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Nonlocal, integral operators have become an efficient surrogate for bottom-up homogenization, due to their ability to
represent long-range dependence and multiscale effects. However, the nonlocal homogenized model has unavoidable
discrepancy from the microscale model. Such errors accumulate and propagate in long-term simulations, making the
resultant prediction unreliable. To develop a robust and reliable bottom-up homogenization framework, we propose a
new framework, which we coin Embedded Nonlocal Operator Regression (ENOR), to learn a nonlocal homogenized
surrogate model and its structural model error. This framework provides discrepancy-adaptive uncertainty quantifica-
tion for homogenized material response predictions in long-term simulations. The method is built on Nonlocal Operator
Regression (NOR), an optimization-based nonlocal kernel learning approach, together with an embedded model error
term in the trainable kernel. Then, Bayesian inference is employed to infer the model error term parameters together
with the kernel parameters. To make the problem computationally feasible, we use a multilevel delayed acceptance
Markov chain Monte Carlo (MLDA-MCMC) method, enabling efficient Bayesian model calibration and model error
estimation. We apply this technique to predict long-term wave propagation in a heterogeneous one-dimensional bar,
and compare its performance with additive noise models. Owing to its ability to capture model error, the learned ENOR

achieves improved estimation of posterior predictive uncertainty.
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1. INTRODUCTION

In many real-world applications, the analyzed physical system is a complex multi-scale process, which often starts
from a sequence of mechanical cues at the microscale, and results in the propagation of properties at the macroscle.
However, microscale simulations are often infeasible due to high computational costs. To mitigate this challenge,
upscaled models are often needed, which can be employed in large scale long-term simulations to inform decision
making. For this purpose, various multiscale approaches and homogenized surrogate models were developed [1-11].
Examples include partial differential equation (PDE)-based approaches with effective coeflicients [12,13], particle-
based methods that replace clusters of particles with larger particles [14—16], nonlocal models that capture long-
range microscale effects via integral operators [17-27], and several others. Among these approaches, nonlocal models
[28-34] stand out as relatively recent yet powerful tools [17-20,27,35-38] as their integral nature naturally embeds
length and time-scales in their definition [28] allowing them to capture macroscale effects induced by a heterogeneous
microscale behavior.

However, despite being appropriate for homogenization tasks, nonlocal models present several challenges. As an
example, in heterogeneous materials modeling, the material’s response depends on mechanical and microstructural
properties, and hence requires a material-specific homogenized nonlocal model. In practice, a nonlocal model is deter-
mined by the definition of its “kernel” whose functional form and associated parameters are not known a priori. Thus,
to accurately capture the effects of micro-scale heterogeneities at the macroscale and provide reliable and trustworthy
predictions, it is necessary to estimate appropriate nonlocal kernels. The paper [39] introduces the nonlocal operator
regression (NOR) approach, a data-driven technique for the identification of the nonlocal kernel that best describes a
system at the macroscale. We refer the reader to [22,39-45] for several examples of machine learning-based design of
homogenized nonlocal operators, and to [25,46] for the rigorous analysis of its learning theory.

While NOR provides accurate and reliable deterministic nonlocal homogenization models from data, it introduces
unavoidable modeling errors due to the discrepancy between the “surrogate” nonlocal model and the ground truth sys-
tem. In long-term simulations, such a modeling error may propagate and accumulate over time. Hence, it is desired to
characterize the discrepancy between the nonlocal model and the true governing equations to estimate the predictions’
uncertainty. In our prior work [47], we introduced the Bayesian nonlocal operator regression (BNOR) approach, which
combines Bayesian inference [48—59] and NOR to estimate model uncertainty under the assumption of additive inde-
pendent Gaussian noise in the data. Specifically, we modeled the discrepancy between high-fidelity data and the NOR
model as additive independent identically distributed (iid) noise, and tested the method in the context of stress wave

propagation in a randomly heterogeneous material [47]. However, the additive iid noise assumption is more suited for

International Journal for Uncertainty Quantification



10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

Embedded Nonlocal Operator Regression 5

representing measurement noise rather than a modeling error; this happens because the model discrepancy is expected
to exhibit a significant degree of spatial correlation depending on the degree of smoothness in the solution and data.
Ignoring this correlation may lead to over-confidence and low posterior uncertainty in the inferred parameters, with

consequent over confidence in posterior predictions of the quantities of interest (Qols) [60].

To better represent the discrepancies due to model error, state-of-the-art additive model error techniques augment
the predictive model’s output with a Gaussian process (GP)[54,61]. The additive GP provides extensive flexibility in
correcting model outputs and fitting available data with a parameterized correlation structure, resulting in meaningful
predicted uncertainty. However, adding a GP to model outputs in the context of physical systems may compromise
adhering to physical constraints and governing equations; in fact, while a physical model prediction y = f(z) is

expected to satisfy relevant physical laws, a GP-augmented prediction y = f(z) + €(«) may not in principle [62].

To address the shortcomings of additive GP constructions in physical models, embedded model error construc-
tions were introduced in [62,63]; here, specific model components are augmented with statistical terms. Specifically,
random variables are embedded in the parameterization of certain model elements based on approximations or mod-
eling assumptions. As a result, this approach enables Bayesian parameter estimation that accounts for model error
and identifies modeling assumptions that dominate the discrepancies between the fitted model and the data. To our

knowledge, embedded model error applications have relied on random variable embeddings and not GP embeddings.

In this work, we introduce a Bayesian calibration technique based on GP embeddings applied in the context of non-
local homogenization. In particular, we augment the nonlocal kernel with a GP to represent model error in the kernel.
Then, we use Bayesian inference to learn the posterior probability distributions of parameters of the nonlocal consti-
tutive law (the nonlocal kernel function) and the GP simultaneously. To make the solution of the resulting Bayesian
inference problem feasible, we employ the Multilevel Delayed Acceptance (MLDA) MCMC [64,65] method, which
exploits a hierarchy of models with increasing complexity and cost. We illustrate this method using a one-dimensional
nonlocal wave equation that describes the propagation of stress waves through an elastic bar with a heterogeneous

microstructure.

We summarize our contributions in the following list.

e We propose the Embedded Nonlocal Operator Regression (ENOR) approach, which consist of augmenting a
nonlocal homogenized model with modeling error with the purpose of capturing discrepancy of the predictions
with respect to high fidelity data. In particular, we embed a GP in the nonlocal kernel to characterize the spatial

heterogeneity in the microscale.
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6 Yiming Fan, Habib N. Najm, Yue Yu, Stewart Silling & Marta D’Elia

e The model is inferred from high-fidelity microscale data using MCMC, which learns the parameters of the
nonlocal kernel and the correction term jointly. To alleviate the cost associated with costly likelihood estimations

in MCMC, we use a multi-level delayed acceptance MCMC formulation.

e Toillustrate the efficacy of our method, we consider the stress wave propagation problem in a heterogeneous one-
dimensional bar. A data-driven nonlocal homogenized surrogate is obtained, together with a GP representing
the kernel correction. Compared to the previous work which learns an additive noise [47], the embedded model
error correction formulation successfully captures the discrepancy and provides an improved estimation of the

posterior predictive uncertainty.

Paper outline. In Section 2, we review the nonlocal operator regression approach and the general embedded
model error representation formulation. Then, in Section 3 we propose the ENOR approach, together with a MLDA-
MCMC formulation which uses a low-fidelity model to accelerate the expensive likelihood estimation. In Section 4,
we examine the posterior distribution and the prediction given by the algorithm. Section 5 concludes the paper with a

summary of our contributions and a discussion of potential follow-up work.

2. BACKGROUND AND RELATED MATHEMATICAL FORMULATION

Although the proposed method is generalizable to other homogenization problems, for the purpose of demonstration,
in this paper we consider the numerical solution of a wave propagation problem in the spatial domain Q C R? and
time domain [0, T'], where d is the physical dimension. Given S observations of forcing terms f*(z, ), we define the
corresponding computed high-fidelity displacement fields D := {u$,yg}5_, as the ground-truth dataset. Here we
assume that both f* and u}, ¢ are provided at time instants t™ € [0, 7] and grid points z; € Q. Without loss of
generality, we assume the time and space points to be uniformly distribute, i.e. in one dimension, the spatial grid size
Ax and time step size At are constant. We denote the collection of all grid points as x = {xi}le. The purpose of
this work is to develop a Bayesian inference framework, which learns the nonlocal model from D together with its
structural error.

