
the above high-level design, stemming from the fact that
the input states p¢ are tensor products of random single-
qubit stabilizer states. This specific setting allows a few
simplifications to be made. With the simplifications, we
can remove an additive factor of € in the prediction error.
Furthermore, a surprising fact is that learning from ran-
dom product states is sufficient to predict highly entangled
states sampled from any distribution D invariant under
single-qubit Clifford unitaries. This surprising fact is a
result of the characterization of the prediction error given
in Lemma 14 based on a modified purity on subsystems of
an input quantum state p ~ D.

By combining the five parts, we can establish Theorem
1, the precise sample complexity scaling in Eq. (12), and
the prediction error bound in Eq. (13). The full proof is
given in Appendix E.

V. NUMERICAL EXPERIMENTS

We have conducted numerical experiments to assess the
performance of ML models in learning the dynamics of
several physical systems. The results corroborate our the-
oretical claims that long-time evolution over a many-body
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system can be learned efficiently. While our theorem only
guarantees good performance for randomly sampled input
states, we also find that the ML models work very well
for structured input states that could be of practical inter-
est. The source code is available from a public GitHub
repository [72]. We note that all prior tomographic pro-
tocols that can learn an arbitrary quantum process require
a sample complexity that scales exponentially in n. The
strong numerical performance demonstrated here raises the
hope that the synthesis of existing tomographic techniques
and the low-weight truncation proposed in this work will
enable a more powerful ML method for predicting arbi-
trary quantum processes.

We focus on training ML models to predict output state
properties after the time dynamics of one-dimensional
(1D) n-spin XY and Ising chains with homogeneous or dis-
ordered Z fields. Let H be the many-body Hamiltonian.
The quantum process £ is given by £(p) = e pe™
for a significantly long evolution time ¢ = 10°. We con-
sider the ML models described by Eq. (10). While we
utilize the very simple sparsity-enforcing strategy of set-
ting small values to zero to prove Theorem 1, the standard
sparsity-enforcing approach is through £; regularization
[73]. A detailed description of applying £ regularization to
enforce sparsity in ap(0) is given in Appendix F. We find
the best hyperparameters using fourfold cross-validation to

minimize the root-mean-square error (RMSE) and report
the predictions on a test set.

Figure 2 considers the performance for predicting the
expectation of the Pauli-Z operator Z; on the output state
for randomly sampled product input states not in the
training data. Figure 2(a) illustrates the many-body Hamil-
tonian H. Figure 2(b) shows the dependence of the error
on the training set size N. We can clearly see that, as
the training set size N increases, the prediction error
notably decreases. This observation confirms our theo-
retical claim that long-time quantum dynamics could be
efficiently learned. In Fig. 2(c), we consider how the evolu-
tion time 7 affects prediction performance. From the figure,
we can see that, even when we exponentially increase #, the
prediction performance remains similar. This matches with
our theorem stating that no matter what the quantum pro-
cess £ is, even if £ is an exponentially long-time dynamics,
the ML model can still predict accurately and efficiently.
In Fig. 2(d), we consider the dependence on the system
size n. As n increases linearly, the Hilbert space dimension
2" grows exponentially. Despite the exponential growth,
even for 50-spin systems, the ML model still predicts well.
This matches with the logarithmic scaling on n given in
Theorem 1.

In Fig. 3, we consider predicting properties of the final
state after long-time dynamics for a highly structured input

a c
(@) Homogeneous: h; = 0.5 (©) 530
. . : ) Ising (disordered)
i o | B 0 0.25
n-spin chain Disordered: h; € [—5, 5] 2 ~=- XY (disordered)
= 0.20 1 Ising (homogeneous)
W%O % 0.15 - —e— XY (homogeneous)
1 1 S
XYmodel: H =2 (XiXit1+YiYir)) +5) hZi 5
i i @
_ 1 1 a
Ising model: H = = ZX"X*“ T Z hi Z;
2 2 1] 1 2 3 4 B [
3 3 10 10 10" 100 100 10" 10
d Evolution time
(b) @ 030
o T
@ 0251, o 0.5/NR Fos], e 15/VN é 0.2 2: 20 2,'3::2
= 020 *. Ising (homo.) = 0.4 Ising (disord.) [ _ 3
# 0. & 0- v, : = 0.20 A —eo— n =30 spins
= o >  ~% XY (homo) | = * -~ XY (disord.) & S AN
20151  wm 2031 g 5 0.15 ISt
L e g o p —e— =50 spins
§ 0.0 N § 021 m S 0.10
© ‘\\ B 5 £
B 0.05- e, B 0.11 “m, 0.05 -
o m."--. g -"m.__ ) E /%.E.:&:.
0.00 44 ' ' T 0.0 ' ' “hﬂ-d 0.00 —— ' ; '
10’ 10° 10° 10 10’ 10° 10° 10 10° 10" 10> 10° 10* 10° 10°
Training set size (N) Training set size (N) Evolution time
—itH

FIG. 2. Prediction performance of ML models for learning £(p) = e

pe™ for a large time t. (a) Hamiltonians. We consider an

XY or Ising model with a homogeneous or disordered Z field on an n-spin open chain. (b) Error scaling with training set size (N). We
show the root-mean-square error (RMSE) for predicting the Pauli-Z operator Z; on the output state £(p) for random product states p.
(c),(d) Error scaling with evolution time (f) and system size (n). Panel (d) shows the RMSE for the XY model with a homogeneous Z
field. The prediction error remains similar as we exponentially increase ¢ and the Hilbert space dimension 2".
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Visualization of the ML model’s prediction for an initial state p = |yr){(y| with a domain wall. We consider the 1D 50-spin

XY chain with a homogeneous Z field. We show the expectation value of Z;(#) = ¢ Z,e—# for all the 50 spins on the initial state
[y =14 --- 11 ---1). The ML model is trained on 10 000 random product states. We see that the ML, model performs accurately for

a significantly large range of time ¢.

product state

) =N -t 1), (34)
which has a single domain wall in the middle. We focus
on predicting the expected value for Z(f) = " Ze ™
on every spin in the 1D 50-spin XY chain with a homo-
geneous Z field h; = 0.5 and consider evolution time ¢
from 0 to 10°. We train the ML model using N = 10000
random input product states. We can see that the ML
model predicts very well for this highly structured prod-
uct state. The collapse of the domain wall is accurately
predicted by the ML model despite only seeing outcomes
from random unstructured product states. This numerical
experiment suggests that the performance of the ML model
goes beyond Theorem 1, which only guarantees accurate
prediction on average.

Theorem 1 states that the ML model can predict well
on highly entangled input states after learning only from
random product state inputs. We test this claim in Fig. 4 by
considering an entangled input state

1
= —_— |5
1) . —=
sl — }"i 2
with an even # of —

X@|=>|<t=>lt--). (35)

The left n/2 spins of state |¢.) exhibit Greenberger-
Horne-Zeilinger (GHZ)-like entanglement, which requires

a linear-depth 1D quantum circuit to prepare. The right n/2
spins of |.) form a product state with spins rotating clock-
wise from left to right. Combining the left and right spins,
state [Y.) cannot be generated by a short-depth 1D quan-
tum circuit. We can see that, for this entangled input state,
the ML model trained on random product states still pre-
dicts very well across a broad range of the evolution time
L.

V1. OUTLOOK

The theorem established in this work shows that learn-
ing to predict a complex quantum process can be achieved
with computationally efficient ML algorithms. Once we
have obtained training data by accessing the unknown pro-
cess £ sufficiently many times, the proposed ML algorithm
is entirely classical except for the step of obtaining the
RDM of the input state p, which may require quantum
computation. This algorithm is reminiscent of recent pro-
posals for quantum ML based on kernel methods [2,3,29],
in particular the projected quantum kernel [29]. This result
highlights the potential for using hybrid quantum-classical
ML algorithms to learn to model exotic quantum dynamics
occurring in nature.

The results presented in this work also have implications
for several previously studied problems. Prior works [7,11,
12] have proposed to train quantum ML models on a given
quantum process with the hope that the learned model can
be faster than the process itself. Our proof that one can
always train an ML model that runs in quasipolynomial
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FIG. 4. Visualization of the ML model’s prediction for a highly entangled initial state p = |yr}(y/|. We consider the expected value
of Zi(t) = €M Z.e ™ where H corresponds to the 1D 50-spin XY chain with a homogeneous Z field. The initial state [/} has a GHZ-
like entanglement over the left-half chain and is a product state with spins rotating clockwise over the right-half chain. To prepare |y}
with 1D circuits, a depth of at least Q (n) is required. Even though the ML model is trained only on random product states (a total of
N = 10000), it still performs accurately in predicting the highly entangled state over a wide range of evolution time .

time, even for exponential-time quantum dynamics, pro-
vides rigorous support for such a hope. When the few-body
RDMs of the input state p are hard to compute classi-
cally, the proposed ML algorithm can be seen as a variant
of the projected quantum kernel method [29]. When the
few-body RDMs of the input state p are easy to compute
classically, the proposed ML model can efficiently run on
a classical computer. Hence, this result provides a rigor-
ous foundation for empirical works using classical ML to
learn and simulate quantum dynamics [27,74-76]. When £
is a parameterized quantum circuit Uy, such as a quantum
neural network [3,4,6,9,29,37], the existence of a classi-
cal ML model that can efficiently predict the output of Uy

implies that the function tr(OUy pU;) is easy to represent
and learn on a classical computer. This finding shows that
quantum circuits do not have strong representational power
for various distributions over quantum state input p with
easy-to-compute RDMs.

Several open problems remain to be answered. While we
focus only on locally flat distributions D, we believe that
efficient ML algorithms also exist for other general classes
of distributions. An important open problem is hence the
following: can we obtain computationally efficient learn-
ing algorithms for any “smooth” distribution over quantum
state space? If not, how general can the class of distribu-
tions be? Similar questions can be asked about the class
of observables that we predict. For what general classes

of observables O can one predict efficiently, in terms of
both sample size and computation time? This problem is
closely related to the problem of when shadow tomography
[57,58,77] can be made computationally efficient. Other
important questions include the following. If we restrict
the quantum process £ to be generated in polynomial time,
can we obtain improved efficiency? What efficiency guar-
antees apply to fermionic or bosonic systems? A better
understanding of these problems would illuminate the ulti-
mate power of classical and quantum ML algorithms for
learning about physical dynamics.
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APPENDIX A: OPTIMIZING A £-LOCAL
HAMILTONIAN WITH RANDOM PRODUCT
STATES

While our goal is to design a good ML algorithm with
low sample complexity, this appendix is a detour to a dif-
ferent task on the optimization of a k-local Hamiltonian.
We present an improved approximation algorithm for opti-
mizing any k-local Hamiltonian. The central result in this
detour will become useful for showing the low sample
complexity of several ML algorithms.

1. Task description and main theorem

Task 1 (Optimizing a quantum Hamiltonian)—Given
n,k = 1 and an n-qubit k-local Hamiltonian

>

Pe{l.X,Y.Z)®": |P|<k

apP, (A1)

where |P| is the number of nonidentity components in P,
find a state |Yr) that maximizes or minimizes (| H |¢).

The task given above is related to solving ground
states [48,49] when we consider minimizing (Y| H )
and quantum optimization [43,44,50-54] when we con-
sider maximizing (¥ | H |{). The maximization and min-
imization are often the same problem since maximizing
(¥| H |¢) is the same as minimizing (Y| (—H) |¢). With-
out further constraints, even for £ = 2, finding the optimal
state |¢*) maximizing (Y| H |¢) is known to be QMA
hard [78]: hence, it is expected to have no polynomial-
time algorithm even on a quantum computer. Most existing
works consider deterministic or randomized constructions
of |Y) with rigorous upper and lower bound guarantees
on (Y| H |y) for minimization and maximization. Some
of these lower bounds [52—54] are based on the optimal
value OPT = SUP| (Y| H |¥r), while some [43,44,51] are
based on the Pauli coefficients ap.

a. Definition of expansion

In this section, we present a random product state con-
struction for the optimization problem, where the rigorous
upper or lower bound is based on the Pauli coefficients ap
and the expansion property defined below. The expansion
property is defined for any Hamiltonian H.

Definition 1 (Expansion property)—Given an n-qubit
Hamiltonian H = ), apP, we say that H has an expan-
sion coeflicient ¢, and expansion dimension 4, if, for any

YT C{l,...,n} with [Y| = 4.,

> 1fap #0and (Y € dom(P) or dom(P)
Pe(l X ,Y,Z}®"

cTl=c, (A2)

where dom(P) is the set of qubits that P acts nontrivially
on.

The expansion property captures the connectivity of the
Hamiltonian. We give two examples, the general k-local
Hamiltonian and the geometrically local Hamiltonian, to
provide more intuition on the expansion property.

Fact 1 (Expansion property for a general k-local Hamil-
tonian)—Any Hamiltonian given by a sum of k-qubit
observables has expansion coefficient 4° and expansion
dimension k.

Proof—Let H =) papP. All the Pauli observables P
with nonzero ap act on at most k qubits. For any T with
|T| = k, all the Pauli observables with nonzero ap must
have a domain contained in Y. There are at most 4* such
Pauli observables. Hence, the claim follows. L

Fact 2 (Expansion property for a bounded-degree
k-local Hamiltonian)—Any Hamiltonian given by a sum
of k-qubit observables H = } . h;, where each qubit is
acted on by at most d of the k-qubit observables A;, has
expansion coefficient ¢, = 4*d and expansion dimension
d.=1.

Proof—For every T with |T|, T = {i} for some qubit
i. For each qubit i (corresponding to T = {i}), we have at
most d k-qubit observables acting on i. Each of the k-qubit
observables can be expanded into at most 4% Pauli terms.
Hence we can set ¢, = 4*d and d, = 1. E

Fact 3 (Expansion property for a geometrically local
Hamiltonian)—Any Hamiltonian given by a sum of geo-
metrically local observables has expansion coefficient c, =
@(1) and expansion dimension 1.

