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Abstract—This paper investigates the correlation between
building material properties and indoor network coverage, en-
compassing both indoor Wi-Fi and outdoor 5G technologies to
provide customized network services tailored to users’ needs in
diverse areas. We first analyze the impact of building material
characteristics, with a special focus on wall materials, on the
distribution of wireless signal propagation. Then, a ray-tracing-
based method is introduced to synthetically generate high-quality
training data that covers fine-grained network scenarios with
a wide range of wall materials, extending beyond traditional
materials. This dataset serves as the foundation for our proposed
Global Embedding Isomorphism Network (GemNet), a machine
learning framework that facilitates the prediction of optimal
material parameters for customized in-building coverage. This in-
novation enables architects and builders to design novel, network-
friendly materials, ensuring ubiquitous and on-demand network
services. Extensive evaluations consistently demonstrate a re-
markable prediction accuracy of 90.52% on material parameters,
underscoring the framework’s ability to optimize indoor wireless
network planning through the lens of material engineering.

I. INTRODUCTION

As the reliance on internet resources continues to escalate,
the necessity for advanced wireless connectivity in local
area network (LAN) environments, inundated with various
edge devices and Internet of Things (IoT) devices, becomes
increasingly paramount. In this context, Wi-Fi technology,
particularly in high-frequency bands such as 60 GHz, be-
comes indispensable for emerging bandwidth-hungry applica-
tions indoors. While 5G cellular network technology remains
dominant for outdoor uses, it also plays a significant role in
various indoor settings such as corporate offices, healthcare
facilities, eateries, and industrial complexes. This is often due
to private Wi-Fi access restrictions and security concerns. As
illustrated in Fig. 1, some users or visitors opt to connect
to 5G base stations (BS) to ensure uninterrupted real-time
connectivity. This highlights 5G as a vital complementary
technology for indoor applications, and it is anticipated that
Wi-Fi and 5G technologies will collaborate synergistically to
advance intelligent indoor network services [1]-[3].

In a typical indoor environment, Wi-Fi access points (APs)
and 5G BSs can provide complementary coverage, allowing
customized network services tailored to users’ needs in various
areas. However, it is crucial to emphasize that the choice of
building construction materials, particularly wall materials, can
significantly impact the transmission characteristics of signals
emanating from 5G and Wi-Fi infrastructure. For instance,
the wall materials with high transmittance properties facilitate
the effective penetration of external 5G radio signals, while
indoor Wi-Fi signals may experience increased dispersion in

such scenarios, and vice versa. As a result, the selection of
optimal building materials becomes paramount in ensuring
robustness and customized wireless coverage within indoor
spaces. Specifically, the permittivity and conductivity of wall
materials have a direct impact on the radio channel charac-
teristics. For example, tinted windows with low conductivity,
primarily designed to block ultraviolet light, can inadvertently
obstruct RF signals from penetrating the building. This also
results in noticeable variations in indoor coverage maps across
different frequency bands, such as sub-6 GHz and 60 GHz, due
to the distinctive permittivity and conductivity of the materials
involved. As such, it is evident that there exists a substantial
interplay between radio frequency bands, building material
properties, and the distribution of wireless signals within the
architectural structure.
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Fig. 1: An integrated cellular-WiFi indoor network scenario.

Although research in the material engineering field, such
as [4], [5], has explored the impact of building materials on
wireless signal propagation through measurement campaigns,
they focus solely on classical materials like brick and concrete,
which limits the scope of studies for an optimal network
planning. Other works such as [6]-[9] have specialized in
material designs within the energy conservation and structure
diversity domains. In terms of in-building coverage predic-
tions, [10] concentrated on indoor millimeter-wave networks
while neglecting enhancements for outdoor 5G technology.
Despite machine learning techniques being utilized to estimate
wall material properties, as seen in [7]-[9], [11], the potential
of graph neural network (GNN) based models, capable of
capturing the spatial correlation of wireless signals, remains
underexplored in predicting building material properties for
optimizing network coverage, which highlights a promising
avenue for our research herein.
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In practice, the interrelationship among the aforementioned
three factors is intricate, dynamic, and potentially nonlinear.
This complexity presents analytical challenges in customiz-
ing in-building coverage based on a variety of construction
material parameters and cross-technology communication. To
address this, we first conduct a comprehensive analysis of how
various material parameters affect wireless coverage in inte-
grated cellular-WiFi networks. Leveraging the effectiveness
and accuracy of graph modeling for wireless networks, we
then introduce GemNet, a material-inspired network planning
framework, designed to optimize wireless coverage by select-
ing appropriate building materials. The main contributions of
this work are summarized as follows:

