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Abstract—Millimeter-wave (mmWave) communication, a cor-
nerstone in the evolution of next-generation wireless networks,
offers substantial bandwidth and plays a crucial role in advanc-
ing wireless connectivity capabilities. Nevertheless, the inherent
directionality and susceptibility to blockages pose significant
challenges for a cost-effective beam management in densely
deployed networks. This paper presents a Contextual Combina-
torial Beam Management (CCBM) framework, leveraging both
location-aware link qualities and beam correlation to tackle the
joint access point (AP) and beam selection problem in mmWave
networks, with a specific focus on mitigating coordination over-
head and balancing the load across APs. Built upon a formulated
multi-armed bandit problem, CCBM significantly reduces the
uncertainty during online probing process by employing early
stopping and attention-based selection mechanisms. Theoretical
analysis establishes the asymptotically optimality of the proposed
approach, complemented by extensive evaluation results showcas-
ing the superiority of our framework over other state-of-the-art
schemes in multiple dimensions.

I. INTRODUCTION

Millimeter-wave (mmWave) communication is regarded as

a highly promising technology due to its ability to provide

high-bandwidth and low-latency wireless connectivity. The

substantial data rates offered by mmWave can effectively

cater to the escalating demands of densely deployed devices

and bandwidth-intensive applications in wireless local-area

networks (WLANs). In a mmWave WLAN scenario, the dense

deployment of access points (APs) becomes crucial to ensuring

ubiquitous coverage and network robustness, given the direc-

tional nature of communications. However, this brings about

significant challenges in the system design. First, managing

directional beams between a large number of clients and APs

introduces formidable overhead [1], which escalates linearly

with the number of communication entities. Second, the paired

beams are highly sensitive to both static and dynamic block-

ages [2], attributed to the limited propagation distance and

poor penetration capabilities of mmWave links. Third, the

uncertain and time-varying nature of the mmWave channel

poses challenges in performing an adaptive beamforming,

especially when considering load balancing for a consistent

level of service in such multi-AP multi-user environments.

Traditionally, several solutions have been developed for

beam management and resource allocation. However, a key

assumption in these works is that the channel condition is

well-known from the start, a challenge particularly in densely

deployed mmWave scenarios given their time-varying nature.

Recently, various learning-based approaches have emerged to

address the uncertainty in beam alignment and selection. For

instance, in [3], a deep learning framework was proposed to

predict link quality between beams. While effective in reduc-

ing overhead and achieving high performance in a site-specific

vehicular network, its implementation on network devices

demands significant computational resources. Alternatively, a

multi-armed bandit (MAB) based online learning framework

appears more suitable, as it negates the need for offline

data collection and strikes a balance between exploration

and exploitation in uncertain environments. In particular, [4]

adopted a contextual MAB approach to address the beam

selection problem, using user location as side information to

aid decision-making. In [5], the correlation between beams

is considered as arm context, and a unimodal beamforming

algorithm was proposed. However, none of these works con-

sidered a practical mmWave network scenario with numerous

obstacles, and load-balanced resource allocation is not jointly

considered in their schematic designs. Notably, [6] partially

addressed the resource allocation problem with a coarse-level

AP probing algorithm, but it did not manage the beam pairing

for each deployed AP. To our knowledge, there has been no

comprehensive study on a joint AP and beam selection scheme

with load balancing considered in an obstacle-rich mmWave

network, which is the subject of this work herein.

In our prior works [7], [8], we developed a regression-

based machine learning framework to predict link quality

under both static and dynamic blockages. This framework

achieves an accuracy rate of up to 94% and requires only a few

environmental information as input. Particularly, it seamlessly

adapts to different indoor scenarios by merely modifying input

data, eliminating the need for additional training. By utilizing

such link quality predictions as prior contextual knowledge,

the overhead produced in AP probing and beamforming pro-

cesses can be greatly reduced, as intuitively, APs offering high

signal strength at specific locations can be selected for optimal

beam pairing. This prior work lays a foundation for the beam

management study, facilitating a context-aware online probing

approach towards coordination-minimal wireless environment.