Throughout this paper, for any vector v = [vy, -+ ,v,] € R, we use ||[v]] . := /> 7_, v? to denote its [* norm.

For a function u(x, t) with (z,t) € Q x [0, T}, its discrete /?> norm is defined as

T/At

[ullp@xorp) = 4| AtAZ Z Z(U($iatn))27

n=0 z;EX
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Embedded Nonlocal Operator Regression 7

which can be interpreted as a numerical approximation of the L(Q x [0, T]) norm of u.

2.1 Nonlocal Operator Regression

In this work, we consider the nonlocal operator regression (NOR) approach first proposed in [40] and later extended in
[22,25,39,42,46]. NOR aims to find the best homogenized nonlocal “surrogate” model from experimental and/or high-
fidelity simulation data pairs. Herein, we focus on the latter scenario. Given a forcing term f(z, ), (2,t) € Q x [0, T]
and appropriate boundary and initial conditions, we denote the high-fidelity (HF) model as

azuHF
ot?

(z,t) = Lurlunr)(z,t) = f(z,1). )

L r is the HF operator and up p(x,t) is the solution of fine-scale simulations. NOR assumes that nonlocal models

are accurate homogenized surrogates of the HF model; a general nonlocal model reads as follows:

82uNL
ot2

(z,t) = Lyrluni](x,t) = f(z,1), 2)

where the nonlocal operator £, is an integral operator of the form

Lo = Lo [u] (2, 8) = / Ko, y)uly, t) — ulz, t))dy. 3)

QNBs(x)

Here, Bs(r) := {y € R%, |x — y| < &} denotes the interaction neighborhood of the material point x. We further
denote Q5 := {z € Q|dist(z,R¥\Q) < 8} is the nonlocal boundary region, 2 := 2\ as the “interior” region
inside the domain. C := {C,, }M_ is the set of parameters that uniquely determines the kernel K. We claim that
for the same forcing terms f(z,t), the corresponding solution, uy (,t), (z,t) € Q x [0,T7], of a nonlocal model
provides an approximation of the ground-truth data, i.e., un, (2, 1) ~ upns(x,t). Here, aradial kernel, K¢ (z,y) :=
Kc(Jy — zl), is employed. This widely adopted setting guarantees the symmetry of the integrand in (3) with respect
to x and y and induces the conservation of linear momentum and Galilean invariance [38,42,66,67]. In fact, such

property allows us to write:

Kc(z,y)(u(y,t) —u(z,t)) = % [Kc(lz —y)(u(y, t) —u(z,t) — Ke(ly — |)(u(z,t) —u(y,t)]. 4

Volume x, Issue x, 2017
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1 As done in previous works[47], we represent the kernel using a linear combination of Bernstein-polynomials, i.e.,

z

1

2\ _ < C
Ko <5> - Z 5d+2BmaM<
m=0

)7 By (z) = <Z>zm(1 — )M for0< 2 < 1. 5)

2 Note that this construction makes K¢ continuous, radial and compactly supported on the ball of radius & centered at
3z, also guarantees that (2) is well-posed [68].

4 To find the nonlocal model that best describes the high-fidelity data, we aim to find the kernel parameters C such
5 that for given loadings f®(x,t), the corresponding nonlocal solutions u%; L7C(x, t) in (2) are as close as possible to
6 the HF solution u$, 5 ¢ (,t). To numerically solve (2), we use a mesh-free discretization of the nonlocal operator and

7 a central difference scheme in time, i.e.

n

(U?\/L,C)?Jrl =2(uNr,c)i — (U%L,c)?_l + AL [ (2, 1") + AL (EKc,h[uivL,c])i
=2(ulr,c)i — (U?\/L,c);hl + AL 5 (i, ")

+ AP Az Z Kc(lzj — i) (unp,c)} — (uye.c)i)s (6)
z;€Bs (zi)Nx

8 where (G )i denotes the nonlocal solution at (z;,t"), and Lk p is an approximation of L by the Riemann

9 sum with uniform grid spacing Ax. The optimal parameters C* can be obtained by solving the following optimization

10 problem
Gl ||u?VL,C _uSDNSHl22(Q><[OT]) 2
C* :argminz - 5 —= + A|[C| 52, N
C = lubnslliz@xpm
s.t. K¢ satisfies physics-based constraints. ®)

11 Here, A is a regularization parameter added to guarantee the well-conditioning of the optimization problem. The
12 physics-based constraints depend on the nature of the problem, in the case of stress waves, we impose homogenized

13 properties of plane waves propagating at very low frequency [39], i.e.

/ ly — 2’ Kc(|y — 2|)dy = 20, )
Bs(x)

[ - alKelly - ady = ~soci (10)
Bs ()

14 The density p, the effective wave speed ¢y and R, the second derivative of the wave group velocity with respect to

International Journal for Uncertainty Quantification
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Embedded Nonlocal Operator Regression 9

the frequency w evaluated at w = 0, are obtained the same way as in [47], for both periodic and random materials.
Without loss of generality, we demonstrate the idea in 1D wave propagation problems. Numerically, we impose the

physics constraints by approximating (9) and (10) via a 1D Riemann sum:

Z |x; — .’I,‘,;|2Kc(|:L'J' — x;|)Az = 2pc3, (11)

x;€Bs (xzi)Nx
47 3

Z |zi — 2| Ke(|zj; — xi) Az = —8pcyR. (12)

x;€Bs (xi)Nx
By solving the above linear equations, one can explicitly express Cps—; and C'py as linear functions of other parameters.
Then, (7) becomes an unconstrained optimization problem of {C,,, }ﬁf;ﬁ For further details we refer interested readers

to [25].

We note that in (6), the numerical approximation (u% LVC)"+1 is calculated based on the numerical approximation
of the last time instance (ujy;, ¢);'- As such, the numerical error accumulates as 7 increases, and (7) aims to minimize
the accumulated error. Alternatively, one can also choose to minimize the step-wise error [25,46], by replacing the

approximated solution at the last time instances, (uy, o)™ and (uy L7C)”*1, with the corresponding ground-truth

data (u$, yg)™ and (usyg)™ " in (6):

(ﬁﬁvL,c)?H = 2(ubng)r — (uhng)i ™+ AL f (24, 1") + A (Lo nlubns])]
=2upns)i — (Wpng)i ™+ AL (@i t") + AN Y Kellay — zi)(ubns)] — (Whns)i)-
z;EBs (xi)Nx
This formula provides a faster approximated nonlocal solution at the cost of physical stability, which plays a critical

role in long-term prediction. Therefore, in this work we aim to minimize the accumulated error by considering (6).

2.2 Embedded Model Error

In this section we introduce the embedded model error procedure developed in [62,63], which relies on a Bayesian
inference framework for the estimation of the model error, with the identification of the contribution of different error
sources to predictive uncertainty. This is a natural setting for calibrating a low fidelity (LF/here NL) model against a
higher fidelity (HF/here DNS) model accounting for uncertainty. Here, we assume that any discrepancy between the
two models’ predictions is due to model error, and not to other sources such as measurement error. Thus, to model this

discrepancy, we do not pursue traditional approaches that introduce independent identically distributed (iid) additive

Volume x, Issue x, 2017



10

11

12

13

14

15

16

17

18

19

20

21

22

10 Yiming Fan, Habib N. Najm, Yue Yu, Stewart Silling & Marta D’Elia

Gaussian noise. Kennedy and O’Hagan [69] introduced the use of an additive Gaussian process (GP) to capture the
structure of the discrepancy between two models, where the flexibility of the GP allows one to adequately capture the

discrepancy in the predictions induced by the model error.

