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Abstract—We consider the problem of quantum state certi-
fication, where we are given the description of a mixed state
σ ∈ Cd×d, n copies of a mixed state ρ ∈ Cd×d, and ε > 0, and we
are asked to determine whether ρ = σ or whether ∥ρ−σ∥1 > ε.
When σ is the maximally mixed state 1

d
Id, this is known as

mixedness testing. We focus on algorithms which use incoherent
measurements, i.e. which only measure one copy of ρ at a time.
Unlike those that use entangled, multi-copy measurements, these
can be implemented without persistent quantum memory and
thus represent a large class of protocols that can be run on
current or near-term devices.

For mixedness testing, there is a folklore algorithm which uses
incoherent measurements and only needs O(d3/2/ε2) copies. The
algorithm is non-adaptive, that is, its measurements are fixed
ahead of time, and is known to be optimal for non-adaptive
algorithms. However, when the algorithm can make arbitrary
incoherent measurements, the best known lower bound is only
Ω(d4/3/ε2) [5], and it has been an outstanding open problem to
close this polynomial gap. In this work:
• We settle the copy complexity of mixedness testing with

incoherent measurements and show that Ω(d3/2/ε2) copies are
necessary. This fully resolves open questions of [15] and [5].

• We show that the instance-optimal bounds for state certification
to general σ first derived in [7] for non-adaptive measurements
also hold for arbitrary incoherent measurements.

Qualitatively, our results say that adaptivity does not help at all
for these problems. Our results are based on new techniques
that allow us to reduce the problem to understanding the
concentration of certain matrix martingales, which we believe
may be of independent interest.

Index Terms—Quantum learning, state certification, property
testing, identity testing, instance optimality

I. INTRODUCTION

Quantum mixedness testing, and more generally quantum
state certification, are two of the most basic and fundamental
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tasks in quantum property testing. In quantum state certifica-
tion, the learner is given n copies of a mixed state ρ ∈ Cd×d,
and an explicit description of a mixed state σ ∈ Cd×d, and
the objective is to distinguish with probability at least 0.99
between the case where ρ = σ or if it is ε-far from σ in
trace distance.1 Mixedness testing is the special case of state
certification where σ = 1

dId, i.e., when the target state is the
maximally mixed state.

Mixedness testing and state certification are the natural
quantum analogues of uniformity testing and identity testing,
respectively, two of the most well-studied problems in dis-
tribution testing. From a more practical point of view, state
certification is also a key subroutine which allows experimen-
talists to verify the outcomes of their quantum experiments.
For instance, if an algorithmist wishes to check that a quantum
algorithm with quantum output is correctly outputting the right
state, then this is exactly the problem of state certification.

Despite the fundamental nature of the problems, it was
not until relatively recently that the copy complexity of state
certification and mixedness testing were first understood. The
seminal paper of [12] first demonstrated that n = Θ(d/ε2)
copies were necessary and sufficient to solve mixedness
testing. Follow-up work of [3] later demonstrated that n =
O(d/ε2) is also sufficient for the more general problem of state
certification. Combined with the lower bound for mixedness
testing, this resolved the copy complexity of state certification,
in the worst case over σ.

However, a major downside of the estimators which achieve
these copy complexities is that they require heavily entangled
measurements over the joint state ρ⊗n. This poses a number of
challenges to porting these algorithms into practical settings.
First, the descriptions of the measurements are quite large
(as the overall joint state is of size dn × dn), and cannot

1Note that by standard bootstrapping arguments the choice of constant here
is arbitrary, and can be any constant larger than 1/2. This only changes the
sample complexity by constant factors.
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be implemented on current (or near-term) quantum devices.
Second, the measurements require that all n copies of ρ
are simultaneously present. In many realistic settings, such
as streaming settings where one copy of ρ is given to the
algorithm at a time, this would require that the quantum device
be able to store all of these copies in persistent quantum
memory. Such a task is also out of reach for current or near-
term quantum devices, in essentially any non-trivial regime
of the parameters, especially when one considers that d is
exponential in the number of qubits in the system!

An appealing class of algorithms which avoids both these
issues, and which can be implemented on real world noisy
intermediate-scale quantum (NISQ) devices, are algorithms
which only rely on incoherent (a.k.a. unentangled) mea-
surements. In contrast to general protocols which perform
arbitrary measurements on the joint state over all n copies,
these algorithms only apply measurements to one copy of
ρ at a time, although these measurements can possibly be
adaptively chosen based on the (classical) outcomes of the
previous measurements. Consequently, these measurements
are performed on much smaller states, and moreover, can be
performed without any quantum memory.

A. Optimal lower bounds for mixedness testing

For these reasons, there has been a considerable amount
of attention in recent years devoted to understanding the
statistical power of algorithms that only use incoherent mea-
surements, which was also posed as an open problem in
Wright’s thesis [15]. A recent work of [5] demonstrated that
if the measurements are additionally chosen non-adaptively,
then n = Θ(d3/2/ε2) copies are necessary and sufficient
to solve mixedness testing. They also demonstrated that any
algorithm using incoherent measurements—even those chosen
adaptively—must use at least n = Ω(d4/3/ε2) copies. In
other words, there is a polynomial separation between the
power of algorithms with and without quantum memory for
this problem. Still, this left a gap between the best known
upper and lower bounds for mixedness testing with incoherent
measurements. This begs the question:

Can we fully characterize the copy complexity of mixedness
testing with incoherent measurements?

