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Experimentally obtained powder X-ray diffraction (PXRD) patterns can be difficult to solve, precluding the full 

characterization of materials, pharmaceuticals, and geological compounds. Herein, we propose a method based upon a 

multi-objective evolutionary search that uses both a structure’s enthalpy and similarity to a reference PXRD pattern 

(constituted by a list of peak positions and their intensities) to facilitate structure solution of inorganic systems. Because the 

similarity index is computed for locally optimized cells that are subsequently distorted to find the best match with the 

reference, this process transcends both computational (e.g. choice of theoretical method, and 0 K approximation) and 

experimental (e.g. external stimuli, and metastability) limitations. We illustrate how the proposed methodology can be 

employed to successfully uncover complex crystal structures by applying it to a range of test cases, including inorganic 

minerals, elements ramp-compressed to extreme conditions, and molecular crystals. The results demonstrate that our 

approach not only improves the accuracy of structure prediction, but also significantly reduces the time required to achieve 

reliable solutions, thus providing a powerful tool for the advancement of materials science and related fields.

1. Introduction 

The crystal structure of a compound is key for predicting and 

rationalizing its properties.1–3 Therefore, crystal structure 

determination is one of the bedrocks upon which chemistry, 

materials science, physics, as well as earth and planetary 

science is based. Indeed, common to all of these fields is the 

need for characterizing the structure of the chemical system 

using various spectroscopies. While methods such as Raman, 

Infra-Red or Nuclear Magnetic Resonance spectroscopy provide 

information that can indirectly deduce the structural motifs 

present, only diffraction is directly related to the atomic 

positions. Various diffraction techniques are available, varying 

according to the scattering source (X-rays, neutrons or 

electrons) or from the nature of the sample (powder, single 

crystal or even liquid). Diffraction from single crystals is the gold 

standard, but in practice it can be difficult or impossible to 

obtain single crystals of adequate quality and size to achieve a 

reliable structure solution. Therefore, the possibility of 

obtaining structural information from microcrystalline powder-

like samples becomes important.4 However, unlike diffraction 

from single crystals, powder X-ray diffraction (PXRD) is typically 

not sensitive enough to provide information about the positions 

of light elements such as hydrogen and lithium (if combined 

with other heavier elements), nor can it differentiate between 

elements with similar mass numbers. Though neutron 

diffraction is sensitive to the location of light elements it 

requires large samples. Thus, PXRD is the most commonly used 

tool to deduce the structural information of battery materials, 

superconductors, minerals found in the deep Earth, 

pharmaceutical drugs, and more.1,5–7 

When a good quality PXRD pattern is in-hand, it is relatively easy 

to retrieve information on the size of the unit cell, but a 

structure solution with refinement of the atomic position 

remains, to date, a challenging procedure. The inherent 

limitation of PXRD lies in its projection of three-dimensional 

diffraction data onto a one-dimensional scale when measuring 

powder samples, often resulting in peak overlap.4,8 To perform 

such refinements, various techniques9–11 are available, from 

those developed by Rietveld12 or Le Bail13 to modellings based 

on reverse Monte Carlo,4,14 genetic 15,16 or machine learning17,18 

algorithms. Nonetheless, crystal structure solution from PXRD 

data remains a grand challenge in crystallography. Further 

complicating structural characterization is the presence of 

mixed-phases, sample peaks that are obscured by ones 

originating from the experimental apparatus, noisy background 

of the diffractogram, and preferred orientation of the 

microcrystallites. These situations are common, for example, 

when compounds are synthesized for the first time, matter is 

compressed within diamond anvil cells or in dynamic (shock or 

ramp) compression experiments, or simply due to the 

morphology of the crystallites. Because of these difficulties, 

theoretical calculations have become useful tools to assist 

structure solution given a PXRD pattern. We also mention a 

promising route, which has been applied to organic molecular 
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crystals, where structures are determined directly from 

chemical shifts, aided by machine learning.19,20 

Another strategy, popular especially in the high-pressure field, 

is based upon crystal structure prediction (CSP) algorithms, 

which aim to locate the most stable atomic configuration for a 

user-defined chemical composition at a given pressure and at 

zero temperature. Some of the most popular techniques 

include random or evolutionary searches, particle-swarm 

optimization, and Monte-Carlo or molecular dynamics based 

algorithms.21 In the family of evolutionary algorithms, a fitness 

is assigned to each DFT-optimized structure, and this fitness is 

related to the structure’s likelihood to be chosen as a parent for 

the next generation.22 In a traditional evolutionary search, the 

fitness is obtained from the energy (or enthalpy) of the system 

relative to (a subset) of those that have been optimized. This 

fitness is crucial in driving the algorithm towards promising 

regions of the energy landscape in the search for 

thermodynamically stable structures. 