In this setting, denoting by ¢; the data generated from the HF/DNS modeln(o;), and by ((0;, A) the one generated
from the LF/NL model, where A is a set of model parameters to be estimated, at operating conditions o; (e.g. spatial

or temporal coordinates), for j = 1,2, ..., N observations, the additive GP construction can be written as

q; = (o, A) + Az, «, &) (13)

where A(z s O, &) is a GP with parameters « evaluated at the discrete spatial locations x 7> and with iid standard normal
stochastic degrees of freedom &. This representation and the related approach have found extensive use, e.g. [70-72], as
they allow for avoiding the overconfidence that comes from ignoring model error in model calibration whether against
another model or actual observations. However, the additive GP construction presents some challenges in calibrating
physical models [62], which motivated embedding model error terms into the LF model. In our present notation, this
can be written as

q; = h(0j7&7 E,) = C(0j7AaA(xjv &, Ev))v j =1.N (14)

where & = (A, «). We note that in the literature the use of model error embedding has relied on a simplified version
of the above, where the error term is the random variable A(«, ), i.e., lacking the spatial dependence, rather than a
GP [62,63,73-75]. This simplification might be necessary because of lack of data or computational constraints and it
comes with loss of flexibility in the model error representation. In this work, we retain the full GP formalism, as in
(14). It is also important to point out that one key benefit from model error embedding is that the analyst, knowing
where approximations have been made in the computational model at hand, can embed model error terms as diagnostic
instruments in different parts of the model. Identifying the structure of the discrepancy between the two models by
model error embedding, can highlight the modeling assumptions that are likely the dominant source of predictive
discrepancy. Similarly, the specific form of embedding can be employed as a diagnostic instrument to identify, e.g. the

quality of one submodel correction versus another.

International Journal for Uncertainty Quantification
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2.3 Likelihood Construction

In order to find the posterior distribution of the model parameters, we use Bayesian inference to estimate &. Given

data D, we write Bayes’ rule, expressing p(&|D), the posterior density of & conditioned on D, as

p(&[D) = Zw ()

where p(D|&) is the likelihood, p(&) is the prior, and p(D) is the evidence which can be treated as a constant in
the parameter estimation context. Implicit in the above is also the conditioning on the NL model being fitted, which
we leave out for convenience of notation. A key step in obtaining the posterior distribution is the construction of a
justifiable likelihood. In general, this is a significant challenge [62,63] where alternate approximations are possible.
One convenient approximation, which we choose here, is to use Approximation Bayesian Computation (ABC), a
likelihood-free method [76-78] that is often necessary to deal with the challenge of computing expensive/intractable
likelihoods. Rather than relying on a likelihood to provide a measure of agreement between model predictions and
data, ABC methods rely on a measure of distance between summary statistics evaluated from the two data sources.
With the summary statistics on the model output .Sy, and those estimated from the data S,, ABC relies on a kernel

density g(z) (a Gaussian), a distance metric d(Sy,, Sy), and a tolerance parameter € to provide a pseudo-likelihood:

L(&) = e 'g(e"d(Sh, S,)) = ! exp <_d(Sh’S‘1)Z) .

eV2m 2¢?

Here, for the definition of the distance, we follow [62]. We consider the mean p; = E¢[h(0;, &, &)] and standard
deviation 0; = o0¢[h(oj, &, &)] statistics from the computational model predictions and subtract them to the data
¢; and a scaled absolute difference between the mean prediction and the data y|u; — g¢;| respectively, where 7y is a

user-defined parameter. With this, the ABC likelihood reads

1 N )2 vl — ai)?

j=1

The motivation for this construction is the desire to require the Bayesian-calibrated model to achieve two goals: (1)
fit the data in the mean, and (2) provide a degree of predictive uncertainty that is consistent with the spread of the
data around the mean prediction. In particular, this second requirement provides protection against overconfidence

in predictions, ensuring that predictive uncertainty is representative of the discrepancy from the data resulting from

Volume x, Issue x, 2017
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model error, irrespective of data size.

3. NONLOCAL OPERATOR REGRESSION WITH EMBEDDED MODEL ERROR

In this section we introduce the embedded treatment of nonlocal operator regression, along with implementation

details.

3.1 Mathematical Formulation

We propose the embedded nonlocal operator regression (ENOR) construction, which aims to quantify the model
error in nonlocal operator learning using Bayesian inference. In particular, we incorporate a location-dependent GP,
K¢ (z, ), to represent embedded model error. Here, this Gaussian random field is defined on Q x €2,, where Q is the
spatial domain together with the nonlocal boundary region, and €2, is the sample space of a probability space. The
dependence on the GP parameters is implicit, and is suppressed here for convenience of notation. To account for the

structural error of learning a homogenized kernel K¢, we modify (3) as:

T+y .
Lonslilir. )= [ (Koly=a (141 (“51.0) ) ) w0 w9
Bé x
Here the GP K¢ (z, ) is defined by a zero mean and the following covariance function:

Cov(Ke(x), Ke(y)) = Uép exp <_|xlg_py|) ’

with 0, and [, being learnable parameters. Then, the nonlocal model (2) is modified as

2
O“ugnNL

g (@t - Lenrlupnc)(z,t) = f(z,1). (18)

Note that the corrected kernel preserves the symmetry property in (4)

Key o) (14 Ke (2.0 ) = Koo -l (14 e (L2 50) )

and correspondingly the fundamental momentum preserving and invariance properties. Here, we allow the embedded

model kernel to be location-dependent, to capture the modeling error introduced by the homogenized surrogate with a

radial kernel K c. As a result, the corrected kernel is no longer radial, but it satisfies the physical requirement of being

International Journal for Uncertainty Quantification
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1 symmetric with respect to x and y .

2 To represent the GP, we use the Karhunen—Logve expansion [79,80] (KLE), i.e.,
Ke(, @) = 005 ) VAibi(@)&i(@), (19)
n=1
3 where (A;, ;) are eigenpairs of the kernel function exp (— ] ) , and &; are independent standard normal random
gp
4 variables. The analytical expression of the eigen-pairs can be found in [81], written fori =1, ... as
A = 2/lgp
b (g i
di(x)="1 (cos(wiw) + sin(wim)) , (20)
lgpwi
1 | sin(2w; L) 1 1
=4 (L0 2 (1 - 2) - 2w;L) — 1
e {5 (204 () + B0 - () - etz - 1))}

5 where L is the length of the domain, T is a normalizer, and the w; are obtained by solving the following equation

(w? = (1/1gp)?) tan(w; L) — 22 =0, i=1,2,.... @

lgp

We truncate the summation up to R terms for computational purpose, where R is chosen such that

R o
D A=09) A
1=1 1=1

6 Substituting (19) into (17), we obtain:

2
ag%(xﬂf)*/ ( )Kc(‘y*fﬂD(l+O'gp‘I’TE,)(’U,ENL(y,t)7UENL(:)Z,t))dy:f(x,t), (22)
B§ T

where

S (i S (5 W (it 75 BN WY (sl T, £:=[&1,....Ex]T.
(57) = [vme (5" Sl

7 With the KLE we get a realization of the GP by generating a sample of &. Then, the numerical scheme in (6) can

8 be employed to evaluate the solution. Denoting (u3; Lc)?;:l = uhnpc(@, ", &) as the numerical solution at

Volume x, Issue x, 2017
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(x;,t™*1) for the s-th sample and k-th GP realization, we have

(uSENL,C)ZZ] =2(upNr,c)in — (USENL,C)ZZI + AL [ (2,17

T
Tj+ T s n s n
+ At Az Z Kc(|zj — i) (1 + 04, ( : > ) £k> (ene,c)ie — WENL.C)ik),  (23)

IJ‘GB& (:Ei)ﬂx

where &, is the k-th realization of the random vector generating the corresponding GP. Similarly, the step-wise version

of the embedded nonlocal model can be written as

(@unr.c)it' = 2Wwhns)i — (Whns)i ™ + AL f* (24,7
x4\
iarar Y Kol - i) (1 o (U5 q) (upns)} ~ (ibws)?) 4
x;€Bs (zi)Nx
To effectively evaluate the pseudo-likelihood, we employ the expression (16). Note that the generated eigenpairs
(Ai, ®;) are dependent on [4,. Since optimizing with respect to [y, together with the other parameters is computa-
tionally infeasible, we treat /4, as a tunable hyperparameter, and perform our ENOR algorithm for a fixed /4, at a time

to avoid the repeated cost of (20) and (21). Therefore the enhanced parameter set & = (C, 0, l4,) Will be reduced

to & = (C, 0yp). For each observation, we have the following ABC likelihood

L(&) :=p(D|(C, 04p))
S,L,T/At

1 S n S n S n
= H exXp (_262 ((ub(xi’t ) - UDNS(xi’t ))2 + (O-C('ru ) V|Hc($u ) UDNS(xi’t >|)2)> )
s,i,n=1
(25)
where
| X
ue(z, t") = ?§ UENL,C)iks (26)
K
clx,t") = K — 1; upnr.o)ie — He(@i, th))? (27

are the sample mean and standard deviation for (u3; L o) and (uf L )7, for K samples of &, and with the current
value of 0.

