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Abstract—This paper investigates the correlation between
building material properties and indoor network coverage, en-
compassing both indoor Wi-Fi and outdoor 5G technologies to
provide customized network services tailored to users’ needs in
diverse areas. We first analyze the impact of building material
characteristics, with a special focus on wall materials, on the
distribution of wireless signal propagation. Then, a ray-tracing-
based method is introduced to synthetically generate high-quality
training data that covers fine-grained network scenarios with
a wide range of wall materials, extending beyond traditional
materials. This dataset serves as the foundation for our proposed
Global Embedding Isomorphism Network (GemNet), a machine
learning framework that facilitates the prediction of optimal
material parameters for customized in-building coverage. This in-
novation enables architects and builders to design novel, network-
friendly materials, ensuring ubiquitous and on-demand network
services. Extensive evaluations consistently demonstrate a re-
markable prediction accuracy of 90.52% on material parameters,
underscoring the framework’s ability to optimize indoor wireless
network planning through the lens of material engineering.

I. INTRODUCTION

As the reliance on internet resources continues to escalate,

the necessity for advanced wireless connectivity in local

area network (LAN) environments, inundated with various

edge devices and Internet of Things (IoT) devices, becomes

increasingly paramount. In this context, Wi-Fi technology,

particularly in high-frequency bands such as 60 GHz, be-

comes indispensable for emerging bandwidth-hungry applica-

tions indoors. While 5G cellular network technology remains

dominant for outdoor uses, it also plays a significant role in

various indoor settings such as corporate offices, healthcare

facilities, eateries, and industrial complexes. This is often due

to private Wi-Fi access restrictions and security concerns. As

illustrated in Fig. 1, some users or visitors opt to connect

to 5G base stations (BS) to ensure uninterrupted real-time

connectivity. This highlights 5G as a vital complementary

technology for indoor applications, and it is anticipated that

Wi-Fi and 5G technologies will collaborate synergistically to

advance intelligent indoor network services [1]–[3].

In a typical indoor environment, Wi-Fi access points (APs)

and 5G BSs can provide complementary coverage, allowing

customized network services tailored to users’ needs in various

areas. However, it is crucial to emphasize that the choice of

building construction materials, particularly wall materials, can

significantly impact the transmission characteristics of signals

emanating from 5G and Wi-Fi infrastructure. For instance,

the wall materials with high transmittance properties facilitate

the effective penetration of external 5G radio signals, while

indoor Wi-Fi signals may experience increased dispersion in

such scenarios, and vice versa. As a result, the selection of

optimal building materials becomes paramount in ensuring

robustness and customized wireless coverage within indoor

spaces. Specifically, the permittivity and conductivity of wall

materials have a direct impact on the radio channel charac-

teristics. For example, tinted windows with low conductivity,

primarily designed to block ultraviolet light, can inadvertently

obstruct RF signals from penetrating the building. This also

results in noticeable variations in indoor coverage maps across

different frequency bands, such as sub-6 GHz and 60 GHz, due

to the distinctive permittivity and conductivity of the materials

involved. As such, it is evident that there exists a substantial

interplay between radio frequency bands, building material

properties, and the distribution of wireless signals within the

architectural structure.

Fig. 1: An integrated cellular-WiFi indoor network scenario.

Although research in the material engineering field, such

as [4], [5], has explored the impact of building materials on

wireless signal propagation through measurement campaigns,

they focus solely on classical materials like brick and concrete,

which limits the scope of studies for an optimal network

planning. Other works such as [6]–[9] have specialized in

material designs within the energy conservation and structure

diversity domains. In terms of in-building coverage predic-

tions, [10] concentrated on indoor millimeter-wave networks

while neglecting enhancements for outdoor 5G technology.

Despite machine learning techniques being utilized to estimate

wall material properties, as seen in [7]–[9], [11], the potential

of graph neural network (GNN) based models, capable of

capturing the spatial correlation of wireless signals, remains

underexplored in predicting building material properties for

optimizing network coverage, which highlights a promising

avenue for our research herein.
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In practice, the interrelationship among the aforementioned

three factors is intricate, dynamic, and potentially nonlinear.

