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Nonlocal, integral operators have become an efficient surrogate for bottom-up homogenization, due to their ability to

represent long-range dependence and multiscale effects. However, the nonlocal homogenized model has unavoidable

discrepancy from the microscale model. Such errors accumulate and propagate in long-term simulations, making the

resultant prediction unreliable. To develop a robust and reliable bottom-up homogenization framework, we propose a

new framework, which we coin Embedded Nonlocal Operator Regression (ENOR), to learn a nonlocal homogenized

surrogate model and its structural model error. This framework provides discrepancy-adaptive uncertainty quantifica-

tion for homogenized material response predictions in long-term simulations. The method is built on Nonlocal Operator

Regression (NOR), an optimization-based nonlocal kernel learning approach, together with an embedded model error

term in the trainable kernel. Then, Bayesian inference is employed to infer the model error term parameters together

with the kernel parameters. To make the problem computationally feasible, we use a multilevel delayed acceptance

Markov chain Monte Carlo (MLDA-MCMC) method, enabling efficient Bayesian model calibration and model error

estimation. We apply this technique to predict long-term wave propagation in a heterogeneous one-dimensional bar,

and compare its performance with additive noise models. Owing to its ability to capture model error, the learned ENOR

achieves improved estimation of posterior predictive uncertainty.
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1. INTRODUCTION1

In many real-world applications, the analyzed physical system is a complex multi-scale process, which often starts2

from a sequence of mechanical cues at the microscale, and results in the propagation of properties at the macroscle.3

However, microscale simulations are often infeasible due to high computational costs. To mitigate this challenge,4

upscaled models are often needed, which can be employed in large scale long-term simulations to inform decision5

making. For this purpose, various multiscale approaches and homogenized surrogate models were developed [1–11].6

Examples include partial differential equation (PDE)-based approaches with effective coefficients [12,13], particle-7

based methods that replace clusters of particles with larger particles [14–16], nonlocal models that capture long-8

range microscale effects via integral operators [17–27], and several others. Among these approaches, nonlocal models9

[28–34] stand out as relatively recent yet powerful tools [17–20,27,35–38] as their integral nature naturally embeds10

length and time-scales in their definition [28] allowing them to capture macroscale effects induced by a heterogeneous11

microscale behavior.12

However, despite being appropriate for homogenization tasks, nonlocal models present several challenges. As an13

example, in heterogeneous materials modeling, the material’s response depends on mechanical and microstructural14

properties, and hence requires a material-specific homogenized nonlocal model. In practice, a nonlocal model is deter-15

mined by the definition of its “kernel” whose functional form and associated parameters are not known a priori. Thus,16

to accurately capture the effects of micro-scale heterogeneities at the macroscale and provide reliable and trustworthy17

predictions, it is necessary to estimate appropriate nonlocal kernels. The paper [39] introduces the nonlocal operator18

regression (NOR) approach, a data-driven technique for the identification of the nonlocal kernel that best describes a19

system at the macroscale. We refer the reader to [22,39–45] for several examples of machine learning-based design of20

homogenized nonlocal operators, and to [25,46] for the rigorous analysis of its learning theory.21

While NOR provides accurate and reliable deterministic nonlocal homogenization models from data, it introduces22

unavoidable modeling errors due to the discrepancy between the “surrogate” nonlocal model and the ground truth sys-23

tem. In long-term simulations, such a modeling error may propagate and accumulate over time. Hence, it is desired to24

characterize the discrepancy between the nonlocal model and the true governing equations to estimate the predictions’25

uncertainty. In our prior work [47], we introduced the Bayesian nonlocal operator regression (BNOR) approach, which26

combines Bayesian inference [48–59] and NOR to estimate model uncertainty under the assumption of additive inde-27

pendent Gaussian noise in the data. Specifically, we modeled the discrepancy between high-fidelity data and the NOR28

model as additive independent identically distributed (iid) noise, and tested the method in the context of stress wave29

propagation in a randomly heterogeneous material [47]. However, the additive iid noise assumption is more suited for30
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representing measurement noise rather than a modeling error; this happens because the model discrepancy is expected1

to exhibit a significant degree of spatial correlation depending on the degree of smoothness in the solution and data.2

Ignoring this correlation may lead to over-confidence and low posterior uncertainty in the inferred parameters, with3

consequent over confidence in posterior predictions of the quantities of interest (QoIs) [60].4

To better represent the discrepancies due to model error, state-of-the-art additive model error techniques augment5

the predictive model’s output with a Gaussian process (GP)[54,61]. The additive GP provides extensive flexibility in6

correcting model outputs and fitting available data with a parameterized correlation structure, resulting in meaningful7

predicted uncertainty. However, adding a GP to model outputs in the context of physical systems may compromise8

adhering to physical constraints and governing equations; in fact, while a physical model prediction y = f(x) is9

expected to satisfy relevant physical laws, a GP-augmented prediction y = f(x) + ϵ(x) may not in principle [62].10