In [47], we found that a good prior distribution plays a critical role in achieving a fast convergence of the MCMC
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algorithm and we used the learnt kernel parameter Cy from a deterministic nonlocal operator regression (DNOR) to
construct such a prior. To provide a prior on C, we use independent standard normal priors on the kernel parameters
Cm ~ N(Com,6%), m = 1,..M — 2, with Cy being the learnt kernel parameter from DNOR, and the standard
deviation 6 as a tunable hyperparameter. In practice, since oy, > 0, we infer In(o,) instead of o,,. To get an initial
state for In(0y,), we optimize the following

S,L,T/At
In(ogp0) = ?ﬁ%gi?zld s ;:_1 (& (i, t") = upns (@i, 1) + (05 (i, ") = VIug (i, t") — upng (@i, t™))
(28)
and assign a uniform prior on In(0,,,), specifically In(o ;) ~ U[In(0’e)), In(0l?)]. We treat 0, and o7/, the lower and
upper bounds on 0, as tunable hyperparameters. Once the proposal for In(o,,) exceeds the bounds, the log-posterior
will be set to —oo automatically. Combining the likelihood in (25) and the prior (with In(o,,) € [In(0), In(o?i))),
we can finally define the unnormalized posterior p(C, 04,|D) x p(D|C, 04,)p(C, 04p)) and obtain the negative

log-posterior after eliminating the constant terms:

S,L,T/At C -Gyl
S (e 1) — b . 4m))2 S (s 7)) — S (e 1) — b NP ||_O||lz
S (bl t) — s (e ) + (0 ) — Vb (e ) — ubns e ) + o SO
s,i,n=1
(29)

3.2 Implementation Details

J j+1
b7 b7

F
Fine chain ‘ ! ‘

0 }lew =0 Cnsub

@ comsecrn @~ QO O O @ @)

Sample {82, 6,..., 625"} through single level MCMC

Fig. 1. Schematic of generating a proposal 0’ for a two-level MLDA algorithm.

As can be seen from (29), the evaluation of the posterior requires the estimation of the first and second order
moments of the output using K GP samples. For each sample, the nonlocal meshfree method (23) is applied for each
spatial point, time step, and observation, making this numerical evaluation expensive in MCMC. In order to improve

the efficiency of the MCMC procedure, we employ the Multilevel Delayed Acceptance (MLDA) MCMC technique
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[64,65], which exploits a hierarchy of models of increasing complexity to efficiently generate samples from an un-
normalized target distribution. For the purpose of illustration, we summarize the key factors of two-level Delayed
Acceptance (TLDA) MCMC here, while the method could be extended to a model hierarchy with arbitrarily many
levels by recursion. For the vanilla Metropolis-Hastings (MH) algorithm which is a typical single level MCMC, con-
sider sampling a trace {0!, ..., 0™sinaic} from a target distribution 7 (+), using a proposal distribution 7, (--), and an

initial state 6°. MH accepts a new proposal 0"% given 87 for j = 0, 1, ...n4i5 g — 1 With probability

i [, O 010
" m(89)mp(Onew|er) [

otherwise it rejects 0"¢% and sets 07! = 07, In the context of Bayesian inference, the MH target distribution is
the posterior distribution, i.e. m¢(6|D) = p(6|D). Unlike the vanilla MCMC which has only one model, in TLDA,
a cheaper model is employed to reduce the computational cost. Fig.1 illustrates the work flow for TLDA, where the
coarse subchains are sampled in order to provide proposals for the fine model. Denote by F the fine forward model
and by . the coarse forward model, with 7 and 7. being their target distributions respectively. Starting from 0%, in
the coarse level, one can generate the subchain {0}, 02, ..., 07su*} of length 4,5, using MH or any single-level MCMC

method. After the subchain is finished, we take 67" as the proposal for the fine chain (i.e. 0% = 0¢+»*) and accept

enew ¢ ej
min{l,ﬂW}, (30)
(6% )me(07°)

this proposal with probability

otherwise reject 9}“5“’ and set 9;“ = Bgc [65].

When the approximation provided by the coarse model is poor, many samples will be rejected by the fine model
resulting in a very low acceptance rate. As outlined in [65], an enhanced Adaptive Error Model (AEM) based on
[82] is useful to account for and correct the discrepancy between the fine and coarse models. We use the two-level
AEM [65,82] in the present use of TLDA. For parameters & and operating conditions o, the bias B(0) between the
two models can be written as

B(O) = ]:f(oa &, E,) _]:C(Oa &, E,) 3D

When the parameter set & is sampled from the prior distribution, then

B(o) ~ Fs(o, &, &) — Felo, &, &).
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Denoting the fine model solution as u%y; o(i,t", &) = ugny (C,In(0,y), &)}, the coarse model (the step-
wise nonlocal model) solution as gy, (i, 1", &) = Upng(C,In(ogy), £)F, and the trainable parameter set as

B :=(C, In(oyp), &), we have the following sample mean and standard deviation for the correction term

IE[B:"] = p¥(z;, t") — 0¥ (i, "), (cAr[Bf’"])2 = (O‘S(l‘i,tn))z — (&% (, 1)), (32)
where
W (@, ") = IAE[}[UENL (B)i] Z wonr, (Bno )i
’I’LU 1
"
s n y1/21 s N s Q n s
0* (wist") = Vi lwbnp (B)F] = \ | =7 D (e (Bua)} — 0, t7))7,
! (33)
(g, t") = EB[UENL B Z UpNL f’no )
’I’LU 1
R
~s 1/2r~ 0 ~S QR s
0" (i, 1) = VPl (B = | 7 2 (s (B )i — 12 1))
no:l

Here, Ny is the number of samples of E, which will be used for computing the sample mean and standard deviation.
We highlight that the enhanced model parameter set & = (C, In(0y,)) should be sampled simultaneously with &. In
contrast, i and o are calculated by averaging over multiple samples of & only, for each fixed enhanced parameter set
& = (C,In(0oyp)) in (26). In other words, the sample moments computed in (33) are to be used for correction for any

parameter & inside the prior distribution instead of a fixed parameter.

By using the AEM technique, (29) can be well approximated by the coarse model following

S,L.T/At
5o Y (Bt + BB — ubys(ait")
s,i,n=1 (34)
s,m ~8 n i s,m s n\\2 ||C_CO||l22
+ (/ (6& (@4, 7)) +V(BI™) =yl (24, t7) + B(BI™) — uh v g (@i, t7)) D—'_Tv

where E(Bf ) and V(Bf ") are the sample mean and variance for the correction term B computed using (33). Tech-
nically, this step is also a reference for tuning the upper and lower bounds for the prior distribution of In(og,). Such
an interval should be selected in such a way that at least at C = C, the log-negative posterior in (34) which is ap-

proximated by the coarse model and the AEM could roughly reproduce the log-negative posterior in (29) which is
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generated using the fine model. We summarize our method in Algorithm 1.

Algorithm 1: A Two-Phase Learning Algorithm

1: Find a good initial state

1a) Learn the estimated kernel parameter, Cy = Cj i, ..., Co pr—2, by minimizing the time-accumulated
error via

| UNL,C uDNSHlZ(Qx[O T

Co = argmlnz LAl (35)

(SR ||“DNS||12(Q><[0,T])
1b) With fixed C = Cj, find In(0, ¢) by minimizing

S,L,T/At
In(ogp.0) ZZ?r(gmif)l D (e t") —upys (@i t™) + (0 (@i, t") = YIng (@i, ") — ubys (s t™)])?).
nOgp)  s.i,m=1

(36)

: Perform MLDA

2a) Using prior Cp, ~ N(Com,6?), m =0,..., M — 2 and In(0y,) ~ U[In(c")),In(c’7)], compute the
sample mean and standard deviation of the correction term 5 following

BIB™) = w (@i, t7) — @ (i t7), VIBI™] = (0% (@i, 1)) — (6 (@i, )’

and tune [ln(cri;;,)7 In(oy hi »)] by recursively doing this step until the loss given by (34) could roughly match the
loss given by (29) at C Cy inside the interval.
2b) Perform MLDA by evaluating the following negative log-posterior in the coarse level

S,L,T/At

o 3 (b ) T BB — whas (i ) + (y (0 i t)2 + V1B;)
s,t,n=1 (37)
2
n s,n s nA\2 HC_COHZZ
— Yl (@, t") + B(BY™) — up g (@i t™)?]) + By
and the following negative log-posterior in the fine level
S,L,T/At 2
1 . . IC = Coll;,
32 D (@i t™) — uhyg (@i, t")? + (05 (i, t7) — VIng (i, t") — uhng (@i t™)[P) + e
s,i,n=1
(38)
: Postprocessing

Perform convergence check for the parallel chains, extract effective samples from the MCMC chain,
analyze the uncertainty of the corresponding solution and other quantities of interests.