In this paper, we present a novel contextual combinatorial

beam management (CCBM) framework designed to tackle the

joint AP and beam selection problem in mmWave wireless

networks, ensuring a balanced load distribution among dense

APs for consistent user services with minimum coordination

overhead. In CCBM, each beam is treated as an arm, with

the received power serving as the reward for selecting spe-

cific beams. The objective is to sequentially choose these
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arms to maximize cumulative rewards within a given time

horizon, particularly allowing users to explore multiple arms

and evaluate their rewards before finalizing the AP-beam

selection. This approach significantly minimizes uncertainty

by revealing arm rewards before the decision-making process,

while minimizing coordination overhead between users and

APs. Additionally, by leveraging link quality predictions of

unknown beam directions from our prior works [7], [8], the

CCBM framework prioritizes APs based on their predicted link

quality at the user location. Only beams associated with higher

predicted values from these APs are considered during the on-

line probing process. This strategy expedites the assessment of

network conditions by avoiding unnecessary searches among

irrelevant candidate beams, as both the environmental context

and arm context implicitly contribute to the rapid identification

of optimal beams. The main contributions of this work are

summarized as follows.

• We innovatively frame the joint AP selection and beam

management as a contextual combinatorial MAB prob-

lem, naturally leveraging the correlation between nearby

beams and location-aware link qualities as context infor-

mation to expedite the beam selection process.

• In our proposed CCBM framework, we incorporate a

novel attention-based selection scheme along with an

early stopping criterion to prevent excessive exploration

during the online probing process. Theoretical analysis

establishes an upper bound on cumulative regret, i.e. the

gap to the results obtained from an oracle search, which

demonstrates the asymptotic optimality of our approach.

• We develop a reward function within the MAB algorithm

that explicitly considers load balancing among candidate

APs, guiding users in the online probing process to select

a globally optimal AP and beam for connection, thereby

optimizing overall network performance.

• Comprehensive performance evaluations demonstrate the

superiority of our CCBM framework over baseline ap-

proaches in various dimensions, including lower regret,

increased user throughput, and improved load balancing

across densely deployed mmWave APs.

II. PROBLEM FORMULATION

In this section, we elaborate on the process of transforming

the joint AP and beam selection problem into a contextual

combinatorial MAB problem, and then derive an online prob-

ing algorithm for effective beam management.

Let N denote the number of APs in a wireless network

environment and C represent the number of orthogonal beam

patterns associated with each mmWave AP. Additionally, as-

sume that M clients are moving randomly within the space.

Let X represent the set of environmental contexts correspond-

ing to the user locations. At each time step t = 1, ..., T ,

where T denotes a predetermined time horizon, the location

xt
m ∈ X of user m at t can be observed. Subsequently,

the link quality predictions obtained from the spatial-temporal

model are utilized to rank APs based on the maximum signal

strength they can offer at each user location. We establish an

AP candidate set with the size of A for each user location xt
m

by selecting the top-A APs. Considering beam pairing, all the

beams from each AP candidate set collectively form a beam

set At
m = {aji |i f C, j f A}, where aji represents the i-th

beam of the j-th candidate AP.

Based on the above setup, each beam from At
m can be

treated as an arm in a MAB problem. At each time step t,
instead of playing just one arm, a subset of arms Stm ¢ A

t
m

will be selected to play. There exists a budget B that limits the

maximum number of arms that can be probed, i.e., |Stm| f B.