Proof—For a geometrically local Hamiltonian H =
> papP, each qubit i is acted on by at most a
constant number ¢; = @Q(1) of P with nonzero ap.
Hence, for any qubit i, 3 p ;v yzen Llap # 0and (T C
dom(P) or dom(P) € T)] = ¢;. Thus, we can set d. = 1
and ¢, = max; ¢; = O(1). E

b. Main theorem

With the expansion property defined, we can state the
rigorous guarantee on the performance of the proposed
randomized approximation algorithm on optimizing an n-
qubit k-local Hamiltonian H. We compare with the average
energy Eig). Haar[(@| H |@)] = a7 over the Haar random
state. The randomized approximation algorithm uses an
optimization over a single-variable polynomial that guar-
antees improvement in at least one direction (minimization
or maximization).
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Theorem 5 (Random product states for optimizing
a k-local Hamiltonian)—Consider an n-qubit k-local
Hamiltonian H =} . \p o @pP with expansion coeffi-
cient ¢, and dimension d,. Let r =2d,./(d. + 1) € [1,2)
and nNnz(H) = I{P: ap # 0}|. There is a randomized
algorithm that runs in time O(nk + nnz(H)2%) and pro-
duces either a random maximizing state |¢) = |y) ®
-+ @ |, satistying

EvIHIY)I= E [olH|®)]
) |¢): Haar

1/r
+ Clce, de k) ( 2. |ap|') (A3)

P

or a random minimizing state |Y) = |[¥) ® - - ® |Pn)
satisfying

E[(V[H|Y)]< E [o|lHI|¢)]
) I): H

: Haar

1/r
—C(ce,de,k)(Dapr) . (A9

P£I

The constant C(c,, d,, k) is given by

V2D
L/ ) i 1.54+1/r (f6 4 24/3)k

1
Cé!(lde)

where ©; considers the asymptotic scaling when k£ is a
constant.

Some observations can be made. First, the improve-
ment over Haar random states in Theorem 5 becomes
larger when the expansion coefficient ¢, is smaller. Sec-
ond, (Zpaélr lap|)'/" is the £, norm on the noniden-
tity Pauli coefficients, so by monotonicity of £, norms,
(ZP# leep|") /" becomes smaller as r becomes larger (cor-
responding to larger d.). Hence, the improvement is greater
for smaller expansion dimension d,. In particular, it is help-
ful to contrast Egs. (A3) and (A4) with the following basic
estimate corresponding to » = 2 that holds regardless of
Ce,ds, k:

C(Ce., dea k) =

(AS)

1/2
H|y) — H 2) :

1‘-;1}3 (VI H |y) |¢):]%w[(¢| I¢)]‘z(§lapl
(A6)

This holds for any Hamiltonian H = ) , apP because
(XCpur lap)'2=1/2"2|H —ayl||F < ||H -] | oo, Where
[I-]| denotes the spectral norm and @y = Ey): Haar[(@| H |@)].
This basic estimate shows that we can always find a state
that improves by at least the £ norm of ap, although the
optimization process can be computationally hard.

c. An alternative version of the main theorem

By following the proof of Theorem 5 and replacing the
use of Corollary 9 by Lemma 5, we can establish the fol-
lowing alternative theorem statement that does not utilize
the expansion property.

Theorem 6 (Random product states for optimizing a
k-local Hamiltonian; alternative)—Consider an n-qubit
k-local Hamiltonian H =} p. |papP with k= O(1).
Let nnz(H) = |{P: ap # 0}|. There is a randomized
algorithm that runs in time O(nk + nnz(H)2*) and pro-
duces a random state |[{) = |1} ® - - - ® |¢,) satisfying

|ElWIH W~ E [91H19)|
[¥r) Io): H

>D )

> o
ic[n],pe(X,Y.Z} \ P: Pi=p

for some constant D.

We can compare the above theorem with a closely
related result in Ref. [43]. The following is a restatement of
the approximation guarantee from Theorem 2 and Lemma
3 of Ref. [43], which is a corollary of a powerful result in
Boolean function analysis [41,42] relating the maximum
influence and the ability to sample a bitstring from the
Boolean hypercube with a large magnitude in the function
value. We can define the influence of qubit i under Pauli
matrix p € {X,Y,Z} as I(i,p) = Y p. p.—, %p-

Theorem 7 (Approximation guarantee from Ref. [43]
Jor optimizing a k-local Hamiltonian)—Given an n-qubit
k-local Hamiltonian H =) . ipj<x @pP with k= a(1),
there is a polynomial-time randomized algorithm that pro-
duces a random state |V) = |¢¥1) ® - - - @ |yr,) satisfying

(A7)

| ELw1H 1)) (61 H [#)]|

- E
|@) : Haar

2
Yopipes 0
s P: pi=p &p

e[l pelX,¥,Z) MaX; g /D p: p=g AP

for some constant D.

The guarantee from Ref. [43] is asymptotically opti-
mal when the influence I(i,p) is of a similar magnitude
for different qubits i and Pauli matrices p. However, the
approximation guarantee can be far from optimal when
there is a large variation in the influence /(i,p) over dif-
ferent qubits i,p. As an example, consider a 1D n-qubit
nearest-neighbor chain, where |ap| = 1 for only a constant
number of Pauli observables P and |ap| = 1/,/n for the
rest of the Pauli observables. The improvements over the
Haar random state by our algorithm and the algorithm in

(AR)
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Ref. [43] are respectively given by

of ¥ [¥ o)-ewn
ic[nl,pe(X,Y.Z} \| P: Pi=p

Yopspy @
of 2 =
ielnl pe(X.¥.2) MaX) g/ Y p: p =g Ot}

Hence, when there is large variation in the influence,
our guarantee improves over that of Ref. [43]. For our
machine-learning applications, the removal of the depen-
dence on the maximum influence is central. By removing
the ratio \/I(i,p)/ max; 4 /I(j,q), we can obtain the £,
norm dependence for an r < 2, as given in Theorem 3.
We will later see that having the £,-norm bound (for
r < 2) allows a substantial reduction in the sample com-
plexity in training machine-learning models for predicting
properties.

We do want to mention that the improvement comes
at a cost of a slightly worse dependence on k = O(1). In
Theorem 7 from Ref. [43] based on Boolean function anal-
ysis [41,42], the dependence on D is 1/29®  However,
our result in Theorem 6 is D = 1/29%loek)  This differ-
ence stems from the construction for the random state [/).
In Refs. [41-43] the authors utilize a random restriction
approach, where some random subset of variables is fixed
with some random values and the rest of the variables are
optimized. On the other hand, we utilize a polarization
approach, where we replicate each variable many times,
randomly fix all except the last replica, optimize the last
replica, and combine using a random-signed averaging.

(A9)

) = 0(1). (Al0)

2. Corollaries of the main theorem

Here, we consider how the main theorem applies to
certain classes of k-local Hamiltonians and discuss the
relations of the corollaries to related works.

a. Optimizing arbitrary k-local Hamiltonians

The first corollary considers a general k-local Hamilto-
nian H =} p. p | @pP. We can combine Fact 1 and the
main theorem to obtain the following corollary.

Corollary 5 (Optimizing an arbitrary k-local Hamil-
tonian)—Given an n-qubit k-local Hamiltonian H =
2_p. |p<k @PP, there is a randomized algorithm that runs
in time O(#*) and produces a random product state |) =
[¥1) @ - - - @ |¥n) with

|EWIHWI- E [91H9)|
[¥) |¢}: Haar

(k+1)/(2k)
) 3 (A11)

> C(k)(z jorp /4D

P£I

where C(k) = /2(&1) /[2kFH1-5+ED/ED (/6 4 2./3)F].

For k =2, we have 2k/(k+ 1) =4/3 and the above
result resembles Littlewood’s 4/3 inequality. Recall that
Littlewood’s 4/3 inequality states that, given {B;; € C};;.

5 A

sup {
if

1 3/4
foralliEN,ke{l,Z}] > —( |ﬂ,~|“f'3) .
A

(K (k
rx e B BN <T,

(A12)

For k > 2, the above result resembles the Bohnenblust-
Hille inequality, which states that, given {B; . €
C}ih.u,i}-}

x¥ e, |xf(:)| <1,

i

(1 (k)
sup {' Z ﬁf|,...,kaf1 525 xl}

foralli, e Nk € [k]]

2k (k+1
sz( Yo 1By, aPE
B eelg

(k+1)/(2k)
) (A13)

for some constant Dy that depends on k. For optimizing a
general k-local Hamiltonian, the design of the randomized
approximation algorithm is inspired by the original proof
[56] of the Bohnenblust-Hille inequality from 1931, which
is used to study the absolute convergence of the Dirichlet
series.

b. Optimizing bounded-degree k-local Hamiltonians

Here, we consider a Hamiltonian given by a sum of k-
qubit observables, where each qubit is acted on by at most
d of the k-qubit observables. This is often referred to as a
k-local Hamiltonian with a bounded degree d. We can com-
bine Fact 2 and the main theorem to obtain the following
corollary.

Corollary 6 (Optimizing a bounded-degree k-local
Hamiltonian)—Given an n-qubit k-local Hamiltonian
H =} p. pj<x @pP with bounded degree d, |ap| < 1 for
all P, and k= O(1), there is a randomized algorithm
that runs in time O(nd) and produces either a random
maximizing state |{) = |¢1) @ - - - @ |¥n) satisfying

C
E H E H s
I"H[(t&l Iw)]zwaw[(qbl |$)] ﬁglapl
(Al4)
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or a random minimizing state |¢) = ) ® - - - ® |¢)
satisfying

C
H H —_——
EW' ""’”mﬁw[“"' lp)] ﬁ;#'“”'
(A15)

for some constant C.

The task of optimizing bounded-degree k-local Hamil-
tonians has been considered in previous work [44].

Theorem 8 (Approximation guarantee from Ref. [44])—
Given an n-qubit 2-local Hamiltonian H = ) 'p. |p|, @pP
with bounded degree d and |ap| <1 for all P, there is
a polynomial-time randomized algorithm that produces a
quantum circuit that generates a random maximizing state

|¥) satisfying
EvIHIY)]I= E [{¢|H )]
i) |¢): Haar

C 2) Zp;e; |C"-'P|2
+ — A s e e LS
d(PZ# Sl T
(A16)

as well as a random minimizing state [{) satisfying

E[(VIHIY)]< E [olHI|¢)]
) |6): Haar

L z) Y pyr lopl?
d(pz#,'“”' >z Lap # 0]
(A17)

for some constant C.

The result from Ref. [44] considers a single-step
gradient descent using a shallow quantum circuit on
an initial random product state. Because } p; lapl? <
Y purllap # 0] and Y p; lapl = 3 p |ap|?, our result
in Corollary 6 improves either the maximization prob-
lem or the minimization problem over Theorem 8. For
example, if we consider ap = @(1/d), which sets the total
interaction strength on each qubit to be ®(1), then the
improvement over the Haar random state by our algorithm
and that by the algorithm in Ref. [44] are given by

()=o)

1 Zpgg,r |"-7t'.‘""|2 ) ( n )
O — ol i T R i,
(\/f_f(},z#laﬂ )ZP#I]I[O:P#O] dt>
(A19)

(A18)

We can see that our algorithm gives a larger improvement
for the scaling with degree d. As another example, consider

a 1D n-qubit nearest-neighbor chain (hence d = 2), where
|ap| = 1 for only a constant number of Pauli observables P
and |ap| = 1/4/n for the rest of the Pauli observables. The
improvement over the Haar random state by our algorithm
and that by the algorithm in Ref. [44] are given by

@(% 3 |ap|) = O(v/n),

P£I

(A20)

1 D opar |eep 1
o — 2)—) - @(-).
(\/E(J,Z# e > pz 1ap # 0] n
(A21)

We can see that our algorithm gives a larger improvement
for the scaling with the number » of qubits.

3. Description of the randomized approximation
algorithm

There are a few steps in the proposed randomized
algorithm. The first step is to choose the best slice of the
k-local Hamiltonian by splitting the k-local Hamiltonian
H =3 p. |pj<x@pP as

k

H=al+) H, H2 ) apP. (A2)
k=1 P: |Pl=x
We choose «* € {1,...,k} to be the k¥ that maximizes

> p. Pl=k lap|”, where r = 2d. /(d. + 1). This step can be
performed in time O(nnz(H)k).

In the second step, the algorithm samples («* — )n
Haar-random single-qubit pure states,

W) € C* forallse{l,...,k* — 1}, €{l,...,n}.
(A23)

This step can be performed in time O(nk).

The third step is a local optimization on each qubit based
on [,)). For each qubit i and Pauli matrix p € {X, Y, Z},
we define an (n — 1)-qubit homogeneous (k* — 1)-local
Hermitian operator

Hx*,ip é Z

Pell X Y.Z)®": |P|=x* Pi=p

ap((g)Pj). (A24)

J#

For each qubitiand p € {X, Y, Z}, the algorithm computes
the real value, given as

I
[O'] s O AT [HK*,I"D ® I:E

J#F

1 K*—1 ]
+ e — 1 Z 05(|w(5u'))(‘1/(s,f)| == 5)]]] (A25)

=1

}gx‘,p é E

gefE1)*-1
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Then, for each qubit j, we consider a single-qubit local
optimization

[Ve,n) £ argmax o ﬁj.pp) )

x (¢l (
|} : one-gubit state pelX.Y.Z)

. I-{*ﬂxX -I—nyY-f-' nzZ
— 5 2

(A26)

where n, = B; 5/ Zqﬁﬁq for p e {X,Y,Z}. After the

optimization, the algorithm samples random numbers o; €
{1} for all s € {1,...,k*} to define a one-dimensional
parameterized family of n-qubit product states,

p(t: ¥y}, 0)
o Z AT 1 E I
= ® (5 + F Zos(lw(s,f))(w(s,f)l T E))
j=1 s=1

x forallt e [—1,1]. (A27)
We denote this by p(f) when |V ), 0 are clear from the
context. This concludes the third step. The third step can
be performed in time O(nnz(H)2F).