Closing this gap was posed as an open question in the work
of [5].

Underlying this question is another, more qualitative one,
regarding the power of adaptivity. Indeed, a recurring theme
in a number of different quantum learning settings is that while
proving tight lower bounds against adaptive algorithms is quite
challenging, the state-of-the-art algorithms almost always tend
to be the “obvious” non-adaptive strategies. A very interesting
meta-question is understanding for which natural quantum
learning problems (if any) adaptivity helps at all for algorithms
that use incoherent measurements.

Our first main contribution is fully resolve this question for
mixedness testing: we prove that adaptivity does not improve

the sample complexity at all, except possibly up to constant
factors.

Theorem I.1 (Informal, see Theorem III.1). The copy com-
plexity of mixedness testing using incoherent measurements is
n = Θ(d3/2/ε2).

By completely pinning down the copy complexity of mixed-
ness testing with incoherent measurements, this answers open
questions of [15] and [5]. Qualitatively, our theorem states that
adaptivity does not help the copy complexity of this problem
whatsoever.

B. Instance-optimal lower bounds for state certification.

We next turn to state certification. Because mixedness
testing is a special case of state certification, Theorem I.1
immediately implies that n = Ω(d3/2/ε2) copies are necessary
for state certification, in the worst case over all choices of the
reference state σ. This, coupled with a matching upper bound
from [7, Lemma 6.2], resolves the copy complexity of state
certification with incoherent measurements for worst-case σ.

However, it should be clear that this bound is not the correct
bound for all possible σ. For instance, when σ is pure, it is not
hard to see that Θ(1/ε2) copies are sufficient and necessary.
This raises the natural question: what is the copy complexity of
state certification with incoherent measurements, as a function
of the reference state σ? This is the quantum analogue of the
(classical) distribution testing problem of obtaining instance
optimal bounds for identity testing against a known distribu-
tion over d elements [1], [2], [4], [8], [10], [14]. In the classical
version of the problem, there is a known distribution p over
{1, . . . , d}, and we are given samples from a distribution q.
We are asked to distinguish between the case wher p = q, and
the case when ∥p− q∥1 > ε. A landmark result of [14] states
that the sample complexity of this question is (essentially)
characterized by the ℓ2/3-quasinorm of p.

In this work, we ask whether or not a similar charac-
terization can be obtained for the quantum version of the
question. Prior work of [7] demonstrated such a characteri-
zation, but under the caveat that the measurements are chosen
non-adaptively. At a high level, they showed that the copy
complexity of the problem is governed by the fidelity between
σ and the maximally mixed state. More precisely, they showed
that if σ and σ are states given by zeroing out eigenvalues of
σ that have total mass at most Θ(ε2) and Θ(ε) respectively
and normalizing, then the copy complexity with non-adaptive
measurements, denoted n, satisfies

Ω̃

(
d · d1/2eff

ε2
· F (σ,

1

d
Id)

)
≤ n ≤ Õ

(
d · d1/2eff

ε2
· F (σ,

1

d
Id)

)
,

(1)
where deff (resp. deff ) is the “effective dimension” of the
problem, namely, the rank of σ (resp. σ). In the same work,
they also gave lower bounds for arbitrary (possibly adaptive)
incoherent measurements, but, like with mixedness testing,
these lower bounds were looser and did not match the cor-
responding upper bound. In light of this, we ask:
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Can we give an instance-optimal characterization of the
copy complexity of state certification with incoherent

measurements?

Our second main contribution is to give such a characteri-
zation:

Theorem I.2 (Informal, see Theorem 8.1 of full version). For
any σ, and ε sufficiently small, the copy complexity of state
certification w.r.t. σ using incoherent measurements is upper
and lower bounded by (1).

We regard this as strong evidence that, as with mixedness
testing, adaptivity does not help for state certification. It is not
always a tight bound, as there are states for which the upper
and lower bounds in (1) can differ by polynomial factors for
some choices of ε, and so this bound can be loose, even in
the non-adaptive setting. Still, we conjecture that for all σ, the
copy complexity of state certification to σ with incoherent and
non-adaptive measurements is the same as that with arbitrary
incoherent measurements. Indeed, when ε is sufficiently small
compared to the smallest nonzero eigenvalue of σ, our bounds
are tight up to constant factors.

C. Our techniques.

We achieve our new lower bounds via a new proof technique
which we believe may be of independent interest. As with
other lower bounds in this area, we reduce to a “one-versus-
many” distinguishing problem. To construct this instance, prior
work leveraged the natural quantum analogue of Paninski’s
famous construction in the lower bound for (classical) uni-
formity testing [13] – namely, an additive perturbation by a
multiple of UZU †, where U is a Haar random matrix and
Z = diag(1, . . . ,−1, . . .) has equally many +1s and −1s.

