
Abstract

Background:

The limited diagnostic accuracy of prostate-speci!c antigen screening for prostate cancer (PCa) has

prompted innovative solutions, such as the state-of-the-art 18-gene urine test for clinically-signi!cant PCa

(MyProstateScore2.0 (MPS2)). Objective: We aim to develop a non-invasive biomarker test, the simpli!ed

MPS2 (sMPS2), which achieves similar state-of-the-art accuracy as MPS2 for predicting high-grade PCa but

requires substantially fewer genes than the 18-gene MPS2 to improve its accessibility for routine clinical

care. Methods: We grounded the development of sMPS2 in the Predictability, Computability, and Stability

(PCS) framework for veridical data science. Under this framework, we stress-tested the development of

sMPS2 across various data preprocessing and modeling choices and developed a stability-driven PCS

ranking procedure for selecting the most predictive and robust genes for use in sMPS2. Results: The !nal

sMPS2 model consisted of 7 genes and achieved a 0.784 AUROC (95% con!dence interval, 0.742–0.825) for

predicting high-grade PCa on a blinded external validation cohort. This is only 2.3% lower than the 18-gene

MPS2, which is similar in magnitude to the 1–2% in uncertainty induced by di"erent data preprocessing

choices. Conclusions: The 7-gene sMPS2 provides a unique opportunity to expand the reach and adoption

of non-invasive PCa screening.

Introduction
Prostate speci!c antigen (PSA) is the most widely used biomarker for early screening of prostate cancer,

contributing to signi!cant decline in prostate cancer (PCa) mortality.  Despite the bene!t, the low speci!city

of PSA due to its organ-speci!c rather than cancer-speci!c nature, can lead to overdiagnosis and

overtreatment. To combat these challenges, tremendous e"ort has been made to develop non-invasive and

more speci!c biomarker tests, especially to distinguish clinically-signi!cant or high-grade PCa (i.e., Grade

Group 2 PCa and higher) from dormant or low-grade PCa. In particular, the discovery of recurrent gene

fusion TMPRSS2:ERG (T2:ERG) in prostate cancer  led to the development of MyProstateScore test (MPS),

which measures expression of prostate cancer antigen 3 (PCA3) and T2:ERG in clinical urine specimens  and

has been endorsed by the National Comprehensive Cancer Network for consideration prior to biopsy in

men with elevated PSA.

Since the development of MPS, high-throughput gene expression pro!ling has become readily available

through RNA sequencing from large-scale cancer studies, such as The Cancer Genome Atlas (TCGA).

Leveraging public and in-house RNA-seq data from PCa tumor and normal prostate, we previously

nominated 54 biomarkers and established the second generation of MyProstateScore named MPS2, an 18-

gene urine assay to predict high-grade PCa.  The gene panel was validated on an independent or external

cohort, achieving equivalent performance as in the development cohort (area under the receiver operating

characteristic [AUROC] 0.81) and surpassing the performance of MPS (AUROC 0.74).

Given the previous concerns regarding PSA and possible overdiagnosis of indolent, low-grade prostate

cancer, we stress the importance of demonstrating the robustness and generalizability of non-invasive

biomarker tests such as MPS and MPS2. Notably, in any statistical or data science process, including those

leading to the development of aforementioned biomarkers, there are numerous human judgment calls that

must be made. These decisions include but are not limited to data preprocessing (e.g., how to impute

missing values, how to handle outliers or erroneous measurements, how to !lter of genes or handle

correlated variables) and modeling choices (e.g., which models, which tuning parameters). When left

unchecked, these necessary but often arbitrary choices introduce sources of uncertainty that are ignored in

the traditional statistical uncertainty quanti!cation, unknowingly alter downstream conclusions, and lead to

poor generalizability in new patient cohorts.

Recently, the Predictability, Computability, and Stability (PCS) framework  was developed to provide an

overarching philosophical and practical framework for both stress-testing these choices and mitigating their

unwanted impacts so as to bolster more reliable, trustworthy scienti!c conclusions. In short, the PCS

framework advocates the need for transparent documentation of human judgment calls throughout the

analysis pipeline and revolves around three core principles – predictability as a quanti!able assessment of

whether the model su#ciently captures reality, computability as a necessary consideration in algorithmic

design and data collection, and stability across data and model perturbations as a minimum requirement for

veridical (trustworthy) science. These principles were originally motivated by extensive interdisciplinary

research  and have since led to numerous novel and extensively-validated scienti!c !ndings including

epistatic mechanisms,  stable biomarker discoveries,  and interpretable clinical decision-making.

In this work, our primary aim is to ease the translation of MPS2 into routine clinical care by substantially

reducing the number of required genes in the test while preserving its high accuracy for predicting high-

grade PCa. To this end, we leverage the PCS framework to perform a reliable, stability-driven selection of

genes and distill the 18-gene MPS2 test into a simpli!ed 7-gene MPS2 test (s MPS2) while maintaining its

high predictive power. Through this investigation, we demonstrate the accuracy and robustness of s MPS2

as well as the original MPS2 test to various data preprocessing and modeling choices, thereby bolstering

their trustworthiness and generalizability.

Materials and methods

Development cohort

The same development cohort used to build the original MPS2 models was used.  Brie$y, prebiopsy urine

samples (!rst-catch urine following digital rectal examination) were prospectively collected at the University

of Michigan from patients presenting for 12-core or greater prostate biopsy due to elevated PSA levels (3–

10 ng/mL) from 2008 to 2020. A total of 761 samples were included in the !nal development cohort. We

defer additional details to Tosoian et al. (2024).

External validation cohort

The external validation cohort was the same one used in the original MPS2 study.  The cohort consisted of

743 patients in the prospective NCI EDRN PCA3 Evaluation Trial.  This trial enrolled consecutive patients

presenting for biopsy across 11 academic centers, primarily due to elevated PSA levels or abnormal digital

rectal examination !ndings.