This complexity presents analytical challenges in customiz-

ing in-building coverage based on a variety of construction

material parameters and cross-technology communication. To

address this, we first conduct a comprehensive analysis of how

various material parameters affect wireless coverage in inte-

grated cellular-WiFi networks. Leveraging the effectiveness

and accuracy of graph modeling for wireless networks, we

then introduce GemNet, a material-inspired network planning

framework, designed to optimize wireless coverage by select-

ing appropriate building materials. The main contributions of

this work are summarized as follows:

• We perform a comprehensive analysis to understand

how wireless signals are sensitive to building material

properties. Notably, our findings indicate that modifying

wall material characteristics, such as conductivity and

permittivity, can have a positive effect on indoor network

coverage with the cross-technology communication.

• We develop for the first time a ray-tracing-based method

to synthetically generate high-quality training data cover-

ing fine-grained network scenarios that correlate a wide

range of wall materials, which is then used to develop a

graph isomorphism network learning framework, empow-

ering the prediction of optimal material parameters for

customized network coverage. This enables builders to

design novel, network-friendly materials, ensuring ubiq-

uitous and on-demand network services.

• We extensively evaluate our GemNet framework for

predicting material parameters to achieve customized in-

building coverage. The results consistently demonstrate

an accuracy exceeding 90%, showcasing the framework’s

ability to accurately predict material parameters using

detailed environmental information and characteristics of

hybrid 5G and Wi-Fi signals.

II. MOTIVATION AND ANALYSIS

With the proliferation of mobile and bandwidth-hungry

applications, the need for ubiquitous wireless connectivity

in both residential and professional environments has expe-

rienced a substantial surge. Consequently, recent study has

been dedicated to enhancing Wi-Fi signal strength to achieve

extensive coverage. Nonetheless, it is undeniable that wireless

signal propagation invariably encounters indoor propagation

challenges. Signal obstructions, often arising from physical

barriers, result in “blind spots” within the space. Rather than

rigidly pursuing comprehensive Wi-Fi coverage, an alternative

approach is to take a holistic perspective, considering indoor

Wi-Fi signals alongside the additional potential provided by

outdoor 5G signals to address in-building coverage on demand.

To this end, we initiate an experimental study examining

the impact of various wall materials on the distribution of

5G and Wi-Fi signals (sub-6 GHz and 60 GHz) within an

indoor scenario. Fig. 2 shows the evaluation results from a

high-fidelity ray-tracing software Wireless Insite®. By altering

the material of the left outer wall, as illustrated in Fig. 1,

it becomes evident that the received signal strength (RSS)

distribution maps for 5G and Wi-Fi differ, despite being within

the same scenario. This variance arises due to the elevated

transmission power of 5G BS and their longer wavelengths in

comparison to Wi-Fi signals, which endow outdoor 5G signals

with a more uniform RSS distribution owing to their enhanced

penetration capabilities. In contrast, the high-band Wi-Fi signal

strengths exhibit greater variability, being notably near the AP

and within its antenna directions, while diminishing in more

distant or obstructed areas. When considering the RSS maps

of both Wi-Fi and 5G together, 5G signals can provide broader

and more consistent coverage, whereas high-band Wi-Fi excels

in delivering exceptionally high-speed connectivity in specific

regions. These results demonstrate that 5G can complement

Wi-Fi technology to enhance overall in-building coverage.

Fig. 2: RSS distribution maps with different wall materials.

On the other hand, we also conduct evaluation of RSS maps

that vary in response to different wall materials. The results

reveal that substituting brick walls with glass walls leads

to enhancements in both 5G and Wi-Fi RSS. Furthermore,

by fine-tuning material properties such as permittivity and

conductivity, it becomes feasible to further enhance wireless

coverage. It is observed an average increase of 40% and

33% in 5G and Wi-Fi RSS, respectively, when employing a

novel material versus traditional materials. These findings have

instilled motivation for the development of a framework aimed

at predicting the optimal building material for customized

network coverage across diverse environmental configurations,

which is the subject elaborated upon in the subsequent section.

III. GEMNET: MATERIAL-INSPIRED NETWORK PLANNING

In this section, we first introduce the ray-tracing analysis to

generate large volumes of training data for our GemNet model.