We instead use a different hard instance based on Gaussian
perturbations. While this introduces a number of additional
technical challenges, the key advantage of this instance is
that the likelihood ratio for this instance has a very clean,
self-similar form (see Lemma III.5). This allows us to es-
sentially reduce the problem into one of understanding the
concentration of a certain matrix martingale defined by the
learning process, as well as an auxiliary matrix balancing
question. We can then use classical tools from scalar and
matrix concentration to demonstrate that the likelihood ratio is
close to 1 with high probability over all possible outcomes of
the learning algorithm, which yields our desired lower bound.

Not only does this framework dramatically simplify many
of the difficult concentration calculations in prior work such
as [5], it also has the conceptual advantage that it never
requires a pointwise bound on the likelihood ratio. To our
knowledge, all prior lower bounds against adaptive algorithms
in this literature required some worst-case pointwise bound
on the likelihood ratio. For some problems, e.g. shadow
tomography [6], this was already sufficient to prove tight lower
bounds. However, for mixedness testing, a worst-case bound
cannot be sufficient, and from a technical perspective, the fact
that [5] had to balance between their (much tighter) average

case bound on the likelihood ratio and this (fairly large) worst-
case bound to control the contribution of certain tail events was
why their overall lower bound was loose. Consequently, we
believe that this martingale-based technique may also yield
tight lower bounds for a number of other problems in the
literature.

Roadmap. After providing some technical preliminaries in
Section II, including basics on showing lower bounds for
algorithms that use incoherent measurements, we give a
complete proof of Theorem I.1 in Section III. We defer
the proof of Theorem I.2 to the full version, available at
https://arxiv.org/abs/2204.07155.

II. PRELIMINARIES

Throughout, let ρ denote the unknown state, and let ρmm =
1
dId denote the maximally mixed state.

We now define the standard measurement formalism, which
is the way algorithms are allowed to interact with the unknown
quantum state ρ.

Definition II.1 (Positive operator valued measurement
(POVM), see e.g. [11]). A positive operator valued measure-
ment M is a finite collection of psd matrices M = {Mz}z∈Z
satisfying

∑
z Mz = Id. When a state ρ is measured using M,

we get a draw from a classical distribution over Z , where we
observe z with probability Tr(ρMz). Afterwards, the quantum
state is destroyed.

Next, we formally define what we mean by an algorithm that
uses incoherent measurements. Intuitively, such an algorithm
operates as follows: given n copies of ρ, it iteratively measures
the i-th copy using a POVM (which could depend on the
results of previous measurements), records the outcome, and
then repeats this process on the (i+ 1)-th copy. After having
performed all n measurements, it must output a decision based
on the (classical) sequence of outcomes it has received. More
formally, such an algorithm can be represented as a tree:

Definition II.2 (Tree representation, see e.g. [6]). Fix an
unknown d-dimensional mixed state ρ. A learning algorithm
that only uses n incoherent, possibly adaptive, measurements
of ρ can be expressed as a rooted tree T of depth n satisfying
the following properties:

• Each node is labeled by a string of vectors x = (x1, . . . , xt),
where each xi corresponds to measurement outcome ob-
served in the i-th step.

• Each node x is associated with a probability pρ(x) corre-
sponding to the probability of observing x over the course
of the algorithm. The probability for the root is 1.

• At each non-leaf node, we measure ρ using a rank-1 POVM
{ωxd · xx†}x to obtain classical outcome x ∈ Sd−1. The
children of x consist of all strings x′ = (x1, . . . , xt, x) for
which x is a possible POVM outcome.

• If x′ = (x1, . . . , xt, x) is a child of x, then

pρ(x′) = pρ(x) · ωxd · x†ρx. (2)
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• Every root-to-leaf path is length-n. Note that T and ρ induce
a distribution over the leaves of T .

We briefly note that in this definition, we assume that the
POVMs are always rank-1. It is a standard fact that this is
without loss of generality (see e.g. [6, Lemma 4.8]).

A. Notation.

Given z ∈ R, we use z− to denote −min(z, 0). We use
∧ to denote minimum. We use f ≲ g to denote f = O(g)
and f ≪ g to denote f = o(g). We will always implicitly
assume a sufficiently large system; for example, if f ≫ g
we will assume where necessary that f ≥ 100g. We use
f = Õ(g) (resp. f = Ω̃(g)) to denote that there exists
some absolute constant c for which f = O(g · logc g) (resp.
f = Ω(g/ logc g)).

Given a vector v, we use ∥v∥p to denote its ℓp norm; when
p = 2, we sometimes drop the subscript. Given a matrix M ,
we use ∥M∥op or ∥M∥ to denote its operator norm, ∥M∥1
to denote its trace norm, and ∥M∥F to denote its Frobenius
norm.

For a string x = (x1, . . . , xn), we let x∼i and x∼i,j denote
the string with the i-th index removed and the string with the
i-th and j-th indices removed. For any set S ⊆ [n], we let xS

denote the string restricted to the entries in S.
We will work with the following random matrix ensemble:

Definition II.3 (Trace-centered Gaussian orthogonal ensemble
(GOE)). For d ∈ N, let G ∼ GOE(d), that is, G ∈ Rd×d is
symmetric with upper diagonal entries sampled independently
from N (0, 1/d) and diagonal entries sampled independently
from N (0, 2/d).