Data preprocessing of gene expression data

Using qPCR pro!ling from OpenArray™, we measured gene expression in each urine sample via the cycle

threshold (Ct), or the number of ampli!cation cycles required for sample $uorescence to exceed the

background level. Lower Ct values suggest higher gene expression. In this work, we focus our analysis on the

54 genes nominated in the MPS2 study.  Then, because of the inevitably many di"erent but equally-

reasonable choices that could be made during the data preprocessing, we chose to preprocess this gene

expression data using four di"erent data preprocessing pipelines (detailed in Appendix A) and proceeded to

evaluate the robustness of our model and conclusions across each of these data preprocessing pipelines in

accordance with the PCS framework for veridical data science.  This helps to ensure that the downstream

scienti!c !ndings are not solely reliant on a particular data preprocessing decision.

Predictor and outcome variables

Throughout this study, the set of predictor variables included the 54 nominated genes (from Section Data

Preprocessing of Gene Expression Data) as well as available clinical variables that are generally associated

with high-grade PCa (age, race, family history of prostate cancer, abnormal DRE, prior negative biopsy, and

PSA).  These variables were used to predict the primary outcome of interest – namely, high-grade PCa,

de!ned as a dichotomous variable indicating whether the PCa is Grade Group 2 or higher. This is considered

clinically signi!cant PCa in this patient group (i.e., patients who should then undergo MRI or biopsy).

Modeling choices

We considered many di"erent statistical and/or machine learning models for predicting high-grade PCa.

Namely, we considered common statistical or machine learning models such as ordinary logistic regression,

logistic regression with L  (LASSO) regularization,  L  (ridge) regularization,  and combined L + L  (elastic

net) regularization,  random forests (RF),  gradient boosting decision trees,  and RuleFit.  We also

investigated recently developed tree-based machine learning methods including random forest+ (RF+),  a

PCS-guided generalization of random forests which combines the strength of both linear models and

nonlinear trees, and fast interpretable greedy-tree sums (FIGS),  which grows a $exible but controllable

number of shallow decision trees in summation. We focused primarily on these interpretable linear and

tree-based models given our goal of identifying important genes for reliable biomarker development.

Moreover, we note that tree-based machine learning models are often well-suited for biological tasks such

as this, in part due to the resemblance between the thresholding behavior of decision trees and the on-o"

switch-like behavior commonly thought to govern genetic processes.  Speci!c implementations of each

model and their hyperparameters are detailed in Table 1.

Model development: PCS ranking

Leveraging expression data from the 54 nominated genes and available clinical variables (age, race, family

history of prostate cancer, abnormal DRE, prior negative biopsy, and PSA),  we built the simpli!ed MPS2

model (sMPS2) to predict high-grade PCa de!ned as grade group 2 or higher PCa. More speci!cally, using

the Development Cohort data, we developed and applied the PCS ranking procedure, which consists of

three main stages (Figure 1) – (1) a prediction check stage, where we evaluated model prediction

performance, (2) a stability-driven gene ranking stage, where we ranked the importance of each gene using

the models that have passed the prediction check in stage 1, and (3) a selection of stable genes stage, where

we identi!ed the most stably important genes for use in the !nal sMPS2 model. Each of these stages is

heavily rooted in the PCS framework for veridical data science.  This work builds upon similar ideas from

the RF literature  and extends them to di"erent classes of methods. Further details regarding the PCS

ranking can be found in Appendix B alongside a supplementary PCS documentation on GitHub with

extensive justi!cation for the many human judgment calls made throughout the data analysis pipeline

(https://github.com/Yu-Group/sMPS2). We note that proper data splitting is a crucial ingredient to enable the

generalizability of our developed model. We thus outline the data splitting procedure in the supplementary

materials in Figure S1.

Internal validation for evaluating selected genes

To evaluate the gene rankings from Stage 2 as well as the choice of the number of selected genes, we

performed an internal validation using the test set from each of our 10 Development-Test splits (the same

splits used in Stage 1). That is, for each Development-Test split, gene ranking from that given Development-

Test split, and choice of k (k = 1, 2, 3, 4, 5, 6, 7, 10, 12, 15, 17, 20, 25, 30, 40, 54), we (a) took the top k-ranked

genes and the available clinical features as covariates, (b) trained each prediction-checked model on each

preprocessed Development set split, and (c) evaluated the prediction error (i.e., AUROC, AUPRC, and

classi!cation accuracy) on the test set. These errors were then averaged across the 10 Development-Test

splits. We examined these averaged prediction errors across di"erent choices of the gene panel size k and

prediction models. Note that we also evaluated the di"erent ways of obtaining the gene rankings (i.e.,

model-speci!c, model-ensembled, and PCS-ensembled).

Final simplified MPS2 model (sMPS2)

The !nal covariate gene set in the simpli!ed MPS2 model consisted of the 6 topmost important stable

genes: T2:ERG, SCHLAP1, OR51E2, TFF3, PCAT14, and PCA3. Using these 6 genes and 6 clinical features (age,

race, family history of prostate cancer, abnormal DRE, prior negative biopsy, and PSA) as covariates, we

trained a logistic regression with L  (ridge) regularization to predict high-grade PCa using the full

Development Cohort dataset. This !nal trained model is referred to as the s MPS2 model as it requires the

measurement of 7 genes (i.e., the 6 genes used as covariates and the reference gene KLK3 which is

necessary for data preprocessing). Here, we used a logistic regression with L  (ridge) regularization due to its

strong performance in the internal validation assessment (Section Internal Validation for Evaluating Selected

Genes). Since the inclusion of prostate volume in clinical models is well-known to improve the prediction of

high-grade PCa,  we also trained an analogous model, termed s MPS2+, which includes all of the

covariates in s MPS2 plus prostate volume, for use when a patient's prostate volume is readily available. For

comparison, we also investigated and provided the external validation results for the s MPS2 (and s MPS2+)

model, which is analogous to s MPS2 (and s MPS2+) but includes the top 7 most stable genes as covariates

(T2:ERG, SCHLAP1, OR51E2, TFF3, PCAT14, PCA3, and APOC1). Finally, we calibrated the models to account for

di"erences in outcome prevalence between the development and the validation cohorts following a logistic

recalibration method  as in Tosoian et al. (2024).  These calibrated sMPS2 models were locked prior to

external validation.