The fourth step performs a polynomial optimization
over the one-dimensional family

max [ t(Hp(: 1) 0)) — il (A28)

The function f (f) = tr(H p(#)) is a polynomial of degree
at most k. We can compute function f (f) efficiently in time
O(nnz(H)k) as p(t) is a product state. The optimization
can thus be performed efficiently by sweeping through all
possible values of f on a sufficiently fine grid. Let * be the
optimal £.

The final step considers the sampling of a random
pure state |V) = Y1) ® - - - @ [¥,) from the distribution
that corresponds to the mixed state p(f*:|V¥(.,).0). If
tr(H p(#*; |¥.5) ,0)) —ar > 0 then the random product
state |¢) is a maximizing state satisfying Eq. (A3). Oth-
erwise, the random product state |{) is a minimizing state
satisfying Eq. (A4). This step can be performed in time
O(n).

4. Proof of Theorem 5

The first step of the algorithm considers splitting the
k-local Hamiltonian H into homogeneous x-local Hamil-
tonians H, defined below. In particular, a homogeneous
k*-local H,+ is chosen.

Definition 2 (Homogeneous k local)—A Hermitian
operator H is homogeneous & local if H =) . =k PP

The second step is a random sampling that generates a
single-qubit pure state |;)) for each qubit j and each

copy s € {1,...,k* — 1}. The third step is the most impor-
tant part of the proof. We devote Appendices A4a, A4b,
and A 4 c to establishing the first inequality in (Corollary 9
below)

E |tr(Hep(t = 1Y) ,0)
W’(-f,)} zre{:l:l}“‘c

V20D Mt
z %( 2 '“Pir)
ci/ G pi+15,. /6" \ p, |P|=*

1/r
V2E) (Dapr). (A29)

= C;,‘(?.de)kk+l.5+lf’\/gk P4l

The second inequality follows from k) p. \pj_.« lap|” >
e . pi= |@P|" = 2 _ps lap|”. For the fourth step,
the analysis of polynomial optimization given in
Appendix A 4d (Corollary 10) can be combined with the
above inequality to obtain

E E

[tr(Hp(t*: [¥(.) ,0)) — o]
Vi) aej£)x*

P (Z |aP|r) ‘»’"

=
T e /PRSI (JE(1 + V) \ 5

(A30)

For the final step of the algorithm, using E, ¥} ¥| =
p(t*: p(s,y» 05) and convexity, we have

E EI|WIH|Y)—al

W) aef1)c* V)
> E E tr(H EIW>(¢|)—Q;|
W) eef1p* 1Y)

2 (Z |0!P|') ‘f"

=
= V0 1541/ ([6 - 24/3)F P£I
(A31)

The theorem follows by noting that E4). Haae[(@| H |9)] =
ay.

a. Polarization

We justify the definition of B;, using polarization.
Given an n-qubit homogeneous k-local observable O =
2 _p. |pj=k @PP, consider the following nk-qubit observable.
First, we index the set [nk] using ordered tuples (s,1),
where s € [k] and i € [n]. For every Pauli operator P on
n qubits with |P| = £, suppose that it acts nontrivially on
qubits i} < --- < i via Pauli matrices P;,,...,P;. Then,
for any permutation & € S, consider the nk-qubit observ-
able pol, (P) that acts on the (7 (s), is)th qubit via P;_for
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all s € [k]. Then define

pol(P) :=

1
7 2 POl (P).

b g ES&

(A32)

We can extend pol(-) linearly and define pol(0) £
> pappol(P). We refer to pol(O) as the polarization of O.
The squared Frobenius norm of O and pol(O) are related

by

tr(0%) = k! tr(pol(0)?). (A33)
We prove the following operator analogue of the classical
polarization identity.

Lemma 1 (Polarization identity)—For any nk-qubit
product state p = @), 15[ &icpy P(s,0]; any n-qubit homo-
geneous k-local observable O, and any ¢ € IR, we have the
identity

t"tr(pol(O),o)zE E [al

k! oe[+1)k

--or,ctr(O@{%

ic[n]

)

where the expectation is with respect to the uniform mea-
sure on {£1}F.

Proof—Let O =} p. py@pP. By the multinomial
theorem, we can expand the right-hand side to get

#

Il Z QP]E[O']--- O tl'( ®[ 1fs; = 0]
= 0<sy,....5n <k

' P:|Pl=k

+ oy, (ps,-,i = %)]I[S, = 0]})]

For a given Pauli operator P, note that the only terms in the
inner summation that are nonzero are given by (s1,...,5,)
satisfying the condition that if s; > 0 then P acts nontriv-
ially on the ith qubit, because otherwise tr(p,,; — [/2) =0
and the corresponding summand vanishes. Furthermore,
for (s1,...,5,) satisfying this property, if {1,..., k} do not
each appear exactly once then

J 1[ 0]

5 Jilse >

>[I
o] 0% ® [E]]_[S! = 0] + O-j; (Ps,-.i ini
i=1

.o I
S [5]1[.5‘,‘—0]-{-(pr‘f—z)]l[si}()]]

- (A36)

(A35)

i il <
-—UI “'O'k

for 0 <e¢j,....ct < k such that ¢; = 1 for some s € [k].
In this case, the expectation of this term with respect to o

vanishes. Altogether, we conclude that, for P that acts via
P,...,Pronqubits 1 <ij <--- < iy <n and via iden-
tity elsewhere, the corresponding expectation over o in
Eq. (A35) is given by

ot (épf (ﬂrr(s),fs — %))

}IGSk

3 rr(@Pspm .)

b 4 ES;(

= t(pol,(P)p),
" (A37)

from which the lemma follows. | |

Using the polarization identity, we can obtain the fol-
lowing corollary, which shows that ;, is defined to be pro-
portional to the expectation of the polarization pol(H,+ ;)
of the homogeneous k *-local observable H,+;, on the ten-
sor product of n(k* — 1) single-qubit Haar-random states.
We will later study the expectation value of the polarized
observable on random product states.

Corollary 7—From the definitions given in
Appendix A 3, we have
tr (pol(Hx*,i,,,) X |m)xww)|)
se[k*—1], ie[n]
(K*___l)x*—l
Zwﬁw- (A38)

Proof—The claim follows from the polarization identity
in Lemma 1 and the definition of B, in Eq. (A25). | 1}

b. Khintchine inequality for polarized observables

We recall the following basic result in high-dimensional
probability.

Lemma 2 (Standard Khintchine inequality [79])—Con-
sider e1,..., &x to be independent and identically dis-
tributed random variables with P(e; = 1) = 1/2. Forany

ai,...,a, € R, we have
()" £
R a; < 21 < ( ﬂf) .
V2 =1 i=1
(A39)

We prove an analogue of the Khintchine inequality when
we replace the random =1 variables with random product
states and replace ay,...,a, with a homogeneous 1-local
observable.

Lemma 3 (Khintchine inequality for homogeneous
1-local observables)—Let n > 1. Consider |¢) = ®:.'=1
[¥:), where |Y;) is a single-qubit Haar-random pure state.
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For any homogeneous 1-local n-qubit observable O,

%\/tr(Oz)/Z".

(A40)

1
Sl 0?2)/2n o
7 tr(0%)/2" < II‘E;I}[IWI )] <

Proof —A homogeneous 1-local observable O is
Y Y jeyP,, where P, is the Pauli matrix o; €
{X,Y,Z} on the ith qubit. Given n single-qubit unitaries

Uy, ..., U,, we consider O under the rotated Pauli basis
0= ZZa”U’fP’U (A41)
i=1 j=I

Using the orthogonality of Pauli matrices, we have

1/2
V(0227 = (ZZ(a )

i=1 j=I1

(A42)

under any rotated Pauli basis. We utilize the rotated Pauli
basis to establish the claimed results.

A single-qubit Haar-random pure state |y;) can be sam-
pled as follows. First, we sample a random single-qubit
unitary U;. Then, we consider |y;) to be sampled uniformly
from the set of eight pure states,

L {I + (1/V3) (s UXU] +s] UYU] +57U,ZU])
K 2
AR {3:1}]. (Ad3)

Using this sampling formulation and the rotated Pauli basis
representation for O, we have

E[l(w101y)[]
[¥)
) af te(U P U1y, (w,D!
Uflr!r;)NT ;; ’
f E B 3 als¥ +ads! +alst|

i=1

(A44)

Using the standard Khintchine inequality given in Lemma
2, we have

(ZZw 7)) s

E
=l j=I SE'Y"":?{J?N{:HI

(ETu)"

i=1 j=I

U
rISX 4 O!'Q.S‘ + QISS

(A45)

Using Eq. (A42), we can obtain

1
%EVU(O;’)/Z” =< E[I(WI Oyl

< T I{E}I Vir(0%)/2m,

which implies the claimed result. L]

We prove the left half of the Khintchine inequality for
polarized observables. The right half can be shown using
a similar proof, but we are only going to use the left half
stated below.

Lemma 4 (Khintchine inequality for polarized observ-
ables)—Let n,k > 0. Consider an nk-qubit observable
O = pol(0’), which is the polarization of an n-qubit
homogeneous k-local observable O'. Consider |¢) =
Rsepricm [Vesn)> where [Ysp) is a single-qubit Haar-
random pure state. We have

(A46)

1 k
(7) Vu(0h)/2 < E[I(¥ O [¥)]
6 |¥)

(A4T)

Proof—For € € [3n], define P® to be an n-qubit
observable equal to the Pauli matrix 014 (¢mod3) € {X, Y, Z}
acting on the [£/3]th qubit. From the definition of polar-
ization, we can represent O as

PR @PW. (A4B)

For arbitrary coefficients ap, .
lowing claim by induction on &:

1/2

Wl > ey PP

f| ,.,.,Ek€[3iﬂ]

¢, € R, we prove the fol-

® P wr)”.
(A49)

It is not hard to see that the left-hand side of Eq. (A49) is

k
(1 /JE) Jr(0?)/2% and the right-hand side of Eq. (A49)
is Eyy [[(¥]O[¥)]]. Hence, the lemma follows from
Eq. (A49).

We now prove the base case and the inductive step. The
base case of k = 1 follows from the Khintchine inequal-
ity for homogeneous 1-local observables given in Lemma
3. Assume by the induction hypothesis that the claim holds
for k — 1. Denoting by | ®) the product of n Haar-random
single-qubit states, we can then apply the Khintchine
inequality for homogeneous 1-local observables (Lemma
3) to obtain
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( ] )k( 3

2
= Z Q... ) = (
V/g E},....EkGBH] I ; €|,.

1/25 25 172
2

> (& ))

b1 €[3n] 23<3n]

2\ 12
s( 2 ( B [WR Y ey, PP 100 ) ) : (A50)
81otpy€pn] NEE) 2;€3n]
We can then apply Minkowski’s integral inequality to the upper bound above and yield
i 4 1/2 ; : . 2\ 12
(%) ( Z B e Ek) = ]%3 ( Z (w’( { Z aﬁls---,fkp( ol ))) )
&1yt €l3n] W) Ng b eBn] €re3n]
< E GOHAD y® 3wy, (PR
[y (B} [y (1k=1)) £,...kx€[3n]
G PR [l | (AST)

.....

|¥®) to be a scalar indexed by £1,...,€;_; and uses
the induction hypothesis. We have thus established the
induction step. The claim in Eq. (A49) follows. L]

The Khintchine inequality for polarized observables
allows us to show that the average magnitude of
pol(H,+p) for the tensor product of single-qubit Haar-
random states is at least as large as the Frobenius norm
of He+;, up to a constant depending on k*. Using the def-
initions from the design of the approximate optimization
algorithm, we can obtain the following corollary.

Corollary 8—From the definitions given in
Appendix A 3, we have

E
W)

|w(s,f)xw{s,f) |) |

tr (po[(H,(*,i ) ®

sele*—1],ign]
1 k*—1 tl’(Hz* i‘p)

> [ — i

- (\/E) 2n(ge* — 1)!

Proof—The claim follows immediately from Lemma 4
and Eq. (A33). ]|

(A52)

c. Characterization of the locally optimized random
state

Recall that p(1:[|¥(,),0) is created by sampling ran-
dom product states and performing local single-qubit opti-
mizations. The locally optimized random state satisfies the
following inequality.

Lemma 5 (Characterization of p(t) for t = 1)—From
the definitions given in Appendix A 3, we have

E |tr(Hesp(1:¥(,y),0))]
1Y) oef£1*

V2
—————
(c*y*+15,/6" iclnl, pelX.Y,Z)

> i

K
\/Peu,x,r,z@”: |Pl=x*, Pi=p

(A53)

Proof—From the polarization identity given in Lemma
1, we have

i

k¥ gel£1*

=tr (poI(HK*) X

s€[x*],j€ln]

W(s,f))ﬁ'f(s,f)l)- (A54)

Next, using the definition of H,+ i, in Eq. (A24), we have

2
poI(HK*):(:T) Y. Y pol(Hep)

ic[n] pelX Y,Z}

® (I® ! @ p @ I®"). (A55)

We can see this by considering the case when H* is a
single Pauli observable P € {I,X,Y,Z}®" with |P| = «*,
and then extending linearly to any homogeneous x*-local
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Hamiltonian H,«. Equations (A54) and (AS55) give

()"

K*! oelxl)*
1

- (x*)?

[o1 - - - Oux tr(His p (13 [Y1(.) , 0)]

Y Wealp W)

ig[n],pelX,¥.Z}
xtr(pol(HK*,@) X |w(s,;))<w(s,,-)|).

se[e*—1],j €[n]

(A56)
From Corollary 7, we can rewrite the right-hand side as

I (e — 1)t
(k*)? (e —1)!