e We perform a comprehensive analysis to understand
how wireless signals are sensitive to building material
properties. Notably, our findings indicate that modifying
wall material characteristics, such as conductivity and
permittivity, can have a positive effect on indoor network
coverage with the cross-technology communication.

o We develop for the first time a ray-tracing-based method
to synthetically generate high-quality training data cover-
ing fine-grained network scenarios that correlate a wide
range of wall materials, which is then used to develop a
graph isomorphism network learning framework, empow-
ering the prediction of optimal material parameters for
customized network coverage. This enables builders to
design novel, network-friendly materials, ensuring ubig-
uitous and on-demand network services.

¢ We extensively evaluate our GemNet framework for
predicting material parameters to achieve customized in-
building coverage. The results consistently demonstrate
an accuracy exceeding 90%, showcasing the framework’s
ability to accurately predict material parameters using
detailed environmental information and characteristics of
hybrid 5G and Wi-Fi signals.

II. MOTIVATION AND ANALYSIS

With the proliferation of mobile and bandwidth-hungry
applications, the need for ubiquitous wireless connectivity
in both residential and professional environments has expe-
rienced a substantial surge. Consequently, recent study has
been dedicated to enhancing Wi-Fi signal strength to achieve
extensive coverage. Nonetheless, it is undeniable that wireless
signal propagation invariably encounters indoor propagation
challenges. Signal obstructions, often arising from physical
barriers, result in “blind spots” within the space. Rather than
rigidly pursuing comprehensive Wi-Fi coverage, an alternative
approach is to take a holistic perspective, considering indoor
Wi-Fi signals alongside the additional potential provided by
outdoor 5G signals to address in-building coverage on demand.

To this end, we initiate an experimental study examining
the impact of various wall materials on the distribution of
5G and Wi-Fi signals (sub-6 GHz and 60 GHz) within an
indoor scenario. Fig. 2 shows the evaluation results from a
high-fidelity ray-tracing software Wireless Insite® . By altering
the material of the left outer wall, as illustrated in Fig. 1,
it becomes evident that the received signal strength (RSS)

distribution maps for 5G and Wi-Fi differ, despite being within
the same scenario. This variance arises due to the elevated
transmission power of 5G BS and their longer wavelengths in
comparison to Wi-Fi signals, which endow outdoor 5G signals
with a more uniform RSS distribution owing to their enhanced
penetration capabilities. In contrast, the high-band Wi-Fi signal
strengths exhibit greater variability, being notably near the AP
and within its antenna directions, while diminishing in more
distant or obstructed areas. When considering the RSS maps
of both Wi-Fi and 5G together, 5G signals can provide broader
and more consistent coverage, whereas high-band Wi-Fi excels
in delivering exceptionally high-speed connectivity in specific
regions. These results demonstrate that SG can complement
Wi-Fi technology to enhance overall in-building coverage.
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Fig. 2: RSS distribution maps with different wall materials.

On the other hand, we also conduct evaluation of RSS maps
that vary in response to different wall materials. The results
reveal that substituting brick walls with glass walls leads
to enhancements in both 5G and Wi-Fi RSS. Furthermore,
by fine-tuning material properties such as permittivity and
conductivity, it becomes feasible to further enhance wireless
coverage. It is observed an average increase of 40% and
33% in 5G and Wi-Fi RSS, respectively, when employing a
novel material versus traditional materials. These findings have
instilled motivation for the development of a framework aimed
at predicting the optimal building material for customized
network coverage across diverse environmental configurations,
which is the subject elaborated upon in the subsequent section.

III. GEMNET: MATERIAL-INSPIRED NETWORK PLANNING

In this section, we first introduce the ray-tracing analysis to
generate large volumes of training data for our GemNet model.
We then explore data preprocessing and present two distinct
graph-based models designed for predicting optimal material
properties to meet specific network coverage requirement.