To address the shortcomings of additive GP constructions in physical models, embedded model error construc-11

tions were introduced in [62,63]; here, specific model components are augmented with statistical terms. Specifically,12

random variables are embedded in the parameterization of certain model elements based on approximations or mod-13

eling assumptions. As a result, this approach enables Bayesian parameter estimation that accounts for model error14

and identifies modeling assumptions that dominate the discrepancies between the fitted model and the data. To our15

knowledge, embedded model error applications have relied on random variable embeddings and not GP embeddings.16

In this work, we introduce a Bayesian calibration technique based on GP embeddings applied in the context of non-17

local homogenization. In particular, we augment the nonlocal kernel with a GP to represent model error in the kernel.18

Then, we use Bayesian inference to learn the posterior probability distributions of parameters of the nonlocal consti-19

tutive law (the nonlocal kernel function) and the GP simultaneously. To make the solution of the resulting Bayesian20

inference problem feasible, we employ the Multilevel Delayed Acceptance (MLDA) MCMC [64,65] method, which21

exploits a hierarchy of models with increasing complexity and cost. We illustrate this method using a one-dimensional22

nonlocal wave equation that describes the propagation of stress waves through an elastic bar with a heterogeneous23

microstructure.24

We summarize our contributions in the following list.25

• We propose the Embedded Nonlocal Operator Regression (ENOR) approach, which consist of augmenting a26

nonlocal homogenized model with modeling error with the purpose of capturing discrepancy of the predictions27

with respect to high fidelity data. In particular, we embed a GP in the nonlocal kernel to characterize the spatial28

heterogeneity in the microscale.29
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• The model is inferred from high-fidelity microscale data using MCMC, which learns the parameters of the1

nonlocal kernel and the correction term jointly. To alleviate the cost associated with costly likelihood estimations2

in MCMC, we use a multi-level delayed acceptance MCMC formulation.3

• To illustrate the efficacy of our method, we consider the stress wave propagation problem in a heterogeneous one-4

dimensional bar. A data-driven nonlocal homogenized surrogate is obtained, together with a GP representing5

the kernel correction. Compared to the previous work which learns an additive noise [47], the embedded model6

error correction formulation successfully captures the discrepancy and provides an improved estimation of the7

posterior predictive uncertainty.8

Paper outline. In Section 2, we review the nonlocal operator regression approach and the general embedded9

model error representation formulation. Then, in Section 3 we propose the ENOR approach, together with a MLDA-10

MCMC formulation which uses a low-fidelity model to accelerate the expensive likelihood estimation. In Section 4,11

we examine the posterior distribution and the prediction given by the algorithm. Section 5 concludes the paper with a12

summary of our contributions and a discussion of potential follow-up work.13

2. BACKGROUND AND RELATED MATHEMATICAL FORMULATION14

Although the proposed method is generalizable to other homogenization problems, for the purpose of demonstration,15

in this paper we consider the numerical solution of a wave propagation problem in the spatial domain Ω̄ ⊂ Rd and16

time domain [0, T ], where d is the physical dimension. Given S observations of forcing terms fs(x, t), we define the17

corresponding computed high-fidelity displacement fields D := {us
DNS}Ss=1 as the ground-truth dataset. Here we18

assume that both fs and us
DNS are provided at time instants tn ∈ [0, T ] and grid points xi ∈ Ω̄. Without loss of19

generality, we assume the time and space points to be uniformly distribute, i.e. in one dimension, the spatial grid size20

∆x and time step size ∆t are constant. We denote the collection of all grid points as χ = {xi}Li=1. The purpose of21

this work is to develop a Bayesian inference framework, which learns the nonlocal model from D together with its22

structural error.23

Throughout this paper, for any vector v = [v1, · · · , vq] ∈ Rq , we use ||v||l2 :=
√∑q

i=1 v
2
i to denote its l2 norm.