Z (s ( Z ﬁi,ap) [V (es) -

ieln] PelX.¥2)
(A57)

From the local optimization of |+ ;) given in Eq. (A26),
we have, for every i € [n],

(‘!f(x*,fﬂ( Z ﬁs,pp)hff(x*,x‘)): [ Z B,
PelX.Y.Z} pelX,Y.Z)

Y 1Bl

1
> — (AS58)
V3 pelX,Y.Z)

Using Corollary 7 yields the lower bound

(*)<
K*L W) pepipt
1
e o
- 2
V3N i met rz Ve

[o1 - opx tr(Hex p (15 [Y() ,0))]

x

tr (P0|(Hx*,i,o) (09 h!'f(s;)){lhs,f)l) ‘

sef*—1],j g[n]

(A59)

From Corollary 8, we can further obtain

(c*)*

¥ ) gefr1pet

K*—1 2
> T B V) VT 2
V3 iz VO i

(A60)

[oy - o tr(Hex p(1: [¥(y) ,0))]

The definition of H,s;,, the above inequality, and the
inequality

E | tr(Hep(l; [Y,) o))l
W) oef1*

> E [o1 o tr(Hexp (13 Y y) ,0))]
W) o ef1px*
(A61)
can be used to establish the claim. E

Given the expansion property, we are going to use the
following implication, which considers an arbitrary order-
ing m of the n qubits. The inequality allows us to control
the growth for the number of Pauli observables that act on
qubits before the ith qubit under ordering 7. The precise
statement is given below.

Lemma 6 (A characterization of expansion).—Suppose
that there is an n-qubit Hamiltonian H = ) p apP with
expansion coefficient ¢, and expansion dimension d,. Con-
sider any permutation w € S, over n qubits. For any i €

[n],
Z 1[ap # 0L [Prq) # I11[Pr)

Pe(l.X,Y.Z|®n

=TI forallj > i] < c.i% ! (A62)

Proof—Consider a permutation w € S, over n qubits
and an i € [n]. We separately consider two cases: (1)
i<d, and (2) i>d,. For the first case, let T =
{m(1),...,m(d:)};: we have

Y Aap # 0[Prgy # IN1[Prgy =1 forallj > i]
Pe(lX Y.Z)®"

£ 2
Pe(lX,Y,Z)®n
< C,. (A63)

1[ap # 0 and (dom(P) € Y)]

The second inequality follows from the definition of the
expansion coefficient c.. For the second case, we con-
sider all subsets Y C w([i]) £ {x (1), Q),...,w(i)} with
|T| =d. — 1and n(i) € T: we have

> Aap # 0[Py # I[Prgy =1 forall j > i]
Pell X Y,Z}®n

2 3 X

Pe{l X Y,Z)®  Ycr([i]),
|T|=de, T(HET

C Tor YT C dom(P))]
= ),
Tcr(d),
|T|=de, m()€T

< c,i% L. (A64)

1[ap # 0 and (dom(P)

Eg Sl — 1)
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The second inequality again follows from the definition of c.. L 1]

Using the above implication of the expansion property, we can obtain the following inequality relating two norms.
Basically, we can use the limit on the growth of the number of Pauli observables to turn the sum of the £; norm into an £,
norm, where r depends on the expansion dimension d..

Lemma 7 (Norm inequality using the expansion property)—Consider an n-qubit Hamiltonian H = ) ", apP with an
expansion coefficient ¢, and expansion dimension d,. Let r = 2d,/(d, + 1). For any «* > 1, we have

1/2 1 1/r
(X @) ram( X ) (a6
ie[n] “ Pell XY Z)®": |P|l=x*, P;#] £ Pe(IX YZ)®n: |P|=x*
Proof—We begin by considering a permutation 7 over n qubits such that

\/ Z @p < \/ Z af foralli <j e [n]. (A66)
" P

elLX.Y.Z)®": |Pl=x*, Pr iy #l X Y.ZY®": |Pl=c*, Pr )l

Permutation 7 can be obtained by sorting the n qubits. The above ensures that, for all i € [n],

i \/ Y > 3 a3. (A67)
P

e(LX,Y,Z)®": |Pl=x*, Prn#l Jelnl \| Pe{l X Y.Z)®": |P|=x*, Pr(j#l

By going through the n qubits based on permutation 7, we have the identity

Z lap|” = Z Z‘ Z lapl L[ap # OJL[P, ) = I forallj > i]. (A68)
P |Pl=x* i=1 pelX.Y.Z} pe(l x ¥Y,Z}®":
|P|:x*’prr(1‘)=f—'

Holder’s inequality and 1/(d, + 1) = 1 —r/2 allows us to obtain the following upper bound on ) "), Pl=c* laep|":

i Z ag rf2 Z ik 6 ‘ s ) . 1/(de+1)
P p # OJL[Prgy # [11[Pry) =1 forallj > i] _

=1 *pe(IX YZ)®": |Pl=k*, PrpnH#l Pell X Y.Z)®": |Pl=x*
(A69)

We can then use Lemma 6 to obtain

n r/2
Z |a,P|r < Z ( Z aﬁ) (ceide—l)”(de+1)_ (A?O)

P |Pl=x* i=1 > Pe(lX,Y,Z}®": |Pl=x*,Py#l

Usingr—1=(d,—1)/(d, + 1) = 0, we have

r—1

n
Y lapl < /@by (r‘ Y, a,%) 3 ap.  (ATD)
P |P|l=x* i=1 Pe(l X, Y.Z)®": |Pl=x*, Prn#l Pe{lX,Y,Z)®": |Pl=x*, Pyl
The choice of  ensures Eq. (A67), which gives rise to
/2 r
Y el < Cé“d"”)(z ( 3 a})) ) _ A7)
P: |P|=x* i€[n] * Pe{l X Y,Z)8" : |Pl=c*, Pi#I

The claim follows from 1/(r(d. + 1)) = 1/(24d.). |
Together, we can obtain the £,-norm lower bound for the expectation value of the homogeneous «*-local Hamiltonian
H,+ on the constructed product state p(1; [¥(.y),0).
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Corollary 9—From the definitions given in
Appendix A 3, we have
E E [tr(Hesp(l:¥,),0))l

W) oej1*
A 2(k*!) ( Z
_— *
c;/(z‘ff)(x*)x*-i-]j,\/g‘

I
= c;/(Me)kch.s\/g" ( Z

1/r
i
lapl )
Pe(lX,Y,Z)®": |P|=x*

1/r
|Q'P|r) .

Pe{l X ,Y.Z}®": |P|=x*

(A73)
Proof—From Lemma 5, we have
E  [tr(Hep(s [,) o))
W) ge(£1x*
A 2(k*1)
(S RN ic[n], pelX,Y.Z)
> . (A74)

x
Pe{l X Y.Z)®": |Pl=x*,Pi=p

VE+ S+

By the elementary inequality
/X +y + z for non-negative x, y, z,

2
X, o

ie[n]. pelX.Y.Z} \/Pe{.f,x,}’,z,@": |\P|=k*, Pi=p

=X 2 2

ie[n] \ pelX.Y.Z) pe(l X ¥, Z}®" : |P|=x*, Pi=p

az. (A75)

Combining this result with Lemma 7 and the fact that £ >
K™ yields the stated result. LA

d. Homogeneous to inhomogeneous through
polynomial optimization
We need the following basic result from real analysis.
Lemma 8 (Markov brothers’ inequality; see, e.g., [80, p.
248)—]
For any real polynomial p(f) = Zi:l a.x“,

lae| < (14 v2)* sup [p(8)]

le=1

(A76)

foralll <k <k

Using the Markov brothers’ inequality, we can show
that performing the one-dimensional polynomial opti-
mization over f achieves a good advantage over oy =

E\y): Haar (V| H |¥r).

Corollary 10—From the definitions given in

Appendix A 3, we have

| te(H p(*; |¥(.y) ,0)) — el
1

> ————|trHap(L:[¥(H) 00| (ATT)

(1 + V2)F
Proof—Recall that H=oayl+ Y _ H, from
Eq. (A22). We can use the polarization identity

given in Lemma | to see that the function f(f) =
tr(Hp(f; [¥(.y) ,0)) is a polynomial:

y
r(Hp(E V() 1 0)) = ar + 3 tr(Hep(1: [Y) LoD
k=1
(A78)

Recall that #* is chosen based on the optimization

max _|tr(H p(& |Y¥(.,)) ,0)) — ajl. (A79)
te[—1,1]

By considering Lemma 8 with a, = tr(H,p(1: ¥ ,),0)),
we have

(1 + V2 te(Hp (1Y) ,0)) — ay

= [ tr(Hep (1Y), 0))]- (A80)

This concludes the proof of this corollary. L]

APPENDIX B: NORM INEQUALITIES FROM THE
APPROXIMATE OPTIMIZATION ALGORITHM

The approximate optimization algorithm described in
the previous section is not used directly in the ML
algorithm, but used to derive norm inequalities, i.e.,
inequalities relating different norms over Hermitian opera-
tors. An important norm that we use in the ML algorithms
is the Pauli-p norm defined below. The Pauli-p norm is
equivalent to the vector-p norm on the Pauli coefficient of
an observable H.

Definition 3 (Pauli-p norm)—Given H =) 5, (LX.Y.Z)@n
apP and p = 1, the Pauli-p norm of H is

I/p
1 l|paiip = (Z |ap|f’) :
P

Recall that the spectral norm [|H || = maxy) | (| H [{) |
= max, | tr(H p)|. In this section, we use the approximate
optimization algorithm to derive several norm inequalities
relating the Pauli-p norm ||-||paulip to the spectral norm ||-||
for common classes of observables.

We begin with a well-known fact that equates the Frobe-
nius norm and the Pauli-2 norm. This proposition follows

(B1)
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directly from the orthonormality of the Pauli observables
{LX. Y 7)%

Proposition 1 (Frobenius norm)—Given any n-qubit
Hermitian operator H, we have

IHIF = 1H llpauii2 < IIH]l. (B2)

1
Nz
Proof—Let n be the number of qubits that H acts on,

and let A1,...,Asn be the eigenvalues of O. From the fact
that tr(PQ) = 2"8p—gp, we have

IHIE = ) = Y lepl’2" = 2" H iz
P

(B3)

Since |H|} = Y2, [Lf? < 27 max; [Lf? = 2| HI, we
have Y"p apl® = [|HI|F/2" < [|IHIIZ.

We now utilize Theorem 3 to obtain the following useful
norm inequality.

Theorem 9 (Norm inequality from Theorem 5)—Con-
sider an n-qubit k-local Hamiltonian H with expansion
coefficient ¢, and dimension d,. Let r =2d./(d, + 1) €
[1,2). We have

C(CEa de, k) “H" Paulir = "H“
where C(Co,d,, k) = /2R /[cl/ P ph+1.5+1/r (/6
+ 2«/5)"] is the same as in Theorem 5.

Proof—Consider the Pauli representation H = } Jp. pj<k
apP. If we consider p = /2" then we have

(B4)

IH = [ 6H)/2') 2 || E[(GIH 9] = feal. (B5)

If we consider the random product state /) from Theorem
5 then we have

E|(WIHW) — E [gI1HI$)]
lv) |¢) : Haar

1/r
> Cloands; k)(z |ap|’) ;

Pl

(B6)

Using Ejg): naarl(0] H [9)] = s and Eyy)| (Y| H |¥) —
arl < Byl (W1 H [¥) | + e, we have

1/r
IH| = E (W H [y)| = Clee, de k)(ZIC!PI ) — leu].
P#T
(B7)

Next, we utilize the inequality

c
max(xj,cx; —xp) > 3 (xy +x;) forallx;,xy,c >0,

(B8)

which can be shown by considering the two cases x; >
(c/2)xy and x1 < (c/2)x;, as well as the lower bounds on

||H]| to show that

C(Ceu de-: k)

1/r
W= e e,de,k)+2('“”+(£'“”') )
L e,de,k bE
D (ot + (Lteot) ) w9
PAI

The second inequality uses &, ¢, d. = 1, which implies that
C(c.,d,, k) € [0, 1]. Finally, the inequality

1/r 1/r
| + ( b3 |ap|*) > ( b |ap|*) (B10)

P4 P

can be used to establish the claim. | |

Using Facts 1 and 2 that characterize the expansion
property for general k-local Hamiltonians and bounded-
degree k-local Hamiltonians (i.e., each qubit is acted on
by at most d of the k-qubit observables), we can establish
the following corollaries.

Corollary 11 (Norm inequality for a k-local Hamil-
tonian)—Given an n-qubit k-local Hamiltonian H, we
have

TCE) I H lpautizh/ks 1y < IHI,

where C(k) = /2(k1) /[2kKH13+EED/@R (/6 + 24/3)F] is
the same as in Corollary 5.

Corollary 12 (Norm inequality for a bounded-degree
Hamiltonian)—Given an n-qubit k-local Hamiltonian H
with bounded degree d, we have

(B11)

1C(k, d)[|H llpautit < IH],

VZE) /A2 (24/6 + 44/3)8].

APPENDIX C: SAMPLE-OPTIMAL ALGORITHMS
FOR PREDICTING BOUNDED-DEGREE
OBSERVABLES

(B12)

where C(k,d) =

In this appendix, we consider one of the most basic
learning problems in quantum information theory: predict-
ing properties of an unknown n-qubit state p. This has been
studied extensively in the literature on shadow tomography
[57,58] and classical shadows [46].

1. Review of classical shadow formalism

We recall the following definition and theorem from
classical shadow tomography [46] based on randomized
Pauli measurements. Each randomized Pauli measurement
is performed on a single copy of p and measures each qubit
of p in a random Pauli basis (X, Y, or Z).

Definition 4 (Shadow norm from randomized Pauli mea-
surements)—Consider an n-qubit observable O. Let U{ be
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the distribution over the tensor product of n single-qubit
random Clifford unitaries, and let Mp' = Q" , M7!
with MI_I(A) = 34 — tr(4)]. The shadow norm of O is
defined as

|Ollshadow = max ( E
o state \ [J~{

> Bl UsU

be(0,1)n
12
1b) (6] UM (O)U" |b)2) . @

Theorem 10 (Classical shadow tomography using ran-
domized Pauli measurements [46])—Given an unknown
n-qubit state p and M observables Oi,...,0py with
B adow = MaX;eu | Oillshadow after N randomized Pauli
measurements on copies of p satisfying

5 (log(M)thadow )

— (2)
we can estimate tr(O;p) to € error for all i € [M] with high
probability.

We can see that the sample complexity for predicting
many properties of an unknown quantum state p depends
on the shadow norm ||-||shadow- The larger |- ||shadow 15, the
more experiments are needed to estimate the properties
of p accurately. From the original classical shadow paper
[46], we can obtain the following shadow-norm bounds for
Pauli observables and for few-body observables.