Model validation on blinded, external cohort

We evaluated the !nal locked sMPS2 models on a blinded, external cohort (n = 743) from the NCI EDRN PCA3

Evaluation Trial  described in Section External Validation Cohort. We importantly note that this external

validation cohort data was only accessible by two investigators (C.X. and Y. Zheng), who performed the

validation. The AUROC from the locked sMPS2 models were compared against MPS  and MPS2.  These

AUROCs were then used to approximate the minimum test tradeo" (MTT) for an additional predictor.

Speci!cally, the test tradeo" is de!ned as the minimum number of data collections per true positive to yield

a positive net bene!t.  The MTT helps to formally quantify the improvement in risk prediction while

accounting for the additional data collection cost of the 18-gene MPS2, compared to the smaller sMPS2

models. Moreover, we also computed a range of MTT corresponding to the range of mean AUROCs from

di"erent data preprocessing choices in order to shed light on how this important source of uncertainty

might a"ect the MTT.

Results

Development of the simplified MyProstateScore 2.0 (sMPS2) model

Grounded by the PCS framework for veridical data science,  we developed a stability-driven machine

learning pipeline, termed PCS ranking, to build a robust and accurate risk score model of high-grade PCa

using substantially fewer genes than MPS2. In this PCS-guided development pipeline, we rigorously assessed

the accuracy and stability of modeling results across both data preprocessing and modeling pipelines in

order to account for the inherent uncertainty arising from such human judgment calls and thus more

faithfully capture the uncertainty and generalizability when deployed in reality.  Brie$y, the PCS ranking

pipeline for sMPS2 consists of three main stages: (1) A prediction check stage, where we evaluated the

prediction performance for a variety of machine learning models across four di"erent data preprocessing

pipelines and !ltered out models with poor prediction performance; (2) A stability-driven gene ranking stage,

where we ranked the importance of each gene according to both its magnitude of importance and the

stability of its importances across model !ts, data preprocessing pipelines, and data splits; and (3) A

selection of stable genes stage, where we selected the set of most stable important genes for use in the

!nal, locked sMPS2 model. Details regarding each step are provided in Section Model Development: PCS

Ranking and Appendix B. Here, by identifying and focusing on the most important genes that were highly

stable across both data preprocessing and modeling choices, we ensure that the !nal locked sMPS2 model

is not solely a random artifact resulting from human analysis decisions, but rather a robust clinical risk

model, which we will show to have highly predictive and generalizable performance (Sections Internal

assessment and validation of the sMPS2 models and External Cohort Validation).

Prediction check of machine learning models via cross validation

As part of the prediction check stage in the development of sMPS2 (Figure 1), we assessed the cross-

validation prediction performance for models trained with all 54 genes and available clinical variables across

nine di"erent machine learning models and four di"erent preprocessing pipelines. We summarize the

AUROC results from 4-fold CV repeated over 10 Development-Test splits in Figure 2 and provide the

analogous AUPRC and classi!cation accuracy results in Figure S2. As shown in Figure 2(A), the linear-based

models (i.e., both regularized and unregularized logistic regression) tended to outperform the non-linear

tree-based models (i.e., RF, GBDT, RuleFit, and FIGS), suggesting some smooth underlying structure in the

data which can be more easily captured via linearity as opposed to trees (which are non-smooth piecewise

constant functions). This is further supported by the observation that RF (AUROC 0.769) yielded a lower

AUROC than RF+ (AUROC 0.781), a generalization of RF which models both smooth linear structure and

nonlinear tree structure.

Remarkably, the variation in prediction accuracy across data preprocessing pipelines was substantially

smaller than the variation in prediction accuracy across models. Figure 2(B) shows the range of mean

AUROCs across the four data preprocessing pipelines for each method (Figure 2(B), left), compared to the

di"erence between each method's mean AUROC and that of the best-performing method (i.e., logistic

regression with elastic net regularization) (Figure 2(B), right). Across all methods, the range of mean AUROCs

across data preprocessing pipelines never exceeded 0.020 whereas the di"erence between logistic

regression with elastic net regularization (the best-performing model) and RuleFit, GBDT, and FIGS were

larger, exhibiting di"erences of 0.027, 0.027, and 0.109, respectively. These observations provide evidence

that the trained models are not highly dependent on human choices made during the data preprocessing

pipeline – a crucial stability check for fostering trust in our model development process.

Before proceeding to stage 2, we ultimately used this prediction check to !lter out models with poor

prediction performance, a possible indicator that the model does not accurately re$ect reality and would

generate unreliable interpretations.  Here, we chose to use ordinary logistic regression as the “reference”

model given its simplicity yet decent cross-validated prediction performance (AUROC 0.772) in this problem,

and we dropped all models with worse prediction performance than logistic regression. Speci!cally, this

prediction check excludes RuleFit, GBDT, and FIGS from the remainder of the analysis. Note that though RF

(AUROC 0.769) has slightly lower prediction performance than logistic regression on average across the

di"erent data preprocessing pipelines, we did not exclude RF since at least one of its data preprocessing

pipelines led to higher accuracy than that for logistic regression. In other words, the uncertainty due to data

preprocessing is larger than the modeling di"erence between RF and logistic regression. We hence deemed

that RF passed the prediction check and included RF in the remainder of the analysis.

Stability-driven genes associated with high-grade prostate cancer

Having !ltered out poor-performing prediction models and established that the prediction-checked models

are indeed robust to di"erent data preprocessing choices, we identi!ed genes, which were both ranked

highly important and highly stable across the four data preprocessing pipelines, six prediction-checked

models, and ten development-test splits (i.e., 4 × 6 × 10 = 240 combinations), for use in the sMPS2 model.