We then explore data preprocessing and present two distinct

graph-based models designed for predicting optimal material

properties to meet specific network coverage requirement.

A. Data Acquisition

In a bid to elucidate the correlation between the material

properties of building walls and RSS distribution maps, we

amass a dataset including over 10,000 entries using Wireless

Insite®. The dataset is publicly available at [12]. Each entry

contains a particular wall material’s conductivity and permit-

tivity, accompanied by corresponding heatmaps illustrating the
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Fig. 3: Overview of the GemNet prediction model.

distribution of Wi-Fi and 5G signal strength at each grid

location (referred to as a node) within indoor environments.

Specifically, these heatmaps included in the dataset provide

detailed information regarding signal strength of multiple

direct and reflection paths at various spatial coordinates. This

information aids in identifying crucial points, such as areas

with strong or weak signals, trajectories with the highest RSS,

and locations where signal boost is possible. Also, we perform

data augmentation to represent each heatmap in the form of a

graph. Converting the heatmap into a graph format enables

GNN algorithms use to identify RSS distribution patterns

and understand the correlations among different crucial points

within the space (see more details in Sec. III-C). Thus, the

dataset comprises five attributes totally, including material

conductivity, permittivity, Wi-Fi heatmap, 5G heatmap, and

the adjacency matrix of the transformed graph.

B. From RSS Distribution to Binary Coverage Maps

Next, we implement a series of preprocessing steps to the

raw data, transforming the acquired heatmaps into compre-

hensive signal coverage maps. This transformation involves

converting the heatmap into a binary signal coverage map

because, in practice, what matters most to users is the presence

or absence of a signal in their immediate vicinity, rather than

the exact numerical signal strength. For both 5G and Wi-Fi

signals, a predefined threshold distinguishes strong from weak

signals, where signals exceeding this threshold are considered

available, while those below it are deemed unavailable. This

transformation is necessary to create a more coarse-grained

signal coverage map. Comparatively, when used as input for

predicting optimal material properties as in the subsequent

subsection, the binary signal coverage map offers sufficient

information, encompassing the indoor topological structure

and RSS variations, to facilitate model learning.

Specifically, RSS is influenced by various factors, including

architectural structures, object layouts, device placements, and

potential sources of interference. When considering RSS in

a holistic manner and utilizing the RSS Indicator (RSSI) as

the evaluation metric, signal quality within indoor environ-

ments can be categorized as, e.g., Excellent (-50dBm to -

70dBm), Acceptable (-70dBm to -80dBm), Weak (-80dBm

to -90dBm), Virtually Unusable (below -90dBm). Depend-

ing on the network requirements, minimum acceptable RSS

thresholds, denoted as T5G and Twifi, can be chosen for

5G and Wi-Fi RSS maps. The original signal strength for

each node i is set as S5G,i and Swifi,i. To represent the

5G and Wi-Fi coverage maps, we use the matrices B5G and

Bwifi, where each element corresponds to a binary value

at the respective node on the map. If there are n nodes,

then each matrix contains n elements, signifying the binary

value of a node. This way, the 5G binary coverage map can

be defined as B5G = [B5G,1, B5G,2, B5G,3, . . . , B5G,n] and

the Wi-Fi binary coverage map is expressed as Bwifi =
[Bwifi,1, Bwifi,2, Bwifi,3, . . . , Bwifi,n], where

B5G,i =

{

1 if S5G,i > T5G

0 if S5G,i f T5G,
(1)

Bwifi,i =

{

1 if Swifi,i > Twifi

0 if Swifi,i f Twifi.
(2)

These binary coverage maps will be employed as input data

for the subsequent graph-based learning model used to predict

optimal material parameters.

C. GemNet: Global Embedding Graph Isomorphism Network

The Graph Isomorphism Network (GIN) represents a vari-

ation of the GNN model and is distinct from conventional

approaches such as the Graph Convolution Network or Graph

Attention Network, which are typically used for node-level

classification. GIN, on the other hand, is well-suited for tasks

involving graph-level classification or regression. In this work,

we employ 5G and Wi-Fi binary coverage maps as inputs,

leveraging an extended GIN model to predict desired material

parameters, namely permittivity and conductivity, in order to

meet the coverage demands. Utilizing GIN as the foundation

for our approach proves to be highly suitable for two reasons:

• Node Feature Capturing: In our signal coverage map,

Each node represents a reception point with features such

as RSS and positional data. The GIN model, through iter-

ative processes, captures spatial correlation based on the

environment layout. Thus, embedded nodes can indirectly

learn information from more distant neighbors while

integrating them into the graph’s structure as illustrated

in Sec. III-A.

