Received 00th January 20xx,
Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

Powder X-Ray Diffraction Assisted Evolutionary Algorithm for
Crystal Structure Prediction

Stefano Racioppi?, Alberto Otero-de-la-Roza’, Samad Hajinazar?, Eva Zurek?*

Experimentally obtained powder X-ray diffraction (PXRD) patterns can be difficult to solve, precluding the full
characterization of materials, pharmaceuticals, and geological compounds. Herein, we propose a method based upon a
multi-objective evolutionary search that uses both a structure’s enthalpy and similarity to a reference PXRD pattern
(constituted by a list of peak positions and their intensities) to facilitate structure solution of inorganic systems. Because the
similarity index is computed for locally optimized cells that are subsequently distorted to find the best match with the
reference, this process transcends both computational (e.g. choice of theoretical method, and 0 K approximation) and
experimental (e.g. external stimuli, and metastability) limitations. We illustrate how the proposed methodology can be
employed to successfully uncover complex crystal structures by applying it to a range of test cases, including inorganic
minerals, elements ramp-compressed to extreme conditions, and molecular crystals. The results demonstrate that our
approach not only improves the accuracy of structure prediction, but also significantly reduces the time required to achieve

reliable solutions, thus providing a powerful tool for the advancement of materials science and related fields.

1. Introduction

The crystal structure of a compound is key for predicting and
rationalizing its properties.! Therefore, crystal structure
determination is one of the bedrocks upon which chemistry,
materials science, physics, as well as earth and planetary
science is based. Indeed, common to all of these fields is the
need for characterizing the structure of the chemical system
using various spectroscopies. While methods such as Raman,
Infra-Red or Nuclear Magnetic Resonance spectroscopy provide
information that can indirectly deduce the structural motifs
present, only diffraction is directly related to the atomic
positions. Various diffraction techniques are available, varying
according to the scattering source (X-rays, neutrons or
electrons) or from the nature of the sample (powder, single
crystal or even liquid). Diffraction from single crystals is the gold
standard, but in practice it can be difficult or impossible to
obtain single crystals of adequate quality and size to achieve a
reliable structure solution. Therefore, the possibility of
obtaining structural information from microcrystalline powder-
like samples becomes important.* However, unlike diffraction
from single crystals, powder X-ray diffraction (PXRD) is typically
not sensitive enough to provide information about the positions
of light elements such as hydrogen and lithium (if combined
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with other heavier elements), nor can it differentiate between
elements with similar mass numbers. Though neutron
diffraction is sensitive to the location of light elements it
requires large samples. Thus, PXRD is the most commonly used
tool to deduce the structural information of battery materials,
minerals found in the deep Earth,
pharmaceutical drugs, and more.%>~7

When a good quality PXRD patternisin-hand, it is relatively easy
to retrieve information on the size of the unit cell, but a
structure solution with refinement of the atomic position
remains, to date, a challenging procedure. The inherent
limitation of PXRD lies in its projection of three-dimensional
diffraction data onto a one-dimensional scale when measuring
powder samples, often resulting in peak overlap.* To perform
such refinements, various techniques®?*! are available, from
those developed by Rietveld!? or Le Bail'® to modellings based
on reverse Monte Carlo,** genetic *>1¢ or machine learning'”-18
algorithms. Nonetheless, crystal structure solution from PXRD
data remains a grand challenge in crystallography. Further
complicating structural characterization is the presence of
mixed-phases, sample peaks that are obscured by ones
originating from the experimental apparatus, noisy background
of the diffractogram, and preferred orientation of the
microcrystallites. These situations are common, for example,
when compounds are synthesized for the first time, matter is
compressed within diamond anvil cells or in dynamic (shock or
ramp) compression experiments, or simply due to the
morphology of the crystallites. Because of these difficulties,
theoretical calculations have become useful tools to assist
structure solution given a PXRD pattern. We also mention a
promising route, which has been applied to organic molecular
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crystals, where structures are determined directly from
chemical shifts, aided by machine learning.2°

Another strategy, popular especially in the high-pressure field,
is based upon crystal structure prediction (CSP) algorithms,
which aim to locate the most stable atomic configuration for a
user-defined chemical composition at a given pressure and at
zero temperature. Some of the most popular techniques
include random or evolutionary searches,
optimization, and Monte-Carlo or molecular dynamics based

particle-swarm

algorithms.?! In the family of evolutionary algorithms, a fitness
is assigned to each DFT-optimized structure, and this fitness is
related to the structure’s likelihood to be chosen as a parent for
the next generation.?? In a traditional evolutionary search, the
fitness is obtained from the energy (or enthalpy) of the system
relative to (a subset) of those that have been optimized. This
fitness is crucial in driving the algorithm towards promising
of the energy the
thermodynamically stable structures.