However, not all of the compounds that are predicted to be the 

most stable are necessarily those that are experimentally 

observed. When compared to PXRD diffractograms, this 

discrepancy can be attributed to several factors, including the 

numerous approximations involved in the computations (e.g., 

choice of level of theory, pseudopotential, and the neglect of 

finite temperature contributions), as well as variations in 

synthetic and experimental conditions.23 As a result, achieving 

the closest match with the experimental data often necessitates 

screening many metastable phases, especially in the case of 

polymorphism, where the differences in energy between them 

may be minimal.24,25 This laborious manual screening process 

carries the risk of overlooking the optimal matching structure 

amid the hundreds or even thousands of predicted structures.  
To circumvent this challenge and potentially steer the structure 
search towards a better match a constrained algorithm that focuses 
the search on structures with particular features (Bravais lattices, 
spacegroups, coordination numbers) has been proposed.26 However, 
a guiding CSP algorithm, which employs both the experimental PXRD 
and the DFT-calculated energy and structure simultaneously, and in 
an equal footing, could prove even more beneficial.   

Perhaps the most intricate method proposed to date is the first-
principle-assisted structure solution (FPASS) technique,27,28 which 
combines DFT calculations with experimental XRD data and statistical 
symmetry information in a genetic algorithm for structure 
determination. Similar methods have followed during the years, 
retaining the philosophy of combining information gleaned from 
diffraction data (lattice parameter, symmetry, stoichiometry, etc.) to 
reduce the space of a structure search with DFT optimization.25,29 A 
similarity index calculated between experimental and simulated 
PXRD patterns has been exploited in particle swarm optimization 
(PSO)30, utilizing a weighted cross-correlation function to re-evaluate 
the velocity of each structure in the crystal structure search. With 
this technique, the simulated phases that best match the 
experimental PXRD pattern lead the PSO search. This methodology 
was shown to aid the prediction of the ground state phases of ZnO 
and TiO2,30 however the authors did not report if their discovery was 
accelerated compared to a standard energy-only-search, or if this 
algorithm could aid in the recognition of metastable phases. Non-
CSP-based approaches have also been proposed, such as molecular 

dynamics simulations biased by experimental diffraction data31. For 
molecular organic crystals fast dispersion-corrected DFT 
optimizations have been proposed and used to improve the fit with 
the experimental PXRD patterns.32  

In the present study, we outline our approach for enhancing CSP 

by leveraging PXRD data through a synergistic combination of 

the XtalOpt evolutionary algorithm22,33 and the variable-cell 

Gaussian powder-based similarity index (VC-GPWDF)34 

implemented in the critic2 program.35 Confusingly, despite the 

label “similarity index”, this and similar methods actually 

calculate the dissimilarity between two patterns. By using the 

multi-objective search capability embedded in XtalOpt,36 we 

illustrate the CSP search is able to accelerate the structural 

recognition of both experimental and simulated PXRD patterns. 

This strategy goes beyond the aforementioned methodologies 

developed to assist CSP using crystallographic and diffraction 

information.27,30 Specifically, it overcomes many of the 

challenges that result from the comparison of experimental 

diffraction data collected at finite temperature and pressure 

with in-silico patterns calculated for geometry-optimized 

structures at 0 K. Therefore, this technique becomes 

particularly advantageous when the reference PXRD 

diffractogram diverges from the computed ground state 

structure of a specific stoichiometry due to experimental 

conditions (pressure, hydrostaticity, temperature, etc.) or 

because of theoretical limitations; or for finding metastable 

phases.  

2. Computational Approach 

2.1 Multi-objective Search  

The foundation of our newly proposed technique is based upon 

multi-objective global optimization,37 as implemented in the 

XtalOpt code version 13.0.36 In this extension of the XtalOpt 

evolutionary algorithm, the fitness of an individual structure can 

be based upon multiple objectives, including a structure’s 

energy or enthalpy, as well as other user-specified features. 

After locally relaxing a structure, XtalOpt automatically calls the 

external codes specified by the user to compute the desired 

target properties, whose values are employed in conjunction 

with the enthalpy to calculate the corresponding multi-

objective fitness. In the present work, the similarity in the PXRD 

pattern of a structure compared to that of a reference (𝑆) is 

chosen as an objective to be minimized, while the enthalpy (𝐻) 

is simultaneously minimized (Equation 1). With 𝑆𝑠 and 𝐻𝑠 

representing the numerical value of the similarity index and 

enthalpy of structure 𝑠, respectively, the fitness is defined 

through the following weighted sum: 

 

𝑓𝑠 = 𝑤(
𝑆𝑚𝑎𝑥 − 𝑆𝑠
𝑆𝑚𝑎𝑥 − 𝑆𝑚𝑖𝑛

) + (1 − 𝑤) (
𝐻𝑚𝑎𝑥 −𝐻𝑠

𝐻𝑚𝑎𝑥 −𝐻𝑚𝑖𝑛
). (1) 

 

Here, 𝑤 is the weight assigned to the PXRD similarity objective, 

and 𝐴𝑚𝑖𝑛 and 𝐴𝑚𝑎𝑥 represent the minimum and maximum 

value of the objective {𝐴 = 𝑆,𝐻} for the pool of structures. The 
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weights of the objective are constrained to be a real number 

between 0 and 1, and their sum must equal 1 for the calculation 

of the fitness, 𝑓𝑠. This fitness measure, subsequently, is used by 

XtalOpt to evaluate the suitability of candidate structures for 

the selection of the parent pool, from which new structures are 

produced by applying various evolutionary operations, as 

described more fully in Reference.33 

 