Lemma 9 (Shadow norm for Pauli observables [46]).—
Forany P € {I,X,Y,Z}®", we have

VP s =307, (C3)

Lemma 10 (Shadow norm for few-body observables
[46])—For any observable O that acts nontrivially on at
most k qubits, we have

1Ollshadow < 2510

(C4)

Combining the above lemmas and Theorem 10, we can
see that Pauli observables and few-body observables can
both be predicted efficiently under a very small number of
randomized Pauli measurements.

2. Upper bound for predicting bounded-degree
observables

Consider an n-qubit observable O given as a sum
of k-qubit observables O =} ; O;, where each qubit is
acted on by at most d of these k-qubit observables O;.
We focus on k= @O(1) and d = O(1), and refer to such
an observable as a bounded-degree observable. These
bounded-degree observables arise frequently in quantum
many-body physics and quantum information. For exam-
ple, the Hamiltonian in a quantum spin system can often

be described by a geometrically local Hamiltonian, which
is an instance of bounded-degree observables. For these
observables, the shadow norm is related to the Pauli-1
norm of the observable:

1ONshadow < Y laplIPllshadow < 32

P: |P|<k

D lapl =3*|Ollpaui,.
P: |P|<k

(©5)

If we consider the norm inequality between the £, norm
and £, norm and use the standard result relating the Frobe-
nius norm and spectral norm (Proposition 1), we would
obtain the following upper bound on the shadow norm:

IOl shadow < 3**10llpauis < (2v/3)+/nd||O[pauii2

= O(/nlOo). (C6)
Using Theorem 10, this shadow-norm bound gives rise to
a number of measurements scaling as

2
N = o(%), )

el

where By = maxcpuml|Oilloo is an upper bound on the
spectral norm ||-||. Because of the linear dependence on
the number n of qubits in the unknown quantum state, this
scaling is not ideal. Furthermore, we will later show that
this scaling is actually far from optimal.

To improve the sample complexity, we use the
improved approximate optimization algorithm presented in
Appendix A, and the corresponding norm inequality pre-
sented in Appendix B. Using the norm inequality relating
the Pauli-1 norm and the spectral norm (Corollary 12), we
can obtain the following shadow-norm bound.

Lemma 11 (Shadow norm for bounded-degree observ-
ables)—Given k,d = O(1) and an n-qubit observable O
that is a sum of k-qubit observables, where each qubit is
acted on by at most d of these k-qubit observables,

[Ollshagow = CIIOII (C8)
for some constant C > 0.

Combining the above lemma with Theorem 10 allows us
to establish the following theorem. Compared to Eq. (C7),
the following theorem uses n times fewer measurements.

Theorem 11 (Classical shadow tomography for bound-
ed-degree observables)—Consider an unknown n-qubit
state p and M observables Op,....0y with By =
max; || O;|l«. Suppose that each observable O; is a sum of
few-body observables O; = Zj Oj;, where every qubit is
acted on by a constant number of few-body observables
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O;; . After N randomized Pauli measurements on copies of
p with

(C9)

: 2
e o(log(mm(M, n))B:, ),

€2

we can estimate tr(O;p) to € error for all i € [M] with high
probability.

Proof—The upper bound of N = O(log(M) max;cpur
||O,-||§o/62) follows immediately from Theorem 10 and
Lemma 11. We can also establish an upper bound of
N = O(log(n) max;eqa [IO,‘[IgO/EZ). To see this, consider
the task of predicting all k-qubit Pauli observables P €
{1,X,Y,Z}®" with |P| < k. There are at most O(n*) such
Pauli observables. To predict all of the k-qubit Pauli
observables to €' error under the unknown state p, we can
combine Theorem 10 and Lemma 9 to see that we need
only

N = O(logn) maxlOI%/(€)?)  (C10)

randomized Pauli measurements. Now, given any observ-
able O; = ) p apP that is a sum of few-body observables
O; = Zj O;;, where every qubit is acted on by a con-

stant number of few-body observables O;;, we can predict
tr(O;p) using the identity

w(Oip) = ) aptr(Pp),
P: |P|<k

(C11)

which incurs a prediction error of at most ) ", |ap|€’. Using
the norm inequality in Corollary 12, we have

10lpauiii = ) _ lap| < CIO (C12)
P

for a constant C. Hence, by setting €' = ¢/C, we can
predict O; to € error. Thus we can also establish an
upper bound of N = O(log(n) max;epn [|0:]|%,/€?). The
claim follows by considering the corresponding prediction
algorithm (use the standard classical shadow when M < n,
and use the above algorithm when M > n). I

3. Optimality of Theorem 11

Here we prove the following lower bound on the sam-
ple complexity of shadow tomography for bounded-degree
observables, demonstrating that Theorem 11 is optimal.
The optimality holds even when we consider a collec-
tive measurement procedure on many copies of p. This
is in stark contrast to other sets of observables, such as
the collection of high-weight Pauli observables, where
single-copy measurements (e.g., classical shadow tomog-
raphy) require exponentially more copies than collective
measurements.

Theorem 12 (Lower bound for predicting bounded-de-
gree observables)—Consider the following task. There is
an unknown n-qubit state p and we are given M observ-
ables Oy,..., Oy with By, = max;||O;||. Each observable
O; is a sum of few-body observables O; = Zj O;j, where
every qubit is acted on by a constant number of few-body
observables O;;. We would like to estimate tr(O;p) to €
error for all i € [M] with high probability by performing
arbitrary collective measurements on N copies of p. The
number of copies needs to be at least

(C13)

5 i (mg(min(ﬁ;f,n))Bgo)
€

for any algorithm to succeed in this task.

To show Theorem 12, we show a lower bound for the
following distinguishing task, from which the lower bound
for shadow tomography will follow readily. Given i € [n],
let P; denote the n-body Pauli operator that acts as Z on the
ith qubit and trivially elsewhere, and define the mixed state

| €
ta - fre € p)
A G

We show a lower bound for distinguishing whether p is
maximally mixed or of the form p’ for some i.

Lemma 12 (Lower bound for a distinguishing task)—
Let 0 <e <1 and § > 2¢. Let A be an algorithm that,
given access to N copies of a mixed state p that is
either the maximally mixed state or p’ for some i€
[min(M, n)], correctly determines whether or not p is max-
imally mixed with probability at least 3/4. Then N =
Q (log(min(M, n))B%, /€?).

Proof of Theorem 12—Let A be an algorithm that
solves the task in Theorem 12 to error € /3. We can use this
to give an algorithm for the task in Lemma 12: applying A
to the min(M, n) observables

(C14)

01 = BxoPy, Oumin(M.n) = BooPrminptmy,  (C15)
we can produce €/3-accurate estimates for tr(pP;) for
all j € [min(M,n)]. Note that if p is maximally mixed,
tr(p0;) = 0 for all j, whereas if p = o' then tr(p0;) =
€l[i =j]. In particular, by checking whether there is a
J for which tr(pP;) > 2¢/3, we can determine whether
p is maximally mixed or equal to some p’. The lower
bound in Lemma 12 thus implies the lower bound in
Theorem 12. |

For convenience, define n’ = min(M, n). Note that, for
any i € [n], (PH®Y is diagonal, so we can assume with-
out loss of generality that A simply makes N independent
measurements in the computational basis. Proving Lemma
12 thus amounts to showing a lower bound for a classical
distribution testing task.
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Note that distribution 7' over outcomes of a single
measurement of p' in the computational basis places

ﬁ (C16)
on

mass on each string x € {0, 1}”. Distribution m over out-
comes of a single measurement of the maximally mixed
state in the computational basis is uniform over all strings
x € {0, 1}". The following basic result in binary hypothesis
testing lets us reduce proving Lemma 12 to upper bounding

dw(]g[(n*‘)@w],x@”). (C17)

Lemma 13 (Le Cam’s two-point method [81])—Let
pPo,p1 be distributions over a domain € for which there
exists a distribution D such that drv(po,p1) < 1/3. Then
there is no algorithm A that maps elements of € to {0, 1}
for which Pry~p, [A(x) =i] > 2/3 for bothi = 0, 1.

Proof of Lemma 12—To bound the expression in
Eq. (C17), it suffices to bound the chi-squared divergence
K2(E[(H)®N]||w®Y) because, for any distributions p, g,
we have dry(p,q) < 2./ x%(p|lq). For convenience, let us
define the likelihood ratio perturbation

n'(x) £ %(x) ~1=(=1)%, (C18)
and observe that, for any i,j € [n],
E ' @) = e'li=/1 (C19)

Also, given strings x!,...,x¥ € {0,1}" and S C[N],

define

') £ [[n'@). (C20)
jeS

We then have the standard calculation (see, e.g., [82,
Lemma 22.1])

L+ x3( E [@)®V)]|7oY)

i~[n']
N 2
[]‘[(1 + rf”(xf))] ]

Jj=1

Lo B Tt )]

N g @N
ST

-k |=

xl,..xN~g@N | i~[n]

I

= E E [Zn‘(xf)n“(xs)]]

L] [ 51, &

- N
= E E [1’[(1 + ' )" ))]]

i ~[n'] | x!,... xN g @N j=1

= E :(1+ E[n“(x)n‘*(x)])N]

j,]'-fw[nf] X~Ir

I 1
——a+H I
nf

n?

(C21)
We conclude that

(1) < —a+HY -1, (€22)
n

i~[n']

so, for N = 1:'Iog(n’)/«€2 for a sufficiently small constant
¢ > 0, this quantity is less than 1/3. By applying Lemma
13 to po = 7% and p; = B, [(w")®"], we obtain the
claimed lower bound. i1

APPENDIX D: LEARNING TO PREDICT AN
UNKNOWN OBSERVABLE

We begin with a definition of invariance for distribution
over quantum states.

Definition 5 (Invariance under a unitary)—A probabil-
ity distribution D over quantum states is invariant under
a unitary U if the probability density remains unchanged
after the action of U, i.e.,

fo(p) = fo(UpU") (D1)

for any state p.

In this appendix, we utilize the norm inequalities in
Appendix B to give a learning algorithm that achieves
the following guarantee. The learning algorithm can
learn any unknown n-qubit observable O™ even if
the scale [|JO®™|| is unknown. The mean squared error
E,~plh(p) — tr(0“ p)|? scales quadratically with the
scale of the unknown observable O®“™. We can see that the
sample complexity N has a quasipolynomial dependence
on the errors €, €’ relative to the scale of the unknown
observable O™ and depends only on the system size n
and the failure probability § logarithmically.

Theorem 13 (Learning to predict an unknown observ-
able)—l et n,e,e’,§ > 0. Consider any unknown n-
qubit observable O™ = 3", apP and any unknown n-
qubit state distribution D that is invariant under single-
qubit H and § gates. Suppose that the training data
{0e, tr(0“™ py))})_, are of size

N = log (g) n:.lin(zc'{bg(1!E}[lﬂg101;(h‘€)+log(l!’f’)]l1

9 Ollog(1/€) log(m] ). (D2)
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Let k = [log, s(1/€)], O%" = Y \pi<i @pP be the low-
degree approximation of O™ and r=2k/(k+1) e
[1,2). The algorithm can learn a function h(p) =
max(—@), min(@),tr(@p))) for an observable O and a real
number © that achieves a prediction error

E _lh(p) — tr(0™™ p)[?
p~D

: DOBRUN TN - s
< (e +e [1 & (W O™ (D3)

with probability at least 1 — 4.

1. Low-degree approximation under the mean squared
error

In order to characterize the mean squared error
E,~p tr(01p) — tr(O2) p between two observables Oy, O,
we need the following definition of a modified purity for
quantum states.

tr(Qp)”. (D4)

yY*(p)

1
éﬁz

Oe(X,Y.Z)ok

Nonidentity purity is bounded by purity:

1
Ve sy =t@)=5 3 (@

Oe(l.X,Y,Z)®k

Lemma 14 (Mean squared error)—Given two n-qubit
observables O, O, with

0, -0, = Z

Pe{l X Y.z)®"

AapP, (D5)

and a distribution D over quantum states that is invariant
under single-qubit H and § gates, we have

E |tr(01p) — tr(O2p)
o~D

Definition 6 (Nonidentity purity)—Given a k-qubit state

2\ 1P
= E_[¥* (pdomep )](—) |Aapl’. (D6)
p, the nonidentity purity of p is Z D L

e x ¥z)en "’

Proof—Consider Uy, ..., U, to be independent random single-qubit Clifford unitaries. Because D is invariant
under single-qubit Hadamard and phase gates, D is invariant under any tensor product of single-qubit Clifford uni-
taries. This implies that the distribution of the random state p is the same as the distribution of the random state
Ui ®---QU)p(U1 ®---® Uyt Using this fact, we expand the mean squared error as

tr(01p) — tr(O2p)* = AapAapt ulP U, Ulo, .
E 1r01p) ~x(O20)' = E E ¥ apAagtr ((@ ! ) ® (@ e, )<,o ® p))
PQOell X Y,Z)®" i=1 i=1
(D7)
Using the unitary 2-design property of a random Clifford unitary and SWAP = % ZPE{LX vz £ ® P, we have
I®1, P,=0:=1,
1
lg[UfPsUf ® Ulo U] = ;X ®X+Y®Y+2Z82), Pi=0i#1, (D8)
0, Pi # O
We can now write the target value as
1 .
E |u(0p) —@p)f = E 3 gglderl’ 3, tQ@pgomp)” (D9)
# P peyr x,v,z)®n OelX,Y,Z|®IP]
The claim follows from Definition 6 on nonidentity purity ™. ]
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The following lemma tells us that the mean abso-
lute error can be upper bounded by the root-mean-
squared error. Hence, both the mean absolute error and
the mean squared error are characterized by the £; dis-
tance between the Pauli coefficients (as well as the aver-
age nonidentity purity). Because of the following rela-
tion, we focus on the mean squared error throughout the
text.

