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Abstract—Millimeter-wave (mmWave) communication, a cor-
nerstone in the evolution of next-generation wireless networks,
offers substantial bandwidth and plays a crucial role in advanc-
ing wireless connectivity capabilities. Nevertheless, the inherent
directionality and susceptibility to blockages pose significant
challenges for a cost-effective beam management in densely
deployed networks. This paper presents a Contextual Combina-
torial Beam Management (CCBM) framework, leveraging both
location-aware link qualities and beam correlation to tackle the
joint access point (AP) and beam selection problem in mmWave
networks, with a specific focus on mitigating coordination over-
head and balancing the load across APs. Built upon a formulated
multi-armed bandit problem, CCBM significantly reduces the
uncertainty during online probing process by employing early
stopping and attention-based selection mechanisms. Theoretical
analysis establishes the asymptotically optimality of the proposed
approach, complemented by extensive evaluation results showcas-
ing the superiority of our framework over other state-of-the-art
schemes in multiple dimensions.

I. INTRODUCTION

Millimeter-wave (mmWave) communication is regarded as
a highly promising technology due to its ability to provide
high-bandwidth and low-latency wireless connectivity. The
substantial data rates offered by mmWave can effectively
cater to the escalating demands of densely deployed devices
and bandwidth-intensive applications in wireless local-area
networks (WLANSs). In a mmWave WLAN scenario, the dense
deployment of access points (APs) becomes crucial to ensuring
ubiquitous coverage and network robustness, given the direc-
tional nature of communications. However, this brings about
significant challenges in the system design. First, managing
directional beams between a large number of clients and APs
introduces formidable overhead [1], which escalates linearly
with the number of communication entities. Second, the paired
beams are highly sensitive to both static and dynamic block-
ages [2], attributed to the limited propagation distance and
poor penetration capabilities of mmWave links. Third, the
uncertain and time-varying nature of the mmWave channel
poses challenges in performing an adaptive beamforming,
especially when considering load balancing for a consistent
level of service in such multi-AP multi-user environments.

Traditionally, several solutions have been developed for
beam management and resource allocation. However, a key
assumption in these works is that the channel condition is
well-known from the start, a challenge particularly in densely
deployed mmWave scenarios given their time-varying nature.
Recently, various learning-based approaches have emerged to
address the uncertainty in beam alignment and selection. For

instance, in [3], a deep learning framework was proposed to
predict link quality between beams. While effective in reduc-
ing overhead and achieving high performance in a site-specific
vehicular network, its implementation on network devices
demands significant computational resources. Alternatively, a
multi-armed bandit (MAB) based online learning framework
appears more suitable, as it negates the need for offline
data collection and strikes a balance between exploration
and exploitation in uncertain environments. In particular, [4]
adopted a contextual MAB approach to address the beam
selection problem, using user location as side information to
aid decision-making. In [5], the correlation between beams
is considered as arm context, and a unimodal beamforming
algorithm was proposed. However, none of these works con-
sidered a practical mmWave network scenario with numerous
obstacles, and load-balanced resource allocation is not jointly
considered in their schematic designs. Notably, [6] partially
addressed the resource allocation problem with a coarse-level
AP probing algorithm, but it did not manage the beam pairing
for each deployed AP. To our knowledge, there has been no
comprehensive study on a joint AP and beam selection scheme
with load balancing considered in an obstacle-rich mmWave
network, which is the subject of this work herein.

In our prior works [7], [8], we developed a regression-
based machine learning framework to predict link quality
under both static and dynamic blockages. This framework
achieves an accuracy rate of up to 94% and requires only a few
environmental information as input. Particularly, it seamlessly
adapts to different indoor scenarios by merely modifying input
data, eliminating the need for additional training. By utilizing
such link quality predictions as prior contextual knowledge,
the overhead produced in AP probing and beamforming pro-
cesses can be greatly reduced, as intuitively, APs offering high
signal strength at specific locations can be selected for optimal
beam pairing. This prior work lays a foundation for the beam
management study, facilitating a context-aware online probing
approach towards coordination-minimal wireless environment.