2.2 PXRD-Assisted Crystal Structure Prediction 

We introduce here the XtalOpt-VC-GPWDF coupled technique, 

whose schematic workflow is illustrated in Figure 1, to conduct 

PXRD similarity tests during the execution of the crystal 

structure search. In this multi-objective search, the energy or 

enthalpy (𝐻𝑠 in Equation 1) is obtained from any external 

optimizer of periodic systems (herein, we employ the Vienna ab 

initio Simulation Package, VASP, See also Computational 

Details).38 The similarity of a structure’s simulated PXRD pattern 

with that of a reference (𝑆𝑠 in Equation 1) is obtained using the 

newly developed variable-cell Gaussian powder-based 

similarity index (VC-GPWDF),34 a modified version of de Gelder’s 

similarity index,39 that ranges from 0 for identical structures to 

1 for maximum similarity. Analogous to other methods,40–42 the 

similarity is evaluated between a reference PXRD diffractogram, 

which can be either experimental or computer-generated, and 

a second diffractogram computed from one of the XtalOpt 

predicted structures by critic2,35 which also handles the VC-

GPWDF similarity index calculation. The reference 

diffractogram is input as an external list of values containing the 

2θ angle of diffraction, and its corresponding relative intensity 

[2θ; I], and then parsed by critic2. The list does not need to be 

continuous, nor does it need to cover the whole PXRD 

diffractogram range. In fact, a short list of a few specific indexed 

peaks, or just fragments of a PXRD diffractogram, are valid 

inputs as well. This aspect facilitates the PXRD-assisted crystal 

structure search, and is particularly useful when multiple 

phases are present in the sample, or when the noise is large in 

the experimental data. 

 

Figure 1. Schematic workflow for conducting the PXRD-

assisted crystal structure search with the combined XtalOpt-

VC-GPWDF method.  

 

The initial pool of structures can be generated internally using 

the RandSpg algorithm 43, or externally (e.g by PyXtal44), with 

the structures subsequently being read in as “seeds”. Local 

geometry relaxations can be performed with any external code 

for periodic systems. The similarity index, which is used to 

determine the fitness of the offspring (see below), is calculated 

by critic2 using the optimized geometries of the structures 

generated by XtalOpt and the input [2θ; I] list. The use of the 

similarity index in the calculation of the fitness will steer the 

evolutionary algorithm to favor those structures that better 

represent the experimental PXRD as structures for the next 

generation. In our implementation the nature of the 

(dis)similarity does not alter the evolutionary operators used or 

their probability, though one can imagine that they could. 

 

In the original version of de Gelder’s method, a similarity index 

is obtained by integrating numerically the product of the 

powder patterns of both crystals. It assumes a value of zero if 

the two patterns are the same (indicating that the crystals are 

identical) and a value of one for completely non-overlapping 

patterns. In the modified versions of de Gelder’s method 

(GPWDF and VC-GPWDF) the similarity index is calculated 

analytically, rather than using numerical integration, from the 

list of reflection angles and intensities. This approach is more 

efficient compared to de Gelder’s, since it allows for the 

computation of analytical derivatives with respect to the 

structural parameters, enabling the easy minimization of the 

similarity index as a function of structural parameters like the 

lattice strain – which is the basis of the VC-GPWDF approach. 

 

The VC-GPWDF method is exhaustively described in ref 34; 

herein we provide a brief summary. In VC-GPWDF, the 

experimental powder pattern is first pre-processed to extract 

the reflection angle and intensity pairs. This pre-processing step 

helps in circumventing the difficulties caused when comparing 

calculated structures with experimental patterns that contain 

artifacts such as noise, varying peak shapes and widths, and a 

background contribution. (In the present work, the user inputs 

a list of [2θ; I], as previously described.) Given the experimental 

reflection angles and intensities, VC-GPWDF seeks lattice 

deformations (strains) of the input structure that maximize 

agreement with the experimental pattern. This is done by 

carrying out a global minimization of the GPWDF score as a 

function of the six lattice strains in the input structure, up to a 

maximum strain chosen by the user. (In the present work, we 

employed the default values of 10% maximum deformation 

over the cell length and 5° for the angles.) By doing this, VC-

GPWDF can measure crystal similarity between structures that 

are not entirely comparable due to cell deformations because 

of, for instance, being determined under different experimental 

conditions or, in the case of structures calculated with DFT, due 

to missing vibrational effects. The final VC-GPWDF score is the 

smallest GPWDF among all deformations, and is equal to zero 

for identical crystals (after deformation). VC-GPWDF also 

produces the cell deformation of the input structure that 

maximizes agreement with the target pattern. Compared to 

other programs used to perform structure determination using 
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cross-correlation functions, like the Fit with Deviating Lattice 

parameters (FIDEL),45 VC-GPWDF has two advantages: i) it 

performs a global optimization, and therefore is unlikely to get 

caught in a local minimum, and ii) it uses an analytical version 

of de Gelder’s index, enabling fast local optimizations. The 

whole VC-GPWDF procedure has very low computational cost, 

and can take seconds/minutes on a desktop computer. 