E 16(010) ~1x(0yp)] < ( Yy

~D
Pe(I x,y,zyen P

Proof—lJensen’s inequality gives

E_|tr(01p) — 1(00)] = ( E_|tr(01) — tr(020)])
p~D p~D
(D12)

Combining with Lemma 14 yields the stated result. m

From Lemma 14, we can construct a low-degree approx-
imation by removing all high-weight Pauli terms for any
observable O. The approximation error decays exponen-
tially with the weight of the Pauli terms.

Corollary 13 (Low-degree approximation)—Suppose
that we have an n-qubit observable O = } " ; v y 7190 @PP
and a distribution D over quantum states that is invari-
ant under single-qubit H and S gates. For k > 0, consider
O® =3 "p. \px @pP. We have

2 k
E |tr(Op) —tr(0®p)* < (—) lo)*.  (D13)
p~D 3

Proof—Using Lemma 14 and the fact that y*(o) <
y (o) < 1 for any state g, we have

2\ Pl
E _|t(0p) —u(0Pp)P < ) (—) lep|?
p~D 3
P: |P|=k

< (%)kz sl

p

(D14)

The norm inequality given in Proposition 1 establishes the
claim. W

2. Tools for extracting and filtering Pauli coefficients

In order to learn the low-degree approximation of an
arbitrary observable O, we need to be able to extract the
relevant ap. Furthermore, we impose criteria for filtering

2172

Lemma 15 (Mean absolute error).—Given two n-qubit
observables Oy, O, with

O-0= )

Pe{l.X,Y.Z)®"

AapP, (D10)

and a distribution D over quantum states that is invariant
under single-qubit H and § gates, we have

2\ Pl i 1/2
E [V*(Pdom(P))](g) IAQPI) : (D11)

out uninfluential Pauli observables P to prevent them from
increasing the noise and leading to a higher prediction
error.

a. Extracting the Pauli coefficient

Lemma 16 (Extracting the Pauli coefficient)—Suppose
that we have an n-qubit observable O = Y p_(; v y zjan @PP
and a distribution D over quantum states that is invariant

under single-qubit H and § gates. For any Pauli observable
Pc{l,X,Y Z}®" we have

N\ P
E tr(Op) tr(Pp) = (—) ap E ¥*(pdomp)- (DI5)
p~D 3 p~D

Proof—Using the invariance of D, we have

E_tr(Op) tr(Pp)
p~D

T
= I UP,U,
Bk, X eor((@uru)

Oe(l X Y.Zy®" i=1

® (@ UIQfo) (r® p)).
i=1

(D16)

Using Eq. (D8), we can rewrite the above expression as

1 2
E w©Op)t(Pp) = E smar Y. t(Qpsomp)’.
Q<X ,Y,Z}®IF

(D17)

The claim follows from the definition of the nonidentity
purity p*. L]
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For each Pauli observable P € {I,X, Y, Z}®", define the
quantity we can extract using the lemma to be

1P|
Xp = (5) ap E ¥*(Pdom))- (D18)
p~D

We can obtain an estimate X¥p for xp by averag-
ing tr(Op)tr(Pp) over the training data. However, to
obtain an estimate &p for ap, we need to divide X by
(2/3)PIE,~p¥*(0dom(p)). The error in the estimate &p
could be arbitrarily large if (2/3)PIE,.py*(0domep)) is
close to zero. Hence, we present a filter in Appendix D2b
below to handle this issue. In addition to this filter, the
norm inequalities given in Appendix B show that most ap
would be close to zero. Hence, when ap is small, we could
simply set them to zero to avoid noise build-up. This gives
rise to the second filtering layer given in Appendix D2¢
below.

b. Filtering the small-weight factor

The first filter sets the estimate @&p to be zero when the
average nonidentity purity E,.py*(0dom(p)) is close to
zero. We define the weight factor for a Pauli observable
P to be

N
Bp = (3) E ¥*(odom))- (D19)
p~D

The weight factor Bp depends on distribution D, which
may be unknown. Hence, we can only obtain an esti-
mate fp for Bp by utilizing the training data. Recall from
Lemma 16 that we can only obtain an estimate Xp for
xp = apPfp. The mean squared error (Lemma 14) shows
that the contribution from error in @p is

Brlap — apl”. (D20)
The presence of Bp in the mean squared error is very use-
ful since it counteracts the fact that we cannot estimate ép
accurately when fBp is close to zero. The following lemma
shows that estimates for Bp and xp are sufficient to perform
filtering and achieve a small mean squared error.

Lemma 17 (Filtering the small-weight factor)—Let
€,n > 0. Consider ¢ € [—n.n] and B € [0,1]. Let x =
aB € [-n,7n]. Given estimates % and B with |£ — x| < né
and |,§ — B| < €, if we define the estimate

5 )0,

=3 (D21)
x/B,

T T
VoA

2 ]
2€,

then we have B|&@ — a|* < 3n2e.

Proof—Consider the first case in which B < 2. We
have

Bla —al* = Ba? < n*B < n*B +n’eé <3n’eé. (D22)

For the second case in which ,é > 2¢, we have § > €. By
applying the triangle inequality, we have

\/_a:—\/—ar x—x|+|\/_x|

The first term can be bounded as /Bl —x|/B <
n/Bé /,é. The second term can be bounded by the same
expression

—'. (D23)

B-8l  JB.
A2 —Pewu™ie (D24
|J"x| = B3|l 5 <73 )

Using the fact that 4/z + €/z is monotonically decreasing
forz > 0, we have

VB+eé 3

VB, g sdie (D25)
B B 4

Together, |\/B& — /Ba|?> < 3n¢ and the claim is estab-

lished. L 1]

c. Filtering uninfluential Pauli observables

Consider a set S C {I,X,Y, Z}®" that contains the Pauli
observables of interest. For example, we later consider §
to be the set of all few-body Pauli observables. Using
the norm inequalities given in Appendix B, we can fil-
ter out more ap to achieve an improved mean squared
error. Below is the filtering lemma that combines both
the filtering of Pauli observables with a small weight fac-
tor (Lemma 17) and the filtering of those with a small

contribution (characterized by |xp|/ ,61" 2).

Lemma 18 (Filtering lemma)—Suppose that €,n > 0
and that we have a set § C {I,X, Y, Z}®". Consider ap €
[=n.n], Bp € [0,1], and xp = apBp € [—n,n] for all P €
S. Assume that there exist 4 > 0 and 1 < r < 2 such that

Z lap|” < A".

PeS§

(D26)

Given %p and Bp with |fp — xp| < né and |Bp — Bp| < €
for all P € S, if we define

0, Bp < 2¢,
ap = {0, Bp > 2, linl/By” < 20V/E,
2p/Bp. Bp > 22, 3pl/BY* > 2nVE,

(D27)

then we have Y p_q Bplé@p — ap|? < 64> "E-"/D. We
also have Bp|ap — ap|® < 9n?é forall P € S.
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Proof—We first define §* € § to be the set of Pauli
observables P with Bp > 22, |%p|/Bp/* > 2n+/E. The set S
contains all the unfiltered Pauli observables. We define §/
to be 8\ 8% which contains all the filtered Pauli observ-
ables. We separate the contributions of §* and § in the
mean squared error ) _,_¢ Bpl@p — apl|?:

> Brlar —apl* =) Brlar — apl®

Pes PeSu

+ ) Brlap —apl.
PeSf

(D28)

A key quantity for the analysis is ﬁf,ﬂap =xp/ ,8;,/2. For
Pauli P with Bp < 2¢, we have

1B *apl < ny/Bp + & < nV3e.

For Pauli P with 3;: > 2¢€, we have

(D29)

xp xp | 1 1
ﬁ]‘m ﬁ;‘}?' = B\l’;z |IP xP|+|xP| ﬁx;{z ,81’{2
€ Bp 12
\/;“' 52 —Pp

< e (D30)

The last inequality uses the fact that fp > €, ,ép/,Bp > 2,
and, hence,

1Bp — Bpl e Ve
T B+ BrlB)' D) 242
(D31)

1/2
P

12
'3/

We are now ready to analyze the contributions of $* and
g.

For the unfiltered Pauli observables (those in set §%), we
can use Lemma 17 to obtain

D Brlap —apl® < 3ué|S".
Pest

(D32)

Equation (D30) shows that for Pauli observable P with
Bp > 2¢ and |3p|/By* > 2nvE. we have |xp|/By* >
2:]\/_ ?:M/_. We use this fact to bound the size of set |§|:

(xel/B5DY 2
LHEDD TN W,z > lesl By

Pelu Pesv

f

r—-—
— r r,"E Zlﬂfp| r rﬂ

(D33)

Together, we have the upper bound

> Belap —apl® < 3p*747E T, (D34)

PeSu

For the filtered Pauli observables (those in set S ), we have

> Belap —ap? =) 1B apl 1B apl* . (D35)
PesSf Pesf

There are two types of Pauli observables in 5 .

(1) For P with Bp <2&, we have |8 ap| < n+v/3€
from Eq. (D29).
s, B = A 1, Al/2 =
(2) For P with Bp > 2¢ and |xp|/Bp~ < n2\/z, we
have |Bp apl = Ixpl/Bp> < 20v/E+ny/E from
Eq. (D30).

Together, we have the upper bound

Y Belap —apl* < Guva* ™ Y B apl"

PeSf Pes/
< A3/

< 3Arn2—rél—r/2_ (D36}
Combining the contributions of $* and § yields
> Brlép —apl’ < 64 TE T, (D37)

PeS

Thus we have established the first statement of the lemma.
We now focus on the second statement of the lemma.
For Pauli observable P that satisfies the first and the
third cases of Eq. (D27), we can use Lemma 17 to
obtain Bp|@p — ap|* < 3n%€ < 9n?E. For the second case
of Eq. (D27), we can use Eq. (D30) to see that
Xp Xp )2

2 ~
. 2 Xp |xp]
Brlap —ap|” = (,8”2) = (ﬁm + ﬁlfz ﬁuz
< Op’e. (D38)

Hence, for all P € S, we have Bplap —ap]? <9n%e. N

3. Learning algorithm

In this section, we present a learning algorithm satis-
fying the guarantee given in Theorem 13. Consider the
full training data {p¢, y = tr(0“™ p;))})_, of size N. The
learning algorithm splits the full data into a smaller train-
ing set of size N;; and a validation set of size N,;) with N =
N + Nyai. The training set is used to extract Pauli coeffi-
cients and perform filtering with a hyperparameter 5. The
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validation set is used to choose the best hyperparameter 7.
We can set Ny = (4/5)N and Ny, = (1/5)N.

We consider two slightly different learning algorithms
for the sample complexity scalings of

N = log (5) 2O{log(l}f)[logbg(le’E)+log(l!€ M and

N = log (;_I) 9 Ollog(1/e) log(n)] (D39)

We can simply look at which sample complexity is smaller
and select the corresponding learning algorithm.

We begin with the learning algorithm for achieving the
sample complexity on the left of Eq. (D39). First, the
algorithm computes the sample maximum over the training
set,

[ tr(0™™X py))| < O™,
(D40)

® = max ¢| = max
Eefl,, Ny }Ly = £efl,....,Ng}

to obtain a scale for the function value. Let C(k) be the
constant from Corollary 11. We define

k+l 2k
C(k
cs th (D41)
12 3
Next, we consider the grid of hyperparameters
n € {2°0,2'6,220,...,2%6), (D42)

where R = log,[1/€]. For each hyperparameter 5, the
learning algorithm runs as follows. The learning algorithm
considers every Pauli observable P € {I,X,Y,Z}®" with
|P| < log5(1/€). We define the set that contains the Pauli
observables of interest,

= {P: |P| < log, 5(1/)}, (D43)
and k = [log; 5(1/€)]. Foreach P € §, the algorithm com-
putes

1 &

&p =2 ) t(Ppo)ye, (D44)
N £=1

& 1 AL

Br = 5= D u(Pp) tr(Ppy), (D45)
e

using the training set {(pog, Ve ——tr(O““"‘*"-’i))}‘(1 ;- By the
definitions of Xp and (E-), we have

|ip| <©® forall P eS. (D46)

Then, for each P € §, the algorithm computes

0, Bp < 2¢,

Gp(n) = 10, Bp > 2¢, I%pl/Bp”> < 2nV/E, (DAT)
= o s S A ~1/2 =
ip/Bp, Bp > 22, 18pl/By > 20VE.

The algorithm considers the function h(p;n) = max(—(:),

min((:), tr(a(n)p))), where the observable f)(n) is defined
as

O(m) = _éap(n)P. (D48)
PeS
The best 7 is selected using the validation set:
Nig+Nya
n* = argmin k(o) — yel*. (D49)
1€(296,..2R0) vl oy

The learning algorithm outputs A(p;n*) as the learned
function.

We now present the learning algorithm for achieving the
sample complexity on the right of Eq. (D39). We define the
set that contains the Pauli observables of interest,

= {P: |P| < log, 5(2/€)}, (D50)
and k' = [log, 5(2/€)]. For each P € §, the algorithm
computes

N
L1
ip = Dt (Ppoye, (D51)

N
A 1
== 2_tr(Ppo) e (Ppy), (D52)

=1

using the full dataset {(pg,yg:tr(O““kpf))}‘?zl. The
algorithm uses the hyperparameter

—f A €
= —. D53
€ =3 (D33)
Then, for each P € §', the algorithm computes
0, ar < 28
g p S (D54)

Up = Y i ihr ar =/

xp/Bp, Bp > 2€
The algorithm outputs the function #'(p) = tr(O' p), where
the observable O is defined as O = Y " p g @}pP.

Here, we assume that tr(Pp¢) can be obtained from the
training data. However, for each tr(Pp;), we only need
to be able to obtain an unbiased estimator for tr(Ppoy)
and for tr(Ppg)?. Recall that an unbiased estimator for a
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is a random variable with expectation value equal to a.
For example, an unbiased estimator for tr(Pp¢)* can be
obtained by performing two quantum measurements on
two individual copies of p¢ using the observable P and
multiplying the results, or by utilizing classical shadow
formalism [46] and randomized measurement [47].

4. Rigorous performance guarantee

In this section, we prove that the learning algorithm pre-
sented in the last section satisfies Theorem 13. We separate
the proof for achieving the sample complexity on the left
and right of Eq. (D39).