In this paper, we present a novel contextual combinatorial
beam management (CCBM) framework designed to tackle the
joint AP and beam selection problem in mmWave wireless
networks, ensuring a balanced load distribution among dense
APs for consistent user services with minimum coordination
overhead. In CCBM, each beam is treated as an arm, with
the received power serving as the reward for selecting spe-
cific beams. The objective is to sequentially choose these
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arms to maximize cumulative rewards within a given time
horizon, particularly allowing users to explore multiple arms
and evaluate their rewards before finalizing the AP-beam
selection. This approach significantly minimizes uncertainty
by revealing arm rewards before the decision-making process,
while minimizing coordination overhead between users and
APs. Additionally, by leveraging link quality predictions of
unknown beam directions from our prior works [7], [8], the
CCBM framework prioritizes APs based on their predicted link
quality at the user location. Only beams associated with higher
predicted values from these APs are considered during the on-
line probing process. This strategy expedites the assessment of
network conditions by avoiding unnecessary searches among
irrelevant candidate beams, as both the environmental context
and arm context implicitly contribute to the rapid identification
of optimal beams. The main contributions of this work are
summarized as follows.

o We innovatively frame the joint AP selection and beam
management as a contextual combinatorial MAB prob-
lem, naturally leveraging the correlation between nearby
beams and location-aware link qualities as context infor-
mation to expedite the beam selection process.

e In our proposed CCBM framework, we incorporate a
novel attention-based selection scheme along with an
early stopping criterion to prevent excessive exploration
during the online probing process. Theoretical analysis
establishes an upper bound on cumulative regret, i.e. the
gap to the results obtained from an oracle search, which
demonstrates the asymptotic optimality of our approach.

o We develop a reward function within the MAB algorithm
that explicitly considers load balancing among candidate
APs, guiding users in the online probing process to select
a globally optimal AP and beam for connection, thereby
optimizing overall network performance.

o Comprehensive performance evaluations demonstrate the
superiority of our CCBM framework over baseline ap-
proaches in various dimensions, including lower regret,
increased user throughput, and improved load balancing
across densely deployed mmWave APs.

II. PROBLEM FORMULATION

In this section, we elaborate on the process of transforming
the joint AP and beam selection problem into a contextual
combinatorial MAB problem, and then derive an online prob-
ing algorithm for effective beam management.

Let N denote the number of APs in a wireless network
environment and C' represent the number of orthogonal beam
patterns associated with each mmWave AP. Additionally, as-
sume that M clients are moving randomly within the space.
Let X represent the set of environmental contexts correspond-
ing to the user locations. At each time step ¢t = 1,...,T ,
where T denotes a predetermined time horizon, the location
xt, € X of user m at t can be observed. Subsequently,
the link quality predictions obtained from the spatial-temporal
model are utilized to rank APs based on the maximum signal
strength they can offer at each user location. We establish an

AP candidate set with the size of A for each user location x!,
by selecting the top-A APs. Considering beam pairing, all the
beams from each AP candidate set collectively form a beam
set AL, = {al|li < C,j < A}, where a] represents the i-th
beam of the j-th candidate AP.

Based on the above setup, each beam from Afn can be
treated as an arm in a MAB problem. At each time step t,
instead of playing just one arm, a subset of arms S, C A,
will be selected to play. There exists a budget B that limits the
maximum number of arms that can be probed, i.e., an| < B.
To optimally choose the subset S’ , we incorporate arm
context information X = {O,la € S!,}. Specifically, in our
considered scenario, arm context refers to the direction of
each beam, where the details about the arm selection will be
introduced in Sec. III. Here we define the reward of selecting
a beam a at the user location = as corresponding to the signal
strength of the beam alignment process. We denote this reward
by 74|, and its expected value by i), = E[rg|;]. To model
the probing overhead and adhere to the load constraint, the
reward of playing a single arm can be further formulated as
K I}k“ Talas where K is the maximum number of users that
can be connected to a single beam, k, is the current number
of users that have connected to beam a. Overall, the design
of this reward function effectively guides the users to select
beams of some APs with lower traffic load while maintaining
a relatively high link quality.

As mentioned earlier, in our context, we can probe a subset
of arms S/, C AL, to assess the qualities of these arms. We
then select the arm that yields the highest reward in Sf,. Let
r = {r4z}acs:, denote the collection of rewards of arms
in the probing set. The reward of probing S!, can then be
formulated as R(S!,,r), signifying that the reward is jointly
determined by the selection of subset and the individual reward
of each arm in the subset:

K-k,
R(S:‘m 1') = ;,Iel%fé Tram:n- (1)

It is worth noting that the max function in Eq. (1) is a
submodular function [6]. It satisfies the diminishing returns
property — given the arm sets .4 and B, where A C B, for all
arms a ¢ B, we have:

R(AUm,r) — R(A,r) > R(BUm,r) — R(B,r). (2)

This property of the reward function aligns well with our
formulated contextual combinatorial MAB problem, which is
specifically tailored for submodular functions.