 

Let us now illustrate the power of this new technique for three 

inorganic systems: (1) Brookite, a metastable polymorph of 

TiO2; (2) sodium ramp-compressed to hundreds of GPa of 

pressure; and (3) vaterite, a natural polytypic structure of 

calcium carbonate. Each system will be introduced and 

discussed in-depth in their specific sections, while the complete 

computational details are reported at the end of this work. 

These systems were chosen to limit the computational cost 

while demonstrating the advantages provided by our method, 

since the number of local minima scales exponentially with the 

degrees of freedom, 3N+3 for a 3D crystal.46 In fact, the number 

of atoms in our CSP searches is not greater than 60 per unit cell, 

reached by CaCO3 with Z = 12 (See Computational Details). 

However, the PXRD-assisted strategy could, in principle, be 

applied to larger systems (depending on the available 

computational resources, and on the method used for local 

relaxation), for which the acceleration would be even more 

evident compared to random or unassisted searches.  

 

 

3. Results and Discussion 

3.1 TiO2 – Brookite 

TiO2 naturally exists in three different polymorphs at ambient 

conditions: Anatase (I41/amd), Brookite (Pbca) and Rutile 

(P42/mnm) with 4, 8 and 2 formula units (FU), respectively, in 

their conventional unit cells (Figure 2). These polymorphs have 

been frequently used as benchmarks for CSP methods and 

related computational models.22,26,30,43 At the PBE level of 

theory, we predict Anatase as the ground state, followed by 

Brookite (ΔE = 13.5 meV/atom) and Rutile (ΔE = 26.7 

meV/atom), in-line with previous DFT calculations.26 Some 

classic interatomic potentials developed for this system, 

however, predict different stability orderings.26   

A typical CSP search performed on TiO2 will almost certainly 

locate the ground state phase, in this case, Anatase (within the 

PBE approximation and ensuring that the FUs considered in the 

search include multiples of 4). While a standard CSP search is 

also likely to discover metastable Rutile, owing to its high-

symmetry and small unit cell, Brookite may be difficult to find 

due to its metastability and low symmetry. Indeed, in an earlier 

study, a regular CSP search on TiO2 with 8 FU found Anatase, 

Rutile and Brookite as the 187th, 559th and 1141st crystals 

optimized, respectively.26 A constrained search, where the 

parent pool was restricted to those structures that possessed 

an orthorhombic Bravais lattice only, accelerated the discovery 

of Brookite (as the 345th structure). Another way in which 

Brookite might be found is by steering an evolutionary 

algorithm with additional information, such as PXRD data, as we 

illustrate below.  

 

In the bottom panel of Figure 2, the PXRD pattern of the 

geometry-optimized structures of the three aforementioned 

polymorphs of titanium dioxide are plotted. The similarity to 

Brookite, where the reference PXRD data was generated with 

Mercury 2022.3.047 in the range from 1° to 120° in 2θ with a 

step of 0.1°, from the experimental structure collected by 

Meagher and Lager at room temperature (ICSD = 36408; lattice 

parameters in Å: a = 5.138, b = 9.174, c = 5.449)48 is also 

provided. Despite the fact that the similarity index (or 

dissimilarity) is low, 0.01, the DFT-optimized cell parameters are 

quite different from that of the reference: a = 5.192 Å, b = 9.274 

Å, c = 5.509 Å. In fact, if we calculated the similarity index using 

the DFT-optimized structure directly, as proposed in other 

methodologies (See introduction), a value of 0.17 would be 

obtained (to be compared to 0.43 for Anatase and 0.93 for 

Rutile). Because VC-GPWDF performs unit cell deformations, 

which include varying the DFT-optimized cell parameters during 

the comparison of the reference and trial structures, it becomes 

possible to retrieve a nearly zero similarity index for the correct 

structure. The cell parameters of the relaxed structure post-

refinement with VC-GPWDF are varied to a = 5.140 Å, b = 9.171 

Å and c = 5.447 Å, which almost exactly coincides with the 

reference structure. 
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Figure 2. Polymorphs of TiO2 and their simulated powder X-ray diffraction (PXRD) patterns. Conventional unit cells of the three 

natural polymorphs of TiO2 at ambient conditions: Anatase (I41/amd, 4 FU), Brookite (Pbca, 8 FU) and Rutile (P42/mnm, 2 FU). 

Titanium atoms are blue, oxygen red. Below, we show the PXRD pattern generated from the three phases (λ= 1.54056 Å, which 

corresponds to the wavelength of Cu Kα radiation) and the corresponding similarity index calculated by VC-GPWDF using the PXRD-

pattern of Brookite as reference. The patterns shown are for the smallest similarity index that can be obtained by varying the unit 

cell parameters.   

 

 

Now that we have described how the VC-GPWDF method can 

modulate a DFT-optimized structure, so that it provides the best 

match with the reference, let us examine the optimal similarity 

it provides between Brookite and the two higher symmetry 

polymorphs. The main difference between the diffractogram of 

orthorhombic Brookite with the one computed for the two 

tetragonal phases is the number of peaks, which is much larger 

in the less symmetric case. Moreover, Brookite presents three 

intense peaks at low angles, two of them very close to each 

other (25.3°, 25.7° and 30.8° in 2θ degree, respectively), while 

in the tetragonal phases, only one high intensity peak is found. 