A. Data Acquisition

In a bid to elucidate the correlation between the material
properties of building walls and RSS distribution maps, we
amass a dataset including over 10,000 entries using Wireless
Insite®. The dataset is publicly available at [12]. Each entry
contains a particular wall material’s conductivity and permit-
tivity, accompanied by corresponding heatmaps illustrating the
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Fig. 3: Overview of the GemNet prediction model.

distribution of Wi-Fi and 5G signal strength at each grid
location (referred to as a node) within indoor environments.

Specifically, these heatmaps included in the dataset provide
detailed information regarding signal strength of multiple
direct and reflection paths at various spatial coordinates. This
information aids in identifying crucial points, such as areas
with strong or weak signals, trajectories with the highest RSS,
and locations where signal boost is possible. Also, we perform
data augmentation to represent each heatmap in the form of a
graph. Converting the heatmap into a graph format enables
GNN algorithms use to identify RSS distribution patterns
and understand the correlations among different crucial points
within the space (see more details in Sec. III-C). Thus, the
dataset comprises five attributes totally, including material
conductivity, permittivity, Wi-Fi heatmap, 5G heatmap, and
the adjacency matrix of the transformed graph.

B. From RSS Distribution to Binary Coverage Maps

Next, we implement a series of preprocessing steps to the
raw data, transforming the acquired heatmaps into compre-
hensive signal coverage maps. This transformation involves
converting the heatmap into a binary signal coverage map
because, in practice, what matters most to users is the presence
or absence of a signal in their immediate vicinity, rather than
the exact numerical signal strength. For both 5G and Wi-Fi
signals, a predefined threshold distinguishes strong from weak
signals, where signals exceeding this threshold are considered
available, while those below it are deemed unavailable. This
transformation is necessary to create a more coarse-grained
signal coverage map. Comparatively, when used as input for
predicting optimal material properties as in the subsequent
subsection, the binary signal coverage map offers sufficient
information, encompassing the indoor topological structure
and RSS variations, to facilitate model learning.

Specifically, RSS is influenced by various factors, including
architectural structures, object layouts, device placements, and
potential sources of interference. When considering RSS in
a holistic manner and utilizing the RSS Indicator (RSSI) as
the evaluation metric, signal quality within indoor environ-
ments can be categorized as, e.g., Excellent (-50dBm to -
70dBm), Acceptable (-70dBm to -80dBm), Weak (-80dBm
to -90dBm), Virtually Unusable (below -90dBm). Depend-
ing on the network requirements, minimum acceptable RSS
thresholds, denoted as Tss and T,y;, can be chosen for

5G and Wi-Fi RSS maps. The original signal strength for
each node 7 is set as Ssg; and Syifss. To represent the
5G and Wi-Fi coverage maps, we use the matrices B and
B.ifi, where each element corresponds to a binary value
at the respective node on the map. If there are n nodes,
then each matrix contains n elements, signifying the binary
value of a node. This way, the 5G binary coverage map can
be defined as B5G = [B5G71,B5G,2,B5G73, e ~aB5G,n] and
the Wi-Fi binary coverage map is expressed as Bz =
[Buwifi 1, Bwifi2, Bwifi,3, - - - » Buwifin], Where

1 if Ssg; > Tk

Bsa,i = 1 5Gyi > 256 (D
0 if Ss¢,i < Tsc,
1 if Swins > T

Byifii = 1 ii > i 2
0 if Suif;i < Twifi-

These binary coverage maps will be employed as input data
for the subsequent graph-based learning model used to predict
optimal material parameters.