For a function u(x, t) with (x, t) ∈ Ω̄× [0, T ], its discrete l2 norm is defined as

||u||l2(Ω̄×[0,T ]) :=

√√√√∆t∆x

T/∆t∑
n=0

∑
xi∈χ

(u(xi, tn))2,
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which can be interpreted as a numerical approximation of the L2(Ω̄× [0, T ]) norm of u.1

2.1 Nonlocal Operator Regression2

In this work, we consider the nonlocal operator regression (NOR) approach first proposed in [40] and later extended in3

[22,25,39,42,46]. NOR aims to find the best homogenized nonlocal “surrogate” model from experimental and/or high-4

fidelity simulation data pairs. Herein, we focus on the latter scenario. Given a forcing term f(x, t), (x, t) ∈ Ω̄× [0, T ]5

and appropriate boundary and initial conditions, we denote the high-fidelity (HF) model as6

∂2uHF

∂t2
(x, t)− LHF [uHF ](x, t) = f(x, t). (1)

LHF is the HF operator and uHF (x, t) is the solution of fine-scale simulations. NOR assumes that nonlocal models7

are accurate homogenized surrogates of the HF model; a general nonlocal model reads as follows:8

∂2uNL

∂t2
(x, t)− LNL[uNL](x, t) = f(x, t), (2)

where the nonlocal operator LNL is an integral operator of the form9

LNL := LKC [u](x, t) =
∫
Ω̄∩Bδ(x)

KC(x, y)(u(y, t)− u(x, t))dy. (3)

Here, Bδ(x) := {y ∈ Rd, |x − y| < δ} denotes the interaction neighborhood of the material point x. We further10

denote Ωδ := {x ∈ Ω̄ | dist(x,Rd\Ω̄) < δ} is the nonlocal boundary region, Ω := Ω̄\Ωδ as the “interior” region11

inside the domain. C := {Cm}Mm=0 is the set of parameters that uniquely determines the kernel KC. We claim that12

for the same forcing terms f(x, t), the corresponding solution, uNL(x, t), (x, t) ∈ Ω̄ × [0, T ], of a nonlocal model13

provides an approximation of the ground-truth data, i.e., uNL(x, t) ≈ uDNS(x, t). Here, a radial kernel, KC(x, y) :=14

KC(|y − x|), is employed. This widely adopted setting guarantees the symmetry of the integrand in (3) with respect15

to x and y and induces the conservation of linear momentum and Galilean invariance [38,42,66,67]. In fact, such16

property allows us to write:17

KC(x, y)(u(y, t)− u(x, t)) = 1
2
[KC(|x− y|)(u(y, t)− u(x, t))−KC(|y − x|)(u(x, t)− u(y, t))] . (4)

Volume x, Issue x, 2017
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As done in previous works[47], we represent the kernel using a linear combination of Bernstein-polynomials, i.e.,1

KC

(
|z|
δ

)
=

M∑
m=0

Cm

δd+2Bm,M

(∣∣∣∣zδ
∣∣∣∣), Bm,M (z) =

(
M

m

)
zm(1− z)M−m for 0 ≤ z ≤ 1. (5)

Note that this construction makes KC continuous, radial and compactly supported on the ball of radius δ centered at2

x, also guarantees that (2) is well-posed [68].3

To find the nonlocal model that best describes the high-fidelity data, we aim to find the kernel parameters C such4

that for given loadings fs(x, t), the corresponding nonlocal solutions us
NL,C(x, t) in (2) are as close as possible to5

the HF solution us
DNS(x, t). To numerically solve (2), we use a mesh-free discretization of the nonlocal operator and6

a central difference scheme in time, i.e.7

(us
NL,C)n+1

i := 2(us
NL,C)ni − (us

NL,C)n−1
i +∆t2fs(xi, t

n) + ∆t2
(
LKC,h[us

NL,C]
)n
i

= 2(us
NL,C)ni − (us

NL,C)n−1
i +∆t2fs(xi, t

n)

+ ∆t2∆x
∑

xj∈Bδ(xi)∩χ

KC(|xj − xi|)((us
NL,C)nj − (us

NL,C)ni ), (6)

where (ũs
NL,C)ni denotes the nonlocal solution at (xi, t

n), and LKC,h is an approximation of LKC by the Riemann8

sum with uniform grid spacing ∆x. The optimal parameters C∗ can be obtained by solving the following optimization9

problem10

C∗ = argmin
C

S∑
s=1

∣∣∣∣us
NL,C − us

DNS

∣∣∣∣2
l2(Ω×[0,T ])

||us
DNS ||

2
l2(Ω×[0,T ])

+ λ||C||2l2 , (7)

s.t. KC satisfies physics-based constraints. (8)

Here, λ is a regularization parameter added to guarantee the well-conditioning of the optimization problem. The11

physics-based constraints depend on the nature of the problem, in the case of stress waves, we impose homogenized12

properties of plane waves propagating at very low frequency [39], i.e.13

∫
Bδ(x)

|y − x|2KC(|y − x|)dy = 2ρc20, (9)∫
Bδ(x)

|y − x|4KC(|y − x|)dy = −8ρc30R. (10)