To optimally choose the subset Stm, we incorporate arm

context information X = {Oa|a ∈ S
t
m}. Specifically, in our

considered scenario, arm context refers to the direction of

each beam, where the details about the arm selection will be

introduced in Sec. III. Here we define the reward of selecting

a beam a at the user location x as corresponding to the signal

strength of the beam alignment process. We denote this reward

by ra|x and its expected value by µa|x = E[ra|x]. To model

the probing overhead and adhere to the load constraint, the

reward of playing a single arm can be further formulated as
K−ka

K
ra|x, where K is the maximum number of users that

can be connected to a single beam, ka is the current number

of users that have connected to beam a. Overall, the design

of this reward function effectively guides the users to select

beams of some APs with lower traffic load while maintaining

a relatively high link quality.

As mentioned earlier, in our context, we can probe a subset

of arms Stm ¢ A
t
m to assess the qualities of these arms. We

then select the arm that yields the highest reward in Stm. Let

r = {ra|x}a∈St
m

denote the collection of rewards of arms

in the probing set. The reward of probing Stm can then be

formulated as R(Stm, r), signifying that the reward is jointly

determined by the selection of subset and the individual reward

of each arm in the subset:

R(Stm, r) = max
a∈St

m

K − ka
K

ra|xt
m
. (1)

It is worth noting that the max function in Eq. (1) is a

submodular function [6]. It satisfies the diminishing returns

property – given the arm sets A and B, where A ¦ B, for all

arms a /∈ B, we have:

R(A ∪m, r)−R(A, r) g R(B ∪m, r)−R(B, r). (2)

This property of the reward function aligns well with our

formulated contextual combinatorial MAB problem, which is

specifically tailored for submodular functions.

Given the above property, an online probing method with

known expected rewards is outlined in Algorithm 1. The pri-

mary objective is to maximize the cumulative reward expecta-

tion over T rounds, i.e.,
∑T

t=1

∑M

m=1 E[R(Stm), r]. Assuming

an optimal algorithm could consistently select the best arm

set S∗,tm at every round t for each user m, the performance

of our algorithm can be measured by the expected cumulative

regret in Eq. (3), which quantifies the expected cumulative
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difference between the maximum reward achieved by the

optimal algorithm and the reward obtained by our algorithm.

Reg(T ) =

T
∑

t=1

M
∑

m=1

E[R(St,∗m , r)−R(Stm, r)] (3)

Hence, the objective of maximizing the expected cumulative

reward is equivalent to minimizing the expected regret.

It has been proven that maximizing a submodular set func-

tion with known reward expectation is NP-hard [9]. However,

a greedy probing algorithm has been proposed in [10] that

guarantees achieving no less than (1 − 1/e) of the optimal

solution. Therefore, as described in Algorithm 1, beams can

be sequentially selected based on their marginal reward to

ensure an asymptotic optimality. Given that no polynomial

time algorithm can achieve a better approximation for the

submodular function maximization problem, our objective is to

find an algorithm that achieves sublinear (1− 1
e
)-approximation

regret, as formulated in Eq. (4):

Reg(T ) = (1−
1

e
)∗

T
∑

t=1

M
∑

m=1

E[R(St,∗m ), r]−
T
∑

t=1

M
∑

m=1

E[R(Stm, r)].

(4)

Algorithm 1 Online Probing Algorithm

Input: arm set A, reward function R, budget B
Output: super arm S

1: S ← ∅

2: i = 0
3: while i f B do

4: m = argmax
m∈A\S

R(S ∪ {m}, r)−R(S, r)

5: S = S ∪ {m}
6: i = i+ 1

III. CONTEXTUAL COMBINATORIAL BEAM MANAGEMENT

Building upon the problem formulation as discussed in

Sec. II, this section introduces a novel contextual combi-

natorial MAB approach for beam management in mmWave

wireless networks. In practical scenarios, it is infeasible to

have prior knowledge of the expected rewards for arms.

Consequently, direct application of Algorithm 1 is not viable.

Instead, we aim to learn the expected values of arms using

a contextual combinatorial MAB framework as illustrated in

Sec. II. Such a framework was originally designed for gen-

eral bandit problems with submodular reward function [11].