Define M = G− Tr(G)
d Id. We say that M is a trace-centered

GOE matrix and denote its distribution GOE∗(d). For U ⊆
Rd×d, M is a U -truncated trace-centered GOE matrix if it is
drawn from GOE∗(d) conditioned on M ∈ U . We denote the
distribution of M by GOE∗

U (d).

Our result for state certification uses the following notion of
fidelity.

Definition II.4 (Fidelity between two quantum states). The
fidelity of quantum states ρ, σ ∈ Cd×d is F (ρ, σ) =
(Tr

√
ρ1/2σρ1/2)2.

Our lower bounds are based on Le Cam’s two-point method
which we briefly review here. The following is an elementary
result in binary hypothesis testing:

Fact II.5 (See e.g. Theorem 4.3 from [16]). Given distribu-
tions p0, p1 over a domain S , if dTV(p0, p1) < 1/3, there is
no A : S → {0, 1} for which Prx∼pi

[A(x) = i] ≥ 2/3 for
both i = 0, 1.

Now consider a state distinguishing task of the form

H0 : ρ = σ and H1 : ρ = σM ,

where σM is a random state sampled from some distribution D
over the set of states satisfying ∥σ − σM∥1 > ϵ. Recall from

Definition II.2 that a learning algorithm that uses n incoherent
measurements corresponds to a tree T of depth n, and ρ = σ
and ρ = σM induce distributions p0 and pM on the leaves
of this tree. We can use Fact II.5 to reduce proving a copy
complexity lower bound for state certification with respect to
σ, which is a worst-case guarantee over all possible input states
ρ, to bounding dTV(p0,EM [pM ]), which is an average-case
bound.

Lemma II.6 (Le Cam’s two-point method, see e.g. Lemma
1 in [17]). If there is a distribution D over states satisfying
∥σ − σM∥1 > ϵ for which dTV(p0,EM [pM ]) ≤ 1/3 for any
tree T of depth n, then any algorithm A using incoherent
measurements for state certification with respect to σ must
make more than n incoherent measurements to achieve success
probability at least 2/3.

Proof. Suppose to the contrary there existed such an algorithm
A using at most n incoherent measurements, and let p0
and pM denote the distributions over the leaves of the tree
corresponding to A when ρ = σ and ρ = σM respectively.
Suppose when it succeeds, A outputs 0 when ρ = σ and
1 when ∥ρ− σ∥1 > ϵ. Let p1 ≜ EM∼D[pM ]. Because A
successfully outputs 1 with probability 2/3 when given as input
the state σM for any M , 2/3 ≤ EM [Prx∼pM

[A(x) = 1]] =
Ex∼p1 [A(x) = 1]. Similarly, 2/3 ≤ Ex∼p0 [A(x) = 0]. By
Fact II.5, this would contradict the bound on dTV(p0, p1).

III. LOWER BOUND FOR MIXEDNESS TESTING

In this section we prove the following theorem, which is
the formal version of Theorem I.1.

Theorem III.1. Let d ≫ 1 and 0 < ε ≤ 1/12. Any algorithm
using incoherent measurements that can distinguish between
ρ = ρmm and ∥ρ − ρmm∥1 > ε with probability at least 2/3
must use at least n = Ω(d3/2/ε2) copies of ρ.

By the upper bound in [5], this is tight up to constant
factors. Also, by standard amplification arguments, the choice
of constant in the success probability is arbitrary, and can be
taken to be any constant which is strictly larger than 1/2.

Formally, we consider the task of distinguishing between
the following two alternatives:

H0 : ρ =
1

d
Id and H1 : ρ =

1

d
(Id + εM).

Here, M ∼ GOE∗
U (d) for the U given by Lemma III.2 below.

Lemma III.2. There exists U ⊆ Rd×d such that if M ∼
GOE∗(d), then Pr[M ̸∈ U ] ≤ exp(−Ω(d)) and on the event
M ∈ U , we have ∥M∥op ≤ 3 and ∥M∥1 ≥ d/12.

Note that this lemma ensures that under H1, ρ is psd (and
thus a valid quantum state) and has trace distance Ω(ε) to 1

dId.
Its proof is by standard spectral bounds on the GOE ensemble
and can be found in Appendix A of the full version of this
paper. Theorem III.1 follows from the following theorem.

Theorem III.3. Let d ≫ 1 and 0 < ε ≤ 1/12. Any algorithm
using incoherent measurements that distinguishes between H0
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and H1 with success probability at least 2/3 must use at least
n = Ω(d3/2/ε2) copies of ρ.

Take any learning tree T corresponding to an algorithm
for this task that uses n incoherent measurements. Recalling
the terminology from Definition II.2, we let p0 and p1 denote
the distributions over leaves of T induced by ρ under H0

and H1 respectively. In the rest of this section, we assume
n ≪ d3/2/ε2 and will prove dTV(p0, p1) = o(1). It is clear
that this implies Theorem III.3.