regions landscape in search for
However, not all of the compounds that are predicted to be the
most stable are necessarily those that are experimentally
observed. When compared to PXRD diffractograms, this
discrepancy can be attributed to several factors, including the
numerous approximations involved in the computations (e.g.,
choice of level of theory, pseudopotential, and the neglect of
finite temperature contributions), as well as variations in
synthetic and experimental conditions.?® As a result, achieving
the closest match with the experimental data often necessitates
screening many metastable phases, especially in the case of
polymorphism, where the differences in energy between them
may be minimal.?#2> This laborious manual screening process
carries the risk of overlooking the optimal matching structure
amid the hundreds or even thousands of predicted structures.
To circumvent this challenge and potentially steer the structure
search towards a better match a constrained algorithm that focuses
the search on structures with particular features (Bravais lattices,
spacegroups, coordination numbers) has been proposed.?® However,
a guiding CSP algorithm, which employs both the experimental PXRD
and the DFT-calculated energy and structure simultaneously, and in
an equal footing, could prove even more beneficial.

Perhaps the most intricate method proposed to date is the first-
principle-assisted structure solution (FPASS) technique,?-?® which
combines DFT calculations with experimental XRD data and statistical
symmetry information in a genetic algorithm for structure
determination. Similar methods have followed during the years,
retaining the philosophy of combining information gleaned from
diffraction data (lattice parameter, symmetry, stoichiometry, etc.) to
reduce the space of a structure search with DFT optimization.?>%® A
similarity index calculated between experimental and simulated
PXRD patterns has been exploited in particle swarm optimization
(PS0O)39, utilizing a weighted cross-correlation function to re-evaluate
the velocity of each structure in the crystal structure search. With
this technique, the simulated phases that best match the
experimental PXRD pattern lead the PSO search. This methodology
was shown to aid the prediction of the ground state phases of ZnO
and Ti0O,,3° however the authors did not report if their discovery was
accelerated compared to a standard energy-only-search, or if this
algorithm could aid in the recognition of metastable phases. Non-
CSP-based approaches have also been proposed, such as molecular
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dynamics simulations biased by experimental diffraction data3!. For
molecular organic crystals fast dispersion-corrected DFT
optimizations have been proposed and used to improve the fit with
the experimental PXRD patterns.3?

In the present study, we outline our approach for enhancing CSP
by leveraging PXRD data through a synergistic combination of
the XtalOpt evolutionary algorithm??33 and the variable-cell
Gaussian powder-based similarity index (VC-GPWDF)3*
implemented in the critic2 program.3> Confusingly, despite the
label “similarity index”, this and similar methods actually
calculate the dissimilarity between two patterns. By using the
multi-objective search capability embedded in XtalOpt,3® we
illustrate the CSP search is able to accelerate the structural
recognition of both experimental and simulated PXRD patterns.
This strategy goes beyond the aforementioned methodologies
developed to assist CSP using crystallographic and diffraction
information.?’3° Specifically, it overcomes many of the
challenges that result from the comparison of experimental
diffraction data collected at finite temperature and pressure
with in-silico patterns calculated for geometry-optimized
structures at 0 K. Therefore, this technique becomes
particularly advantageous the reference PXRD
diffractogram diverges from the computed ground state
structure of a specific stoichiometry due to experimental
conditions (pressure, hydrostaticity, temperature, etc.) or
because of theoretical limitations; or for finding metastable
phases.

when

2. Computational Approach
2.1 Multi-objective Search

The foundation of our newly proposed technique is based upon
multi-objective global optimization,3” as implemented in the
XtalOpt code version 13.0.3¢ In this extension of the XtalOpt
evolutionary algorithm, the fitness of an individual structure can
be based upon multiple objectives, including a structure’s
energy or enthalpy, as well as other user-specified features.
After locally relaxing a structure, XtalOpt automatically calls the
external codes specified by the user to compute the desired
target properties, whose values are employed in conjunction
with the enthalpy to calculate the corresponding multi-
objective fitness. In the present work, the similarity in the PXRD
pattern of a structure compared to that of a reference (S) is
chosen as an objective to be minimized, while the enthalpy (H)
is simultaneously minimized (Equation 1). With Sg and H;
representing the numerical value of the similarity index and
enthalpy of structure s, respectively, the fitness is defined
through the following weighted sum:

Hmax HS ) (1)

Hmax -

)i

Hmin .
Here, w is the weight assigned to the PXRD similarity objective,

and Apin and A represent the minimum and maximum
value of the objective {4 = S, H} for the pool of structures. The
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weights of the objective are constrained to be a real number
between 0 and 1, and their sum must equal 1 for the calculation
of the fitness, f;. This fitness measure, subsequently, is used by
XtalOpt to evaluate the suitability of candidate structures for
the selection of the parent pool, from which new structures are
produced by applying various evolutionary operations, as
described more fully in Reference.33