• Graph Isomorphism Discrimination: Since the data is col-

lected under a consistent configuration, the input binary

coverage maps share a degree of similarity in topology
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and signal propagation patterns. The incorporated Mul-

tilayer Perceptron Layers within the GIN model (MLP)

can easily capture these subtle feature variations, enabling

it to learn node attributes and their combinations. This

means that, even if two graphs are structurally isomor-

phic, as long as their node features differ, the model can

naturally distinguish between them.

1) One Aggregator to ‘Rule Them ALL’: In the model

structure, illustrated in Fig. 3, our approach incorporates a

unique layer termed global pooling, which stands in contrast

to the GNN-based approach of exclusively learning node

embeddings. This novel layer combines node embeddings

to produce a comprehensive graph-level embedding. Such a

concept draws inspiration from the discriminative capabilities

of the Weisfeiler-Lehman graph isomorphism (W-L) test. To

maximize the power of network representation, an aggregator,

as seen in [13], is designed within our GemNet model to

generate distinct node embeddings when dealing with non-

isomorphic graphs for the efficacy of W-L test. The key to

this solution lies in approximating two injective functions,

predicated on the Universal Approximation Theorem and

employing MLPs. To be specific, the hidden vector for a node

i is computed as follow:

hi = M



(1 + ε)xi +
∑

j∈Ni

xj



 . (3)

In Eq. (3), M is an MLP, and ε quantifies the relative

significance of the target node xi compared to its neighbors

xj . It is worth noting that the reference to M underlines the

necessity for multiple layers (typically more than three), which

are considered adequate for a comprehensive graph learning.

2) Global Pooling: To thoroughly analyze all structural

information, especially when distinguishing entire 5G and Wi-

Fi RSS graphs, it is imperative to employ global pooling or

graph-level readouts. This approach generates a unified graph

embedding from the individual node embeddings. Typically,

global pooling can be realized through one of three common

methods, each producing a distinct graph embedding, denoted

as hG, involving the mean, summation, or maximum of each

node embedding hi:

hGµ
=

1

N

N
∑

i=1

hi, hGS
=

N
∑

i=1

hi, hGM
=

N
max
i=1

(hi). (4)

The summation operator hGS
shown in Eq. (4) exhibits a

notable increase in expressiveness compared to the mean and

max operators. This heightened efficacy is attributed to its

ability to retain embeddings from preceding layers, where the

embeddings are summed and the result is concatenated. This

innovative approach combines the inherent expressive power

of the summation operator with the memory enhancement

provided by the concatenation of previous iterations. Based

on these insights, the global pooling method is derived as:

hG =

N
∑

i=0

h0

i ∥ · · · ∥

N
∑

i=0

hk
i (5)

In this context, each inclusion of structural information empha-

sizes the ability to precisely differentiate between the 5G and

Wi-Fi RSS graphs. This, in turn, enhances our comprehension

of the underlying patterns and variances within the data.

3) Continuous Model for Permittivity Prediction: The

model design for the prediction of dielectric material pa-

rameters – permittivity and conductivity, is slightly different

depending on their data distribution properties. First, permit-

tivity (often represented as relative permittivity εr) values

typically span a continuous range from 1 to 10, encompassing

various specific materials. Hence, predicting permittivity can

be framed as a regression problem and addressed with a

continuous learning model. Through a fine-tuning process, we

construct the model consisting of several MLPs that begin

with a linear fully connected layer (FC), followed by a batch

normalization layer (BN) and another FC layer with activation

functions ReLU. This process is formulated as:

M(x) = ReLU{W2 ·
(

ReLU [BN(W1x+ b1)] + b2}, (6)

where W1 and b1 are the weight and bias of the first linear

layer, and W2 and b2 correspond to those of the second

linear layer. Algorithm 1 summarizes the generalized GemNet

modeling process. This algorithm begins with the extraction

of input data (line 4), followed by a node embeddings section

(lines 5-7), where the algorithm iteratively processes each

layer using a convolution function to compute the node em-

beddings. Next, the graph-level embeddings hl are computed

for each layer (lines 8-10), which are then concatenated into

a comprehensive graph embedding h (lines 11-12); Lastly, a

dropout layer combined with the linear transformation are used

to get the final graph embedding output (lines 13-17).