4. APPLICATION: HOMOGENIZATION FOR A HETEROGENEOUS ELASTIC BAR

In this section, we examine the efficacy of the proposed ENOR approach on inferring the nonlocal homogenized sur-

rogate for modeling the propagation of stress waves through a one-dimensional bar [22,47]. In particular, we consider
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Periodic (Ordered) Microstructure

-

B
A

—2b Material1 by = b Material 2 b, = b
2
)

Random (Disordered) Microstructure
- -

Material 1 Material 2
by~U[(1 — D)b,(1 + D)b] b,~U[(1 — D)b,(1 + D)b]

Fig. 2. One-dimensional bar composite of material 1 and material 2. (Top) periodic microstructure with fixed layer size= b. (Bottom)
Random microstructure with layer size satisfying random distribution~ U[(1 — D)b, (1 + D)b].

a composite bar either made of periodic layers or randomly generated layers (see Fig.2), and we assume that the ampli-
tude of the waves is sufficiently small, so that a linear elasticity model is a valid way to describe the wave motion within
the layers and at their interfaces. With this assumption of linear elastodynamics, the propagation of waves through the
bar can be described as:
2
Gt = 2 (B@ D) = 3 ) (9)
where p is the mass density which is assumed to be constant throughout the body, w is the displacement, and f is the

external load density. E(x) is the elastic modulus which varies spatially according to the microstructure, i.e., we have

E = E) in the blue regions of Fig.2, and E = E, in the yellow regions. s(z, t) := E(z)9%(x, ) is the stress. On the
interfaces of two materials, the following jump conditions hold: [u(z,t)] = 0, [E (x)%(x, t)] =0.
x

Ideally, one can solve (39) using numerical solvers on fine discretizations of the computational domain to ex-
plicitly represent all interfaces. However, in real-world applications such as projectile impact modeling [21,83], one
is interested in modeling the decay of the wave over distances that are several thousand times larger than the layer
size. In these circumstances, a fine numerical solver is prohibitively expensive and a homogenized surrogate model is

desired to provide scalable predictions.

In this example, we first generate short-term high-fidelity simulation data by solving (39) using characteristic line
method. This method, which we denote as the direct numerical simulation (DNS) technique, assumes that the waves
running in the opposite direction converge on the node, and update the material velocity explicitly from the jumping
condition which is a consequence of the momentum conservation. Due to this property, this DNS solver is free of
truncation error and approximation error as in the classical PDE solver, which allow us to simulate the exact velocity

of wave propagation through arbitrarily many microstructural interfaces. We refer the reader to [21,47] for more details
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of this method for further details. Then, our goal is to construct a nonlocal homogenized surrogate model from this

high-fidelity simulation dataset D.

4.1 Example 1: Periodic Microstructure

Throughout the section, a non-dimensionalized setting is employed for the physical quantities for the simplicity of
numerical experiments, following the setup in [21]. First, we consider a periodic heterogeneous bar, where the layer
size for the two materials is a constant b = 0.2. The bar length is . = 20 and the physical domain is set to be
[-L/2, L/2]. Components 1 and 2 have the same density p = 1 and Young’s moduli are setas Ey = 1 and F, = 0.25,

respectively. For the purpose of training and validation, three types of datasets/settings are considered:

Setting 1: Oscillating source (20 loading instances). We set L = 20. The bar starts from rest such that v(z,0) =
t—tg

u(r,0) = 0, and an oscillating loading is applied with f(z,t) = () (% ) cos? (322) with k = 1,2,...,20.

Here we take tg = t, = 0.8.

Setting 2: Plane wave with ramp (11 loading instances). We also set the domain parameter as L = 20. The bar starts
from rest (u(x,0) = 0) and is subject to zero loading (f(z,¢) = 0). For the velocity on the left end of the bar, we

prescribe

sin(wt) sin’ (;Té) , t<15
v(=L/2,t) =

sin(wt), t>15

for w = 0.35,0.7, - ,3.85.

Setting 3: Wave packet (3 loading instances). We consider a longer bar with L = 266.6, with the bar starting from
rest (u(z,0) = 0), and is subject to zero loading (f(z,t) = 0). The velocity on the left end of the bar is prescribed as

v(—L/2,t) = sin(wt) exp (—(¢/5 — 3)?) with w = 2, 3.9, and 5.

For all data types, the parameters for the nonlocal solver and the optimization algorithm are set to Az = 0.05,
At = 0.02, 5 = 1.2, and M = 24. For training purposes, we generate data of types 1 and 2 till 7 = 2. Then, to

investigate the performance of our surrogate model in long-term prediction tasks we simulate till 7' = 100 for setting

3. We choose 62 = (())% and [ln(clg‘;), In(o}%)] = [~2.5, —1.7] to achieve optimal performance. A detailed ablation

study of these parameters is provided in Appendix A.
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4.1.1 Results from MCMC Experiments

We use PyMC [84] for all the MCMC computations below. We begin by verifying the convergence behavior of our
algorithm. In particular, we test a single-level MCMC with the differential evolution Metropolis (DEMetropolis) al-
gorithm [85] on the fine level with 4,000 draws and a burn-in stage of 300. DEMetropolis, or DEMetropolis(Z) is a
variation of Metropolis-Hastings algorithm that uses randomly selected draws from the past to make more educated
jumps. Results in Fig. 3 indicate that the single-level MCMC suffers from an extremely long burn-in stage and poor
mixing. We treat these single-level results as a baseline which we use to examine the relative performance of the

multilevel method below.

215 335 17
| 33 =8
21 M\ (\ [r’ ‘“ 19
m I - ”"""”"‘“M‘WJ , ’i \W\ I \M\ ‘r“ M
J205 Wl ML “ H‘ | “ ) \’ h \ %m_zl M .‘ l “ ‘ “
! Aﬂ uu\ A\ . | s \‘ W ‘” H| = o0 \“‘ “ ’ ’
20- ‘ ‘ { . ‘M\ | 2.3 (
]‘ 31 ’ 4
195 1000 2000 3000 4000 305 1000 2000 3000 4000 23 1000 2000 3000 4000
Step Step Step
(a) First parameter (b) Second parameter (©) In(ogp)

Fig. 3. Trace plot for the MCMC using single-level DEMetropolisZ sampler.

We first illustrate the utility of the multilevel algorithm using a correlation length I,, = L/2. We run 6 inde-
pendent chains, each with 4,000 draws, a burn-in stage of 300 and a subchain length on the coarse level of 100. Each
chain is initialized using the scheme proposed in Section 3. We examine the quality of the chains both visually and
quantitatively. Fig.4 illustrates that all the six independent chains attain essentially the same stationary state. Further,
using the improved R statistic [86] relying on ArviZ in Python, we find that the R values for all 24 parameters are very
close to 1, with the highest being 1.0019, again highlighting the convergence of the chains. Note that, for an ergodic

process, this statistic decays to 1 in the limit of infinite chain length [86].

The chains have 24,000 draws in total, with approximately 42% acceptance rate on average. To present the aggre-
gate results, we use roughly 6,000 equally spaced samples out of the total, where this effective sample size (ESS) was
calculated using the method in [87]. The trace plots shown in Fig.5 indicate good mixing, and, with the high ESS, we

have reliable probability density functions (PDFs) and associated statistics.
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Fig. 4. Convergence check: Trace plots and PDFs for the traces. For each trace, we have an acceptance rate = 0.42, and an effective
sample size ~ 1,000 (out of 4,000 draws).
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Fig. 5. Trace plot and PDF for the combined trace. The acceptance rate ~ 0.42, ESS = 6,000 (out of 24,000 draws).
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4.1.2 Impact of GP Correlation Lengths

As discussed in Section 3.1, to avoid the repeated cost of (20) and (21) at each MCMC step, we use the GP correlation
length, [, as a tunable hyperparameter. In this section, we investigate the impact of different values of /4, on the
learnt corrected kernels and the corresponding nonlocal solution behaviors.