2.2 PXRD-Assisted Crystal Structure Prediction

We introduce here the XtalOpt-VC-GPWDF coupled technique,
whose schematic workflow is illustrated in Figure 1, to conduct
PXRD similarity tests during the execution of the crystal
structure search. In this multi-objective search, the energy or
enthalpy (Hg; in Equation 1) is obtained from any external
optimizer of periodic systems (herein, we employ the Vienna ab
initio Simulation Package, VASP, See also Computational
Details).38 The similarity of a structure’s simulated PXRD pattern
with that of a reference (S in Equation 1) is obtained using the
newly developed variable-cell Gaussian powder-based
similarity index (VC-GPWDF),?* a modified version of de Gelder’s
similarity index,3° that ranges from O for identical structures to
1 for maximum similarity. Analogous to other methods,***2 the
similarity is evaluated between a reference PXRD diffractogram,
which can be either experimental or computer-generated, and
a second diffractogram computed from one of the XtalOpt
predicted structures by critic2,3> which also handles the VC-
GPWDF  similarity index calculation. The reference
diffractogram is input as an external list of values containing the
29 angle of diffraction, and its corresponding relative intensity
[29; 1], and then parsed by critic2. The list does not need to be
continuous, nor does it need to cover the whole PXRD
diffractogram range. In fact, a short list of a few specific indexed
peaks, or just fragments of a PXRD diffractogram, are valid
inputs as well. This aspect facilitates the PXRD-assisted crystal
structure search, and is particularly useful when multiple
phases are present in the sample, or when the noise is large in
the experimental data.
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Figure 1. Schematic workflow for conducting the PXRD-
assisted crystal structure search with the combined XtalOpt-
VC-GPWDF method.
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The initial pool of structures can be generated internally using
the RandSpg algorithm 43, or externally (e.g by PyXtal**), with
the structures subsequently being read in as “seeds”. Local
geometry relaxations can be performed with any external code
for periodic systems. The similarity index, which is used to
determine the fitness of the offspring (see below), is calculated
by critic2 using the optimized geometries of the structures
generated by XtalOpt and the input [28; /] list. The use of the
similarity index in the calculation of the fitness will steer the
evolutionary algorithm to favor those structures that better
represent the experimental PXRD as structures for the next
generation. In our implementation the nature of the
(dis)similarity does not alter the evolutionary operators used or

their probability, though one can imagine that they could.

In the original version of de Gelder’s method, a similarity index
is obtained by integrating numerically the product of the
powder patterns of both crystals. It assumes a value of zero if
the two patterns are the same (indicating that the crystals are
identical) and a value of one for completely non-overlapping
patterns. In the modified versions of de Gelder’s method
(GPWDF and VC-GPWDF) the similarity index is calculated
analytically, rather than using numerical integration, from the
list of reflection angles and intensities. This approach is more
efficient compared to de Gelder’s, since it allows for the
computation of analytical derivatives with respect to the
structural parameters, enabling the easy minimization of the
similarity index as a function of structural parameters like the
lattice strain — which is the basis of the VC-GPWDF approach.

The VC-GPWDF method is exhaustively described in ref 34
In VC-GPWDF, the
experimental powder pattern is first pre-processed to extract

herein we provide a brief summary.

the reflection angle and intensity pairs. This pre-processing step
helps in circumventing the difficulties caused when comparing
calculated structures with experimental patterns that contain
artifacts such as noise, varying peak shapes and widths, and a
background contribution. (In the present work, the user inputs
a list of [20; 1], as previously described.) Given the experimental
reflection angles and intensities, VC-GPWDF seeks lattice
deformations (strains) of the input structure that maximize
agreement with the experimental pattern. This is done by
carrying out a global minimization of the GPWDF score as a
function of the six lattice strains in the input structure, up to a
maximum strain chosen by the user. (In the present work, we
employed the default values of 10% maximum deformation
over the cell length and 5° for the angles.) By doing this, VC-
GPWODF can measure crystal similarity between structures that
are not entirely comparable due to cell deformations because
of, for instance, being determined under different experimental
conditions or, in the case of structures calculated with DFT, due
to missing vibrational effects. The final VC-GPWDF score is the
smallest GPWDF among all deformations, and is equal to zero
for identical crystals (after deformation). VC-GPWDF also
produces the cell deformation of the input structure that
maximizes agreement with the target pattern. Compared to
other programs used to perform structure determination using
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cross-correlation functions, like the Fit with Deviating Lattice
parameters (FIDEL),*> VC-GPWDF has two advantages: i) it
performs a global optimization, and therefore is unlikely to get
caught in a local minimum, and ii) it uses an analytical version
of de Gelder’s index, enabling fast local optimizations. The
whole VC-GPWDF procedure has very low computational cost,
and can take seconds/minutes on a desktop computer.