4) Discrete Model for Conductivity Prediction: In contrast

to permittivity, the conductivity (σ) of dielectric materials

exhibit a wide range of values, typically in the low-value

spectrum, spanning from approximately 10−3 to 10−15 S/m.

Especially when considering building materials, based on the

classification of electrical conductivity, they can be roughly

categorized into three groups: poor dielectric materials (like

metal-reinforced multilayer composite materials), general di-

electric materials (such as ceramic, glass, and rubber compos-

ite materials), and good dielectric materials (including certain

special plastics and high-purity quartz). Consequently, σ is

distributed discretely based on the specific type of material in

use. As such, we add a discretization layer to Algorithm 1 to

map the original σ value to a set of class values c (e.g., ranging

from 0 to 118), which can effectively capture the variance

through our loss function. Subsequently, when calculating the

model accuracy, we map c back to σ, as shown in Eq. (7).

c = f(σ) = +scale · σ, (7a)

σ = f−1(c) =
c

scale
, (7b)

where scale is an appropriate scaling factor. To summary, the

entire GemNet process allows for the prediction of required

building material properties based on the input of customized

coverage maps.
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Algorithm 1 Generalized GemNet Model

1: Input:

data : {x, edge index, batch}
L : number of layers

GemNetConv(h, edge index) : GIN convolution layers

2: Output:

h : the final output of graph embedding (εr, σ)

3: Procedure:

4: a. Extract x, edge index, and batch from data

5: b. Node Embeddings

6: for l = 1 to L do

Compute: hl = GemNetconv(hl−1, edge index)
where h0 = x

7: end for

8: c. Graph-level Readout

9: for l = 1 to L do

Compute: hl = global add pool(hl, batch)
based on the sum operator in Eq. (4)

10: end for

11: d. Concatenate graph embeddings

12: Concatenate all computed h’s based on Eq. (5):

h = concat(h1, h2, . . . , hL, dim = 1)
13: e. Regressor

14: Compute: h = ReLU(lin1(h))
15: Apply dropout to h: h = Dropout(0.5, h)
16: Compute the final output: h = lin2(h)
17: Return h

IV. IMPLEMENTATION AND EVALUATION RESULTS

In this section, we evaluate the performance of our GemNet

prediction model, specifically examining its precision and

stability under various network scenarios.

A. Network Settings

We consider network scenarios in which indoor devices can

receive signals from either outdoor 5G BS or indoor Wi-

Fi AP. Wireless Insite® is utilized to create realistic indoor

scenarios by placing random objects on the floor. Specifically,

the floorplan with dimensions 20m x 20m x 3m is designed to

closely resemble an office environment, incorporating objects

of varying heights and a range of placement densities, from

sparse to dense. The material of the left outer wall is varied as

the experimental parameter across different value sets, while

the rest of the exterior walls, floor, and ceiling are consistently

constructed with concrete material. Besides, Wi-Fi APs (60

GHz) are strategically located at the center of the room, while

the 5G BS (sub-6 GHz) is deployed 50m away from the

building’s exterior. The entire area is divided into a 20 × 20

grid of receivers, each covering an equal area of 1 m2, in order

to capture and visualize the RSS levels at different locations.

B. Prediction Accuracy of Material Properties

To validate the effectiveness of our proposed GemNet

model, we divided the dataset, consisting of more than 20,000

data points, into training and test sets in a 90% to 10%

ratio. In practice, the material parameters can vary slightly

due to factors like temperature and atmospheric pressure over

the course of the day. Based on the actual measurements

from prior study [14], a prediction error within 10% when

compared to the ground truth is always considered reasonable.