In Fig. 6, the uncertainty with several realizations for the kernel with GP, K (|z — y|)(1 4+ a(%ﬂ))’ is plotted
for correlation lengths l,, = 2L = 40 and l,, = L/128 = 0.15625, using 10,000 realizations in total. Since the
behavior of the kernel is similar at each point in the one-dimensional bar, we pick the location x = 0.0 as an instance
for illustration. We observe that the curve labeled ‘Mean’, which is the mean value of all the realizations, is consistent
with the corresponding kernel as the mean of the ESS, which is a single push-forward of the embedded model (18)
using the mean value of the effective samples and setting the GP to 0. In fact, without the GP the embedded model
degenerates to the original nonlocal model (2). This consistency is because of the linearity of the nonlocal kernel and
the independence of the & components. Further, for different [y, values, one can barely see changes in the mean and
the confidence region. On the other hand, sampled GP realizations exhibit significant structural differences between
the two cases, in Figs. 6(a) and 6(b), consistent with the large change in [, between the two cases.

To examine the dispersion behavior of these kernel realizations, we plot in Figs. 7(a,c) the group velocity of
kernels corresponding to a GP with a large (4, = 40) and relatively small (/,, = 0.625) correlation length. For each
realization of the kernel, the group velocity is computed using a wave packet that travels a long enough distance such
that the wave is away from the ends of the bar. In order to do this in numerical simulation, we set the bar length equal
to 400 and generate realizations of the kernels with the same correlation length on this longer bar. We note that the
reduction in [y, results in a smaller band stop location (the smallest frequency where the group velocity drops to zero).
Further, it is evident that the confidence region matches the dispersion behavior better when using a large correlation
length. At the same time, oscillation is observed in the low frequency (w < 2.0) region in the small [, case. Finally,
in Figs. 7(b,d), we plot the dispersion curves of these kernels. Note that all learnt kernels are positive, highlighting the
physical stability of the corresponding nonlocal models.

Next, we investigate the posterior uncertainty on the predicted displacements from the learnt models. Two samples
from setting 1 and 2 datasets are considered, with forcing at k& = 10 in setting 1 and w = 1.05 in setting 2. Let us
first recall the definitions of two relevant push-forward posteriors for a typical additive data noise problem setup
y = falz, A, 0) = f(xz,N)+ €(0) given the parameter posterior p(A, 0| D). We have the push-forward posterior (PFP)
as the push-forward of the parameter posterior through the predictive model f(z,A), while the posterior predictive

(PP) is defined as the push-forward of the parameter posterior through the full data model f4(x, A, o) [88,89]. Note
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Fig. 6. Kernel with uncertainty for a bar with periodic microstructure using two different correlation length.
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Fig. 7. Group velocity and dispersion curve with uncertainty for a bar with periodic microstructure using two different correlation
lengths. The curve labeled ‘Mean of ESS without GP’ denotes the single push-forward with the GP set to 0 and using the mean
value of the effective samples. The curve labeled ‘Mean’ denotes the mean value of all the realizations.
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that, in an embedded model-error construction with no additive data noise, the PFP and PP are equivalent. In Fig.8§,
the PFP, which is the push-forward of the posterior p(C, 0,|D) through the nonlocal model with embedded model
error, is plotted for two different [, values. For each case, we see that both the 95% and 68% PFP confidence regions
generally cover the majority of the ground truth data over the spatial domain. However, we do observe that, visually,
and for these two samples, the kernel with a smaller [, does a better job of spanning the ground truth data discrepancy
from the mean model. This is also illustrated in Fig.10, where the best choices of [y, for different training samples
are plotted according to the Continuous Ranked Probability Score (CRPS) [90]. The CRPS compares a single ground
truth value to a distribution. Assume that we have a ground truth 4 and a cumulative distribution function (CDF) H

for a variable z, then the CRPS can be analytically written as
CRPS(H, ) = /(H(a_:) — Lz>gy)7dz.

In a numerical setting where only a sampling-based empirical CDF is available, [90] provides alternative forms of the

CRPS which are feasible to estimate

_ 1 _ _
CRPS(H. ) = E[|X — g]] - SE[IX — X (40)

=E[|X -yl + E[X] - 2E[X - H(X)], (41)

where X, X’ are independently and identically distributed according to H. Per the definition of the CRPS, the lower the
score is, the better does our predicted displacement match the DNS data in distribution. Specifically, we use equation
(40) here, but in principle the two expressions are equivalent. The average CRPS values across different training
samples, at t = 2.0, are summarized in Table.1. As the correlation length [, decreases, only a slight reduction in the
CRPS is obtained, suggesting that all studied kernels have comparable performance in obtaining the correct distribution

of the displacement.

Material | 2L L L/2 | L/4 [L/8 |Lj/16 | L/32 | L/64 | L/128
Periodic | 0.0048 | 0.0048 | 0.0048 | 0.0048 | 0.0047 | 0.0046 | 0.0045 | 0.0044 | 0.0043
Disorder | 0.0080 | 0.0080 | 0.0080 | 0.0079 | 0.0079 | 0.0077 | 0.0076 | 0.0076 | 0.0076

TABLE 1. Average CRPS of training samples for different /4. The value of the CRPS is evaluated for all the training
samples on each grid in the physical domain at the last time step ¢t = 2.0.

Finally, we provide the prediction of a wave packet, a waveform that is substantially different from the training

data. With this setting, we consider an extrapolation scenario: the learnt model is employed to generate a long-term
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(a) Sample 10 from type 1 data at t=2.0, {5, = 40. (b) Sample 3 from type 2 data at t=2.0, l4,, = 40.
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(c) Sample 10 from type 1 data at t=2.0, 4, = 0.15625. (d) Sample 3 from type 2 data at t=2.0, [, = 0.15625.

Fig. 8. Posterior uncertainty on training samples for a bar with periodic microsturcture using two different correlation length.

simulation up to ¢ = 100, which is 50x the training time interval. In Fig.9, we plot the results using [, = 40 and
0.15625. For a low-frequency wave (w = 2.0), [, = 0.15625 works better, in the sense that the predictive distribution
more closely follows the small features of the wave, roughly reflecting the local magnitude of the discrepancy between
the two solutions. On the other hand, the case with [y, = 40 fails to do so, with a predictive distribution that broadly
encompasses the two solutions, but does not capture the small-scale structure. In both cases, the confidence region
fully covers the ground truth, providing a conservative estimation of uncertainty, and avoiding overconfidence, as is
the intent of the embedded model error construction. Considering next the w = 3.9 case, a frequency close to the
band gap, we find that the larger correlation length [4, = 40 provides better predictions. Here, the case with smaller
correlation length [ 4, = 0.15625 suffers from a mismatch between the uncertainty prediction, the single push-forward
of the mean of ESS, and the ground truth. This observation is consistent with the results in Fig.7, where the band
gap shifts from the ground-truth band gap and the confidence region fails to cover the DNS data. For the frequency
(w = 5.0) that is much larger than the band gap frequency, the stress wave is anticipated to stop propagating. In this
setting we find that both small and large correlation length cases work well. The best [, values for the validation
samples are also provided in Fig.10, where the optimal correlation length [, varies depending on the frequency and

wave type.
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In conclusion, the correlation length for the embedded model error impacts the results differently for different
waves, so that the optimal choice would need to be selected according to the purpose of the task. A frequency/waveform-
dependent [, might be of interest. We leave this as a possible future direction. In the following, we choose the best [,

according to the fidelity of prediction of group velocity in Fig.7, choosing l4, = 2L = 40 as the optimal correlation

length.
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Fig. 9. Validation on wave packet for the periodic material at the last time step ¢ = 100.0. The columns correspond to different
correlation length {4, and the rows correspond to different frequencies w.
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Fig. 10. Best [y, (with the lowest CRPS) on training and validation samples for a bar with periodic material.