Let us now illustrate the power of this new technique for three
inorganic systems: (1) Brookite, a metastable polymorph of
TiO,; (2) sodium ramp-compressed to hundreds of GPa of
pressure; and (3) vaterite, a natural polytypic structure of
calcium carbonate. Each system will be introduced and
discussed in-depth in their specific sections, while the complete
computational details are reported at the end of this work.
These systems were chosen to limit the computational cost
while demonstrating the advantages provided by our method,
since the number of local minima scales exponentially with the
degrees of freedom, 3N+3 for a 3D crystal.*® In fact, the number
of atoms in our CSP searches is not greater than 60 per unit cell,
reached by CaCOs; with Z = 12 (See Computational Details).
However, the PXRD-assisted strategy could, in principle, be
applied to
computational resources, and on the method used for local

larger systems (depending on the available
relaxation), for which the acceleration would be even more
evident compared to random or unassisted searches.

3. Results and Discussion
3.1 TiO, — Brookite

TiO; naturally exists in three different polymorphs at ambient
conditions: Anatase (/4iy/amd), Brookite (Pbca) and Rutile
(P4;/mnm) with 4, 8 and 2 formula units (FU), respectively, in
their conventional unit cells (Figure 2). These polymorphs have
been frequently used as benchmarks for CSP methods and
related computational models.?>263043 At the PBE level of
theory, we predict Anatase as the ground state, followed by
Brookite (AE = 13.5 meV/atom) and Rutile (AE = 26.7
meV/atom), in-line with previous DFT calculations.?® Some
classic interatomic potentials developed for this system,
however, predict different stability orderings.?®
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A typical CSP search performed on TiO, will almost certainly
locate the ground state phase, in this case, Anatase (within the
PBE approximation and ensuring that the FUs considered in the
search include multiples of 4). While a standard CSP search is
also likely to discover metastable Rutile, owing to its high-
symmetry and small unit cell, Brookite may be difficult to find
due to its metastability and low symmetry. Indeed, in an earlier
study, a regular CSP search on TiO, with 8 FU found Anatase,
Rutile and Brookite as the 187t, 559%" and 1141%t crystals
optimized, respectively.?® A constrained search, where the
parent pool was restricted to those structures that possessed
an orthorhombic Bravais lattice only, accelerated the discovery
of Brookite (as the 345™ structure). Another way in which
Brookite might be found is by steering an evolutionary
algorithm with additional information, such as PXRD data, as we
illustrate below.

In the bottom panel of Figure 2, the PXRD pattern of the
geometry-optimized structures of the three aforementioned
polymorphs of titanium dioxide are plotted. The similarity to
Brookite, where the reference PXRD data was generated with
Mercury 2022.3.0%7 in the range from 1° to 120° in 29 with a
step of 0.1°, from the experimental structure collected by
Meagher and Lager at room temperature (ICSD = 36408; lattice
parameters in A: a = 5.138, b = 9.174, c = 5.449)* is also
provided. Despite the fact that the similarity index (or
dissimilarity) is low, 0.01, the DFT-optimized cell parameters are
quite different from that of the reference:a=5.192 A, b=9.274
A, c=5.509 A. In fact, if we calculated the similarity index using
the DFT-optimized structure directly, as proposed in other
methodologies (See introduction), a value of 0.17 would be
obtained (to be compared to 0.43 for Anatase and 0.93 for
Rutile). Because VC-GPWDF performs unit cell deformations,
which include varying the DFT-optimized cell parameters during
the comparison of the reference and trial structures, it becomes
possible to retrieve a nearly zero similarity index for the correct
structure. The cell parameters of the relaxed structure post-
refinement with VC-GPWDF are variedtoa =5.140 A, b=9.171
A and ¢ = 5.447 A, which almost exactly coincides with the
reference structure.
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Figure 2. Polymorphs of TiO; and their simulated powder X-ray diffraction (PXRD) patterns. Conventional unit cells of the three
natural polymorphs of TiO, at ambient conditions: Anatase (/4;/amd, 4 FU), Brookite (Pbca, 8 FU) and Rutile (P4,/mnm, 2 FU).
Titanium atoms are blue, oxygen red. Below, we show the PXRD pattern generated from the three phases (A= 1.54056 A, which

corresponds to the wavelength of Cu Ko radiation) and the corresponding similarity index calculated by VC-GPWDF using the PXRD-

pattern of Brookite as reference. The patterns shown are for the smallest similarity index that can be obtained by varying the unit

cell parameters.

Now that we have described how the VC-GPWDF method can
modulate a DFT-optimized structure, so that it provides the best
match with the reference, let us examine the optimal similarity
it provides between Brookite and the two higher symmetry
polymorphs. The main difference between the diffractogram of
orthorhombic Brookite with the one computed for the two
tetragonal phases is the number of peaks, which is much larger
in the less symmetric case. Moreover, Brookite presents three
intense peaks at low angles, two of them very close to each
other (25.3°, 25.7° and 30.8° in 29 degree, respectively), while
in the tetragonal phases, only one high intensity peak is found.
One of the reasons why Rutile has a larger similarity index to
Brookite than Anatase, is that in Anatase the intense peak is in
a range of 2 similar to where the first doublet of peaks in
Brookite is found, while in Rutile it is at a higher angle (~27°).