C. GemNet: Global Embedding Graph Isomorphism Network

The Graph Isomorphism Network (GIN) represents a vari-
ation of the GNN model and is distinct from conventional
approaches such as the Graph Convolution Network or Graph
Attention Network, which are typically used for node-level
classification. GIN, on the other hand, is well-suited for tasks
involving graph-level classification or regression. In this work,
we employ 5G and Wi-Fi binary coverage maps as inputs,
leveraging an extended GIN model to predict desired material
parameters, namely permittivity and conductivity, in order to
meet the coverage demands. Utilizing GIN as the foundation
for our approach proves to be highly suitable for two reasons:

e Node Feature Capturing: In our signal coverage map,
Each node represents a reception point with features such
as RSS and positional data. The GIN model, through iter-
ative processes, captures spatial correlation based on the
environment layout. Thus, embedded nodes can indirectly
learn information from more distant neighbors while
integrating them into the graph’s structure as illustrated
in Sec. III-A.

o Graph Isomorphism Discrimination: Since the data is col-
lected under a consistent configuration, the input binary
coverage maps share a degree of similarity in topology
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and signal propagation patterns. The incorporated Mul-
tilayer Perceptron Layers within the GIN model (MLP)
can easily capture these subtle feature variations, enabling
it to learn node attributes and their combinations. This
means that, even if two graphs are structurally isomor-
phic, as long as their node features differ, the model can
naturally distinguish between them.

1) One Aggregator to ‘Rule Them ALL’: In the model
structure, illustrated in Fig. 3, our approach incorporates a
unique layer termed global pooling, which stands in contrast
to the GNN-based approach of exclusively learning node
embeddings. This novel layer combines node embeddings
to produce a comprehensive graph-level embedding. Such a
concept draws inspiration from the discriminative capabilities
of the Weisfeiler-Lehman graph isomorphism (W-L) test. To
maximize the power of network representation, an aggregator,
as seen in [13], is designed within our GemNet model to
generate distinct node embeddings when dealing with non-
isomorphic graphs for the efficacy of W-L test. The key to
this solution lies in approximating two injective functions,
predicated on the Universal Approximation Theorem and
employing MLPs. To be specific, the hidden vector for a node
1 is computed as follow:

hi=M|(Q+e)z+ > ;. 3)
JEN;

In Eq. (3), M is an MLP, and ¢ quantifies the relative
significance of the target node x; compared to its neighbors
x;. It is worth noting that the reference to M underlines the
necessity for multiple layers (typically more than three), which
are considered adequate for a comprehensive graph learning.

2) Global Pooling: To thoroughly analyze all structural
information, especially when distinguishing entire 5G and Wi-
Fi RSS graphs, it is imperative to employ global pooling or
graph-level readouts. This approach generates a unified graph
embedding from the individual node embeddings. Typically,
global pooling can be realized through one of three common
methods, each producing a distinct graph embedding, denoted
as hg, involving the mean, summation, or maximum of each
node embedding h;:

N
1 N
h@_N;mM%=§huMMﬁW@J )

The summation operator hg, shown in Eq. (4) exhibits a
notable increase in expressiveness compared to the mean and
max operators. This heightened efficacy is attributed to its
ability to retain embeddings from preceding layers, where the
embeddings are summed and the result is concatenated. This
innovative approach combines the inherent expressive power
of the summation operator with the memory enhancement
provided by the concatenation of previous iterations. Based
on these insights, the global pooling method is derived as:

N N
ha = h |-l >_ht ©)
1=0 1=0

In this context, each inclusion of structural information empha-
sizes the ability to precisely differentiate between the 5G and
Wi-Fi RSS graphs. This, in turn, enhances our comprehension
of the underlying patterns and variances within the data.

3) Continuous Model for Permittivity Prediction: The
model design for the prediction of dielectric material pa-
rameters — permittivity and conductivity, is slightly different
depending on their data distribution properties. First, permit-
tivity (often represented as relative permittivity e,) values
typically span a continuous range from 1 to 10, encompassing
various specific materials. Hence, predicting permittivity can
be framed as a regression problem and addressed with a
continuous learning model. Through a fine-tuning process, we
construct the model consisting of several MLPs that begin
with a linear fully connected layer (FC), followed by a batch
normalization layer (BN) and another FC layer with activation
functions ReLU. This process is formulated as:

M(z) = ReLU{Wy - (ReLU[BN (Wyz + by)] + by}, (6)

where W, and b; are the weight and bias of the first linear
layer, and W5 and by correspond to those of the second
linear layer. Algorithm 1 summarizes the generalized GemNet
modeling process. This algorithm begins with the extraction
of input data (line 4), followed by a node embeddings section
(lines 5-7), where the algorithm iteratively processes each
layer using a convolution function to compute the node em-
beddings. Next, the graph-level embeddings h; are computed
for each layer (lines 8-10), which are then concatenated into
a comprehensive graph embedding h (lines 11-12); Lastly, a
dropout layer combined with the linear transformation are used
to get the final graph embedding output (lines 13-17).