Top-ranked genes across all data preprocessing pipelines and models

In Figure 3(A), we show the mean ranking of each gene across the 240 preprocessing-model-split

combinations alongside numerous stability metrics, including the standard deviation of each gene's ranking

(Figure 3(B)) and the proportion of times (out of 240) that the gene ranked in the top 5, 10, or 17 (out of 54)

(Figure 3(C)–(E)). The top six-ranked genes T2:ERG, SCHLAP1, OR51E2, TFF3, PCAT14, and PCA3 were all highly

stable, each appearing in the top 10 ranked genes in more than 70% of the preprocessing-model-split

combinations. The seventh-ranked gene, APOC1, also appears to be stably important; however, its stability

declines when using only two of the four logistic-based regression models in the PCS-ensembled gene

rankings (Figure S3). Notably, these top seven-ranked genes, selected from the 54 candidate genes under

consideration, are a subset of the genes used in the validated MPS2 model.

When examining the gene rankings per data preprocessing pipeline and method in Figure 3(F), we

con!rmed the robustness and stability of these trained models across data preprocessing choices, not only

in terms of their resulting prediction accuracy as discussed in Section Prediction Check of Machine Learning

Models via Cross Validation, but also in terms of their most important genes and model architecture. Figure

3(F) further reveals that the two genes T2:ERG and PCA3 comprising the original MPS model were stably

ranked as the top two most important genes according to RF and RF+ . Moreover, the top 6 genes were

particularly stable across the regularized logistic regression models, RF, and RF+ !ts while the ordinary

logistic regression model generally produced a di"erent set of gene rankings. Interestingly, the ordinary

logistic regression model did not rank PCA3 highly and is the main source of instability seen in the high SD

for PCA3 in Figure 3(B).

Top-ranked genes from specific models

Beyond these top genes, Figure 3(F) illuminates several additional interesting gene ranking patterns across

the di"erent models and data preprocessing pipelines. First, there are genes, such as CAMKK2 and GDF15,

that tend to be more highly ranked when considering only linear structure (i.e., in the logistic-based models)

while other genes, such as ERG and TRGV9, tend to be more highly ranked when allowing for nonlinear

structures (i.e., in the tree-based models, RF and RF+). However, given that these prediction models yielded

similar prediction accuracies, it's unclear which model's interpretation to trust over another. We hence

selected the top 6 genes (T2:ERG, SCHLAP1, OR51E2, TFF3, PCAT14, and PCA3), together with the reference

gene KLK3, for use in the !nal simpli!ed 7-gene MPS2 model (s MPS2), as these genes were highly stable

across the various data-preprocessing, modeling, and Development-Test split combinations. Given the

borderline stability status of APOC1, we also developed a simpli!ed 8-gene MPS2 model (s MPS2), which

includes those genes in s MPS2 along with APOC1.

Internal assessment and validation of the sMPS2 models

Thus far, we have been primarily guided by the stability of the feature rankings when selecting the number

of top-ranked genes in our !nal simpli!ed MPS2 model. To assess the impact of this choice of the gene

panel size (i.e., the number of top-ranked genes used in the model) on the prediction accuracy, we

performed an internal validation assessment using the test set (details in Section Internal Validation for

Evaluating Selected Genes). Figure 4 highlights the test prediction accuracies when using the logistic

regression model with ridge regularization (other model results can be found in Figure S4). Taking the top 7

PCS-ensembled genes (as in s MPS2) yielded the highest test AUROCs in the base and the Ct Limit = 40 data

preprocessing pipelines (0.811 and 0.807, respectively) while also demonstrating competitive performance

in the remaining two data preprocessing pipelines. The top 6 PCS-ensembled genes (as in s MPS2) yielded

similarly strong AUROCs, showing only a 0.01 drop in AUROC compared to taking the top 7 PCS-ensembled

genes across all data preprocessing pipelines.

Moreover, like the cross-validation prediction accuracies (Section Prediction Check of Machine Learning

Models via Cross Validation), these test prediction accuracies were very stable across the di"erent data

preprocessing choices. In particular, the AUROCs when taking the top 6 and 7 PCS-ensembled genes ranged

between [0.788, 0.801] (di"erence of 0.013) and [0.801, 0.811] (di"erence of 0.010), respectively, across the

di"erent data preprocessing pipelines. When taking the top 17 genes using logistic regression with elastic

net regularization as done in the original MPS2 model, the test prediction performance was also highly

stable across data preprocessing pipelines, giving an AUROC range of [0.800, 0.811] (di"erence of 0.012).

This demonstrates the robustness of both the sMPS2 models and the original MPS2 model against

alternative data preprocessing choices and indicates that these potentially di"erent, but equally-reasonable

choices do not solely drive downstream conclusions.

We further assessed the impact of our stability-driven PCS-ensembled ranking approaches, which averages

the gene rankings across both data preprocessing pipelines and models, as compared to alternative

approaches – namely, a model-ensembled approach, which averages the gene rankings across models only,

and a model-speci!c approach, which produces a unique gene ranking per model and data preprocessing

choice (details in Appendix B.2). Across all data preprocessing pipelines and gene panel sizes, the top genes

according to the PCS-ensembled gene rankings led to higher prediction accuracies than that from the

model-ensembled or the model-speci!c gene rankings (Figure 4). This pattern also holds across di"erent

choices of prediction models (Figure S4).

External cohort validation

When evaluated on the NCI EDRN PCA3 Evaluation trial,  the locked s MPS2 model yielded an AUROC of

0.784 (95% con!dence interval [CI], 0.742–0.825) for predicting high-grade PCa (Figure 5). This was a 4.7%

improvement over MPS, which gave an AUROC of 0.737 (95% CI, 0.694–0.780), and only a 2.3% drop relative

to the more complex 18-gene MPS2 model, which gave an AUROC of 0.807 (95% CI, 0.769–0.846). In the case

when prostate volume is available, the s MPS2 + model gave an AUROC of 0.806 (95% CI, 0.768–0.845), which

was only a 1.2% drop relative to MPS2+ (AUROC: 0.818, 95% CI: 0.781–0.855). We also compared s MPS2 to

s MPS2 in Figure 5, showing that the improvement when adding one additional gene (APOC1) is small.

s MPS2 and s MPS2 + yielded AUROCs of 0.785 (95% CI, 0.744–0.826) and 0.809 (95% CI, 0.771–0.847),

respectively. Importantly, the drops in AUROC (2.3%/2.2% for s MPS2/s MPS2 and 1.2%/0.9% for

s MPS2+/s MPS2 + relative to MPS2 and MPS2+, respectively) are within the 1–2% uncertainty intervals

induced by di"erent data preprocessing choices. These AUROCs con!rm the high diagnostic accuracy of the

sMPS2 models as well as their similarly strong performance compared to the MPS2 models.