The density ρ, the effective wave speed c0 and R, the second derivative of the wave group velocity with respect to14
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the frequency ω evaluated at ω = 0, are obtained the same way as in [47], for both periodic and random materials.1

Without loss of generality, we demonstrate the idea in 1D wave propagation problems. Numerically, we impose the2

physics constraints by approximating (9) and (10) via a 1D Riemann sum:3

∑
xj∈Bδ(xi)∩χ

|xi − xi|2KC(|xj − xi|)∆x = 2ρc20, (11)

∑
xj∈Bδ(xi)∩χ

|xi − xi|4KC(|xj − xi|)∆x = −8ρc30R. (12)

By solving the above linear equations, one can explicitly expressCM−1 andCM as linear functions of other parameters.4

Then, (7) becomes an unconstrained optimization problem of {Cm}M−2
m=0 . For further details we refer interested readers5

to [25].6

We note that in (6), the numerical approximation (us
NL,C)n+1 is calculated based on the numerical approximation7

of the last time instance (us
NL,C)ni . As such, the numerical error accumulates as n increases, and (7) aims to minimize8

the accumulated error. Alternatively, one can also choose to minimize the step-wise error [25,46], by replacing the9

approximated solution at the last time instances, (us
NL,C)n and (us

NL,C)n−1, with the corresponding ground-truth10

data (us
DNS)n and (us

DNS)n−1 in (6):11

(ũs
NL,C)n+1

i := 2(us
DNS)ni − (us

DNS)n−1
i +∆t2fs(xi, t

n) + ∆t2 (LKC,h[us
DNS ])

n
i

=2(us
DNS)ni − (us

DNS)n−1
i +∆t2fs(xi, t

n) + ∆t2∆x
∑

xj∈Bδ(xi)∩χ

KC(|xj − xi|)((us
DNS)nj − (us

DNS)ni ).

This formula provides a faster approximated nonlocal solution at the cost of physical stability, which plays a critical12

role in long-term prediction. Therefore, in this work we aim to minimize the accumulated error by considering (6).13

2.2 Embedded Model Error14

In this section we introduce the embedded model error procedure developed in [62,63], which relies on a Bayesian15

inference framework for the estimation of the model error, with the identification of the contribution of different error16

sources to predictive uncertainty. This is a natural setting for calibrating a low fidelity (LF/here NL) model against a17

higher fidelity (HF/here DNS) model accounting for uncertainty. Here, we assume that any discrepancy between the18

two models’ predictions is due to model error, and not to other sources such as measurement error. Thus, to model this19

discrepancy, we do not pursue traditional approaches that introduce independent identically distributed (iid) additive20
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Gaussian noise. Kennedy and O’Hagan [69] introduced the use of an additive Gaussian process (GP) to capture the1

structure of the discrepancy between two models, where the flexibility of the GP allows one to adequately capture the2

discrepancy in the predictions induced by the model error.3

In this setting, denoting by qj the data generated from the HF/DNS model η(oj), and by ζ(oj ,Λ) the one generated4

from the LF/NL model, where Λ is a set of model parameters to be estimated, at operating conditions oj (e.g. spatial5

or temporal coordinates), for j = 1, 2, ..., N observations, the additive GP construction can be written as6

qj = ζ(oj ,Λ) +∆(xj ,α, ξ) (13)

where∆(xj ,α, ξ) is a GP with parametersα evaluated at the discrete spatial locations xj , and with iid standard normal7

stochastic degrees of freedom ξ. This representation and the related approach have found extensive use, e.g. [70–72], as8

they allow for avoiding the overconfidence that comes from ignoring model error in model calibration whether against9

another model or actual observations. However, the additive GP construction presents some challenges in calibrating10

physical models [62], which motivated embedding model error terms into the LF model. In our present notation, this11

can be written as12

qj ≈ h(oj , α̃, ξ) := ζ(oj ,Λ,∆(xj ,α, ξ)), j = 1...N (14)

where α̃ = (Λ,α). We note that in the literature the use of model error embedding has relied on a simplified version13

of the above, where the error term is the random variable ∆(α, ξ), i.e., lacking the spatial dependence, rather than a14

GP [62,63,73–75]. This simplification might be necessary because of lack of data or computational constraints and it15

comes with loss of flexibility in the model error representation. In this work, we retain the full GP formalism, as in16

(14). It is also important to point out that one key benefit from model error embedding is that the analyst, knowing17

where approximations have been made in the computational model at hand, can embed model error terms as diagnostic18

instruments in different parts of the model. Identifying the structure of the discrepancy between the two models by19

model error embedding, can highlight the modeling assumptions that are likely the dominant source of predictive20

discrepancy. Similarly, the specific form of embedding can be employed as a diagnostic instrument to identify, e.g. the21

quality of one submodel correction versus another.22
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2.3 Likelihood Construction1