One of the reasons why Rutile has a larger similarity index to 

Brookite than Anatase, is that in Anatase the intense peak is in 

a range of 2θ similar to where the first doublet of peaks in 

Brookite is found, while in Rutile it is at a higher angle (~27°).   

 

Now, let’s put the VC-GPWDF similarity index in action with 

XtalOpt to predict the metastable, low symmetry, phase of TiO2, 

Brookite. To begin, two single-objective (classic enthalpy based) 

CSP runs with 8 FU in the cell (24 atoms) were performed as 

reference tests generating a total of 1000 structures each (Table 

1). In both searches, Brookite was not found, while the more 

symmetric Anatase and Rutile were generated, in-line with 

previous studies where 1100+ structures were optimized to find 

the orthorhombic phase.26 Coupling XtalOpt with the VC-

GPWDF algorithm to perform the multi-objective search, it was 

possible to find Brookite in shorter evolutionary searches (See 

Table 1). However, this success appeared to be sensitive to the 

fitness weight parameter connected to the PXRD data (Eq. 1). In 

this test, Brookite was successfully found using 𝑤 ≥ 0.6 

prompting us to analyze how the choice of the weight 

influences the fitness of the three polymorphs of TiO2 (Section 

S1). The fitness is related to the probability that a structure has 

for being chosen as a parent in the evolutionary search, but 

there are other factors, including the symmetry and the types 

of lattices in the initial pool, as well as the random parameters 
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chosen during the course of the CSP, which also influence a 

structure’s discovery. Though the fitness of Brookite was higher 

than that of Anatase already using a weight of 0.1, this 

polymorph was not discovered in our short CSP search even 

when a weight of 0.3 was used. While it is probable that 

Brookite could be found in fewer structures than in a regular 

search (~1100) with this weight, increasing the weight to 0.6 

hastens its appearance by more than a factor of two.  

In the past, when the multi-objective PXRD search was not 

available, it was suggested that constraining the breeding pool 

to structures whose (sub)lattice was consistent with a particular 

Bravais lattice or space group (potentially deduced from a 

diffractogram) could be employed for unveiling the structure of 

a synthesized compound.49 However, as shown in the following 

two examples, the PXRD search proposed herein is preferred 

since it accounts for possible variations in the crystal lattice (See 

below, Na in Ramp-Compression), and constraining a CSP search 

with an indexed unit cell might even be counter-productive in 

some rare cases (See below, The Tricky Case of Vaterite).  

 

Table 1. Benchmark tests on TiO2-brookite using single- or 

multi-objective crystal structure prediction runs with 8 Formula 

Units. The number of total structures-per-run (# Structures), the 

weight assigned to the powder X-ray diffraction similarity 

objective (𝑤), and the output result of the search (if brookite 

was found or not), are reported. a 

 single-objective multi-objective  

Run 1 2 1  2 3 

# Structures 1000 1000 500 500 500 

𝑤 0.0 0.0 0.3 0.6 0.9 

      

Brookite No No No Yes Yes 
a If the Pbca Brookite phase was fortuitously generated in the 

initial pool by RandSpg, the run was repeated.  

 