However, our approach differs by incorporating both arm

context (beam correlation) and environment context (location-

aware link qualities). Additionally, we subtly integrate a beam

selection scheme to enhance rewards during the exploration

period.

Algorithm 2 summarizes our CCBM framework using on-

line probing to achieve the expected rewards for beam arms.

Initially, the environment context space X is divided into a

uniform grid set X ′ = {x1, x2, ..., xn}, with n representing

the total number of grids into which the space is partitioned.

At each time step t, when a user location xt
m is observed,

it is mapped to the corresponding grid x in X ′ to which it

belongs (Lines 4-5). In addition to managing the environment

context space, we partition the arm context space X = [0, 2π],
where it is first normalized to [0, 1], and then divided into hT

hypercubes with a size of 1
hT

.

In specific, at each time step t, for each user m, the

algorithm observes the environment context xt
m (e.g., the

user’s location) and then maps it to the corresponding grid

x ∈ X ′. For each arm a in At
m with arm context Oa, the

algorithm determines a hypercube pa ∈ X such that Oa ∈ pa
holds. The collection of the hypercubes at time slot t is

denoted as pt = paa∈At
m

(Lines 10-11). Subsequently, the

algorithm identifies the hypercubes pa ∈ pt that are explored

less frequently based on the following criteria:

Pue,t = {pa ∈ pt|x ∈ X ′, a ∈ At, Ct(pa|x) < K(nx)}, (5)

where Ct(pa|x) is a counter that keeps track of the number

of times the arms within the hypercube pa are selected

when the user location is mapped to x during time periods

1, 2, .., t − 1. The K(nx) is a deterministic, monotonically

increasing control function, and nx represents the number of

times the grid x has been visited in the previous time periods.

Next, the algorithm determines whether to explore or ex-

ploit based on the number of arms located in under-explored

hypercubes. If the set of under-explored arms is non-empty,

the algorithm enters an exploration phase. Let q be the size of

under-explored arm set. If the under-explored arm set contains

at least B arms, i.e., q g B, we employ an arm selection

scheme called attention-based selection (Lines 23-28) instead

of randomly selecting arms as in prior MAB works.

Attention-based Selection: Let Z be the set of arms in the

under-explored arm set with Ct(pa|x) = 0, indicating that at

grid x, the hypercube to which arm a belongs has never been

chosen until time period t − 1. If |Z| g B, then randomly

select B arms from Z . If 0 < |Z| < B, select all arms in

the set Z and randomly select other under-explored arms. The

rationale behind this step is intuitive: If we only randomly

select arms without attentions, there is a possibility that certain

hypercubes providing good rewards may not be identified in

the initial rounds, leading to sub-optimal exploration.

To be specific, when |Z| = 0, indicating that the under-

explored hypercubes have been chosen at least once, our

algorithm first identifies the arm at−1
m chosen for the user

m in the last time step t − 1. Since we are considering a

continuous movement (action space), for a single user, the

location at time step t should be close to the location at time

step t − 1. Therefore, we can still assume at−1
m is a good

candidate arm that can provide satisfied rewards at round t, and

it will be included in the probing set Stm, while the other arms

are chosen randomly. In this way, we strategically incorporate

attention-based exploitation into the exploration phase.

In some cases, if the under-explored arm set contains fewer

than B elements, i.e., q f B, then the algorithm selects
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all q arms (Lines 12-16). The remaining arms are selected

sequentially by exploiting the estimated rewards as follow:

a = argmax
a∈At

m
\St

m

R(Stm ∪ {m}, r̂)−R(Stm, r̂), (6)

where r̂ is used to denote the sampled reward of each arm a. If

there are no under-explored arms, all B arms will be selected

based on Eq. (6).