In order to find the posterior distribution of the model parameters, we use Bayesian inference to estimate α̃. Given2

data D, we write Bayes’ rule, expressing p(α̃|D), the posterior density of α̃ conditioned on D, as3

p(α̃|D) = p(D|α̃)p(α̃)
p(D)

, (15)

where p(D|α̃) is the likelihood, p(α̃) is the prior, and p(D) is the evidence which can be treated as a constant in

the parameter estimation context. Implicit in the above is also the conditioning on the NL model being fitted, which

we leave out for convenience of notation. A key step in obtaining the posterior distribution is the construction of a

justifiable likelihood. In general, this is a significant challenge [62,63] where alternate approximations are possible.

One convenient approximation, which we choose here, is to use Approximation Bayesian Computation (ABC), a

likelihood-free method [76–78] that is often necessary to deal with the challenge of computing expensive/intractable

likelihoods. Rather than relying on a likelihood to provide a measure of agreement between model predictions and

data, ABC methods rely on a measure of distance between summary statistics evaluated from the two data sources.

With the summary statistics on the model output Sh, and those estimated from the data Sq , ABC relies on a kernel

density g(z) (a Gaussian), a distance metric d(Sh, Sq), and a tolerance parameter ϵ to provide a pseudo-likelihood:

L(α̃) = ϵ−1g(ϵ−1d(Sh, Sq)) =
1

ϵ
√
2π

exp
(
−d(Sh, Sq)2

2ϵ2

)
.

Here, for the definition of the distance, we follow [62]. We consider the mean µj = Eξ[h(oj , α̃, ξ)] and standard4

deviation σj = σξ[h(oj , α̃, ξ)] statistics from the computational model predictions and subtract them to the data5

qj and a scaled absolute difference between the mean prediction and the data γ|µj − qj | respectively, where γ is a6

user-defined parameter. With this, the ABC likelihood reads7

L(α̃) = 1
ϵ
√
2π

N∏
j=1

exp(− (µj − qj)2 + (σj − γ|µj − qj |)2

2ϵ2
). (16)

The motivation for this construction is the desire to require the Bayesian-calibrated model to achieve two goals: (1)8

fit the data in the mean, and (2) provide a degree of predictive uncertainty that is consistent with the spread of the9

data around the mean prediction. In particular, this second requirement provides protection against overconfidence10

in predictions, ensuring that predictive uncertainty is representative of the discrepancy from the data resulting from11
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model error, irrespective of data size.1

3. NONLOCAL OPERATOR REGRESSION WITH EMBEDDED MODEL ERROR2

In this section we introduce the embedded treatment of nonlocal operator regression, along with implementation3

details.4

3.1 Mathematical Formulation5

We propose the embedded nonlocal operator regression (ENOR) construction, which aims to quantify the model6

error in nonlocal operator learning using Bayesian inference. In particular, we incorporate a location-dependent GP,7

Kξ(x, ω̃), to represent embedded model error. Here, this Gaussian random field is defined on Ω̄×Ωp, where Ω̄ is the8

spatial domain together with the nonlocal boundary region, and Ωp is the sample space of a probability space. The9

dependence on the GP parameters is implicit, and is suppressed here for convenience of notation. To account for the10

structural error of learning a homogenized kernel KC, we modify (3) as:11

LENL[u](x, t) :=
∫
Bδ(x)

(
KC(|y − x|)

(
1+Kξ

(
x+ y

2
, ω̃

)))
(u(y, t)− u(x, t))dy. (17)

Here the GP Kξ(x, ω̃) is defined by a zero mean and the following covariance function:

Cov(Kξ(x),Kξ(y)) = σ2
gp exp

(
−|x− y|

lgp

)
,

with σgp and lgp being learnable parameters. Then, the nonlocal model (2) is modified as12

∂2uENL

∂t2
(x, t)− LENL[uENL](x, t) = f(x, t). (18)

Note that the corrected kernel preserves the symmetry property in (4)

KC(|y − x|)
(
1+Kξ

(
x+ y

2
, ω̃

))
= KC(|x− y|)

(
1+Kξ

(
y + x

2
, ω̃

))
,

and correspondingly the fundamental momentum preserving and invariance properties. Here, we allow the embedded13

model kernel to be location-dependent, to capture the modeling error introduced by the homogenized surrogate with a14

radial kernel KC. As a result, the corrected kernel is no longer radial, but it satisfies the physical requirement of being15
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symmetric with respect to x and y .1