3.2 Na in Ramp-Compression Experiments 

High-quality, and perhaps already indexed PXRD data can surely 

increase the success of the multi-objective search strategy that 

we describe above. However, data collected at extreme 

conditions, such as in dynamic or ramp compression 

experiments that explore the chemistry of the interiors of 

planets or high-energy-density quantum matter,50 often require 

substantial support from theory for their interpretation. In fact, 

the data obtained in these experiments is obscured by noisy 

background, mostly sourced by the hot plasma ablated by the 

sample target during the laser irradiation,51 which jeopardizes 

the indexing of weak reflection’s peaks, which might be covered 

by the background. Therefore, the comparison with PXRD data 

simulated from theoretical structures is often necessary to 

identify a phase in shock experiments. Despite this synergistic 

approach, the structural determination of new phases 

measured at extreme conditions still remains a great scientific 

challenge.52 

A noisy background is not the only challenge in the structural 

solution from shock and ramp compression experiments. In 

fact, the kinetics in dynamic compression experiments, together 

with the uniaxial orientation of the shock front can alter the 

expected (theoretical) P – T path followed in a phase diagram, 

greatly diverging from the ideal thermodynamic path at low 

temperature, and leading to unexpected phase transitions, or 

even decompositions.53 Yet, these variables are nothing but 

additional coordinates of the phase diagram of a compound 

that must be explored to understand the behavior of matter at 

extreme conditions.50 From the theoretical point of view, this 

means that the system must be simulated with techniques 

beyond the standard 0 K DFT approximation, including quasi-

harmonic phonons to account for the thermal volume 

expansion,54 or by performing expensive molecular dynamics 

simulations.55 Moreover, the computational reproduction of an 

anisotropic (e.g. uniaxial) compression can be a challenging task 

even for simple unary systems.56 Therefore, the possibility to 

perform volume-cell modulations on-the-fly, and emulate all 

the effects that contribute to the divergence from an ideal 

compression experiment, can become useful for a rapid, but 

meaningful, interpretation of the experimental data. Below, we 

illustrate the power of this approach on Na, which assumes the 

iconic hP4 insulating electride phase, observed for the first time 

in diamond anvil cells at ~200 GPa,57 where the electronic 

structure could be rationalized using a multi-center bonding 

scheme.58 

Studying Na to pressures above 200 GPa, conditions that are 

accessible mostly with dynamic compression techniques, is 

currently of great interest as the findings will address important 

questions for theory and for condensed matter physics.59 

Therefore, recent laser-driven ramp compression experiments 

where sodium was squeezed to a nearly 7-fold increase in 

density at a pressure of 500 GPa (and a temperature of ~1500-

3000 K) were performed.59 In-situ XRD revealed a series of 

peaks obtained at the highest pressures that could be indexed 

as the hP4 phase, but the peaks observed between 242 – 292 

GPa were not consistent with hP4 and were instead interpreted 

as either the cI16 structure (previously observed between 108 - 

120 GPa60) or an R-3m phase. A following theoretical study,61 

however, revealed that both cI16 and R-3m were not 

dynamically stable at the experimentally attained P – T 

conditions. In 0 K CSP searches hP4  emerges as by far the most 

stable phase at the pressures attained in experiment,  but a 

subset of seven systems was also found, and computed to be 

preferred at high temperatures within the quasi-harmonic 

approximation.61 Unfortunately, none of their diffraction 

patterns and densities were fully consistent with the 

experiments. 

To identify the Na structure that was likely created using ramp 

compression, we carried out a VC-GPWDF assisted multi-

objective CSP search for Na at 315 GPa using the experimental 

data published in Reference,59 and a weight of 0.7. In this case, 

the reference list of reflection values is constituted by only six 

indexed peaks (six [2θ; I] pairs), also to avoid contamination 

from the high noise over the experimental 2θ range (Figure 3a). 

This search found that the phase producing the best similarity 

index was actually hP4, the expected ground state at these 

conditions. So why wasn’t it previously identified by either 

experiment or by theory? The answer stems from the severe 
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distortions the structure seems to undergo during the ramp-

compression, which cannot be emulated by the standard 0 K 

DFT optimization or molecular dynamics with isotropic 

pressure, but that is easily revealed by the cell-variation routine 

in VC-GPWDF. 

In Figure 3 we illustrate the structure of the hP4 phase as it 

emerges from the DFT optimization and post-refinement with 

VC-GPWDF (hP4*), coupled with the diffraction peaks that 

these two phases yield overlaid on the XRD data collected by 

Polsin et al.59 The main structural difference between hP4 and 

hP4* is the extra anisotropic compression along the c-axis 

(Figure 3b) estimated to be equal to ~425 GPa (DFT stress value) 

and compared to the ~370 GPa obtained along the a- and b-

axes, causing the lowered c/a ratio and the increased density of 

the crystal. The subsequent effect of this distortion on the 

calculated diffraction lines is, on one hand, to move the (101) to 

higher 2θ angles, and on the other hand to almost merge the 

reflections from the (102) and the (2-10) planes (Figure 3a), 

matching with the doublet peaks experimentally observed at 

~63°. 

 

Figure 3. Simulated XRD patterns and experimental lineouts of 

Na structures under pressure. (a) Section of the diffraction 

pattern measured by Polsin et al.59 (black line) together with the 

diffraction lines calculated from the DFT-optimized (red line) 

and refined (blue line) structures of Na-hP4 (λ= 1.481 Å, see Ref. 
59). The similarity index changed from 0.991 (hP4) to 0.086 

(hP4*) upon refinement. The calibration peak in the diffraction 

data is shaded in green. (b) View of the unit cell of Na-hP4 along 

the (110) plane, as optimized by DFT (hP4), and after the 

volume-cell refinement with VC-GPWDF (hP4*). 

 

In Na-hP4* the density increases up to 6.3 – 6.4 g/cm3, which is 

relatively high compared to what is expected from 0 K DFT 

calculations on hP4.57 However, the pressure versus density 

curve of sodium can deviate quite substantially from the ideal 

trend, and produce very different results depending on the 

experimental conditions.59 For example, at 300 GPa, the density 

of sodium can be estimated as being ~3.5 g/cm3 following the 

Sesame principal Hugoniot, or being ~ 5.9 – 6.0 g/cm3 if 

extrapolated using static compression data from the FCC and 

BCC phases.59 Moreover, hP4* is calculated to be 199 

meV/atom higher in enthalpy than the fully relaxed hP4 

structure (while retaining all real phonons, see Figure S1), which 

is nonetheless accessible based on the estimated temperature 

in Polsin’s experiment (~ 2200 K).59 The weak peak at ~42° that 

was previously indexed as the hP4 (101), was suggested to 

indicate that multiple phases coexisted, resulting from pressure 

and temperature gradients present in the sample, in-line with 

prior interpretations.59,61  

Na-hP4* is a distorted structure that cannot be obtained with 

classic DFT geometry optimizations at high-pressure or 

molecular dynamics simulations, since in both cases, the system 

would evolve towards the most stable (relaxed) configuration. 