Hence, we adopt the Error Tolerance Rate (ETR) to assess

prediction accuracy, where the predicted values of εr and σ

are considered accurate when the percentage difference from

the ground truths falls below the ETR of 0.1.
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Fig. 4: Prediction accuracy vs. ETR.

Fig. 4 shows the correlation between ETR and the prediction

accuracy of (εr, σ). As ETR increases from 0.04 to 0.1, the

model’s prediction accuracy also rises, reaching approximately

77.61% to 94.75%. Notably, at an ETR of 7%, consistent

with the acceptable error range described in [14], the model

achieves an accuracy of 90.52%. This indicates that our

GemNet predictions are generally highly accurate, confirming

its validity and practical utility.

C. Model Consistency and Generalization

To further evaluate the performance of GemNet and make

informed decisions regarding model parameters, we conduct

an analysis of the loss function’s convergence during the

training process. This analysis provides insights into the GIN-

based model’s ability to learn the underlying patterns and

regularities within the collected data.
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Fig. 5: Convergence on (a) permittivity and (b) conductivity

model training.

In Fig. 5, we can observe the variations in the loss function

as the number of training epochs increases. Fig. 5(a) and

Fig. 5(b) depict the convergence of the loss function for

training the continuous model and discrete model for εr and σ,

respectively. During the initial 100 epochs, the fluctuations in

the loss values suggest that the models are rapidly learning and

adjusting. Subsequently, as the loss values stabilize, it indicates

that both models have reached a local optimum, with learning

and adjustments slowing down, signifying convergence. The
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stability within the shaded area underscores the robustness of

GemNet and its ability to generalize effectively to unseen data.

D. Analysis of Performance Margin
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Fig. 6: Prediction accuracy on (a) permittivity and (b) conduc-

tivity vs. the amount of training data.

In this section, we explore the impact of dataset size on

prediction performance, given an ETR of 0.07. As shown in

Fig. 6, increasing the dataset size leads to improved accuracy

for both continuous and discrete models. Particularly, as the

dataset grows from 5,000 to 20,000, we observe a significant

enhancement in model accuracy. However, as the dataset size

continues to increase, the rate of accuracy improvement grad-

ually diminishes, indicating a trend of diminishing marginal

returns. This analysis suggests that a dataset of approximately

20,000 entries effectively reaches the performance boundary

and fulfills the data requirements of the GemNet model.

E. Case Study for Practitioner using GemNet

Fig. 7: Workflow of case study and results.

This case study aims to validate the practicality of the

GemNet model within preset network coverage areas. Initially,

specific areas requiring 5G and Wi-Fi services were designated

based on scenario requirements. As illustrated in Fig. 7, the

office scenario features a yellow area designated for public

visitors, which demands 5G connectivity services to ensure

the personal data communication. Meanwhile, the blue area

serves as the workspace, where Wi-Fi services are required

for local employees to access the internet. Subsequently, the

corresponding binary coverage maps are fed into the pre-

trained GemNet model, producing new material parameters

customized to meet the prior coverage demands. To validate

the feasibility of these material parameters, we then conduct

an experiment using the same environment from the original

data collection. The results in Fig. 7 show that the in-building

coverage achieved with these predicted material parameters not

only meets but also exceeds the initial coverage requirements.

For instance, in the 5G coverage map, the light yellow area

in the right figure represents the indoor network coverage

achieved using the new predicted materials, and it effectively

covers the original preset dark yellow area in the left figure.

V. CONCLUSION AND FUTURE WORKS

This paper elucidated the crucial relationship between build-

ing material properties and the distribution of indoor wireless

signals, laying the foundation for the material-inspired net-

working design to foster tailored network services. Through

a comprehensive analysis, we showed the significant impact

of wall material characteristics on wireless signal propagation.

Then, the novel dataset generated through ray-tracing analysis

served as the foundation for a GIN-based predictive model.

This model, boasting over 90% accuracy in predicting material

parameters based on network coverage demands, emerges as

a promising tool for optimizing indoor wireless environments.

In future work, we will consider additional factors influ-

enced by material properties, such as noise reduction and ther-

mal insulation, to establish a holistic ecosystem that accommo-

dates various applications. Besides, material strength and cost

will be considered, helping to refine the selection of suitable

material parameters for optimizing network performance.
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