To represent the GP, we use the Karhunen–Loève expansion [79,80] (KLE), i.e.,2

Kξ(x, ω̃) = σgp

∞∑
n=1

√
λiϕi(x)ξi(ω̃), (19)

where (λi,ϕi) are eigenpairs of the kernel function exp
(
−|x− y|

lgp

)
, and ξi are independent standard normal random3

variables. The analytical expression of the eigen-pairs can be found in [81], written for i = 1, . . . as4

λi =
2/lgp

(1/lgp)2 + w2
i

,

ϕi(x) = τ

(
cos(wix) +

1
lgpwi

sin(wix)
)
,

τ =
{
1
2

(
L(1+ ( 1

lgpwi
)2) + sin(2wiL)

2wi
(1− ( 1

lgpwi
)2)− 1

lgpw2
i

(cos(2wiL)− 1)
)}

,

(20)

where L is the length of the domain, τ is a normalizer, and the wi are obtained by solving the following equation5

(
w2

i − (1/lgp)2
)
tan(wiL)− 2

wi

lgp
= 0, i = 1, 2, . . . . (21)

We truncate the summation up to R terms for computational purpose, where R is chosen such that

R∑
i=1

λi ≥ 0.9
∞∑
i=1

λi.

Substituting (19) into (17), we obtain:6

∂2uENL

∂t2
(x, t)−

∫
Bδ(x)

KC(|y − x|)(1+ σgpΨTξ)(uENL(y, t)− uENL(x, t))dy = f(x, t), (22)

where

Ψ
(
x+ y

2

)
:=
[√

λ1ϕ1

(
x+ y

2

)
, ...,

√
λRϕM

(
x+ y

2

)]T
, ξ := [ξ1, ..., ξR]T .

With the KLE we get a realization of the GP by generating a sample of ξ. Then, the numerical scheme in (6) can7

be employed to evaluate the solution. Denoting (us
ENL,C)

n+1
i,k := us

ENL,C(xi, t
n+1,ξk) as the numerical solution at8
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14 Yiming Fan, Habib N. Najm, Yue Yu, Stewart Silling & Marta D’Elia

(xi, t
n+1) for the s-th sample and k-th GP realization, we have1

(us
ENL,C)n+1

i,k = 2(us
ENL,C)ni,k − (us

ENL,C)n−1
i,k +∆t2fs(xi, t

n)

+ ∆t2∆x
∑

xj∈Bδ(xi)∩χ

KC(|xj − xi|)
(
1+ σgpΨ

(
xj + xi

2

)T

ξk

)
((us

ENL,C)nj,k − (us
ENL,C)ni,k), (23)

where ξk is the k-th realization of the random vector generating the corresponding GP. Similarly, the step-wise version2

of the embedded nonlocal model can be written as3

(ũs
ENL,C)n+1

i,k = 2(us
DNS)ni − (us

DNS)n−1
i +∆t2fs(xi, t

n)

+ ∆t2∆x
∑

xj∈Bδ(xi)∩χ

KC(|xj − xi|)
(
1+ σgpΨ

(
xj + xi

2

)T

ξk

)
((us

DNS)nj − (us
DNS)ni ). (24)

To effectively evaluate the pseudo-likelihood, we employ the expression (16). Note that the generated eigenpairs4

(λi,ϕi) are dependent on lgp. Since optimizing with respect to lgp together with the other parameters is computa-5

tionally infeasible, we treat lgp as a tunable hyperparameter, and perform our ENOR algorithm for a fixed lgp at a time6

to avoid the repeated cost of (20) and (21). Therefore the enhanced parameter set α̃ = (C,σgp, lgp) will be reduced7

to α̃ = (C,σgp). For each observation, we have the following ABC likelihood8

L(α̃) := p(D|(C,σgp))

=
S,L,T/∆t∏
s,i,n=1

exp
(
− 1
2ϵ2

(
(µs

C(xi, t
n)− us

DNS(xi, t
n))2 + (σs

C(xi, t
n)− γ|µs

C(xi, t
n)− us

DNS(xi, t
n)|)2

))
,

(25)

where9

µs
C(xi, t

n) = 1
K

K∑
k=1

(us
ENL,C)ni,k, (26)

σs
C(xi, t

n) =

√√√√ 1
K − 1

K∑
k=1

((us
ENL,C)ni,k − µs

C(xi, tn))2 (27)

are the sample mean and standard deviation for (us
ENL,C)ni and (us

ENL,C)ni , for K samples of ξ, and with the current10

value of σgp.11

In [47], we found that a good prior distribution plays a critical role in achieving a fast convergence of the MCMC12
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algorithm and we used the learnt kernel parameter C0 from a deterministic nonlocal operator regression (DNOR) to1

construct such a prior. To provide a prior on C, we use independent standard normal priors on the kernel parameters2