Instead, Na-hP4* mirrors the effects of anisotropic/uniaxial 

compression along the c-axis and the thermal expansion, which 

are extrapolated and accessed thanks to the iterative 

refinement over the experimental data. Though, it is not 

possible to unequivocally identify the phase observed by Polsin 

et al.59 as hP4*, it is worth noting that the PXRD assisted CSP 

with XtalOpt-VC-GPWDF could access interesting new 

alternatives for the interpretation of challenging data collected 

at extreme conditions.52,62 

 

3.3 The Tricky Case of Vaterite 

Among the biogenic minerals, calcium carbonate (CaCO3) is 

arguably the most abundant. From the three known anhydrous 

crystalline polymorphs of CaCO3, calcite, aragonite and vaterite, 

the latter is the least stable, but still commonly found in 

nature.63 Surprisingly, despite the nearly 100-year debate on its 

crystal structure, an apparently satisfying solution was 

proposed only very recently.64 Specifically, it was suggested that 

vaterite should be regarded as a polytypic structure, a specific 

type of polymorphism built up by a stacking of almost identical 

layers, which differ in their stacking sequence. This has made 

vaterite a very challenging system to solve, even combining 

several experimental techniques,64 and almost impossible with 

computational methods alone. In fact, though vaterite is a 

relatively simple mineral (composition-wise), it cannot be 

solved solely with standard CSP methods, even with the 

possibility of using supercells. Therefore, what can a structure 

search do to support the solution of such challenging systems? 

This is what we will try to understand with this last example 

using our new methodology. 

The multi-objective evolutionary search coupled with VC-

GPWDF is obviously limited by the type of PXRD data used. In 

this case, it was possible to retrieve two extensive lists of peaks 

[2θ; I] from the studies performed by Le Bail et al.65 and by 

DuPont et al.,66 and two CSP runs using a weight of 0.7 were 

carried out using one, or the other, as a reference. In Figure 4, 

we plot the energy difference (relative to calcite) vs. similarity 
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index of the phases output by the CSP runs, focusing on those 

identified as good matches (similarity index < 0.1).  

Using the data indexed by Le Bail et al.65 (Figure 4a), it is not 

surprising to see that the proposed Ama2 phase was predicted 

by our PXRD assisted-CSP as the best match. However, using this 

list of peaks, our search also found the Pnma structure 

proposed by Meyer,67 which is ~35 meV/atom more stable than 

the Ama2 phase proposed by Le Bail, as well as the P212121 

phase proposed by DeMichelis68 (which is isoenergetic to 

Pnma). Using the second set of data, collected by DuPont et al.66 

(Figure 4b), yields different results. The structures proposed 

previously by LeBail65 (Ama2), Meyer67 (Pnma) and DeMichelis68 

(P212121) were still found. Notice that the similarity index of the 

recurrent structures changes from one data set to another, but 

it is consistently very low (< 0.1). 

 

 

  

Figure 4. Plot of the properties of the structures predicted with XtalOpt-VC-GPWDF for vaterite. The relative energies (using 

calcite as a reference) versus similarity index generated using (a) Le Bail’s65 and (b) DuPont’s66 experimental powder X-ray 

diffractograms. 

 

Moreover, the two assisted searches have also generated new 

structures having excellent similarity index and a low energy 

(only ~10 meV/atom above calcite), and not proposed in past 

works, which are commented on in Section S4. The most 

interesting result obtained with DuPont’s data is probably the 

prediction of both the C2 and C2/c structures, previously 

predicted in another work by DeMichelis et al.,69 which differ by 

the specific orientation of the carbonate group along the 

stacking direction of the layers. These two structures are 

extremely important, since they form the sub-set of phases 

composing the polytypic crystal structure recently proposed.64  

 

These results show how the coupled XtalOpt-VC-GPWDF 

algorithm can support the solution of complicated crystal 

structures such as vaterite, without the need of performing 

crystal structure searches on supercells as large as the real 

crystal, which would be computationally inaccessible. Our 

method was able to generate, almost on-the-fly, most of the 

crystal structures proposed for vaterite in past theoretical and 

experimental works, including those forming the polytypic 

structure, and ranking them by energy and similarity with the 

experimental PXRD. As we have postulated, even by generating 

the correct metastable crystal structure, it would have been 

impossible to thoroughly solve the case of vaterite. However, 

our new methodology was able to provide all the building blocks 

necessary to construct the polytypic model that solves the 

intricate crystal structure of vaterite, supporting 

crystallographers dealing with such challenging systems.  