Given the above property, an online probing method with
known expected rewards is outlined in Algorithm 1. The pri-
mary objective is to maximize the cumulative reward expecta-
tion over T rounds, i.e., Zthl Zi\f:l E[R(S!,), r]. Assuming
an optimal algorithm could consistently select the best arm
set Si:' at every round ¢ for each user m, the performance
of our algorithm can be measured by the expected cumulative
regret in Eq. (3), which quantifies the expected cumulative
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difference between the maximum reward achieved by the
optimal algorithm and the reward obtained by our algorithm.

T M

=2 EIR(

t=1 m=1

Reg(T R(S,.m)] 3
Hence, the objective of maximizing the expected cumulative
reward is equivalent to minimizing the expected regret.

It has been proven that maximizing a submodular set func-
tion with known reward expectation is NP-hard [9]. However,
a greedy probing algorithm has been proposed in [10] that
guarantees achieving no less than (1 — 1/e) of the optimal
solution. Therefore, as described in Algorithm 1, beams can
be sequentially selected based on their marginal reward to
ensure an asymptotic optimality. Given that no polynomial
time algorithm can achieve a better approximation for the
submodular function maximization problem, our objective is to
find an algorithm that achieves sublinear (1— i)-approximation
regret, as formulated in Eq. (4):

T

1 M
l—g *ZZE R(SLH),

t=1 m=1

T M
Reg(T)

t=1m=1

“4)

Algorithm 1 Online Probing Algorithm
Input: arm set .4, reward function R, budget B
Output: super arm S

. S+ O

2:1=0

3: while i < B do

4 m =argmax R(SU {m},r) — R(S,r)
meA\S

5:. §=8SuU{m}

6: 1=1+1

III. CONTEXTUAL COMBINATORIAL BEAM MANAGEMENT

Building upon the problem formulation as discussed in
Sec. II, this section introduces a novel contextual combi-
natorial MAB approach for beam management in mmWave
wireless networks. In practical scenarios, it is infeasible to
have prior knowledge of the expected rewards for arms.
Consequently, direct application of Algorithm 1 is not viable.
Instead, we aim to learn the expected values of arms using
a contextual combinatorial MAB framework as illustrated in
Sec. II. Such a framework was originally designed for gen-
eral bandit problems with submodular reward function [11].
However, our approach differs by incorporating both arm
context (beam correlation) and environment context (location-
aware link qualities). Additionally, we subtly integrate a beam
selection scheme to enhance rewards during the exploration
period.

Algorithm 2 summarizes our CCBM framework using on-
line probing to achieve the expected rewards for beam arms.
Initially, the environment context space X is divided into a
uniform grid set X’ = {x1,9,...,x,}, with n representing

_Z E[R(Srtnv l‘)]

the total number of grids into which the space is partitioned.
At each time step t, when a user location xﬁn is observed,
it is mapped to the corresponding grid = in X’ to which it
belongs (Lines 4-5). In addition to managing the environment
context space, we partition the arm context space X = [0, 27],
where it is first normalized to [0, 1], and then divided into hr
hypercubes with a size of %

In specific, at each time step ¢, for each user m, the
algorithm observes the environment context z!, (e.g., the
user’s location) and then maps it to the corresponding grid
x € X'. For each arm a in A%, with arm context O,, the
algorithm determines a hypercube p, € X such that O, € p,
holds. The collection of the hypercubes at time slot ¢ is
denoted as p' = po,c At (Lines 10-11). Subsequently, the
algorithm identifies the hypercubes pa € pt that are explored
less frequently based on the following criteria:

Pt = {p, € p'lr € X', a € A", C'(palz) < K(na)}, (5)

where C*(p,|x) is a counter that keeps track of the number
of times the arms within the hypercube p, are selected
when the user location is mapped to = during time periods
1,2,..,t — 1. The K(n,) is a deterministic, monotonically
increasing control function, and n, represents the number of
times the grid = has been visited in the previous time periods.

Next, the algorithm determines whether to explore or ex-
ploit based on the number of arms located in under-explored
hypercubes. If the set of under-explored arms is non-empty,
the algorithm enters an exploration phase. Let ¢ be the size of
under-explored arm set. If the under-explored arm set contains
at least B arms, i.e., ¢ > B, we employ an arm selection
scheme called attention-based selection (Lines 23-28) instead
of randomly selecting arms as in prior MAB works.