Now, let’s put the VC-GPWDF similarity index in action with
XtalOpt to predict the metastable, low symmetry, phase of TiO,,

Brookite. To begin, two single-objective (classic enthalpy based)
CSP runs with 8 FU in the cell (24 atoms) were performed as
reference tests generating a total of 1000 structures each (Table
1). In both searches, Brookite was not found, while the more
symmetric Anatase and Rutile were generated, in-line with
previous studies where 1100+ structures were optimized to find
the orthorhombic phase.?® Coupling XtalOpt with the VC-
GPWODF algorithm to perform the multi-objective search, it was
possible to find Brookite in shorter evolutionary searches (See
Table 1). However, this success appeared to be sensitive to the
fitness weight parameter connected to the PXRD data (Eq. 1). In
this test, Brookite was successfully found using w > 0.6
prompting us to analyze how the choice of the weight
influences the fitness of the three polymorphs of TiO, (Section
S1). The fitness is related to the probability that a structure has
for being chosen as a parent in the evolutionary search, but
there are other factors, including the symmetry and the types
of lattices in the initial pool, as well as the random parameters
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chosen during the course of the CSP, which also influence a
structure’s discovery. Though the fitness of Brookite was higher
than that of Anatase already using a weight of 0.1, this
polymorph was not discovered in our short CSP search even
when a weight of 0.3 was used. While it is probable that
Brookite could be found in fewer structures than in a regular
search (~1100) with this weight, increasing the weight to 0.6
hastens its appearance by more than a factor of two.

In the past, when the multi-objective PXRD search was not
available, it was suggested that constraining the breeding pool
to structures whose (sub)lattice was consistent with a particular
Bravais lattice or space group (potentially deduced from a
diffractogram) could be employed for unveiling the structure of
a synthesized compound.*® However, as shown in the following
two examples, the PXRD search proposed herein is preferred
since it accounts for possible variations in the crystal lattice (See
below, Na in Ramp-Compression), and constraining a CSP search
with an indexed unit cell might even be counter-productive in
some rare cases (See below, The Tricky Case of Vaterite).

Table 1. Benchmark tests on TiO,-brookite using single- or
multi-objective crystal structure prediction runs with 8 Formula
Units. The number of total structures-per-run (# Structures), the
weight assigned to the powder X-ray diffraction similarity
objective (w), and the output result of the search (if brookite
was found or not), are reported. ¢

single-objective

multi-objective

Run 1 2 1 2 3

# Structures 1000 1000 500 500 500
w 0.0 0.0 0.3 0.6 0.9

Brookite No No No Yes Yes

?1f the Pbca Brookite phase was fortuitously generated in the
initial pool by RandSpg, the run was repeated.

3.2 Na in Ramp-Compression Experiments

High-quality, and perhaps already indexed PXRD data can surely
increase the success of the multi-objective search strategy that
we describe above. However, data collected at extreme
conditions, such as in dynamic or ramp compression
experiments that explore the chemistry of the interiors of
planets or high-energy-density quantum matter,>° often require
substantial support from theory for their interpretation. In fact,
the data obtained in these experiments is obscured by noisy
background, mostly sourced by the hot plasma ablated by the
sample target during the laser irradiation,>* which jeopardizes
the indexing of weak reflection’s peaks, which might be covered
by the background. Therefore, the comparison with PXRD data
simulated from theoretical structures is often necessary to
identify a phase in shock experiments. Despite this synergistic
approach, the structural determination of new phases
measured at extreme conditions still remains a great scientific
challenge.>?

A noisy background is not the only challenge in the structural
solution from shock and ramp compression experiments. In
fact, the kinetics in dynamic compression experiments, together
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with the uniaxial orientation of the shock front can alter the
expected (theoretical) P — T path followed in a phase diagram,
greatly diverging from the ideal thermodynamic path at low
temperature, and leading to unexpected phase transitions, or
even decompositions.>® Yet, these variables are nothing but
additional coordinates of the phase diagram of a compound
that must be explored to understand the behavior of matter at
extreme conditions.>® From the theoretical point of view, this
means that the system must be simulated with techniques
beyond the standard O K DFT approximation, including quasi-
harmonic phonons to account for the thermal volume
expansion,®® or by performing expensive molecular dynamics
simulations.>> Moreover, the computational reproduction of an
anisotropic (e.g. uniaxial) compression can be a challenging task
even for simple unary systems.”® Therefore, the possibility to
perform volume-cell modulations on-the-fly, and emulate all
the effects that contribute to the divergence from an ideal
compression experiment, can become useful for a rapid, but
meaningful, interpretation of the experimental data. Below, we
illustrate the power of this approach on Na, which assumes the
iconic hP4 insulating electride phase, observed for the first time
in diamond anvil cells at ~200 GPa,*” where the electronic
structure could be rationalized using a multi-center bonding
scheme.>8