For a sequence of unit vectors x = (x1, . . . , xn), we define
the likelihood ratio L∗(x) ≜ p1(x)/p0(x). Note that

L∗(x) = E
M∼GOE∗

U (d)

[
n∏

i=1

(
1 + εx†

iMxi

)]
.

Similarly define

L(x) ≜ E
M∼GOE∗(d)

[
n∏

i=1

(
1 + εx†

iMxi

)]
. (3)

This is an estimate for the likelihood ratio L∗(x) where the
conditioned Gaussian integral is replaced by a true Gaussian
integral. Most of the computations in this section will be done
in terms of L(x); the proof of Theorem III.3 below quantifies
that L(x) is a close approximation of L∗(x).

We will somewhat abuse notation and write L(z) for any se-
quence of unit vectors z = (z1, . . . , zt) of length not necessar-
ily n. This is defined identically to (3). We also write L(x,x)
to denote the value of L on input (x1, x1, x2, x2, . . . , xn, xn).

The main ingredient in the proof of Theorem III.3 is the
following high-probability bound on L evaluated at the leaves
of T .

Proposition III.4. There exists a subset S of the leaves of T
such that Prp0

[S] = 1− o(1) and for all x ∈ S, |L(x)−1| =
o(1) and L(x,x) ≪ e

√
d.

Let us first prove Theorem III.3 assuming Proposition III.4.

Proof of Theorem III.3. Let U be as in Lemma III.2. Define

L(x) = E
M∼GOE∗(d)

[
1{M ∈ U}

n∏
i=1

(
1 + εx†

iMxi

)]
.

It is clear that L∗(x) = Pr[U ]
−1

L(x). For all x ∈ S, by
Cauchy-Schwarz

|L(x)− L(x)|

=

∣∣∣∣∣ E
M∼GOE∗(d)

[
1{M ̸∈ U}

n∏
i=1

(
1 + εx†

iMxi

)]∣∣∣∣∣
≤ Pr[U c]

1/2 E
M∼GOE∗(d)

[
n∏

i=1

(
1 + εx†

iMxi

)2
]1/2

=
√
Pr[U c]L(x,x) = o(1).

Here we use that Pr[U c] ≤ exp(−Ω(d)) and L(x,x) ≪ e
√
d.

Since |L(x)− 1| = o(1), we have L(x) = 1 + o(1) and

|L∗(x)− 1| ≤ |L∗(x)− L(x)|+ |L(x)− 1|

=
Pr[U c]

Pr[U ]
L(x) + o(1) = o(1).

Finally,

dTV(p0, p1) = 2 E
x∼p0

[(L∗(x)− 1)−]

= 2 E
x∼p0

[1{x ∈ S}(L∗(x)− 1)−]

+ 2 E
x∼p0

[1{x ̸∈ S}(L∗(x)− 1)−]

≤ 2 sup
x∈S

(L∗(x)− 1)− + 2Pr
p0

[Sc] = o(1).

A. Recursive evaluation of likelihood ratio
Let z = (z1, . . . , zt) be a sequence of unit vectors. Recall

that z∼i and z∼i,j denote z with zi and zi, zj omitted. The
following lemma gives a recursive formula for L(z).

Lemma III.5. The following identity holds.

L(z) = L(z∼t) +
2ε2

d2

t−1∑
i=1

[(
d⟨zi, zt⟩2 − 1

)
L(z∼i,t)

]
.

The proof is based on Isserlis’ theorem, which we record
below. For k even, let PMat(k) denote the set of perfect
matchings of {1, . . . , k}.

Theorem III.6 (Isserlis’ theorem, [9]). Let g = (g1, . . . , gk)
be a jointly Gaussian vector. If k is odd, then E[

∏k
i=1 gi] = 0.

If k is even, then

E

[
k∏

i=1

gi

]
=

∑
{{a1,b1},...,{ak/2,bk/2}}∈PMat(k)

k/2∏
i=1

E[gai
gbi ].

Proof of Lemma III.5. For a set S ⊆ [t] with |S| even, let
PMat(S) denote the set of perfect matchings of S. For even
k ≤ t, let Mat(t, k) denote the set of matchings of [t]
consisting of k/2 pairs. We compute that

L(z) =
∑
S⊆[t]

ε|S| E
M∼GOE∗(d)

[∏
i∈S

(z†iMzi)

]

=

⌊t/2⌋∑
k=0

ε2k
∑

{{a1,b1},...,{ak,bk}}∈Mat(t,2k)

k∏
i=1

E
M∼GOE∗(d)

[
(z†ai

Mzai
)(z†biMzbi)

]
=

⌊t/2⌋∑
k=0

(
2ε2

d2

)k ∑
{{a1,b1},...,{ak,bk}}∈Mat(t,2k)

k∏
i=1

(
d⟨zai , zbi⟩2 − 1

)
. (4)

In the final step we use that for unit vectors x, y ∈ Cd,

E
M∼GOE∗(d)

[
(x†Mx)(y†My)

]
=

2

d2
(d⟨x, y⟩2 − 1),
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which can be verified by direct computation. The lemma
follows by partitioning the summands in (4) based on whether
t appears in the matching, and if so which i ∈ {1, . . . , t− 1}
it is paired with.