Algorithm 2 Contextual Combinatorial Beam Management

Input: user number M , arm set At
m, reward function R,

budget B, time horizon T , control function K(nx), arm

context space X , grid set X
Initialization: ∀x ∈ X,nx = 0
∀pa ∈ X , C

t(pa|x) = 0, r̂(pa|x) = 0
1: for t = 1, 2, . . . , T do

2: for m = 1, 2, . . . ,M do

3: Stm = ∅
4: Receive the client position information xt

m

5: Map the position context to grid x← xt
m

6: nx = nx + 1
7: if t > tτ then

8: Stm ← select B
2 arms based on Eq. (6)

9: else

10: Find pt, such that ∀a ∈ At
m, Oa ∈ pa, pa ∈ X

11: Compute the under-explored hypercubes Pue,t us-

ing Eq. (5)

12: if Pue,t = ∅ then

13: Stm ← select B arms based on Eq. (6)

14: else

15: if number of unexplored arms q < B then

16: Stm ← select all q arms and the other B − q
arms based on Equation.6

17: else

18: run Attention-based Selection(void)

19: for each arm a ∈ Stm do

20: observe the quality ra|x of a

21: update r̂(pa|x) =
r̂(pa|x)C

t(pa|x)+ra|x

Ct(pa|x)+1

22: update counter Ct(pa|x) = Ct(pa|x) + 1
Function: Attention-based Selection(void):

23: if |Z| g B then

24: Stm ← randomly select arms from Z
25: else if 0 < |Z| < B then

26: Stm ← select all arms in Z and other arms randomly

27: else

28: Stm ← {a
t−1
m }∪{B − 1 arms randomly selected}

Since we consider a mmWave wireless network scenario

with fixed APs placed in the space, it is intuitive that after

a certain number of rounds of exploration, we can have a

relatively comprehensive knowledge of the network condition.

Thus, it will be more rewarding to perform exploitation after a

certain time step. To this end, we incorporate a early stopping

criterion to guide the algorithm into an exploitation phase

(Lines 7-8).

Early Stopping Criterion: We assume that after a time

threshold tτ the algorithm enters a pure exploitation period.

Since arms yield different rewards in terms of different grids

x, if all the grids have been visited by users several times, the

network condition can be well revealed. Thus, we set tτ equal

to the number of grids n across the space. It is also worth

noting that we reduce the size of the probing set to B
2 during

the pure exploitation period. Numerical results in Sec. V will

show that this added criterion greatly reduces the beam search

overhead while maintaining a competitive reward.

IV. THEORETICAL ANALYSIS

In this section, we provide a theoretical analysis of the regret

bond using our CCBM approach. The upper bound is derived

under the principle that arms belonging to similar context

space should have similar expected reward values.

Assumption 1. (Lipschitz-continuous) There exists C > 0
such that for any arm a, a′ with arm context Oa, Oa′ ∈ X , we

have |ra − ra′ | f C||Oa −Oa′ ||1.

Assumption 2. (Bounded Reward) The reward of each arm is

bounded by 0 < r < rmax.

We set the hT = +T
1

4 , for the arm context partition

and K(nx) = n
1

2

x log(nx) as the control function to identify

the under-explored arm hypercubes. Then, the regret can be

bounded as follow:

Theorem 1. Let hT = +T
1

4 , and K(nx) = n
1

2

x log(nx), if

Assumptions 1 and 2 hold true, the regret R(T ) is bounded

by:

R(T ) f (1− 1
e
)Brmax2M(M

1

2 log(MT )T
3

4 +T
1

4 )+ (1−

1
e
)BrmaxM

(

|At
m|
B

)

π2

3 + (3BL+ 8
3B(rmax + L))MT

3

4 .