Studying Na to pressures above 200 GPa, conditions that are
accessible mostly with dynamic compression techniques, is
currently of great interest as the findings will address important
questions for theory and for condensed matter physics.>®
Therefore, recent laser-driven ramp compression experiments
where sodium was squeezed to a nearly 7-fold increase in
density at a pressure of 500 GPa (and a temperature of ~1500-
3000 K) were performed.>® In-situ XRD revealed a series of
peaks obtained at the highest pressures that could be indexed
as the hP4 phase, but the peaks observed between 242 — 292
GPa were not consistent with hP4 and were instead interpreted
as either the c/16 structure (previously observed between 108 -
120 GPa®) or an R-3m phase. A following theoretical study,®*
however, revealed that both c¢/16 and R-3m were not
dynamically stable at the experimentally attained P — T
conditions. In 0 K CSP searches hP4 emerges as by far the most
stable phase at the pressures attained in experiment, but a
subset of seven systems was also found, and computed to be
preferred at high temperatures within the quasi-harmonic
approximation.®! Unfortunately, none of their diffraction
patterns and densities were fully consistent with the
experiments.

To identify the Na structure that was likely created using ramp
compression, we carried out a VC-GPWDF assisted multi-
objective CSP search for Na at 315 GPa using the experimental
data published in Reference,>® and a weight of 0.7. In this case,
the reference list of reflection values is constituted by only six
indexed peaks (six [28; /] pairs), also to avoid contamination
from the high noise over the experimental 29 range (Figure 3a).
This search found that the phase producing the best similarity
index was actually hP4, the expected ground state at these
conditions. So why wasn’t it previously identified by either
experiment or by theory? The answer stems from the severe
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distortions the structure seems to undergo during the ramp-
compression, which cannot be emulated by the standard 0 K
DFT optimization or molecular dynamics with isotropic
pressure, but that is easily revealed by the cell-variation routine
in VC-GPWODF.

In Figure 3 we illustrate the structure of the hP4 phase as it
emerges from the DFT optimization and post-refinement with
VC-GPWDF (hP4*), coupled with the diffraction peaks that
these two phases yield overlaid on the XRD data collected by
Polsin et al.>® The main structural difference between hP4 and
hP4* is the extra anisotropic compression along the c-axis
(Figure 3b) estimated to be equal to ~425 GPa (DFT stress value)
and compared to the ~370 GPa obtained along the a- and b-
axes, causing the lowered ¢/a ratio and the increased density of
the crystal. The subsequent effect of this distortion on the
calculated diffraction lines is, on one hand, to move the (101) to
higher 28 angles, and on the other hand to almost merge the
reflections from the (102) and the (2-10) planes (Figure 3a),
matching with the doublet peaks experimentally observed at
~63°.

a 30
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Figure 3. Simulated XRD patterns and experimental lineouts of
Na structures under pressure. (a) Section of the diffraction
pattern measured by Polsin et al.>® (black line) together with the
diffraction lines calculated from the DFT-optimized (red line)
and refined (blue line) structures of Na-hP4 (A= 1.481 A, see Ref.
59), The similarity index changed from 0.991 (hP4) to 0.086
(hP4%*) upon refinement. The calibration peak in the diffraction
data is shaded in green. (b) View of the unit cell of Na-hP4 along
the (110) plane, as optimized by DFT (hP4), and after the
volume-cell refinement with VC-GPWDF (hP4*).

In Na-hP4* the density increases up to 6.3 — 6.4 g/cm3, which is
relatively high compared to what is expected from 0 K DFT
calculations on hP4.>” However, the pressure versus density
curve of sodium can deviate quite substantially from the ideal

This journal is © The Royal Society of Chemistry 20xx

trend, and produce very different results depending on the
experimental conditions.>® For example, at 300 GPa, the density
of sodium can be estimated as being ~3.5 g/cm?3 following the
Sesame principal Hugoniot, or being ~ 5.9 — 6.0 g/cm3 if
extrapolated using static compression data from the FCC and
BCC phases.”® Moreover, hP4* is calculated to be 199
meV/atom higher in enthalpy than the fully relaxed hP4
structure (while retaining all real phonons, see Figure S1), which
is nonetheless accessible based on the estimated temperature
in Polsin’s experiment (~ 2200 K).>° The weak peak at ~42° that
was previously indexed as the hP4 (101), was suggested to
indicate that multiple phases coexisted, resulting from pressure
and temperature gradients present in the sample, in-line with
prior interpretations.>®:*

Na-hP4* is a distorted structure that cannot be obtained with
classic DFT geometry optimizations
molecular dynamics simulations, since in both cases, the system

at high-pressure or

would evolve towards the most stable (relaxed) configuration.
Instead, Na-hP4* mirrors the effects of anisotropic/uniaxial
compression along the c-axis and the thermal expansion, which
are extrapolated and accessed thanks to the
refinement over the experimental data. Though, it is not
possible to unequivocally identify the phase observed by Polsin
et al.>® as hP4*, it is worth noting that the PXRD assisted CSP
with  XtalOpt-VC-GPWDF

alternatives for the interpretation of challenging data collected
52,62

iterative

could access interesting new

at extreme conditions.