However, from a clinical perspective, it is also important to evaluate the performance of a practical clinical
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Table 1. Prediction methods, software implementations, and hyperparameters under study.

* Hyperparameters were tuned using 5-fold cross-validation. Unless speci!ed, the default hyperparameters for each
method were used.
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Prediction Method Implementation Hyperparameters*

Logistic regression
`LogisticRegression()` in sklearn python
package

No hyperparameters

Logistic regression with L  (Lasso)
regularization

`LogisticRegression(penalty=“l1”)` in sklearn
python package

C = 10  for i = -3, -2.5, 2,
…, 2, 2.5, 3

Logistic regression with L  (ridge)
regularization

`LogisticRegression(penalty=“l2”)` in sklearn
python package

C = 10  for i = -3, -2.5, 2,
…, 2, 2.5, 3

Logistic regression with combined L + L
(elastic net) regularization

`LogisticRegression(penalty=“elasticnet”)` in
sklearn python package

C = 10  for i = -3, -2.5, 2,
…, 2, 2.5, 3
l1_ratio = 0.1, 0.25, 0.5,
0.75, 0.9

Random forest
`RandomForestClassi!er()` in sklearn python
package

min_samples_leaf = 1,
3, 5, 10
n_estimators = 500

Gradient boosting decision trees
`GradientBoostingClassi!er()` in sklearn
python package

learning_rate = 0.05,
0.1, 0.15,
min_samples_leaf = 1,
5, 10
max_depth = 3, 5
n_estimators = 500

RuleFit
`RuleFitClassi!er()` in imodels python
package

max_rules = 5, 10, 30,
50

Random forest+
`RandomForestPlusClassi!er()` in imodels
python package

Default
hyperparameter grid
used

Fast interpretable greedy-tree sums `FIGSClassi!er()` in imodels python package
max_rules = 5, 10, 12,
15, 20, 30, 50
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Figure 1. To develop the s MPS2 model, we !rst split the Development cohort data into a Development and Test Set

and leveraged the Development Set to (1) conduct a prediction check, where we evaluated the prediction performance

for various machine learning models across four di"erent data preprocessing pipelines, !ltering out models with poor

prediction performance, and (2) subsequently rank the most important genes across all data preprocessing pipelines

and prediction-checked models. Only the most important and stable genes, measured according to multiple stability

metrics (stage 3), were selected to be used in the !nal locked s MPS2 model. To validate the quality and size of the

gene panel used in s MPS2, we performed an internal validation, examining the test prediction performance using

alternative gene rankings and panel sizes (k). We lastly validated the !nal, locked s MPS2 model on a blinded, external

validation set using the NCI EDRN PCA3 Evaluation Trial.
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Figure 2. (A) For each choice of data preprocessing and prediction model, the validation AUROC, averaged across 4 CV

folds and 10 repeated development-test splits, is shown. The error bars represent the inner 95% quantile range of the

distribution of AUROCs. That is, across the 40 AUROCs, generated from 4-fold CV over 10 repeated Development-Test

splits, the error bars correspond to the lower 2.5th and upper 97.5th quantiles of the distribution. (B) We compare the

variation in AUROC across data preprocessing pipelines (left) and methods (right). In the left subplot, we show the

range of mean AUROCs across the four data preprocessing pipelines for each method. In the right subplot, we show

the di"erence between the mean AUROC from each method and the best performing method (i.e., logistic regression

with the elastic net penalty) across all data preprocessing pipelines. The di"erence in AUROC across data

preprocessing pipelines is substantially smaller than that across prediction methods, suggesting that the development

pipeline and downstream !ndings are robust to data preprocessing choices.
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Figure 3. We summarize the top 15 ranked genes, according to (A) their mean gene ranking across four data

preprocessing pipelines and six prediction-checked models, alongside (B) the variability of their gene rankings as

measured by the standard deviation (SD) of this distribution and (C-E) the proportion of times that the gene appeared

in the top 5, 10, and 17 genes. The top six genes were selected for the s MPS2 model as they all achieved a low (i.e.,

highly important) mean rank (< 10) and good stability across the various metrics. The APOC1 gene was also considered

and used in the s MPS2 model. (F) The heatmap shows a more granular view of the gene rankings, displaying the

mean gene ranking per data preprocessing and model choice, averaged across 10 Development-Test splits. While the

various data preprocessing and model choices generally yield similar gene rankings for the genes used in the

simpli!ed MPS models, logistic regression yields the most di"erent gene rankings compared to the other models. In

particular, it is the driving factor for PCA3's large SD in (B).
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Figure 4. We show the mean AUROC, evaluated on the test set, when training the logistic regression model with ridge

regularization using various choices of gene panel sizes (x-axis), data preprocessing pipelines (subplots), and gene

rankings (color). The PCS-ensembled gene rankings yield the highest test AUROCs compared to other procedures for

obtaining the gene rankings. Moreover, using 7 predictor genes (vertical dashed line) as in s MPS2 gave the highest

test AUROC in the base and Ct Limit = 40 data preprocessing pipelines and very competitive prediction performance in

the remaining data preprocessing pipelines. Taking 6 predictor genes (vertical dotted line) as in s MPS2 gave slightly

lower but similarly competitive test prediction performance as 7 predictor genes.
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Figure 5. The AUROC curves from the blinded external validation cohort are shown for various urine-based biomarker

tests without prostate volume (MPS, MPS2, s MPS2, and s MPS2, left) and with prostate volume (MPS2+, s MPS2+, and

s MPS2+ right). The 7- and 8-gene simpli!ed MPS2 models (s MPS2/s MPS2 and s MPS2+/s MPS2+) yield higher