4.1.3 Comparison with the Baseline

To further illustrate the efficacy of the present ENOR construction in capturing model error, we compare the posterior
uncertainty on model predictions (with [y, = 40) to the results from BNOR [47], where an additive iid noise model
was used. Results are shown in Fig.11 for two training data samples at a given time instant ¢ = 2.0. We compare the
equivalent PP/PFP ENOR results with the corresponding BNOR PP and PFP results. From Figs.11 (c) and (d), one can
see that the BNOR PFP exhibits an almost negligible confidence region. On the other hand, the BNOR PP, shown in
Figs.11 (e) and (f), exhibits higher uncertainty with a uniform-width confidence region around the mean prediction, as
is expected given the additive iid noise. Compared with these two baseline results, the uncertainty given by the ENOR
PP/PFP, shown in Figs.11 (a) and (b), is somewhat more adaptive, exhibiting a degree of uncertainty that approximately
tracks the discrepancy between the mean prediction and the DNS data, highlighting the effectiveness of the embedded
model error setting. To provide a quantitative comparison, we note that the BNOR results at ¢ = 2.0 in [47] exhibit
a PFP CRPS of 0.051 and a PP CRPS of 0.039, which are both roughly 10 higher than the present ENOR result in
the worst case (CRPS of 0.0048). To further compare the two models at different regions, we also consider point-wise
comparisons at four locations in our exemplar samples. For sample 10 from type 1 data, we consider x = —3.5 and
x = 0.0, which correspond to points in low-uncertainty region and high-uncertainty region, respectively, and highlight
these two locations in the left column of Fig.11. At x = —3.5, the CRPS for ENOR, BNOR-PFP and BNOR-PP are
0.0031, 0.0046 and 0.0040, respectively. At z = 0.0, the CRPS for ENOR, BNOR-PFP and BNOR-PP are 0.0048,

0.0061 and 0.0056. For sample 3 from type 2 data, we choose x = 2.5 for investigations in low-uncertainty region
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and x = —2.5 for high-uncertainty region, and illustrate these in the right column of Fig.11. The CRPS (from top
to bottom) are 0.00018, 0.0031, 0.0045 at = = 2.5 and 0.028, 0.14, 0.14 at x = —2.5. This again illustrates that the
ENOR model provides an uncertainty that better reflects the discrepancy between the mean model prediction and the

ground truth.

08 [ ! NLL solution 95% confidence region
0.7 NL solution 68% confidence region
: —DNS data
0.5 - ENOR
0.6
0.5 0
0.4
-0.5
0.3+
0.2 - -1t s
5 0 5 -5 0 5
(a) ENOR PP (or PFP) for sample 10 from type 1 data at ¢=2.0. (b) ENOR PP (or PFP) for sample 3 from type 2 data at t=2.0.
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0.4
0.3
0.2 - -
5 0 5 -5 0 5

(c) BNOR PFP for sample 10 from type 1 data at ¢=2.0. (d) BNOR PFP for sample 3 from type 2 data at ¢t=2.0.
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’ 0.5 —DNS data

- BNOR
0.6
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0.3
0.2 - -
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(e) BNOR PP for sample 10 from type 1 data at ¢t=2.0. (f) BNOR PP for sample 3 from type 2 data at t=2.0.

Fig. 11. Comparison of posterior uncertainty (PFP and PP) between ENOR and BNOR for periodic material. The columns corre-
spond to different samples in training data and the rows correspond to different methods.

4.1.4 Parametric Uncertainty versus Model Error

It is instructive to examine the role of parametric uncertainty versus model error in the resulting uncertainty in model

predictions. We illustrate in Fig.12 the posterior predictive uncertainty under the following three scenarios.
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1. In plots (a) and (b), we consider uncertainty from all sources, by sampling realizations from both the embedded

error correction term &, and the marginal distribution on kernel parameters.

2. In plots (c) and (d), we consider the uncertainty from the embedded error correction term & only, using deter-

ministic kernel parameters.

3. In plots (e) and (f), we neglect the embedded error correction term but sample the kernel parameter C from the
learnt marginal distribution. As such, only the uncertainty from the marginal distribution on kernel parameters

is considered.

By comparing the confidence regions from these three settings, one can observe that results from scenarios 1 and
2 almost coincide, while the predicted uncertainty in scenario 3 is negligible. This indicates that nearly all of the
predictive uncertainty comes from the embedded model error. This is typical in Bayesian estimation of one model

against another in the absence of data noise and when there is a sufficiently large amount of data.

4.2 Example 2: Random Microstructure

To investigate the performance of the ENOR model on more complicated microstructures, we consider here a disor-
dered heterogeneous bar, where the layer lengths of the two materials are random. In particular, the layer sizes are two
uniformly distributed random variables: by, b, ~ U[(1 — D)b, (1 + D)b], with the average layer size b = 0.2 and the
disorder parameter D = 0.5. The density for both components is still set as p = 1 and their Young’s moduli are set at

E) =1and E, =0.25.

To generate the training dataset, we consider the high-fidelity data under the same settings as in data types 1 and
2 of the periodic bar case. Compared with the periodic microstructure case, from the group velocity generated by the
DNS simulations we note that the band stop generally occurs at a lower frequency in the random microstructure case.
In fact, for the microstructure considered here, an estimated band stop frequency wys ~ 3 can be obtained from the
DNS simulations. Therefore, for the validation data set, we study wave packets with frequencies w = 1,2,3 and 4,

with the purpose of investigating the performance of our nonlocal surrogate model when the loading frequencies are

0.01?

below (w = 1,2), around (w = 3), and above (w = 4) the estimated band stop frequency wy,. We use 62 = 033

and [In(o’°), In(0”?)] = [-2.5, —1.7] to achieve optimal performance.
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(c) Sample 10 from type 1 data at ¢ = 2.0. Confidence region using
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(e) Sample 10 from type 1 data at ¢ = 2.0. Confidence region using
100 effective samples of C and o4, without GP (i.e. with &,,,=0).
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(b) Sample 3 from type 2 data at ¢ = 2.0. Confidence region using 100
effective samples and 100 realization each.
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(d) Sample 3 from type 2 data at ¢ = 2.0. Confidence region using
fixed values of kernel parameters C and o4, with 1000 GP realizations.
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(f) Sample 3 from type 2 data at ¢ = 2.0. Confidence region using 100
effective samples of C and o, without GP (i.e. with &,,=0).

Fig. 12. An illustration of the relative impact of parametric uncertainty and model error on resulting predictive uncertainty, in the
periodic material. The columns correspond to different samples in the training data and the rows correspond to posterior prediction

using different sources of uncertainty.
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4.2.1 Results from MCMC Experiments

To demonstrate the convergence of MCMC in this case, we again pick correlation length I, = L /2 as an example case
to test the utility of ENOR in disordered materials. Following the same settings of the periodic microstructure study,
we run 6 independent chains. The results pass the same convergence check both visually and quantitatively, where the
improved R statistics for all the 24 parameters are very close to 1, with a maximum of 1.0038, which again verifies the
convergence. The chains provide 24,000 draws in total, with approximately 39% acceptance rate on average and the
combined chain shows good mixing. Compared with the periodic bar with inferred In(oy,) ~ —2.0, a slightly larger
kernel variation, In(0,,) ~ —1.8, is obtained here. That suggests that the randomness in the material with disordered

microstructure results in a larger model discrepancy relative to the DNS results.

4.2.2 Impact of GP Correlation Length

We now study the impact of different correlation length (I4,,) values in the disordered material, again considering

lgp values ranging from 0.15625 to 40. In Fig.13, we observe that the uncertainty in the kernel with an embedded
GP, K(|z — y|)(1 4+ &( ’ ;_ Y )), has the same pattern of mean and confidence region variation as in the periodic bar

case, given the same random kernel structure and GP properties. In Fig.14, we investigate the behavior of the group
velocity, and observe that a larger correlation length provides better fitting of the group velocity, and that reducing
the correlation length [y, results in a left shift of the band gap in prediction. While this trend was also observed in
the periodic microstructure case (see Fig.7), severer oscillations and larger confidence regions are observed at low
frequencies here in the small correlation length I,, = 0.625 case, possibly because of the higher uncertainty levels
introduced by the disordered microstructure in the material. In Figs.14 (b) and (d), we show the dispersion curves of

the learnt kernels, noting again that positivity of all dispersion curves indicates physical stability of the learnt models.
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(a) Kernel at point x = 0.0 for [, = 2L=40. (b) Kernel at point z = 0.0 for [y, = ﬁ=0‘15625‘

Fig. 13. Kernel with uncertainty for a bar with periodic microstructure using two different correlation lengths.
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Fig. 14. Group velocity and dispersion curve with uncertainty for a bar with disordered microstructure using two different correlation
lengths.
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Finally, we provide again the prediction of a wave packet for a larger domain and longer time as a validation, not
present in the training set. Overall, the same conclusion on the correlation length as section 4.1.2 can be reached for
disordered material. We refer the reader to FigB.27 in Appendix B for more details on this experiment. In Fig.15,
we provide the best [y, for all the training and validation samples according to the value of the CRPS. Note that the
optimal [4,s are different from the ones illustrated in Fig.10, highlighting the dependence of the optimal [ 4, on the

material microstructure.
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Fig. 15. Best Iy, (with the lowest CRPS) on training and validation samples for a bar with disordered microstructure.