Cm ∼ N (C0,m, σ̂2), m = 1, ...M − 2, with C0 being the learnt kernel parameter from DNOR, and the standard3

deviation σ̂ as a tunable hyperparameter. In practice, since σgp > 0, we infer ln(σgp) instead of σgp. To get an initial4

state for ln(σgp), we optimize the following5

ln(σgp,0) := argmin
ln(σgp)

1
2ϵ2

S,L,T/∆t∑
s,i,n=1

(µs
C(xi, t

n)− us
DNS(xi, t

n))2 + (σs
C(xi, t

n)− γ|µs
C(xi, t

n)− us
DNS(xi, t

n))|2)

(28)

and assign a uniform prior on ln(σgp), specifically ln(σgp) ∼ U [ln(σlo
gp), ln(σhi

gp)]. We treat σlo
gp and σhi

gp, the lower and6

upper bounds on σgp, as tunable hyperparameters. Once the proposal for ln(σgp) exceeds the bounds, the log-posterior7

will be set to −∞ automatically. Combining the likelihood in (25) and the prior (with ln(σgp) ∈ [ln(σlo
gp), ln(σhi

gp)]),8

we can finally define the unnormalized posterior p(C,σgp|D) ∝ p(D|C,σgp)p(C,σgp)) and obtain the negative9

log-posterior after eliminating the constant terms:10

1
2ϵ2

S,L,T/∆t∑
s,i,n=1

(µs
C(xi, t

n)− us
DNS(xi, t

n))2 + (σs
C(xi, t

n)− γ|µs
C(xi, t

n)− us
DNS(xi, t

n))|2) +
||C−C0||2l2

2σ̂2 .

(29)

3.2 Implementation Details11

Fine chain

Coarse chain

𝜃!
" 𝜃!

"#$

Sample {𝜃%&, 𝜃%$,…, 𝜃%'()*} through single level MCMC

ℱ!

ℱ%

𝜃!'+, = 𝜃%'()*

Fig. 1. Schematic of generating a proposal θ′ for a two-level MLDA algorithm.

As can be seen from (29), the evaluation of the posterior requires the estimation of the first and second order

moments of the output using K GP samples. For each sample, the nonlocal meshfree method (23) is applied for each

spatial point, time step, and observation, making this numerical evaluation expensive in MCMC. In order to improve

the efficiency of the MCMC procedure, we employ the Multilevel Delayed Acceptance (MLDA) MCMC technique
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[64,65], which exploits a hierarchy of models of increasing complexity to efficiently generate samples from an un-

normalized target distribution. For the purpose of illustration, we summarize the key factors of two-level Delayed

Acceptance (TLDA) MCMC here, while the method could be extended to a model hierarchy with arbitrarily many

levels by recursion. For the vanilla Metropolis-Hastings (MH) algorithm which is a typical single level MCMC, con-

sider sampling a trace {θ1, ..., θnsingle} from a target distribution πt(·), using a proposal distribution πp(·|·), and an

initial state θ0. MH accepts a new proposal θnew given θj for j = 0, 1, ...nsingle − 1 with probability

min
{
1,

πt(θnew)πp(θj |θnew)
πt(θj)πp(θnew|θj)

}
,

otherwise it rejects θnew and sets θj+1 = θj . In the context of Bayesian inference, the MH target distribution is1

the posterior distribution, i.e. πt(θ|D) = p(θ|D). Unlike the vanilla MCMC which has only one model, in TLDA,2

a cheaper model is employed to reduce the computational cost. Fig.1 illustrates the work flow for TLDA, where the3

coarse subchains are sampled in order to provide proposals for the fine model. Denote by Ff the fine forward model4

and by Fc the coarse forward model, with πf and πc being their target distributions respectively. Starting from θ
j
f , in5

the coarse level, one can generate the subchain {θ1c, θ2c, ..., θnsub
c } of length nsub using MH or any single-level MCMC6

method. After the subchain is finished, we take θnsub
c as the proposal for the fine chain (i.e. θnewf = θnsub

c ) and accept7

this proposal with probability8

min
{
1,

πf (θnewf )πc(θjf )
πf (θjf )πc(θnewf )

}
, (30)

otherwise reject θnewf and set θj+1
f = θ

j
f [65].9

When the approximation provided by the coarse model is poor, many samples will be rejected by the fine model10

resulting in a very low acceptance rate. As outlined in [65], an enhanced Adaptive Error Model (AEM) based on11

[82] is useful to account for and correct the discrepancy between the fine and coarse models. We use the two-level12

AEM [65,82] in the present use of TLDA. For parameters α̃ and operating conditions o, the bias B(o) between the13

two models can be written as14

B(o) = Ff (o, α̃, ξ)−Fc(o, α̃, ξ) (31)