Proof. The regret R(T ) can be divided into the summands:

E[R(T )] = E[Rexplore(T )] + E[Rexploit(T )],

where the term E[Rexplore(T )] is the regret due to the ex-

ploration process, and the term E[Rexploit(T )] corresponds to

the regret in the exploitation phase. We first derive a bound on

E[Rexplore(T )]. According to Algorithm 2, the set of under-

explored hypercubes P ue,t
T is non-empty during the exploration

phase, which implies that there exists at least one hypercube

p with Ct(p|x) f K(nx) = n
1

2

x log(nx). Because we only ex-

plore in the first tτ rounds, nx < Mtτ < MT holds. Certainly,

there can be a maximum of +(MT )
1

2 log(MT ), exploration

phases in which p is under-explored. Given hT hypercubes

in the partition and a total of M users, the upper limit for

exploration phases is hTM+(MT )
1

2 log(MT ),. Owing to the

submodularity of reward function and its bounded nature, the

maximum regret for an incorrect selection in one exploration

phase is constrained by (1− 1/e)Brmax. Therefore, we have

E[Rexplore(T )] f (1−
1

e
)BrmaxhTM+(MT )

1

2 log(TM),

= (1−
1

e
)BrmaxM+T

1

4 ,+(MT )
1

2 log(TM),.
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Given +T
1

4 , f 2T
1

4 , we can further bound the maximum

regret as:

E[Rexplore(T )] f (1−
1

e
)Brmax2M(M

1

2T
3

4 log(MT ) + T
1

4 ).

Applying similar reasoning, the regret bound during the ex-

ploitation phase can also be deduced. We omit it here due to

the space limitation, but all proof details can be found in our

supplementary technical report [12].

In summary, the leading order of the cumulative regret is

O(T
3

4 log(T )), indicating a sublinear growth over the time

horizon T . This implies that our CCBM scheme exhibits

asymptotic optimality and converges toward optimal strategy.

V. PERFORMANCE EVALUATIONS

In this section, we evaluate the performance of our CCBM

approach through comprehensive numerical simulations. We

begin by outlining the simulation setup, followed by a com-

parison of our algorithm with other baseline schemes in terms

of multiple performance metrics.

A. Network Settings

We consider a 3-D indoor network scenario with a size of

40m×40m×3m, consisting of wooden tables, wooden chairs,

metal cabinets, and 15 humans randomly moving at a speed

of 0.8m/s to emulate the dynamic obstacles. In this setup,

we place four 60GHz mmWave APs randomly in the space

at a height of 2.9m. Specifically, each AP as the wireless

transmitter is equipped with 8 orthogonal beam patterns with

equal beam widths, covering a 360◦ azimuth. The environment

context X is uniformly divided into 1600 (40×40) small grids,

each measuring 1m2. In particular, the neighbouring beams

are regarded as arms with the similar context, hence the beams

from the same AP are categorized into 4 hypercubes, resulting

in a total of 16 hypercubes. We employ the commercial ray

tracer Wireless Insite® [13] to generate the realistic network

environment and mmWave signal profiles. Additionally, we

introduce noise following a normal distribution N (0, 5) into

the obtained received signal strength (RSS) values to account

for potential measurement errors in the context information,

mirroring the conditions encountered in practical scenarios.

Baseline Algorithms: We conduct a thorough performance

analysis by comparing our algorithm with the following base-

line schemes:

• Optimal scheme. This algorithm relies on an oracle

search, indicating a priori knowledge of the expected

reward µa|x for each arm a within At
m at grid x. It always

selects an optimal subset S∗ to probe the best beam at

each time step, offering an upper-bound performance for

comparison with other feasible schemes.

• UCB-based scheme. This state-of-the-art scheme, pro-

posed in [6], employs an upper confidence bound ap-

proach. In each time step, it strategically selects B arms

with the highest estimated upper confidence bounds on

their expected rewards.

• CC-MAB scheme: We add the basic contextual MAB

algorithm from [11] as the comparison point. The key

distinction with our CCBM approach lies in the fact

that CC-MAB incorporates a completely randomized arm

selection process during the exploration phase.

B. Cumulative Regret for Beam Selection

Fig. 1. Comparison of regret among different algorithms.

To evaluate the disparity between the total reward achieved

by a practical probing algorithm and the optimal reward

attainable by consistently selecting the best beam, Fig. 1 shows

the cumulative regret over time for three distinct algorithms.