4) Discrete Model for Conductivity Prediction: In contrast
to permittivity, the conductivity (o) of dielectric materials
exhibit a wide range of values, typically in the low-value
spectrum, spanning from approximately 1072 to 10715 S/m.
Especially when considering building materials, based on the
classification of electrical conductivity, they can be roughly
categorized into three groups: poor dielectric materials (like
metal-reinforced multilayer composite materials), general di-
electric materials (such as ceramic, glass, and rubber compos-
ite materials), and good dielectric materials (including certain
special plastics and high-purity quartz). Consequently, o is
distributed discretely based on the specific type of material in
use. As such, we add a discretization layer to Algorithm 1 to
map the original o value to a set of class values c (e.g., ranging
from 0 to 118), which can effectively capture the variance
through our loss function. Subsequently, when calculating the
model accuracy, we map c back to o, as shown in Eq. (7).

c= f(o) = |scale - o (7a)

o=f"c)= — (7b)

where scale is an appropriate scaling factor. To summary, the
entire GemNet process allows for the prediction of required

building material properties based on the input of customized
coverage maps.

scale’
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Algorithm 1 Generalized GemNet Model

1: Input:
data : {x,edge_index, batch}
L : number of layers
GemNetConv(h, edge_index) : GIN convolution layers
2: Output:
h : the final output of graph embedding (e, o)
Procedure:
a. Extract x, edge_index, and batch from data
b. Node Embeddings
for /=1to L do
Compute: h; = GemNetconv(h;_1, edge_index)
where hg = x
7: end for
8: ¢. Graph-level Readout
9: for [=1to L do
Compute: h; = global_add_pool(h;, batch)
based on the sum operator in Eq. (4)
10: end for
11: d. Concatenate graph embeddings
12:  Concatenate all computed h’s based on Eq. (5):
h = concat(hy, ho, ..., hy,dim = 1)
13: e. Regressor
14:  Compute: h = ReLU(linl(h))
15:  Apply dropout to h: h = Dropout(0.5, h)
16:  Compute the final output: h = lin2(h)
17 Return h

AN

IV. IMPLEMENTATION AND EVALUATION RESULTS

In this section, we evaluate the performance of our GemNet
prediction model, specifically examining its precision and
stability under various network scenarios.

A. Network Settings

We consider network scenarios in which indoor devices can
receive signals from either outdoor 5G BS or indoor Wi-
Fi AP. Wireless Insite® is utilized to create realistic indoor
scenarios by placing random objects on the floor. Specifically,
the floorplan with dimensions 20m x 20m x 3m is designed to
closely resemble an office environment, incorporating objects
of varying heights and a range of placement densities, from
sparse to dense. The material of the left outer wall is varied as
the experimental parameter across different value sets, while
the rest of the exterior walls, floor, and ceiling are consistently
constructed with concrete material. Besides, Wi-Fi APs (60
GHz) are strategically located at the center of the room, while
the 5G BS (sub-6 GHz) is deployed 50m away from the
building’s exterior. The entire area is divided into a 20 x 20
grid of receivers, each covering an equal area of 1 m?, in order
to capture and visualize the RSS levels at different locations.

B. Prediction Accuracy of Material Properties

To validate the effectiveness of our proposed GemNet
model, we divided the dataset, consisting of more than 20,000
data points, into training and test sets in a 90% to 10%

ratio. In practice, the material parameters can vary slightly
due to factors like temperature and atmospheric pressure over
the course of the day. Based on the actual measurements
from prior study [14], a prediction error within 10% when
compared to the ground truth is always considered reasonable.
Hence, we adopt the Error Tolerance Rate (ETR) to assess
prediction accuracy, where the predicted values of ¢, and o
are considered accurate when the percentage difference from
the ground truths falls below the ETR of 0.1.