AUROCs compared to the 2-gene MPS model and competitive AUROCs compared to the 18-gene MPS2 model.
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However, from a clinical perspective, it is also important to evaluate the performance of a practical clinical

testing approach using a speci!c decision threshold that yields high sensitivity for high-grade PCa. In

particular, since the traditional clinical approach of biopsying all men with elevated PSA is highly sensitive for

PCa detection but leads to excess unnecessary biopsies, secondary tests such as biomarkers have focused

on improving the speci!city of screening while preserving the high sensitivity attained from a “biopsy all”

approach. This emphasis on high sensitivity is re$ected in current clinical guidelines, which propose the use

of “biomarkers that improve the speci!city of screening”.  Considering the relative harms of false-negative

and false-positive testing results and the proposed role of biomarkers for rule out testing (i.e., for ruling out

the possibility of prostate cancer), we thus assessed thresholds providing 95% sensitivity for high-grade

cancer. At this 95% sensitivity, s MPS2/s MPS2 provided a speci!city of 32%/30%, a negative predictive value

(NPV) of 96%/96%, and positive predictive value (PPV) of 26%/26% (Table 2). This corresponds to an

estimated reduction of 318/297 unnecessary biopsies avoided per 1000 patients based upon the

s MPS2/s MPS2 models. More interestingly, both s MPS2 + and s MPS2 + achieve similar, if not higher,

speci!city (40.7%), NPV (96.8%), and PPV (28.9%) than MPS2+ (40.5% speci!city, 96.8% NPV, 28.9% PPV) and

leads to an estimated 407 unnecessary biopsies avoided per 1000 patients under this clinical testing

approach at 95% sensitivity. These estimates of the number of unnecessary biopsies are also complemented

by a low false negative rate across all of the sMPS2 and MPS2 models. For each of these models, an

estimated 52 biopsies would have been missed per 1000 patients at the 95% sensitivity level, had no other

screening been undertaken. Detailed performance of the sMPS2 models at a range of high sensitivities with

and without clinical factors are provided in Supplementary Table 1 and 2.

Finally, we evaluated the MTT  to formally assess the tradeo" between the improvement in risk prediction

and the additional cost of data collection between the 18-gene MPS2/MPS2 + and the smaller 7-gene

s MPS2/s MPS2 + . At a 20% prevalence of high-grade prostate cancer (as seen in the validation cohort), the

MTT is 229.5 and 122.0 for MPS2 + versus s MPS2 + and MPS2 versus s MPS2, respectively. Thus, at least 229

(or 122) sets of 18-gene MPS2+ (or MPS2) tests would be needed for every true positive to yield a positive

net bene!t relative to using s MPS2+ (or s MPS2). Furthermore, when incorporating the 1–2% uncertainty

due to data preprocessing choices, the MTT ranges from [125.9, 1368.8] and [85.5, 214.7] for the s MPS2 + 

and s MPS2 tests, respectively. These large MTT ranges are a byproduct of the inverse decaying nature of

MTT. Intuitively, as the prediction gap between the sMPS2 and MPS2 models decrease, the net bene!t of

using MPS2 over the sMPS2 models decreases rapidly and hyperbolically. Consequently, the small di"erence

in AUROCs between the sMPS2 models and MPS2 after accounting for the uncertainty in data preprocessing

translates to extremely large MTTs seen above. This tradeo" analysis suggests that MPS2 is not practically

worthwhile from a data collection cost perspective, especially after accounting for the often-neglected

uncertainty due to data cleaning, and further supports the accessibility and utility of the sMPS2 models for

clinical care.

Discussion
From a practical standpoint, it is preferable to have fewer variables in clinical assays, as this simpli!es

interpretation, reduces the potential for variation in measurements, and decreases costs. However due to

the heterogeneity of prostate cancer, it may be necessary to increase the number of biomarkers to capture

di"erent forms of aggressive prostate. For example, the recurrent T2:ERG fusion of prostate cancer occurs in

just about half of the patients. With exhaustive screening previously done  and extensive stability testing

across various perturbation situations in this study, we identi!ed the most stable and important biomarkers

that contribute to prediction of clinically signi!cant prostate cancer. Unsurprisingly, all of the top 6 most

stable genes identi!ed by the PCS ranking (T2:ERG, PCA3, SCHLAP1, OR51E2, TFF3 and PCAT14) have been

reported to be overexpressed in prostate cancer and their roles as biomarkers have been explored by

independent studies.  The additional gene included in the s MPS2, APOC1 (apolipoprotein C1), is also

frequently reported to play a role in various cancer types including breast, ovarian, pancreatic, gastric

cancers and be associated with tumor in!ltrated macrophage.  It is further worth noting that the genes

used in the s MPS2/s MPS2 models were selected out of 54 candidate genes and yet are a subset of the 18

genes used in the validated MPS2 model,  reinforcing their potential biological functions and prognostic

values. Moreover, the resultant simpli!ed MPS2 models built upon the aforementioned genes

(s MPS2/s MPS2) achieved comparable performance as the original models on the external validation

cohort (AUROC 0.784/0.785 vs 0.807) (within the uncertainty size of 1–2% from making di"erent but

reasonable data preprocessing choices); for the models with prostate volume, the di"erence became even

smaller (AUROC 0.806/0.809 vs 0.818) (Figure 5). At the clinically relevant sensitivity of 95%, s MPS2/s MPS2

was parallel to the original model with about 96% NPV though the speci!city decreased from 37% to

32%/30% while s MPS2+/s MPS2 + was equivalent to the original model in both NPV and speci!city (Table 2).

These !ndings, combined with the MTT analysis, suggest that clinical use of the simpli!ed MPS2 models

would bene!t patients to a similar extent as the 18-biomarker MPS2, avoiding unnecessary biopsy while

maintaining high sensitivity for high-grade cancers from early detection, at a substantially lower data

collection cost.