3.3 The Tricky Case of Vaterite

Among the biogenic minerals, calcium carbonate (CaCOs) is
arguably the most abundant. From the three known anhydrous
crystalline polymorphs of CaCOs, calcite, aragonite and vaterite,
the latter is the least stable, but still commonly found in
nature.®3 Surprisingly, despite the nearly 100-year debate on its
crystal structure, an apparently satisfying solution was
proposed only very recently.®* Specifically, it was suggested that
vaterite should be regarded as a polytypic structure, a specific
type of polymorphism built up by a stacking of almost identical
layers, which differ in their stacking sequence. This has made
vaterite a very challenging system to solve, even combining
several experimental techniques,®* and almost impossible with
computational methods alone. In fact, though vaterite is a
relatively simple mineral (composition-wise), it cannot be
solved solely with standard CSP methods, even with the
possibility of using supercells. Therefore, what can a structure
search do to support the solution of such challenging systems?
This is what we will try to understand with this last example
using our new methodology.

The multi-objective evolutionary search coupled with VC-
GPWODF is obviously limited by the type of PXRD data used. In
this case, it was possible to retrieve two extensive lists of peaks
[29; 11 from the studies performed by Le Bail et al.> and by
DuPont et al.,’® and two CSP runs using a weight of 0.7 were
carried out using one, or the other, as a reference. In Figure 4,
we plot the energy difference (relative to calcite) vs. similarity
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index of the phases output by the CSP runs, focusing on those
identified as good matches (similarity index < 0.1).

Using the data indexed by Le Bail et al.5> (Figure 4a), it is not
surprising to see that the proposed Ama2 phase was predicted
by our PXRD assisted-CSP as the best match. However, using this
list of peaks, our search also found the Pnma structure
proposed by Meyer,%” which is ~35 meV/atom more stable than
the Ama2 phase proposed by Le Bail, as well as the P2;2;2;

70
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phase proposed by DeMichelis®® (which is isoenergetic to
Pnma). Using the second set of data, collected by DuPont et al.®®
(Figure 4b), yields different results. The structures proposed
previously by LeBail®> (Ama2), Meyer®’ (Pnma) and DeMichelis®®
(P2:212;) were still found. Notice that the similarity index of the
recurrent structures changes from one data set to another, but
it is consistently very low (< 0.1).
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Figure 4. Plot of the properties of the structures predicted with XtalOpt-VC-GPWDF for vaterite. The relative energies (using
calcite as a reference) versus similarity index generated using (a) Le Bail’s®® and (b) DuPont’s®® experimental powder X-ray

diffractograms.

Moreover, the two assisted searches have also generated new
structures having excellent similarity index and a low energy
(only ~10 meV/atom above calcite), and not proposed in past
works, which are commented on in Section S4. The most
interesting result obtained with DuPont’s data is probably the
prediction of both the C2 and C2/c structures, previously
predicted in another work by DeMichelis et al.,%° which differ by
the specific orientation of the carbonate group along the
stacking direction of the layers. These two structures are
extremely important, since they form the sub-set of phases
composing the polytypic crystal structure recently proposed.®

These results show how the coupled XtalOpt-VC-GPWDF
algorithm can support the solution of complicated crystal
structures such as vaterite, without the need of performing
crystal structure searches on supercells as large as the real
crystal, which would be computationally inaccessible. Our
method was able to generate, almost on-the-fly, most of the
crystal structures proposed for vaterite in past theoretical and
experimental works, including those forming the polytypic
structure, and ranking them by energy and similarity with the
experimental PXRD. As we have postulated, even by generating
the correct metastable crystal structure, it would have been
impossible to thoroughly solve the case of vaterite. However,
our new methodology was able to provide all the building blocks

8 | J. Name., 2012, 00, 1-3

necessary to construct the polytypic model that solves the
intricate  crystal  structure of vaterite, supporting
crystallographers dealing with such challenging systems.