Attention-based Selection: Let Z be the set of arms in the
under-explored arm set with Ct(p,|z) = 0, indicating that at
grid z, the hypercube to which arm a belongs has never been
chosen until time period ¢ — 1. If |Z] > B, then randomly
select B arms from Z. If 0 < |Z] < B, select all arms in
the set Z and randomly select other under-explored arms. The
rationale behind this step is intuitive: If we only randomly
select arms without attentions, there is a possibility that certain
hypercubes providing good rewards may not be identified in
the initial rounds, leading to sub-optimal exploration.

To be specific, when |Z| = 0, indicating that the under-
explored hypercubes have been chosen at least once, our
algorithm first identifies the arm al, ! chosen for the user
m in the last time step ¢ — 1. Since we are considering a
continuous movement (action space), for a single user, the
location at time step ¢ should be close to the location at time
step t — 1. Therefore, we can still assume af; ! is a good
candidate arm that can provide satisfied rewards at round ¢, and
it will be included in the probing set S!,, while the other arms
are chosen randomly. In this way, we strategically incorporate
attention-based exploitation into the exploration phase.

In some cases, if the under-explored arm set contains fewer
than B elements, i.e., ¢ < B, then the algorithm selects
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all ¢ arms (Lines 12-16). The remaining arms are selected
sequentially by exploiting the estimated rewards as follow:

a = argmax R(S! U{m},t)— R(S.,, 1), (6)
a€ AL \St,

where 7 is used to denote the sampled reward of each arm a. If
there are no under-explored arms, all B arms will be selected
based on Eq. (6).

Algorithm 2 Contextual Combinatorial Beam Management

Input: user number M, arm set Afn, reward function R,

budget B, time horizon T, control function K(n,), arm
context space X, grid set X
Initialization: Vz € X,n, =0
Vpo € X,C(palz) = 0,7(palz) =0
1: fort=1,2,...,T do
2 for m=1,2,....M do
3 St =10
4 Receive the client position information zf,
5: Map the position context to grid x < %,
6: Ng =Nz + 1
7
8
9

if t > ¢ then
an < select g arms based on Eq. (6)

: else
10: Find p’, such that Va € At , O, € pa,p, € X
11: Compute the under-explored hypercubes P%®* us-
ing Eq. (5)
12: if Pt = () then
13 8! <+ select B arms based on Eq. (6)
14: else
15: if number of unexplored arms ¢ < B then
16: St « select all ¢ arms and the other B — q
arms based on Equation.6
17: else
18: run Attention-based Selection(void)
19: for each arm a € S!, do
20: observe the quality 7, of a
21: update 7(pg|z) = T(”“‘?ggiﬁ’;ﬁ)ﬁ%wm
22: update counter C*(p,|z) = C*(pa|z) + 1

Function: Attention-based Selection(void):

23: if |Z| > B then

24: 8! < randomly select arms from Z

25: else if 0 < |Z| < B then

26: Sl <+ select all arms in Z and other arms randomly
27: else

28 S' « {al;1}U{B — 1 arms randomly selected}

Since we consider a mmWave wireless network scenario
with fixed APs placed in the space, it is intuitive that after
a certain number of rounds of exploration, we can have a
relatively comprehensive knowledge of the network condition.
Thus, it will be more rewarding to perform exploitation after a
certain time step. To this end, we incorporate a early stopping
criterion to guide the algorithm into an exploitation phase
(Lines 7-8).

Early Stopping Criterion: We assume that after a time
threshold ¢, the algorithm enters a pure exploitation period.
Since arms yield different rewards in terms of different grids
z, if all the grids have been visited by users several times, the
network condition can be well revealed. Thus, we set £, equal
to the number of grids n across the space. It is also worth
noting that we reduce the size of the probing set to g during
the pure exploitation period. Numerical results in Sec. V will
show that this added criterion greatly reduces the beam search
overhead while maintaining a competitive reward.

IV. THEORETICAL ANALYSIS
In this section, we provide a theoretical analysis of the regret
bond using our CCBM approach. The upper bound is derived

under the principle that arms belonging to similar context
space should have similar expected reward values.

Assumption 1. (Lipschitz-continuous) There exists C > 0
such that for any arm a, a’ with arm context O,, Oy € X, we

have |rq —rq/| < C[|Oq — Our||1.