The proof for the sample complexity stated on the left
of Eq. (D39) consists of three parts: (1) a characterization
of the prediction error, (2) the existence of a good hyper-
parameter n® that achieves a small prediction error, (3) the
best hyperparameter n* found by a grid search over the
validation set must yield a small prediction error.

The proof for the sample complexity stated on the right
of Eq. (D39) is simpler and is given at the end.

a. Characterization of the prediction error

We begin with a lemma about the sample maximum.

Lemma 19 (Sample maximum)—Let | > €,8 > 0. Con-
sider an arbitrary real-valued random variable X. Let
Xi,...,Xy be N independent samples of X with N =
[log(1/8)/€], and let O = max; X;. Then

PX <@]>1—¢ (D55)

with probability at least 1 — 8.
Proof—Recall that the cumulative distribution function
is defined as F() = Pr[X < #]. We define the approxi-

mate maximum as

®2 inf 6.

8: F(f)y=1—e {D56}

Using the right continuity of F(0) = Pr[.X < 8], we have

FO)=PrlX <0O]>1-—e. (D57)
Furthermore, from the definition of ®, we have
PrlX > ®] > . (D58)

To see the above inequality, suppose that PrlX > ®] <
€. Then from the left continuity of F'(8) = Pr[X = 4],
we can find ® < @ such that Pr{X > @] <e. Thus,
there exists @ < @ with Pr[X < ®'] > 1 — ¢, which is a

contradiction to the definition of ®. Together, we have

Pr[X; < © foralli € [N]] < (1 — €)". (D59)

By choosing N = [log(1/8)/€], we have

Pr[mngj > @)] > 1= (1 —e)e1/d/e > | _ 5. (D60)

Thus, with probability at least 1 — 48, we have 6) > 0.
Using the monotonicity of F(8), we have

PrX <O]=F(©) > F©)>1—e, (D61)

which establishes this lemma. m
Using the above lemma, we can show that, given a
training set of size

N, » 12108678

!

€

(D62)

the real value © < [[O™®| obtained by the algorithm
satisfies

r

(unko) 81>1—- — D63
pfw’l,;_}[i tr(0™p)| < B] = 1 B (D63)

with probability at least 1 — §/3. Hence, with probability
at least 1 — §/3, we have

E _|h(p:n) —tr(0™p)* < E_|tr(O(n)p)
p~D p~D

(™
— (0" Pp)* + 1O + 10V (D64)

Using Lemma 14 on the mean squared error and Corollary
13 on the low-degree approximation, we have

E |h(p;n) — (0™ p)|?
p~D

< @AM +3 . E [¥*(pgomep)]

o
<[00 |2 Gl

P &
x (g) lép(n) —epl’ + SN0 (D6S)

with probability at least 1 — §/3.
Let us define the variables

[P
-"CPé E [Y*(Pdom(P))](_) ap,
p~D 3

2\ Pl
Br = ED[}’*(pdom(p))](g) , forallPes.
e
(D66)

Then, with probability at least 1 — §/3 over the sampling
of the training set, we have the following characterization
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of the prediction error for all > 0:

E |h(p;n) — (0™ p)|? < |02
p~D

i (unk) 2 v —apl?
+ N0 + 3 Brlap(n) —apl’.  (D67)

PeS§
We utilize this form to show the existence of a good

hyperparameter n”.

b. Existence of a good hyperparameter n2

By considering the training set size to be

Ve = Q('OB(I/S) log(lSIfé))

e e

(D68)

we can guarantee Eq. (D67) with probability at least 1 —
8/3. Furthermore, utilizing Hoeffding’s inequality and the
union bound, we can also guarantee that

|Bp — Bp| <&, forallPeS
(D69)

~ k)~
£ —xp| < O™ |E,

with probability at least 1 —§/3. The norm inequality
given in Corollary 11 shows that

r O(low) r D70
Z| Pl < (C(k)) lo®™| (D70)
for a constant given by
2K
Ck) = 2(k1) (D71)

2kkHLSHEHD/QB) (/6 4 24/3)F

We now condition on the event that Egs. (D67) and (D69)
both hold, which happens with probability at least 1 —
(2/3)3. We are now ready to define the good hyperparam-
eter r}'ﬁ.

Let hyperparameter n® belonging to the grid in
Eq. (D42) be defined as

A _ pmin(R,[logy (|00 ]1/&)) & (D72)

We separately consider two cases: (1) nt = 280, (2) n <
2R@. For the first case nt = 2R, we can use |xp| < O in
Eq. (D46) and the definition of R to see that

ap(n®) =0 forallPeSs. (D73)

Since 72 = 2RO, we have R < [log, (|| O™ | /@)]. This
yields n® < 2 O® ||, which implies that
ap2)|O™™0y =0 forallP € S. (D74)

Hence, the reconstructed Pauli coefficients @p(-) are the
same for n® and 2]|O“|. The filtering lemma given in

Lemma 18 shows that

2\ 171
2 E [y*(pdom(m)](g) lép(n®) — apl®
pes 7P

|P|
= IE[}’ (pdom(p))l lap20™™])) — apl?
=),

pes PP

3
12 O(unk) 2—r O(low} r-l—rf?.. D75
(qﬂ)u ot e (D75)

For the second case n < 2R®, we have the following
bound on n?:

o (unk) /@)1 A u
& _ oMlegz(IO™FI/ON G ¢ [uo( nk) !LZHO(M) 1. (D76)

The filtering lemma given in Lemma 18 shows that

2\ 171
2 E [y*(pdom(p))](g) lép(n®) — apl’
pes -7

3 r
6 Mar O(Iow) r=l—r/2
0 (o) 10"
3 “1-r
lz(c(k)) "O(unk)llz—rl[o(lowj "rel ‘{2. (D??)

In both cases (1) and (2), using the definitions r = 2k/(k +
1) and € = (¢'/12)1(C(k) /3)**, we have

0\ Pl
> E [y*(pdom(p;)](—) |ép(n®) — apl®
pes PP 3

< €l0™B 2T |o%W|. (D78)
Combining with Eq. (D67), we have
E _lh(p; ™) — r(0™ p)|? < €| 0™ |2 + %uo(“"“) I
p~D
+ €[]0 020%™ (D79)

with probability at least 1 — (2/3)4.

c. The prediction performance of hyperparameter y*
From the definition of A(p; 1), for any quantum state p,
we have

— (0™ p))> < |© + 0™V 2 < 4[|0™9 2.
(D80)

[A(p;5m)

Using Hoeffding’s inequality and the union bound, we can
show that, given a validation set of size

Nyt = Q(M)

= (D81)
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with probability at least 1 — §/3, we have

Nir+Nyay

Er‘
] 2 lh(pesm) — (@ p)* — B Ih(p:n) — w00 p))*| < 0P~ (D82)
val E=Nip+1 P~

1

for all n € {290, . ..,2R@}. Using the definitions of 7* and 2, we have

Na+Nyay

G.r
E_|h(p:n*) —tr(@“p)* < — D [h(pe:n*) — (O™ pp))|* + 0™ |* =
p~D Nval F=Ng+1 3

Nir+-Nyal

G!
<5 2. Ihorn®) =m0 p)P + 0P
val
E=Ni+1

< E 1h(o:n®) = (0O p)f* + 0 ||22§ (D83)
with probability at least 1 — §/3 over the sampling of the validation set. Combining with Eq. (D79) and employing the
union bound, we have

E_1h(o:n") — (0O < el 09 + € IODIF + O FT 0% (D84)
with probability at least 1 — §, as claimed in Eq. (D3).

Finally, by noting that [S| = O(n*) and k = log, 5(1/€), and recalling the definition of € in Eq .(D41) on the right-hand
side of Eq. (D68), we have

log(1/)  log(ISI/®) _ (n) ( 1 )**‘2O(k.ogk)
Gf

€' & )
T (;_’) »Ollog(1/e)lloglog(1/e)-+Hog(1 /e)]} (DS5)
So it suffices to have
Nya = log (g)zﬂliog(ife)[log log(1/€)-+log(1/")]} (D86)

Furthermore, by noting that R = log,[1/€] = O(klog(¢’) + .fclog2 k) in Eq. (D81), we see that it suffices to have
log log(€) + log log(e”) + log(1/8)
(¢')? '

Recall that the full data size N = Ny + Nya1, and the quantity in Eq. (D87) is dominated by that in Eq. (D86), yielding one
argument in the minimum of the sample complexity claimed in Theorem 13.

Noal = Q( (D87)

d. Establishing sample complexity on the right of Eq. (D39)

By considering the full dataset size to be

_ of log(S'1/9)
N_sz(—(g,)2 ) (D8S)

Hoeffding’s inequality and the union bound can be used to guarantee that

3p —xp| < lO™O)E,  |Bp—Bpl <&, forallPes (D89)
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with probability at least 1 —4§. Using Lemma 17 on
filtering the small-weight factor, we have
Brlap — ap|* < 30" %€ (D90)

Using Lemma 14 on the mean squared error and Corollary
13 on the low-degree approximation, we have

E_|tr(0'p) — tr(0™ p)|2
p~D

< /310012 + ) Bplap — apl?
Pes'

< OIS +3nF O )22, (D91)
From the definition of €' in Eq. (D53), we have
E_|tr(0'p) — tr(0“Pp)2 < e O™ |2 (D92)
p~D

The sample complexity is

N= O(%) - Iog(n/a)ZD(log(l{e)log(n))‘
€
(D93)

which completes the sample complexity claimed in
Theorem 13.

APPENDIX E: LEARNING QUANTUM
EVOLUTIONS FROM RANDOMIZED
EXPERIMENTS

We recall the following definitions pertaining to classi-
cal shadows for quantum states and quantum evolutions,
based on randomized Pauli measurements and random
input states.

Definition 7 (Single-qubit stabilizer state)—We define

staby 2 {[0),11),14+),1-), b4+),ly—)}  (El)
to be the set of single-qubit stabilizer states.

We define randomized Pauli measurements as follows.

Definition 8 (Randomized Pauli measurement)—Let
n > 0. A randomized Pauli measurement on an n-qubit

state is given by a 6"-outcome positive operator-valued
measure (POVM)

;
JF (Pauli) & [5 ®|s,~){s;|] 5
=1

51 ,-..,8n Estab)

(E2)

which corresponds to measuring every qubit under a ran-
dom Pauli basis (X,Y,Z). The outcome of FPaul) jg
an n-qubit state |Y) = @le |s;) , where |s;) € stab; is a
single-qubit stabilizer state.

In the following, we define the classical shadow of a
quantum state based on randomized Pauli measurements.
Classical shadows could also be defined based on other
randomized measurements [46].

Definition 9 (Classical shadow of a quantum state)—
Let n, N > 0. Consider an n-qubit state p. A size-N classi-

cal shadow Sy (p) of quantum state p is a random set given
by

Sn(p) = {I¥e)lo-s, (E3)

where |Yrg) = ®f=1 |se,:) is the outcome of the £th random-
ized Pauli measurement on a single copy of p.

We can generalize classical shadows from quantum
states to quantum processes by considering random prod-
uct input states and randomized Pauli measurements. A
similar generalization has been studied in Ref. [33].

Definition 10 (Classical shadow of a quantum pro-
cess)—Consider an n-qubit CPTP map £. A size-N classi-
cal shadow Sy (£) of quantum evolution £ is a random set
given by

SN(E) 2 (1™, 1y, (E4)

where |l,b§i“)) =R 4 |sg?)) is a random input state
with |sg?)) € stab; sampled uniformly, and |1;Ir§°“‘)) =
R, lsg’im)) is the outcome of performing the randomized

Pauli measurement on E(|¥{™ Xv™)).

After obtaining the outcome from N randomized exper-
iments, we can design a learning algorithm that learns a
model of the unknown CPTP map &£ such that, given an
input state p and an observable O, the algorithm could
predict tr(OE(p)). The rigorous guarantee is given in the
following theorem.

Theorem 14 (Learning to predict a quantum evolu-
tion)—L et n,e,€',8 > 0. Consider any unknown n-qubit
CPTP map &, and a classical shadow Sy (€) of £ obtained
by N randomized experiments with

N = log (%) min(ZO“"B(UéJUDg |Og(1;’€)+log(l;’e’)]],
« 20Mog(1/e) log(n)])‘ (65

With probability > 1 — 4, the algorithm learns a function
h such that, for any n-qubit state distribution D invariant
under single-qubit H and S gates, and any observable O
given as a sum of few-body observables, where each qubit
is acted on by O(1) of the few-body observables,

E |h(p,0) — tr(OE(p))|?
p~D

Olow) [ 72Mo815(1/€)1/[Togy 5(1/€)T+1]
< (e + e’[—" “] )uou?.

101l
(E6)
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Here, 0U") is the low-degree approximation of O after
Heisenberg evolution under £.

The scaling given in the main text corresponds to
the additional assumption that [|O] < 1. By noting that

2[logy 5(1/€)1/[Mog, s(1/€)]1+ 1] € [1,2), we have

[ ”O(low} I ]2leg|_5(UE)UWOEI_S(E/E)H!] .
1Ol

ol
< "0(10Wl ”2“081.5(1;"6)1/[Uﬂg1,5(|f"6)1+1]

< max([ 0% |12, 1). (E7)

Theorem 1 follows by considering €' — 0.

1. Learning algorithm

Recall that a size-N classical shadow Sy (£) of the CPTP
map & is a set given by

Sn (8) L [ (m) ® | S(m) w(out) ® ls{out) ]

(EB}

Given an observable O that can be written as a sum of «-
qubit observables, where each qubit is acted on by at most
d of the k-qubit observables with k,d = O(1), we have

o- ¥

Qell.X,Y.2}®": |0|<k

apQ, (E9)

where ) 5. 101« Llag # 0] = O(n). The algorithm cre-

ates a dataset,
{pg = [Y{™ XY™, e(0)

— Z ﬂQti‘( ®(3| (uut) (out) ))]

0: |0|=«

N

=1
(E10)

from the classical shadow Sy (&), which requires O(nN)
computational time. We also define the parameter

nE Y lagl = [|Ollpauis (E11)

0: |0]=«

based on the given observable O.