0.04 0.05 0.06 0.07 0.08 0.09 01
Error Tolerance Rate (ETR)

Fig. 4: Prediction accuracy vs. ETR.

Fig. 4 shows the correlation between ETR and the prediction
accuracy of (¢, o). As ETR increases from 0.04 to 0.1, the
model’s prediction accuracy also rises, reaching approximately
77.61% to 94.75%. Notably, at an ETR of 7%, consistent
with the acceptable error range described in [14], the model
achieves an accuracy of 90.52%. This indicates that our
GemNet predictions are generally highly accurate, confirming
its validity and practical utility.

C. Model Consistency and Generalization

To further evaluate the performance of GemNet and make
informed decisions regarding model parameters, we conduct
an analysis of the loss function’s convergence during the
training process. This analysis provides insights into the GIN-
based model’s ability to learn the underlying patterns and
regularities within the collected data.
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Fig. 5: Convergence on (a) permittivity and (b) conductivity
model training.

In Fig. 5, we can observe the variations in the loss function
as the number of training epochs increases. Fig. 5(a) and
Fig. 5(b) depict the convergence of the loss function for
training the continuous model and discrete model for ¢, and o,
respectively. During the initial 100 epochs, the fluctuations in
the loss values suggest that the models are rapidly learning and
adjusting. Subsequently, as the loss values stabilize, it indicates
that both models have reached a local optimum, with learning
and adjustments slowing down, signifying convergence. The
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stability within the shaded area underscores the robustness of
GemNet and its ability to generalize effectively to unseen data.

D. Analysis of Performance Margin
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Fig. 6: Prediction accuracy on (a) permittivity and (b) conduc-
tivity vs. the amount of training data.

In this section, we explore the impact of dataset size on
prediction performance, given an ETR of 0.07. As shown in
Fig. 6, increasing the dataset size leads to improved accuracy
for both continuous and discrete models. Particularly, as the
dataset grows from 5,000 to 20,000, we observe a significant
enhancement in model accuracy. However, as the dataset size
continues to increase, the rate of accuracy improvement grad-
vally diminishes, indicating a trend of diminishing marginal
returns. This analysis suggests that a dataset of approximately
20,000 entries effectively reaches the performance boundary
and fulfills the data requirements of the GemNet model.

E. Case Study for Practitioner using GemNet
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Fig. 7: Workflow of case study and results.

This case study aims to validate the practicality of the
GemNet model within preset network coverage areas. Initially,
specific areas requiring 5G and Wi-Fi services were designated
based on scenario requirements. As illustrated in Fig. 7, the
office scenario features a yellow area designated for public
visitors, which demands 5G connectivity services to ensure
the personal data communication. Meanwhile, the blue area
serves as the workspace, where Wi-Fi services are required
for local employees to access the internet. Subsequently, the
corresponding binary coverage maps are fed into the pre-
trained GemNet model, producing new material parameters
customized to meet the prior coverage demands. To validate
the feasibility of these material parameters, we then conduct
an experiment using the same environment from the original
data collection. The results in Fig. 7 show that the in-building
coverage achieved with these predicted material parameters not
only meets but also exceeds the initial coverage requirements.
For instance, in the 5SG coverage map, the light yellow area

in the right figure represents the indoor network coverage
achieved using the new predicted materials, and it effectively
covers the original preset dark yellow area in the left figure.

V. CONCLUSION AND FUTURE WORKS

This paper elucidated the crucial relationship between build-
ing material properties and the distribution of indoor wireless
signals, laying the foundation for the material-inspired net-
working design to foster tailored network services. Through
a comprehensive analysis, we showed the significant impact
of wall material characteristics on wireless signal propagation.
Then, the novel dataset generated through ray-tracing analysis
served as the foundation for a GIN-based predictive model.
This model, boasting over 90% accuracy in predicting material
parameters based on network coverage demands, emerges as
a promising tool for optimizing indoor wireless environments.

In future work, we will consider additional factors influ-
enced by material properties, such as noise reduction and ther-
mal insulation, to establish a holistic ecosystem that accommo-
dates various applications. Besides, material strength and cost
will be considered, helping to refine the selection of suitable
material parameters for optimizing network performance.
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