From a methodological perspective, we demonstrate the value of the PCS framework for stress-testing

various human judgment calls throughout the model development process. To facilitate both transparency

and reproducibility, we provide extensive documentation and justi!cation of our data preprocessing and

model development process in the supplementary PCS documentation alongside all code on GitHub

(https://github.com/Yu-Group/sMPS2) to reproduce our analysis. This work not only sheds light on such

decisions in an e"ort towards more transparent and truthful science, but ensures that these di"erent but

equally-reasonable choices do not drastically impact downstream conclusions, fostering greater trust in the

model. Going beyond this rigorous stress-testing, the PCS framework can also enhance the model itself.

Here, we exploit the stability of similarly predictive models in order to simplify an 18-gene model into a 7-

gene (or 8-gene) model for predicting high-grade PCa without substantially reducing its accuracy. Our

overarching PCS ranking pipeline is more generally applicable, and as exempli!ed by the strong and

generalizable prediction performance of the sMPS2 models, opens the door to more rigorous and

trustworthy development of robust, highly-interpretable biomarker tests.

This study has some limitations. First the patient cohorts in this study were not suitable for comparing with

MRI screening or evaluating the clinical bene!t of combining MRI with biomarkers for screening. Due to the

proposed use of the sMPS2 assay as a pre-mpMRI, prebiopsy test to rule out the need for mpMRI or biopsy,

we excluded men with a history of prostate mpMRI and targeted biopsy. Second, although the total sample

size of the training and testing cohorts are adequate, larger sample sizes are needed to evaluate the

performance of sMPS2 in speci!c subpopulations, for example, African American, repeat biopsy population,

and patients of non ETS fusion molecular subtype. Additionally, the performance metrics reported in this

study are based on 95% sensitivity and 20% high-grade prevalence in the validation cohort (which is within

reported range from 17% to 31%), representing a single data point to illustrate the clinical applicability.

However, given that predictive values are a"ected by prevalence, the high-grade prevalence of the target

population may vary from institute to institute and change over time as more intervention strategies come

into play, re-calibrating or updating the model is necessary to improve the performance. Lastly, given the

complex correlation structure of the data, we cannot guarantee that the identi!ed 7 (or 8) genes used in the

sMPS2 models are the best set of 7 (or 8) genes that lead to the highest prediction accuracy. Nonetheless,

the current sMPS2 models demonstrate excellent robustness and generalizability at a reduced data

collection cost compared to existing models, underscoring its clinical relevance and applicability.
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Appendix A: Data Preprocessing of Gene Expression Data Details
We !rst preprocessed the gene expression data by following a similar data preprocessing procedure as
taken in the original development of MPS2.  In this procedure, we !rst set the upper Ct value limit to 35.
Speci!cally, Ct values greater than this limit were considered undetected and set to 35. Ct values from
OpenArray™ that were “Undetermined” or “Inconclusive/No Amp” were also considered to be undetected
and set to the upper Ct value limit of 35. We chose this value of 35 as opposed to the commonly used 40
since previous work showed that setting the Ct value limit to 40 can often introduce unwanted biases and
that setting this limit to 35 can e"ectively reduce this bias for non-detects in qPCR.  Next, we computed the
standard deviation (SD) across 3 technical replicates. If SD >= 1, the replicate farthest from the mean was
removed; otherwise, all 3 replicates were kept. The average Ct value across these kept technical replicates
was then calculated. As a !lter for poor quality samples, all samples with an average Ct value of the
reference gene KLK3 above the 95  percentile were excluded. We next normalized the average Ct values for
each target gene by KLK3 using the formula -[ average Ct of gene X - average Ct of KLK3 ]. Finally, z-score
scaling was applied to the normalized average Ct before downstream model development and feature
selection. We refer to this data preprocessing pipeline as the base preprocessing pipeline.

While the base preprocessing pipeline serves as a reasonable starting point, it is important to note that
human judgment calls or choices such as the procedure for handling undetectable Ct values and poor
quality samples were inevitably made. Hence, to improve the robustness of our model and conclusions
against these preprocessing choices, we examined three alternative data preprocessing pipelines, each
equally-reasonable but a slight modi!cation of the base preprocessing pipeline.
1. Ct limit = 40 preprocessing pipeline: Rather than setting the upper Ct value limit to 35 for undetected

replicates, we instead set the upper Ct value limit to 40. All other preprocessing steps remain unchanged
from the base preprocessing pipeline.

2. Normalized Ct limit = -21 preprocessing pipeline: In the aforementioned data preprocessing
pipelines, the Ct values for undetected replicates were set prior to the normalization of the Ct values.
Thus, the normalized Ct value for undetected replicates di"ers between genes. For comparison, in this
preprocessing pipeline, we instead replace the Ct values for all undetected replicates after Ct
normalization to have a constant value of −21 (which was the lowest Ct value post-normalization). All
other preprocessing steps remain unchanged from the base preprocessing pipeline.

3. No sample exclusion preprocessing pipeline: Rather than excluding all samples with an average Ct
value of the reference gene KLK3 above the 95  percentile, this preprocessing pipeline does not exclude
any samples based upon their Ct value for the reference gene KLK3. All other data preprocessing steps
remain unchanged from the base preprocessing pipeline.

While we focus our attention on the four described data preprocessing pipelines (i.e., the base
preprocessing pipeline and three alternative preprocessing pipelines above) due to computational
constraints, we acknowledge that these preprocessing pipelines encompass only a small fraction of all
possible data preprocessing choices. Still, we believe that assessing model robustness and stability across
these di"erent preprocessing pipelines provides a valuable step towards scienti!c !ndings that are not
solely reliant on particular (reasonable) data preprocessing decisions. In the spirit of transparency, we
provide extensive documentation of our data preprocessing decisions and justify them when possible in the
supplementary PCS documentation on GitHub (https://github.com/Yu-Group/sMPS2).