The sample complexity in Eq. (ES) is the minimum of
two arguments. Each of the two corresponds to a hyperpa-
rameter setting for k£ and €. Let C(k) be the function from
Corollary 11 and C(k,d) be the function from Corollary

12. The first hyperparameter setting considers

o \FH
k = [log, s(1/€)1, €= (6-2*)

C,d)\* ( Ck)\*
(529 (%)

The second hyperparameter setting considers

i € Clic,d)\’
€= 9. 2k+lnk 3 &
(E13)

(E12)

k = [log, 5(2/€)],

For every Pauli observable P € {I,X,Y,Z}®" with |P| <
k, the algorithm computes

1 N
5p(0) = = 3 t(Pp)ye(0), (E14)
=1
L
- (5) ; (E15)

0, Bp < 2€,
ap(0) = {0, Br > 22, 5p(0)|/By* < 20VE,
2p(0)/Bp. Bp > 22, Rp(O)|/By* > 2nVE.
(E16)

which requires O(kN) time per Pauli observable P.
Finally, given an n-qubit state p, the algorithm outputs

hp,0)& ) ap(O)u(Pp),  (EI7)

P: |P|<k
which uses a computational time of On").

2. Rigorous performance guarantee

In this section, we prove that the learning algorithm pre-
sented in the last section satisfies Theorem 14. The proof
uses the tools presented in Appendix D 2 and is similar to
the proof of Theorem 13.

a. Definitions

For a given observable that is a sum of k-qubit observ-
ables, where ¥ = O(1) and each qubit is acted on by
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d = O(1) of the k-qubit observables, we can write

0= b apQ.

Oell X ¥.Z}®": |Q]<k

(E18)

We define a few variables based on O as follows. We
consider the unknown observable to be

o Leto) L2 Y ap(O)P, (E19)
Pe(l,X,Y,Z)®"
and the low-degree approximation of 0™ to be
0% 2 Y ap(O)P. (E20)

Pe([.X Y.Z}®n: |P|<k

Then, for all Pauli observables P € {I,X,Y,Z}®", we
define

L1\ L1\
xp(O)Z(g) ap(0), ﬁP:(g) . (E21)

We also define the standard n-qubit input state distribution
D to be the uniform distribution over the tensor product
of n single-qubit stabilizer states. A nice property of D is
that, for any state p in the support of D?, the nonidentity
purity for a subsystem A4 of size L is

1

vi(ps) = =

= (E22)

Using this property and Lemma 16 on exfracting Pauli
coefficients, we have the identities

xp(0)= E tPp)tr(ET(0)p), Bp= E tr(Pp)’

p~DO p~DO0

N
= E [V*(Pdam(.”))](g) ‘ (E23)

p~DO

We are now ready to prove Theorem 14.

b. Prediction error under the standard distribution D°
(first set of hyperparameters)

We begin the proof by considering the first set of hyper-
parameters £, € as given in Eq. (E12). For a Pauli observ-
able Q € {I,X, Y, Z}®" with |Q| < kx = O(1), we consider
the random variable

[l fi
Q) = >t (Ppye(@) = 5 3 (P tr
=] =1
x (Q®(3|s§f’;‘")(s§§“"| - 1)). (E24)
i=1

Because |Q] = O(1), we have | tr(Q @', 3y Xsi | —
I))| = O(1) with probability 1. By considering the size of

the classical shadow Sy (€) to be

ki
N = Q(M)q

= (E25)

we can utilize Hoeffding’s inequality and the union bound
to guarantee that

|£p(Q) —xp(Q)| <& forall P,Q € {I,X,Y,Z}®", |P|
<k |9l <« (E26)

with probability at least 1 — 4. In the following proof, we
condition on the above event.
Using the triangle inequality, we have

1Xp(0) — xp(0)| < [|Ollpauti, € = NE,
|Bp — Bp| =0, forall P: |P| < k.

The norm inequality given in Corollary 11 shows that

r 3 4 ow) | r
Y ler(0)] 5(%) lo%™|

P: |P|<k

(E27)

(E28)

for the constant C(k) defined in Eq. (5).
The filtering lemma given in Lemma 18 shows that

2\ P
> E [y*(pdom(p))](g) |ap(0) — ap(0)I”

P: |P|<k p~D0

< 6n2_r 3 uo(low) ”rg]—rfz'
ch)

From the norm inequality and constant C(k,d) given in
Corollary 12, we have

(E29)

1N = [[Ollpauiiy < 01 (E30)

3
Clk,d)

Combined with the definition of € given in Eq. (E12), we
have

2\ P!
> E [y*(pdom(p,)l(g) |ap(0) — ap(O)?

P: |P|<k p~D0

low) 7 7
o |04 € oI~
ol | 2*

(E31)
Using Lemma 14 on the mean squared error and Corollary
13 on the low-degree approximation, we have

E_|h(p,0) — tr(0“Pp)I* < (2/3)*|0“"™|)?
p~DO Skl

2\ P!
+ Y E [y*(pdom(p))](g) 1p(0) — ap(O)[2.

A0
P: |P|<kP~D

=[O | 2¢

(E32)
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Using the definition of 0™, we have 0“0 = £7(0) and
O] < [|O]|. Hence,

E |h(p,0) — tr(OE(p)* < (e + 5["0('DW) "]r) o]
" = 26 ol ’

(E33)

which establishes a prediction error bound for distribution

DO

c. Prediction error under the general distribution D
(first set of hyperparameters)

We now consider an arbitrary n-qubit state distribu-
tion D invariant under single-qubit H and S gates. Using
Lemma 14 on the mean squared error and Corollary 13 on
the low-degree approximation, we have

E lk(p, 0) — tr(0™¥ p)|* < €]|OJ*
p~D

2\ Pl
+ Z E[Y*(Pdom{P))](g) |6p(0) — ap(0) .

P 1Pl<k P~
(E34)

Recall that y*(pdom(r)) < 1: hence,

AP\
p@D[V*(Pdom(P))](g) =3 (5) for all

Pel{l.X,Y,Z)®, |P| <k (E35)

Furthermore, we have E,.p,[y*(0dom@))1(2/3)¥ =
(1/3)P1. Together, we have

E lh(p,0) —tr(0™ p)|* < €]|O])* 4 2*
~D

2\ P!
x 3 E [y*(pdam(p))l(g) 1&(0) — ap(O).

P: |P|<kP™

p

(E36)

Combining the above with Eq. (E31), we have

S [ 110%™ 7" 2

E |h(p,0) —tr(OE(p))|" < (et € 1o1°,
p~D ol

(E37)

which is the prediction error under distribution D.

d. Putting everything together (first set of
hyperparameters)

From Eq. (E12), we have set the parameter € to be

_ (€ B Coe,d)\2 £ ClR)\
=5l s Jhs )

Furthermore, given the classical shadow Sy (€) of size

ki
N:o(w) 16 (_)
€ )

x 2Ollog(1/e)loglog(1/e)-+log(1/e)]}

(E38)

(E39)

we can guarantee that, with probability at least 1 — §, the
following holds. For any observable O that is a sum of k-
qubit observables, where k = O(1) and each qubit is acted
on by d = O(1) of the k-qubit observables, and any n-
qubit state distribution D invariant under single-qubit H
and § gates, we have

2 [ o7 2

E [h(p,0) —tr(OE(p))|" < | e+ € 101*.
p~D Ol

(E40)

This establishes one of the arguments for the sample
complexity stated in Theorem 14.

e. Prediction error under the standard distribution D"
(second set of hyperparameters)

In the following proof, we consider the second set of
hyperparameters £, € as given in Eq. (E13). By considering
the size of the classical shadow Sy (£) to be

k4w
N — Q(lfl'g(i"l_+ /5)),

= (E41)

we can utilize Hoeffding’s inequality and the union bound
to guarantee that

[Xp(Q) —xp(Q)| <€
<klQ0l <«

forall P,Q € {I,X,Y,Z}®", |P|
(E42)

with probability at least 1 — 4. In the following proof, we
condition on the above event. Using the triangle inequality,
we have

|Bp — Bp| =0,
(E43)

[Xp(0) — xp(0)| < [|Ollpauti, 1€ = nE,
forall P: |P| <k

The filtering lemma given in Lemma 18 shows that
2\ /P!
Y E [r*(pdom)] (5) |a@p(0)
p: |Pl<k P~D"

—ap(0)]* < 9p?é. (E44)
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From the norm inequality and function C(k,d) given in
Corollary 12, we have

ol (E45)

3
= [|Ollpautiy <
n = [|Ollpauti C.d)

Combined with the definition of € given in Eq. (E13), we
have

) 1P|
Z E [V*(pdom(P))](g) |ap(0)

~T0
p: |P|<k ™D

—ap(0)* < |O]1%.

€
< W[ (E46)

Using Lemma 14 on the mean squared error and Corollary
13 on the low-degree approximation, we have

E_Ih(p,0) —tr(0“ ) p)* < (2/3) 0"
p~DY

2\ P!
+ Y E [y*(pdom(p))](g) &2(0) = ap(O)?

~T0
p: |P|l<k P~D

2\ 1P
<sI0“P2+ Y E [y*(pdom(m)](g)

~0
P |P|<k PP

|@p(0) — ap(O)I*. (E4T)
Using the definition of O™ we have 0“0 = £7(0) and
O] < ||O]|. Hence,

1
E [h(p,0) — tr(OE () < —(e+ik)uonz, (E48)
p~DO 2 2

which establishes a prediction error bound for distribution

DO

f. Prediction error under the general distribution D
(second set of hyperparameters)

We now consider an arbitrary n-qubit state distribu-
tion D invariant under single-qubit H and § gates. Using
Lemma 14 on the mean squared error, Corollary 13 on
the low-degree approximation, k = [log, 5(2/€)], the fact
that ¥*(odomp)) < 1, and ]EpNDo[}’*(Pdam(P))](Z/B)lpl =
(1/3)P!, we have

E_|h(p,0) — tr(0™% p)| < Z|O] + 2k
p~D 2

x )

2\ /P
E [V*(Pdom(P))](g) |ap(0) — ap(O).

P: |P|<kP™
(E49)
Combining the above with Eq. (E46), we have
E_lh(p,0) — r(OE(p)I* < €llOII, (ES0)
e

which is the prediction error under distribution D.

g. Putting everything together (second set of
hyperparameters)

From Eq. (E13), we have set the parameter € to be

.« Cle,d)\*
=9 2gE\" 3 )

Furthermore, given the classical shadow Sy (€) of size

k+x
N = O(w) = log (%)20(103(1;5) log(m))
€

(ES1)

(E52)

we can guarantee that, with probability at least 1 — 4, the
following holds. For any observable O that is a sum of «-
qubit observables, where k¥ = (O(1) and each qubit is acted
on by d = O(1) of the k-qubit observables, and any n-
qubit state distribution D invariant under single-qubit H
and § gates, we have

E 140, 0) - (0 (p))” < e||O]*. (E53)
o

This completes the proof of Theorem 14.

APPENDIX F: NUMERICAL DETAILS

In the numerical experiments, we consider two classes
of Hamiltonians:

1 1
H= 4 Xi:(X}XfH + YiYi) + ) Xi:hizi (XYmodel),

(F1)

1 1
H=> ZX,-X,-H ez Zi:hfz,- (Ising model).  (F2)

Here h; = 0.5 for the homogeneous Z field, and A; is sam-
pled uniformly at random from [—5, 5] for the disordered
Z field. We solve for the time-evolved properties using the
Jordan-Wigner transform to map the spin chains to a free-
fermion model and the technique described in Ref. [83] to
solve the free-fermion model.

We consider the training set to be a collection of N
random product states |Y¢), £ = 1,..., N, and their asso-
ciated measured properties y¢ corresponding to measuring
an observable O after evolving under U(f) = exp(—itH).
The measured properties are averaged over 500 measure-
ments. Hence, y; is a noisy estimate of the true expectation
value tr(QU(t)| ¥ X |U()1). We consider essentially the
same ML algorithm as described in Sec. I1I A, but utilize a
more sophisticated approach to enforce sparsity in @p. We
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Visualization of the ML model’s prediction for a highly entangled initial state p = |y )}{1/|. We consider the expected value

of Zi(t) = "M Z,e ™M where H corresponds to the 1D 50-spin XY chain with a homogeneous Z field. The initial state |v) has a GHZ-
like entanglement over the first 18-spin chain and is a product state with spins rotating clockwise over the latter 32-spin chain. To
prepare |} with 1D circuits, a depth of at least Q(#) is required. Even though the ML model is trained only on random product states
(a total of N = 10 000), it still performs accurately in predicting the highly entangled state over a wide range of evolution time .

also consider ap for Pauli operator P that is geometrically
local. For ease of analysis, we consider a simple strategy
of setting small values to zero. The standard approach that
is often used in practice is LASSO [73].

In the numerical experiments, we perform a simple grid
search for the two hyperparameters using twofold cross-
validation on the training set:

gt B  _gtad
(F3)

k=1,2,3,4,

Here k corresponds to the maximum number of qubits that
the Pauli operators P act on, and a is a hyperparameter cor-
responding to the strength of the £;-regularization term in
LASSO. In particular, the optimization problem of LASSO
is given by

i Y # t:r(Pnfr)uM)2
min — Ve — ap eXVe
ap 2N P |P|<k
+a Y lapl, (F4)
P: |P|<k

where |P| is the number of qubits that the Pauli observable
P acts nontrivially on. We then use the values &p found
by the above optimization to form a succinct approximate

model

Z épP

P: |P|<k

(FS)

of the time-evolved observable O(f) = U(f)'OU(#). Given
a new initial state p, we predict the time-evolved property
tr(0(f) p) = tr(OUH) pU(D)") using

Z aptr(Pp).

P: |P|<k

(F6)

In addition to the figures given in the main text, Fig. 5
shows another example for predicting a highly entangled
initial state. Even though the ML model is trained with
random product states, it still performs very well on a
structured entangled initial state.
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