 

 

Conclusions 

We have introduced a powder X-ray diffraction-assisted crystal 

structure prediction method that employs both the enthalpy of 

a structure and its similarity index, as compared to that of a 

reference X-ray diffraction pattern, in an equal footing. This 

technique has been implemented within the open-source 

evolutionary algorithm code, XtalOpt. The similarity index is 

calculated using VC-GPWDF, a modified version of de Gelder’s 

similarity index, which assesses the overlap between diffraction 

patterns through a cross-correlation function upon iterative 

distortions of the unit cells. Either complete or partial PXRD 

patterns can be used to assist the crystal structure predictions, 

which can depend on the availability and quality of the 

experimental data. This similarity index is then used to 

determine the value of the fitness in XtalOpt’s multi-objective 

global optimization process. Our method is shown to be optimal 

for identifying metastable phases, facilitating the identification 

of polymorphs in inorganic samples, and aiding in the analysis 

of structures distorted by the extreme conditions created in 

shock and ramp compression experiments. Moreover, it is also 
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effective in identifying challenging structures such as polytypic 

systems. Thanks to the cell-variation procedure, it is likely that 

a target structure might also be found from geometries 

optimized at low levels of theory (e.g. DFTB, machine-learned 

potentials, low energy cut-offs or sparse k-point meshes). 

However, care would need to be taken so the computational 

parameters employed can determine the relative energetic 

order of different phases, and yield sufficiently accurate forces 

to ensure reasonable optimizations. We believe that the 

coupled XtalOpt-VC-GPWDF tool will be highly beneficial for 

crystallographers, chemists, materials scientists and 

geochemists for the solution of challenging structures at 

ambient and extreme conditions. 

 

Methods 

Computational Details 

The open-source evolutionary algorithm XtalOpt33,36 version 

13.0 was employed for crystal structure prediction, using the 

multi-objective fitness measure. The parameters employed in 

XtalOpt are thoroughly described in Ref. 22. The initial 

generation consisted of random symmetric structures that were 

created by the RandSpg algorithm,43 except in the case of 

CaCO3, where the initial generation was created externally with 

PyXtal44 then imported as seeds, using Ca atoms and CO3 

trigonal planar units. PyXtal was employed for this purpose, 

because the generation of symmetric crystals containing 

molecular fragments for the initial pool of structures is not 

implemented in XtalOpt. The number of initial structures was 

equal to 50 in all cases. We believe that the first generation of 

structures could be improved using automated classifications70, 

by generating a more accurate initial pool of structures, 

focusing on the most probable space groups identified by the 

machine learning engine, a possibility that we will explore in 

future works. The number of formula units (FUs) was set equal 

to 8 in the case of TiO2 to automatically cover the FU of all the 

natural polymorphs, i.e. Anatase (4 FU), Brookite (8 FU) and 

Rutile (2 FU); 4, 6, 8, 12, 20, 24 and 32 in Na; and 4, 6, 8 and 12 

in CaCO3. A sum of the atomic radii scaled by a factor of 0.7 was 

used to determine the shortest distances allowed between 

pairs of atoms. Duplicate structures were identified and 

removed from the breeding pool using the XtalComp 

algorithm.71 For the TiO2-brookite test, the total number of 

generated structures could vary from 500 to 1000 (see Section 

TiO2 - Brookite). For the tests performed on high-pressure Na 

and CaCO3, the total number of generated structures per run 

was equal to 1000. Each structure search followed a multi-step 

strategy, with three subsequent optimizations with increased 

level of accuracy, plus a final accurate single point (see below).  

Geometry optimizations and electronic structure calculations 

were performed using Density Functional Theory (DFT) with the 

Vienna Ab Initio Simulation Package (VASP), version 6.4.2.38 The 

PBE72 exchange-correlation functional was employed. The 

projector augmented wave (PAW) method73 was used to treat 

the core states in combination with a plane-wave basis set with 

an energy cutoff of 500 eV. The O 2s22p4 (PAW_PBE O_s), Ti 

3d34s1 (PAW_PBE Ti), Na 2p63s1 (PAW_PBE Na_pv), Ca 3p64s2 

(PAW_PBE Ca_pv) and the C 2s22p2 (PAW_PBE C_s) states were 

treated explicitly. The k-point meshes were generated using the 

Γ-centered Monkhorst−Pack scheme,74 and the number of 

divisions along each reciprocal lattice vector was selected so 

that the product of this number with the real lattice constant 

was greater than or equal to a given value. The values of 20, 25 

and 30 Å were used for the three subsequent optimization steps 

in the crystal structure search of TiO2 and CaCO3, then a value 

of 50 Å was used for the final single point. In the case of sodium, 

a value of 40 Å was used at each optimization step, and one of 

50 Å for the final single point. The accuracy of the energy 

convergence was set to increase from 10-3 to 10-5 eV for the 

optimizations, and to 10-6 for the final single point on the 

structures for which the norms of all the forces calculated 

during the relaxations were smaller than 10-3. A Gaussian 

smearing was used at each optimization step, and for each 

system with a sigma of 0.02 eV. The tetrahedron method was 

adopted in the last single point.75 

CSP methods employ metaheuristic algorithms, which do not 

always guarantee that the optimal solution, or set of optimal 

solutions are found. Therefore, in addition to varying the 

parameters employed in a standard CSP search,22 a user may 

need to perform searches where the weights in the objective 

function are varied (as in Sec 3.1), or explore a range of potential 

solutions identified by plotting the enthalpies of the optimized 

structures versus their similarity index (as in Sec 3.3) to find the 

most likely candidate structure. 
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