Conclusions

We have introduced a powder X-ray diffraction-assisted crystal
structure prediction method that employs both the enthalpy of
a structure and its similarity index, as compared to that of a
reference X-ray diffraction pattern, in an equal footing. This
technique has been implemented within the open-source
evolutionary algorithm code, XtalOpt. The similarity index is
calculated using VC-GPWDF, a modified version of de Gelder’s
similarity index, which assesses the overlap between diffraction
patterns through a cross-correlation function upon iterative
distortions of the unit cells. Either complete or partial PXRD
patterns can be used to assist the crystal structure predictions,
which can depend on the availability and quality of the
experimental data. This similarity index is then used to
determine the value of the fitness in XtalOpt’s multi-objective
global optimization process. Our method is shown to be optimal
for identifying metastable phases, facilitating the identification
of polymorphs in inorganic samples, and aiding in the analysis
of structures distorted by the extreme conditions created in
shock and ramp compression experiments. Moreover, it is also

This journal is © The Royal Society of Chemistry 20xx



effective in identifying challenging structures such as polytypic
systems. Thanks to the cell-variation procedure, it is likely that
a target structure might also be found from geometries
optimized at low levels of theory (e.g. DFTB, machine-learned
potentials, low energy cut-offs or sparse k-point meshes).
However, care would need to be taken so the computational
parameters employed can determine the relative energetic
order of different phases, and yield sufficiently accurate forces
to ensure reasonable optimizations. We believe that the
coupled XtalOpt-VC-GPWDF tool will be highly beneficial for
crystallographers,
geochemists for the solution of challenging structures at

chemists, materials scientists and

ambient and extreme conditions.

Methods
Computational Details

The open-source evolutionary algorithm XtalOpt333¢ version
13.0 was employed for crystal structure prediction, using the
multi-objective fitness measure. The parameters employed in
XtalOpt are thoroughly described in Ref. 22. The initial
generation consisted of random symmetric structures that were
created by the RandSpg algorithm,*? except in the case of
CaCOs, where the initial generation was created externally with
PyXtal** then imported as seeds, using Ca atoms and COs
trigonal planar units. PyXtal was employed for this purpose,
because the generation of symmetric crystals containing
molecular fragments for the initial pool of structures is not
implemented in XtalOpt. The number of initial structures was
equal to 50 in all cases. We believe that the first generation of
structures could be improved using automated classifications’®,
by generating a more accurate initial pool of structures,
focusing on the most probable space groups identified by the
machine learning engine, a possibility that we will explore in
future works. The number of formula units (FUs) was set equal
to 8 in the case of TiO; to automatically cover the FU of all the
natural polymorphs, i.e. Anatase (4 FU), Brookite (8 FU) and
Rutile (2 FU); 4, 6, 8, 12, 20, 24 and 32 in Na; and 4, 6, 8 and 12
in CaCOs. A sum of the atomic radii scaled by a factor of 0.7 was
used to determine the shortest distances allowed between
pairs of atoms. Duplicate structures were identified and
removed from the breeding pool using the XtalComp
algorithm.”* For the TiO,-brookite test, the total number of
generated structures could vary from 500 to 1000 (see Section
TiO; - Brookite). For the tests performed on high-pressure Na
and CaCOs;, the total number of generated structures per run
was equal to 1000. Each structure search followed a multi-step
strategy, with three subsequent optimizations with increased
level of accuracy, plus a final accurate single point (see below).
Geometry optimizations and electronic structure calculations
were performed using Density Functional Theory (DFT) with the
Vienna Ab Initio Simulation Package (VASP), version 6.4.2.38 The
PBE72 exchange-correlation functional was employed. The
projector augmented wave (PAW) method’3 was used to treat
the core states in combination with a plane-wave basis set with

This journal is © The Royal Society of Chemistry 20xx

an energy cutoff of 500 eV. The O 2s22p* (PAW_PBE O_s), Ti
3d34s! (PAW_PBE Ti), Na 2p®3s! (PAW_PBE Na_pv), Ca 3p64s?
(PAW_PBE Ca_pv) and the C 2s?2p? (PAW_PBE C_s) states were
treated explicitly. The k-point meshes were generated using the
r-centered Monkhorst-Pack scheme,’* and the number of
divisions along each reciprocal lattice vector was selected so
that the product of this number with the real lattice constant
was greater than or equal to a given value. The values of 20, 25
and 30 A were used for the three subsequent optimization steps
in the crystal structure search of TiO, and CaCOs, then a value
of 50 A was used for the final single point. In the case of sodium,
a value of 40 A was used at each optimization step, and one of
50 A for the final single point. The accuracy of the energy
convergence was set to increase from 103 to 10 eV for the
optimizations, and to 10 for the final single point on the
structures for which the norms of all the forces calculated
during the relaxations were smaller than 103. A Gaussian
smearing was used at each optimization step, and for each
system with a sigma of 0.02 eV. The tetrahedron method was
adopted in the last single point.”>

CSP methods employ metaheuristic algorithms, which do not
always guarantee that the optimal solution, or set of optimal
solutions are found. Therefore, in addition to varying the
parameters employed in a standard CSP search,?? a user may
need to perform searches where the weights in the objective
function are varied (asin Sec 3.1), or explore a range of potential
solutions identified by plotting the enthalpies of the optimized
structures versus their similarity index (as in Sec 3.3) to find the
most likely candidate structure.
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