Assumption 2. (Bounded Reward) The reward of each arm is
bounded by 0 < r < r™?*,

We set the hy = [T'3] for the arm context partition
1

and K(n;) = nZlog(n,) as the control function to identify
the under-explored arm hypercubes. Then, the regret can be
bounded as follow:

1
Theorem 1. Let hy = [T4] and K(n,) = n2log(ny), if
Assumptions 1 and 2 hold true, the regret R(T) is bounded

by:
R(T) < (1—1)Brmee2 M (M2 1og(MT)T? +T%) + (1 —
max Afn 71'2 max =
L)Br M( | J | ) T 4+ (3BL + $B(r™** + L))MT?1.

Proof. The regret R(T') can be divided into the summands:
E[R(T)] = E[Rewplore (T)] + E[Rexploit(T)]>

where the term E[Rcypiore(T)] is the regret due to the ex-
ploration process, and the term E[R.,pi0:(T)] corresponds to
the regret in the exploitation phase. We first derive a bound on
E[Rezpiore(T)]. According to Algorithm 2, the set of under-
explored hypercubes Pjuf’t is non-empty during the exploration
phase, which implies that therle exists at least one hypercube
p with Ct(p|z) < K(n,) = n2 log(n,). Because we only ex-
plore in the first ¢, rounds, n, < Mt,. < MT holds. Certainly,
there can be a maximum of [(MT)z log(MT)] exploration
phases in which p is under-explored. Given hp hypercubes
in the partition and a total of M users, the upper limit for
exploration phases is hy M [(MT)z log(MT)]. Owing to the
submodularity of reward function and its bounded nature, the
maximum regret for an incorrect selection in one exploration
phase is constrained by (1 — 1/e)Br™*. Therefore, we have

E[Reapiore(T)] < (1 — %)BrmathM[ (MT)? log(TM)]

— (- E)BrmafoTi] [(MT)? log(TM)].
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Given [Ti] < 2T%, we can further bound the maximum

regret as:

E[Reapiore(T)] < (1 — 1)Brm‘“QM(M%T% log(MT) + T%).

e
Applying similar reasoning, the regret bound during the ex-
ploitation phase can also be deduced. We omit it here due to
the space limitation, but all proof details can be found in our
supplementary technical report [12].

O

In summary, the leading order of the cumulative regret is
O(T%log(T)), indicating a sublinear growth over the time
horizon T'. This implies that our CCBM scheme exhibits
asymptotic optimality and converges toward optimal strategy.

V. PERFORMANCE EVALUATIONS

In this section, we evaluate the performance of our CCBM
approach through comprehensive numerical simulations. We
begin by outlining the simulation setup, followed by a com-
parison of our algorithm with other baseline schemes in terms
of multiple performance metrics.

A. Network Settings

We consider a 3-D indoor network scenario with a size of
40m x40mx3m, consisting of wooden tables, wooden chairs,
metal cabinets, and 15 humans randomly moving at a speed
of 0.8m/s to emulate the dynamic obstacles. In this setup,
we place four 60GHz mmWave APs randomly in the space
at a height of 2.9m. Specifically, each AP as the wireless
transmitter is equipped with 8 orthogonal beam patterns with
equal beam widths, covering a 360° azimuth. The environment
context X is uniformly divided into 1600 (40x40) small grids,
each measuring 1m?. In particular, the neighbouring beams
are regarded as arms with the similar context, hence the beams
from the same AP are categorized into 4 hypercubes, resulting
in a total of 16 hypercubes. We employ the commercial ray
tracer Wireless Insite® [13] to generate the realistic network
environment and mmWave signal profiles. Additionally, we
introduce noise following a normal distribution A(0,5) into
the obtained received signal strength (RSS) values to account
for potential measurement errors in the context information,
mirroring the conditions encountered in practical scenarios.

Baseline Algorithms: We conduct a thorough performance
analysis by comparing our algorithm with the following base-
line schemes:

o Optimal scheme. This algorithm relies on an oracle
search, indicating a priori knowledge of the expected
reward fi,,, for each arm a within Al at grid z. It always
selects an optimal subset S* to probe the best beam at
each time step, offering an upper-bound performance for
comparison with other feasible schemes.

o UCB-based scheme. This state-of-the-art scheme, pro-
posed in [6], employs an upper confidence bound ap-
proach. In each time step, it strategically selects B arms
with the highest estimated upper confidence bounds on
their expected rewards.

e CC-MAB scheme: We add the basic contextual MAB
algorithm from [11] as the comparison point. The key
distinction with our CCBM approach lies in the fact
that CC-MAB incorporates a completely randomized arm
selection process during the exploration phase.

B. Cumulative Regret for Beam Selection
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Fig. 1. Comparison of regret among different algorithms.