Appendix B: Model Development Details
B1. Prediction Check

In the !rst stage of our model development process, we conducted a prediction check, where we assessed
model prediction performance in order to !lter out models which may not accurately represent the scienti!c
phenomena under study as suggested by their poor prediction performance.  Speci!cally, we !rst randomly
split the Development Cohort (Section Development Cohort) into a Development (80%) and Test Set (20%).
Then using the Development Set, we performed 4-fold cross-validation (CV). For each CV fold, we trained
each model (described in Section Modeling Choices) on each of the four preprocessed datasets (described in
Section Data Preprocessing of Gene Expression Data and Appendix A) using the training fold and evaluated
the prediction error on the validation fold. The covariates used included the 54 nominated genes from the
original MPS2 study and available clinical variables that are generally thought to be associated with high-
grade PCa (age, race, family history of prostate cancer, abnormal DRE, prior negative biopsy, and PSA).  The
cross-validation (CV) error was computed using three di"erent evaluation metrics - area under the receiver
operating characteristic curve (AUROC), area under the precision recall curve (AUPRC), and classi!cation
accuracy - and averaged across the four CV folds. This process was repeated for 10 di"erent Development-
Test splits. Models that did not outperform ordinary logistic regression in any of the data preprocessing
pipelines across the three evaluation metrics were excluded from further analysis and failed the prediction
check.

B2. Stability-driven Gene Ranking

For those models that passed the prediction check, we proceeded to compute a ranking of gene (or feature)
importances for each preprocessing-model combination. More precisely, for each data preprocessing
pipeline and model speci!cation, we computed a measure of feature importance from the model !t on each
CV training fold, averaged the feature importance measures across the 4 folds, and ranked the features
according to this averaged feature importance for the given method. For random forest (RF) and random
forest+ (RF+), we respectively used mean decrease in impurity (MDI)  and mean decrease in impurity+ 
(MDI+)  as the feature importance measures. For logistic regression and logistic regression with L  (ridge)
regularization, we measured feature importance using the magnitude of the estimated regression
coe#cients. For logistic regression with L  (Lasso) or the combined L + L  (elastic net) regularization, we
measured feature importance by the number of times each feature had a non-zero coe#cient across the 4
CV folds; if there are ties, we broke these ties based upon the magnitude of the estimated regression
coe#cients. Note that the covariate data was centered and scaled to have mean 0 and variance 1 prior to
!tting these models. Additionally, while clinical variables were used as covariates in the trained models (and
included in the feature importance computation), these clinical variables were dropped when computing the
feature importance rankings since our aim is to identify the most important genes. Thus far, the aggregation
of feature importances and resulting feature importance ranking is model-speci!c, i.e., each model or
method yields its own feature importance ranking.

However, among the models that passed the prediction check and yielded fairly similar prediction
performance, it is unclear whether or why one should trust the feature importance rankings from one
method over another. Following the stability principle of the PCS framework,  we hence examined the
features that were most stably important across these similarly-performing prediction models. To do so, we
averaged the model-speci!c feature ranks across models, yielding a model-ensembled feature importance
ranking, and across both data preprocessing pipelines and models, yielding a PCS-ensembled feature
importance ranking. Note that this stability-driven feature ranking is performed per Development-Test split,
using the same splits as that in the prediction check (Figure S1).

B3. Selection of Stable Genes

After obtaining the various gene rankings for each Development-Test split, we examined the stability of the
top-ranked genes across the di"erent Development-Test splits via various metrics (applying the stability
principle in PCS to metric choices) in order to identify the sparse set of stable genes used in the !nal
simpli!ed MPS2 model. The !rst stability metric was the proportion of times each gene was ranked in the
top k across all preprocessing-model speci!cations and Development-Test splits (4 data preprocessing
pipelines × 6 models that passed the prediction check × 10 splits = 240 total con!gurations). Here, we tried
several di"erent choices of k: k = 5 and 10 to identify genes that were almost always the most important
(∼top 10% or 20%) out of the genes under consideration, and k = 17 for comparison with the original MPS2
study.  The second stability metric was the average PCS-ensembled feature importance ranking across all
Development-Test splits. Note that this is equivalent to the average feature importance ranking across all
data preprocessing pipelines, models, and Development-Test splits. The third stability metric is the standard
deviation (SD) of the gene's importance rankings across all data preprocessing pipelines, models, and
Development-Test splits. Using these various stability metrics, we identi!ed the genes which were frequently
ranked in the top 5, 10, and 17 features, had a high average feature ranking (i.e., ranked close to 1), and
whose feature rank was highly stable (or had low SD or variability) across the di"erent preprocessing
pipelines, models, and Development-Test splits. We acknowledge that a heuristic approach, combined with
expert domain knowledge, guided our !nal selection of genes and that no formal pre-speci!ed thresholds
were used for selection. However, these selected genes were locked prior to internal and external validation,
and thus, these validation studies (detailed in Sections Internal Validation for Evaluating Selected Genes and
Model Validation on Blinded, External Cohort) provide a proper, unbiased assessment of our model's
generalizability.
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Table 2. Performance of MPS2, MPS2+ and corresponding sMPS2 models (7- and 8-biomarkers) in the validation cohort

at the 95% sensitivity level.

TN = true negatives; FP = false positives; FN = false negatives; TP = true positives
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Model
Sensitivity
(%)

Speci!city
(%)
(TN/(TN + 
FP))

Negative
Predictive
Value (%)
(TN/(TN + FN))

Positive
Predictive
Value (%)
(TP/(TP + FP))

Estimated unnecessary biopsies
avoided per 1000 patients

MPS 95.0
23.0

(136/592)
94.4 (134/144) 23.9 (143/599) 230

MPS2 95.0
37.0

(219/592)
96.5 (219/227) 27.7 (143/516) 370

s MPS2 95.0
31.8

(188/592)
95.9 (188/196) 26.1 (143/547) 318

s MPS2 95.0
29.7

(176/592)
95.7 (176/184) 25.6 (143/559) 297

MPS2+ 95.0
40.5

(240/592)
96.8 (240/248) 28.9 (143/495) 405

s MPS2+ 95.0
40.7

(241/592)
96.8 (241/249) 28.9 (143/494) 407

s MPS2+ 95.0
40.7

(241/592)
96.8 (241/249) 28.9 (143/494) 407
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