B. High probability bound on likelihood ratio at leaves

This subsection gives the main part of the proof of Propo-
sition III.4. For any sequence of unit vectors z = (z1, . . . , zt),
define

H(z) =
t∑

i=1

(
dziz

†
i − Id

) L(z∼i)

L(z)
,

K(z) =
t∑

i=1

(
dziz

†
i − Id

)
.

The function H enters our calculations by the following
rewriting of Lemma III.5:

L(z)

L(z∼t)
= 1 +

2ε2

d2
· z†tH(z∼t)zt. (5)

If z = x≤t ≜ (x1, . . . , xt) is a prefix of x ∼ p0, then
L(z)

L(z∼t)
=

L(x≤t)

L(x≤t−1)
is one step in the likelihood ratio mar-

tingale. As we will see (proof of Claim III.10) below, the
multiplicative fluctuation of this step is

E
xt

[(
L(x≤t)

L(x≤t−1)

)2
]
= 1 +O

(
ε4

d5

)
∥H(x≤t−1)∥2F .

Thus, an upper bound on ∥H(z)∥F over all prefixes z of
x controls the fluctuations of the likelihood ratio martingale.
Because the matrices H(z) are hard to control directly, we
will use K(z) as a proxy for H(z). The following lemma
quantifies this relationship, showing that if K(z) is bounded
in Frobenius norm, H(z) is bounded at the same scale.

Lemma III.7. Suppose 1 ≪ γ ≪ d/(ε2n1/2). If z =
(z1, . . . , zt) is a sequence of unit vectors satisfying t ≤ n
and ∥K(z)∥F ≤ n1/2dγ, then ∥H(z)∥F ≤ 3n1/2dγ.

Note that this lemma is a “deterministic” statement about a
sequence of vectors. We will prove this in Subsection III-C.
The following lemma bounds K(z) in Frobenius norm uni-
formly over all prefixes z of x. We will prove this lemma
in Subsection III-D by mimicking the proof of Doob’s L2

maximal inequality for the matrix valued martingale K(x≤t).

Lemma III.8. If x ∼ p0, then E
[
sup1≤t≤n ∥K(x≤t)∥2F

]
≲

nd2.

We will now prove Proposition III.4 assuming Lemmas III.7
and III.8. We set α, β to be slowly-growing functions such
that 1 ≪ α ≪ β ≪ d3/2/(ε2n)∧d/(ε2n1/2), and furthermore
α2 ≪ d3/2/(ε2n). This is possible because n ≪ d3/2/ε2.

Let x ∼ p0. For 1 ≤ t ≤ n, define the filtration Ft =
σ(x≤t) and the sequences

Ht = H(x≤t), Kt = K(x≤t), Φt = L(x≤t).

Consider the time

τ = inf

{
t : ∥Kt∥F > n1/2dα or |Φt − 1| > ε2n

d3/2
β

}
∪{∞},

which is clearly a stopping time with respect to Ft. Also define
the stopped sequence Ψt = Φt∧τ .

Claim III.9. With probability 1− o(1), ∥Kt∥F ≤ n1/2dα for
all 1 ≤ t ≤ n.

Proof. By Lemma III.8,

Pr

[
sup

1≤t≤n
∥Kt∥F > n1/2dα

]
≤

E
[
sup1≤t≤n ∥Kt∥2F

]
nd2α2

≲ α−2 = o(1).

Claim III.10. With probability 1− o(1), |Ψn − 1| ≤ ε2n
d3/2 β.

Proof. Note that Ψt is a multiplicative martingale: if τ ≤ t−1
then certainly E[ Ψt

Ψt−1
|Ft−1] = 1, and if τ > t−1, (5) implies

E
[

Ψt

Ψt−1
|Ft−1

]
= 1 +

2ε2

d2
E
[
x†
tHt−1xt|Ft−1

]
= 1,

using that

E
[
x†
tHt−1xt|Ft−1

]
=

∑
xt

ωxt
(x†

tHt−1xt)

=

〈
Ht−1,

∑
xt

ωxt
xtx

†
t

〉
= ⟨Ht−1, Id/d⟩ = 0. (6)

We next bound the quadratic increment E[( Ψt

Ψt−1
)2|Ft−1]. If

τ ≤ t− 1 this is 1, and otherwise

E

[(
Ψt

Ψt−1

)2

|Ft−1

]
= 1 +

4ε4

d4
E
[
(x†

tHt−1xt)
2|Ft−1

]
since the linear term vanishes by (6). The remaining expecta-
tion can be bounded by

E
[
(x†

tHt−1xt)
2|Ft−1

]
=

∑
xt

ωxt
x†
tHt−1(xtx

†
t)Ht−1xt

≤
∑
xt

ωxt
x†
tH

2
t−1xt

=

〈
H2

t−1,
∑
xt

ωxt
xtx

†
t

〉

=
1

d
∥Ht−1∥2F .