Obviously, our proposed CCBM exhibits superior performance

compared to the other two baselines. Specifically, the UCB-

based scheme exhibits the highest regret, consistently main-

taining a curve above the others throughout the time horizon.

This can be attributed to the fact that it does not account for

the properties of a submodular reward function. Besides, our

CCBM scheme achieves a lower regret than CC-MAB, which

demonstrates the effectiveness of incorporating exploitation

into the exploration phase via our attention-based selection.

Furthermore, a noticeable turning point occurs at time step

around 1600, corresponding to the implementation of our early

stopping criterion that prevents extensively useless searches.

C. Beam Management Overhead and Network Throughput

Fig. 2. Reward under different beam probing budgets.

In this section, we evaluate the performance in terms of

beam management overhead and average user throughput in

mmWave networks. First, we consider both our CCBM and

its variant, CCBM-C, based on the rewards obtained under

different probing budgets B. The higher B implies a potential

manegement overhead. The only difference between the two

schemes is that CCBM-C constantly probe beams with a

budget of B while CCBM searches a subset of beams with a

size of B
2 in early stopping phase. As depicted in Fig. 2, an

increase in the budget leads to an augmentation in rewards for
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all three algorithms. This trend is attributed to the fact that

a larger budget enhances the probability of encompassing the

optimal beam, thereby increasing the likelihood of identifying

the most advantageous beam. Under different budgets, the

CCBM-C algorithm consistently secures the highest rewards.

Concurrently, the CCBM achieves rewards marginally lower

than those of CCBM-C while utilizing only half of the budget.

This demonstrates how efficiently the CCBM algorithm can

leverage limited resources to optimize rewards. In this regard,

we conclude that both CCBM and CCBM-C can obtain a

higher reward at lower overhead, indicating that CCBM is

effective in achieving high performance with a constrained

beam search budget.

Fig. 3. Comparison of average user throughput among different schemes.

Fig. 3 compares the average user throughput of our proposed

CCBM against the UCB-based scheme from [6] and the

Optimal method with an oracle search. We observe that the

throughput of the Optimal scheme is always the highest,

benefiting from its priori knowledge about the expected re-

ward of each arm. Consistently, the throughput of CCBM

is maintained at a relatively high level, close to the optimal

results and significantly surpassing the results of the UCB-

based scheme. Additionally, the throughput of CCBM exhibits

a lower variance than that of UCB-based scheme, signifying its

greater stability. Such consistently higher throughput perfor-

mance underscores the robustness and efficiency of our CCBM

scheme in dynamic network environments.

Lastly, load balancing is another critical aspect addressed

by our CCBM approach. To evaluate the load balancing

performance, we utilize the maximum load utilization Lmax as

the metric to qualitatively reflect network congestion, where

a higher Lmax indicates more server congestion and unbal-

anced resource usage. The value of Lmax corresponds to the

maximum load among all beams in the network. Fig. 4 shows

the average Lmax across randomly located users. As expected,

the Optimal scheme achieves the lowest Lmax value, while our

CCBM approach performs closely to the optimal results. It is

observed that the gap is especially smaller under higher density

of users in the network, which validates the load balancing

capability owing to the strategical reward function design.

VI. CONCLUSION

This paper introduces a contextual combinatorial beam

management scheme for the joint AP and beam selection in

Fig. 4. Comparison of L-max among different schemes.

mmWave wireless networks. It incorporates an early stop-

ping criterion and an attention-based mechanism to mitigate

excessive search during online probing. Theoretical analysis

establishes its asymptotic optimality by setting an upper bound

on cumulative regret. Additionally, a carefully designed reward

function takes into account load balancing among APs, aiding

in selecting an global-view optimal AP and beam and thereby

enhancing overall network performance. Through a series of

simulations and theoretical analyses, CCBM has demonstrated

its superiority over other baseline schemes in optimizing AP-

beam selection in dense mmWave wireless networks.
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