To evaluate the disparity between the total reward achieved
by a practical probing algorithm and the optimal reward
attainable by consistently selecting the best beam, Fig. 1 shows
the cumulative regret over time for three distinct algorithms.
Obviously, our proposed CCBM exhibits superior performance
compared to the other two baselines. Specifically, the UCB-
based scheme exhibits the highest regret, consistently main-
taining a curve above the others throughout the time horizon.
This can be attributed to the fact that it does not account for
the properties of a submodular reward function. Besides, our
CCBM scheme achieves a lower regret than CC-MAB, which
demonstrates the effectiveness of incorporating exploitation
into the exploration phase via our attention-based selection.
Furthermore, a noticeable turning point occurs at time step
around 1600, corresponding to the implementation of our early
stopping criterion that prevents extensively useless searches.

C. Beam Management Overhead and Network Throughput

le7

Il UCB [6]
3 CcBM-C
B CCBM

1.90

1.89

2 3 4 5
Budget

Fig. 2. Reward under different beam probing budgets.

In this section, we evaluate the performance in terms of
beam management overhead and average user throughput in
mmWave networks. First, we consider both our CCBM and
its variant, CCBM-C, based on the rewards obtained under
different probing budgets B. The higher B implies a potential
manegement overhead. The only difference between the two
schemes is that CCBM-C constantly probe beams with a
budget of B while CCBM searches a subset of beams with a
size of g in early stopping phase. As depicted in Fig. 2, an
increase in the budget leads to an augmentation in rewards for
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all three algorithms. This trend is attributed to the fact that
a larger budget enhances the probability of encompassing the
optimal beam, thereby increasing the likelihood of identifying
the most advantageous beam. Under different budgets, the
CCBM-C algorithm consistently secures the highest rewards.
Concurrently, the CCBM achieves rewards marginally lower
than those of CCBM-C while utilizing only half of the budget.
This demonstrates how efficiently the CCBM algorithm can
leverage limited resources to optimize rewards. In this regard,
we conclude that both CCBM and CCBM-C can obtain a
higher reward at lower overhead, indicating that CCBM is
effective in achieving high performance with a constrained
beam search budget.

0.85
£0.80

o '”” m il “w N““'M\ i T |‘“

— UCB [6]
—— CCBM
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0 100 200 300 400 500
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|

Fig. 3. Comparison of average user throughput among different schemes.

Fig. 3 compares the average user throughput of our proposed
CCBM against the UCB-based scheme from [6] and the
Optimal method with an oracle search. We observe that the
throughput of the Optimal scheme is always the highest,
benefiting from its priori knowledge about the expected re-
ward of each arm. Consistently, the throughput of CCBM
is maintained at a relatively high level, close to the optimal
results and significantly surpassing the results of the UCB-
based scheme. Additionally, the throughput of CCBM exhibits
a lower variance than that of UCB-based scheme, signifying its
greater stability. Such consistently higher throughput perfor-
mance underscores the robustness and efficiency of our CCBM
scheme in dynamic network environments.

Lastly, load balancing is another critical aspect addressed
by our CCBM approach. To evaluate the load balancing
performance, we utilize the maximum load utilization L,,,, as
the metric to qualitatively reflect network congestion, where
a higher L,,,, indicates more server congestion and unbal-
anced resource usage. The value of L,,,, corresponds to the
maximum load among all beams in the network. Fig. 4 shows
the average L,,,, across randomly located users. As expected,
the Optimal scheme achieves the lowest L, 4, value, while our
CCBM approach performs closely to the optimal results. It is
observed that the gap is especially smaller under higher density
of users in the network, which validates the load balancing
capability owing to the strategical reward function design.

VI. CONCLUSION

This paper introduces a contextual combinatorial beam
management scheme for the joint AP and beam selection in

mmm Optimal
Modified
s UCB [6]

I
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=
N

Average L-max Values
_O =
© o
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Number of users

Fig. 4. Comparison of L-max among different schemes.

mmWave wireless networks. It incorporates an early stop-
ping criterion and an attention-based mechanism to mitigate
excessive search during online probing. Theoretical analysis
establishes its asymptotic optimality by setting an upper bound
on cumulative regret. Additionally, a carefully designed reward
function takes into account load balancing among APs, aiding
in selecting an global-view optimal AP and beam and thereby
enhancing overall network performance. Through a series of
simulations and theoretical analyses, CCBM has demonstrated
its superiority over other baseline schemes in optimizing AP-
beam selection in dense mmWave wireless networks.
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