Moreover, since τ > t − 1, ∥Kt−1∥F ≤ n1/2dα and
Lemma III.7 implies ∥Ht−1∥F ≤ 3n1/2dα. Thus,

E

[(
Ψt

Ψt−1

)2

|Ft−1

]
≤ 1 +

36ε4n

d3
α2. (7)
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So, for all 1 ≤ t ≤ n,

E[Ψ2
t ] = E

[
E

[(
Ψt

Ψt−1

)2

|Ft−1

]
Ψ2

t−1

]

≤
(
1 +

36ε4n

d3
α2

)
E[Ψ2

t−1],

and therefore

E[Ψ2
t ] ≤ exp

(
36ε4n2

d3
α2

)
≤ 2

since ε4n2

d3 α2 ≪ 1. Moreover, (recalling E[Ψt] = 1 and (7))

E[(Ψt − 1)2] = E

[
E

[(
Ψt

Ψt−1

)2

|Ft−1

]
Ψ2

t−1 − 1

]

≤ 36ε4n

d3
α2 E[Ψ2

t−1] + E[(Ψt−1 − 1)2]

≤ 72ε4n

d3
α2 + E[(Ψt−1 − 1)2],

so by induction

E[(Ψn − 1)2] ≤ 72ε4n2

d3
α2.

Thus

Pr

[
|Ψn − 1| > ε2n

d3/2
β

]
≤

E
[
|Ψn − 1|2

]
ε4n2

d3 β2
≤ 72α2

β2
= o(1).

Therefore, |Ψn − 1| ≤ ε2n
d3/2 β with probability 1− o(1).

Claim III.11. If ∥Kn∥F ≤ n1/2dα, then L(x,x) ≪ e
√
d.

Proof. We refer the reader to Claim 6.11 of the full version
of our paper.

Proof of Proposition III.4. Define the event

S =

{
sup

1≤t≤n
∥Kt∥F ≤ n1/2dα and |Ψn − 1| ≤ ε2n

d3/2
β

}
.

By Claims III.9 and III.10, Prp0 [S] = 1− o(1). We will show
that if S holds, then τ = ∞. Indeed, if τ = t < ∞, then either
∥Kt∥F > n1/2dα or |Φt − 1| > ε2n

d3/2 β holds. Since Ψn = Φt,
this contradicts S.

So, τ = ∞ on S. This implies |L(x) − 1| = |Φn −
1| ≤ ε2n

d3/2 β = o(1). Moreover ∥Kn∥F ≤ n1/2dα, so by
Claim III.11 we have L(x,x) ≪ e

√
d.

C. Bounding H(x≤t) in Frobenius norm by bootstrapping

In this subsection, we prove Lemma III.7. The main idea of
the proof is to begin with a preliminary bound on ∥H(x≤t)∥F
and its sub-sums (Lemma III.13) and, using the self-similar
nature of the likelihood ratio, bootstrap this bound into the
desired result. Throughout this subsection, let z = (z1, . . . , zt)
be a sequence of unit vectors satisfying t ≤ n and

∥K(z)∥F ≤ n1/2dγ (8)

for some 1 ≪ γ ≪ d/(ε2n1/2).

The following lemma bounds a variant of K(z) where we
multiply each summand by an adversarial bi ∈ [−1, 1]. This
will be used to control the discrepancy H(z) −K(z) in the
bootstrapping argument.

Lemma III.12. Uniformly over b1, . . . , bt ∈ [−1, 1], we have∥∥∥∥∥
t∑

i=1

bi

(
dziz

†
i − Id

)∥∥∥∥∥
F

≤ n1/2dγ + 2nd1/2.

Proof. For any choice of b1, . . . , bt,∥∥∥∥∥
t∑

i=1

bi

(
dziz

†
i − Id

)∥∥∥∥∥
F

≤

∥∥∥∥∥
t∑

i=1

bi · dziz†i

∥∥∥∥∥
F

+

∥∥∥∥∥
t∑

i=1

bi · Id

∥∥∥∥∥
F

≤

∥∥∥∥∥
t∑

i=1

dziz
†
i

∥∥∥∥∥
F

+ t
√
d

≤ ∥K(z)∥F + 2t
√
d.

The result follows by t ≤ n and (8).

For S ⊆ [t], let zS = (zi)i∈S . Further, let

HS =
∑
i∈S

(
dziz

†
i − Id

)
·
L(zS\{i})

L(zS)
,

KS =
∑
i∈S

(
dziz

†
i − Id

)
.

The following lemma gives a preliminary bound on ∥HS∥F .
In the proof of Lemma III.7, we will use this bound to control
∥HS∥F for |S| = t − O(log n), followed by the bootstrap
argument over O(log n) recursive rounds to contract the bound
to O(n1/2d).

Lemma III.13. For all S ⊆ [t], ∥HS∥F ≤ 2n1/2dγ+4nd1/2.