4.2.3 Comparison with the Baseline

Comparing the CRPS for the posterior PDF on the learnt ENOR model predictions with I,, = 40, to that from the
baseline model (BNOR) [47], at the same time instant ¢ = 2.0, we find again superior performance from the present
construction. Specifically, the ENOR CRPS is 0.008 while the BNOR PFP and PP CRPS values are 0.041 and 0.025
respectively. Thus, consistent with the findings in the periodic material, the BNOR CRPS values are much higher than
the ENOR CRPS, again indicating that the embedded model error construction provides a better statistical fit for the
DNS data.

Further, in Fig.16 we compare the posterior predictive density from ENOR and the BNOR PFP/PP densities for
two samples from two wave types at ¢ = 2. While ENOR again provides a better prediction for solution uncertainty,
the 95% confidence region is significantly larger, especially in Fig.16(a). Note that according to Table.1 and Fig.15,
lgp = 0.3125 is best for sample 10 in wave type 1, while Iy, = 2.5 is best for sample 3 in wave type 2. Thus, the

correlation length [4, = 40 employed here is not ideal for both samples. This again suggests that different correlation

Volume x, Issue x, 2017



36 Yiming Fan, Habib N. Najm, Yue Yu, Stewart Silling & Marta D’Elia

length should ideally be employed for different loading scenarios. When comparing the level of solution uncertainty
from periodic (see Fig.11 (a) and (b)) and disordered materials (Fig.16 (a) and (b)), a larger confidence region is
observed in the later case. In fact, the average standard deviation over the bar in sample 10 of data setting 1 is 0.0037
in the periodic microstructure case and 0.0122 in the disordered case. Similarly, the average standard deviations in
sample 3 are 0.0232 and 0.0262 for the periodic and disordered microstructure cases, respectively. These results

highlight the increase in uncertainty when randomness is introduced in the microstructure.
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(a) ENOR PP (or PFP) for sample 10 from type 1 data at t=2.0. (b) ENOR PP (or PFP) for sample 3 from type 2 data at ¢=2.0.
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(c) BNOR PFP for sample 10 from type 1 data at ¢=2.0.
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(e) BNOR PP for sample 10 from type 1 data at ¢t=2.0.

(f) BNOR PP for sample 3 from type 2 data at t=2.0.

Fig. 16. Comparison of posterior uncertainty (PFP and PP) between ENOR and BNOR for the disordered material. The columns
correspond to different samples in training data and the rows correspond to different methods.
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4.2.4 Parametric Uncertainty versus Model Error

With the purpose of investigating the impact of different source of uncertainty, we examine the predictive uncertainty
resulting from parametric uncertainty versus model error for the disordered material, following the same steps in sec-
tion 4.1.4. As shown in Fig.17, the embedded model error again dominates the posterior uncertainty, with a negligible

role for parametric uncertainty.
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Fig. 17. An illustration of the relative impact of parametric uncertainty and model error on resulting predictive uncertainty, in the
disordered material. The columns correspond to different samples in training data and the rows correspond to posterior prediction
using different sources of uncertainty.
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5. CONCLUSION

In this work, we proposed ENOR, a novel Bayesian embedded model error framework, to learn the optimal nonlocal
surrogate for multiscale homogenization while also characterizing the impact of model error on predictive uncertainty.
When learning the bottom-up nonlocal surrogate from microscale simulations, we find that the best fit surrogate has un-
avoidable discrepancy from the microscale model, rendering a model error UQ study necessary. While the prior work
[47] focused on an additive iid error construction, we here introduce, for the first time, an embedded model error repre-
sentation in nonlocal operator learning, capturing the impact of model error on predictive uncertainty. The algorithm
is developed by adding a Gaussian process to the nonlocal kernel, such that the kernel parameters and the Gaussian
process parameters can be inferred simultaneously. To solve the Bayesian inference problem, a two phase algorithm,
Alg.1, and a multilevel delayed acceptance Markov chain Monte Carlo (MLDA-MCMC) method are proposed, to
provide efficient sampling and fast converging chains. The effectiveness of ENOR is demonstrated on the stress wave
propagation problem in heterogeneous bars. Comparing to the prior work [47], ENOR improves the accuracy in (1)
capturing the correct group velocity; (2) producing high-fidelity training data and predicting the substantially different
wave type with accurate confidence region structure; (3) posterior sampling of the model parameters; and (4) selection
for the correlation length for different tasks.

From both visual inspection and quantitative tests, it was observed that the optimal choice of the GP correlation
length may differ for different frequencies and wave types. As a natural extension, we plan to investigate frequency-
dependent models. We also plan to explore uncertainty quantification for more complex data-driven homogenization
models, such as peridynamics models [22,23] in 2D or 3D, and nonlinear models based on neural networks [34,42,
91]. Since the number of trainable parameters increases substantially in these models, efficient Bayesian inference

techniques and reduced order error models would be desired.
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APPENDIX A. ABLATION STUDY

Herein, we discuss the tuning procedure of two hyperparameters: the standard deviation of the prior distribution of C,
and the lower and upper bounds on o0,.

For the tuning of the prior distribution of C (denoted as &), we choose the parameter to reach good performance
in terms of the ESS and the acceptance rate. In Figures A.18-A.20 we show how & affects the MCMC algorithm per-
formances. The results are based on a chain with 2,000 draws with other settings identical to the paper and modifying
only 6. Generally, if & is too large, the proposed chain samples are more likely to result in low posterior values, re-
sulting in a low acceptance rate (as shown in Fig.A.18). On the other hand, & is too small, the resultant strong prior

may dominate the likelihood (as shown in Fig.A.20). To achieve a good balance, we choose ¢ = %%15 for the results

i

in the main text.

21
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Fig. A.18. Trace plot for the case O‘2=g— with acceptance rate ~ 0.44 and ESS ~ 685 out of 2,000 draws.

For the tuning of the lower and upper bounds of og,, we choose the range to have the Adaptive Error Model

(AEM) provide good agreement between the coarse and fine models. Generally, the ABC-likelihood approximated by
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the coarse model should not be too far away from that of the fine model. In Fig.A.21 we plot the value of the negative
ABC log-likelihood vs the value of In(c0,,). One can see that the two models have small discrepancy when In(o,,)
is between -2.5 and -1.7. To further demonstrate the impact of this range, in Figs. A.22-A.26 we present results from
different upper and lower bounds. The results are based on a chain with 2,000 draws. To achieve a high ESS, we choose

[In(cl2), In(ofi)]=[~2.5, —1.7] for best performance in the main text.

o 14 x10°
o l2 : ;
o ——Coarse model with AEM
é ——Fine model
W
i_é 10+
o)
o
L 8¢}
m
<
| i - S
< 4 -3 3 b |
In
(ng)

Fig. A.21. Comparison of negative ABC log-likelihood for the fine and coarse (with AEM) model.
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Fig. A.22. Trace plot for the case [In(c%%,), In(o}i)]=[-3.5, —1.7], with acceptance rate ~ 0.37 and ESS ~ 592 out of 2,000
draws.

APPENDIX B. ADDITIONAL RESULTS

In this section, we provide additional results for example 2. In Figure B.27, we provide the validation results using
lyp =40 and [y, = 0.15625 on wave packet for the random microstructure material, at the last time step ¢ = 100.0. At
low frequencies (w = 1, 2), I, = 0.15625 works better in reflecting the local magnitude of the solution discrepancy.

Near the band stop (w = 3), [, = 40 works better since the confidence region from the small [, case fails to cover
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Fig. A.26. Trace plot for the case [In(c%%,), In(oli)]=[-3.0, —0.7], with acceptance rate &~ 0.15 and ESS ~ 340 out of 2,000
draws.

the DNS data. For the large frequency case (w = 4), both ENOR models have successfully predicted that the stress
wave should stop propagating. These observations are consistent with the results from the periodic microstructure

material.
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