Proof. For any fixed M ∈ U and unit vector z,

ε
∣∣z†Mz

∣∣ ≤ 1

12
· 3 ≤ 1

2
,

so 1 + εz†Mz ∈ [1/2, 3/2]. Thus, for all i,
L(zS)/L(zS\{i}) ∈ [1/2, 3/2], which implies

L(zS\{i})

L(zS)
∈ [2/3, 2]. (9)

Lemma III.12 gives

1

2
∥HS∥F ≤ n1/2dγ + 2nd1/2,

as desired.

Proof of Lemma III.7. Let D = log
√

n/d. If t < D, by (9),

∥H(z)∥F ≤
t∑

i=1

∥∥∥dziz†i − Id

∥∥∥
F
· L(z∼i)

L(z)
≤ 2dD ≪ n1/2dγ

as desired. Otherwise t ≥ D. We will prove by induction on
a ≥ 0 that if S ⊆ [t] satisfies |S| = t−D + a, then

∥HS∥F ≤ ξa ≜ 2n1/2dγ + 4e−and1/2.
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The base case a = 0 holds by Lemma III.13. Assume a ≥ 1;
by the inductive hypothesis and (5), for all i ∈ S∣∣∣∣ L(zS)

L(zS\{i})
− 1

∣∣∣∣ ≤ 2ε2

d2
∥∥HS\i

∥∥
op

≤ 2ε2

d2
ξa−1.

Since this upper bound is o(1), we also have

L(zS\{i})

L(zS)
− 1 =

3ε2

d2
ξa−1bi

for some bi ∈ [−1, 1]. By Lemma III.12,∥∥∥∥∥∑
i∈S

(
dziz

†
i − Id

)(
L(zS\{i})

L(zS)
− 1

)∥∥∥∥∥
F

=
5ε2

d2
ξa−1

∥∥∥∥∥∑
i∈S

bi

(
dziz

†
i − Id

)∥∥∥∥∥
F

≤
(
3ε2n1/2

d
γ +

6ε2n

d3/2

)
ξa−1 ≤ e−1ξa−1,

using the hypotheses γ ≪ d/(ε2n1/2) and n ≪ d3/2/ε2. Since

∥KS∥F ≤ ∥K(z)∥F +
∑

i∈[t]\S

∥∥∥dziz†i − Id

∥∥∥
F

≤ n1/2dγ + 2dD ≤ 101

100
n1/2dγ,

we have

∥HS∥F ≤ ∥KS∥F +

∥∥∥∥∥∑
i∈S

(
dziz

†
i − Id

)(
L(zS\{i})

L(zS)
− 1

)∥∥∥∥∥
F

≤ 101

100
n1/2dγ + e−1ξa−1 ≤ ξa,

as 101
100 + 2e−1 ≤ 2. This completes the induction. Finally,

∥H(z)∥F =
∥∥H[t]

∥∥
F
≤ 2n1/2dγ + 4e−Dnd1/2 ≤ 3n1/2dγ.

D. Uniform Frobenius bound on the K(x≤t)

The proof of Lemma III.8 mimics the proof of Doob’s L2

maximal inequality. Let x ∼ p0, recall that Kt = K(x≤t),
and define X = sup1≤t≤n ∥Kt∥F .

Lemma III.14. We have that E[X2] ≤ 4E[∥Kn∥2F ]

Proof. We will first upper bound Pr[X ≥ x] for all x > 0.
Consider the stopping time τ = inf{t : ∥Kt∥F ≥ x} ∪ {n}.
Then,

Pr[X ≥ x] = Pr[∥Kτ∥F ≥ x]

≤ x−1 E[∥Kτ∥F 1{∥Kτ∥F ≥ x}]
≤ x−1 E[E[∥Kn∥F |Fτ ]1{∥Kτ∥F ≥ x}]
= x−1 E[∥Kn∥F 1{X ≥ x}].

The first estimate is by Markov’s inequality, and the second
is by convexity of the norm ∥·∥F . Thus,

E[X2] =

∫ ∞

0

Pr[X2 ≥ x] dx =

∫ ∞

0

Pr[X ≥ x]2x dx

≤
∫ ∞

0

2E[∥Kn∥F 1{X ≥ x}] dx = 2E[∥Kn∥F X]

≤ 2

√
E
[
∥Kn∥2F

]
E[X2].

Rearranging yields the result.

Lemma III.15. We have that E
[
∥Kn∥2F

]
≤ nd2.

Proof. We can expand

E
[
∥Kn∥2F

]
=

n∑
i=1

E
[∥∥∥dxix

†
i − Id

∥∥∥2
F

]
+ 2

∑
1≤i<j≤n

E
[〈

dxix
†
i − Id, dxjx

†
j − Id

〉]
. (10)

Since

E
[
dxjx

†
j − Id|Fj−1

]
=

∑
xj

ωxj
(dxjx

†
j − Id) = 0,

the second sum of (10) vanishes. For any unit vector xi,∥∥∥dxix
†
i − Id

∥∥∥2
F
= d2 ∥xi∥4 − 2d ∥xi∥2 + d = d2 − d.

Therefore E[∥Kn∥2F ] ≤ n(d2 − d) ≤ nd2.

Proof of Lemma III.8. Follows from Lemmas III.14 and
III.15.
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