When the parameter set α̃ is sampled from the prior distribution, then

B(o) ∼ Ff (o, α̃, ξ)−Fc(o, α̃, ξ).
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Denoting the fine model solution as us
ENL,C(xi, t

n,ξ) := us
ENL(C, ln(σgp),ξ)ni , the coarse model (the step-1

wise nonlocal model) solution as ũs
ENL,C(xi, t

n,ξ) := ũs
ENL(C, ln(σgp),ξ)ni , and the trainable parameter set as2

β̃ := (C, ln(σgp),ξ), we have the following sample mean and standard deviation for the correction term3

Ê[Bs,n
i ] = µs(xi, t

n)− µ̃s(xi, t
n), (σ̂[Bs,n

i ])2 = (σs(xi, t
n))2 − (σ̃s(xi, t

n))2, (32)

where4

µs(xi, t
n) = Êβ̃[u

s
ENL(β̃)ni ] =

1
N0

N0∑
n0=1

us
ENL(β̃n0)ni ,

σs(xi, t
n) = V̂1/2

β̃
[us

ENL(β̃)ni ] =

√√√√ 1
N0 − 1

N0∑
n0=1

(us
ENL(β̃n0)ni − µs(xi, tn))2,

µ̃s(xi, t
n) = Êβ̃[ũ

s
ENL(β̃)ni ] =

1
N0

N0∑
n0=1

ũs
ENL(β̃n0)ni ,

σ̃s(xi, t
n) = V̂1/2

β̃
[ũs

ENL(β̃)ni ] =

√√√√ 1
N0 − 1

N0∑
n0=1

(ũs
ENL(β̃n0)ni − µ̃s(xi, tn))2.

(33)

Here, N0 is the number of samples of β̃ which will be used for computing the sample mean and standard deviation.5

We highlight that the enhanced model parameter set α̃ = (C, ln(σgp)) should be sampled simultaneously with ξ. In6

contrast, µ and σ are calculated by averaging over multiple samples of ξ only, for each fixed enhanced parameter set7

α̃ = (C, ln(σgp)) in (26). In other words, the sample moments computed in (33) are to be used for correction for any8

parameter α̃ inside the prior distribution instead of a fixed parameter.9

By using the AEM technique, (29) can be well approximated by the coarse model following10

1
2ϵ2

S,L,T/∆t∑
s,i,n=1

(µ̃s
C(xi, t

n) + Ê(Bs,n
i )− us

DNS(xi, t
n))2

+ (
√
(σ̃s

C(xi, tn))2 + V̂(Bs,n
i )− γ|µ̃s

C(xi, t
n) + Ê(Bs,n

i )− us
DNS(xi, t

n))2|) +
||C−C0||2l2

2σ̂2 ,

(34)

where Ê(Bs,n
i ) and V̂(Bs,n

i ) are the sample mean and variance for the correction term B computed using (33). Tech-11

nically, this step is also a reference for tuning the upper and lower bounds for the prior distribution of ln(σgp). Such12

an interval should be selected in such a way that at least at C = C0 the log-negative posterior in (34) which is ap-13

proximated by the coarse model and the AEM could roughly reproduce the log-negative posterior in (29) which is14
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generated using the fine model. We summarize our method in Algorithm 1.1

Algorithm 1: A Two-Phase Learning Algorithm
1: Find a good initial state

1a) Learn the estimated kernel parameter, C0 = C0,1, ..., C0,M−2, by minimizing the time-accumulated
error via

C0 := argmin
C

S∑
s=1

∣∣∣∣us
NL,C − us

DNS

∣∣∣∣2
l2(Ω×[0,T ])

||us
DNS ||

2
l2(Ω×[0,T ])

+ λ||C||2l2 . (35)

1b) With fixed C = C0, find ln(σgp,0) by minimizing

ln(σgp,0) := argmin
ln(σgp)

S,L,T/∆t∑
s,i,n=1

((µs
C(xi, t

n)−us
DNS(xi, t

n))2 +(σs
C(xi, t

n)−γ|µs
C(xi, t

n)−us
DNS(xi, t

n)|)2).

(36)
2: Perform MLDA

2a) Using prior Cm ∼ N(C0,m, σ̂2), m = 0, ...,M − 2 and ln(σgp) ∼ U [ln(σlo
gp), ln(σhi

gp)], compute the
sample mean and standard deviation of the correction term B following

Ê[Bs,n
i ] = µs(xi, t

n)− µ̃s(xi, t
n), V̂[Bs,n

i ] = (σs(xi, tn))2 − (σ̃s(xi, t
n))2

and tune [ln(σlo
gp), ln(σhi

gp)] by recursively doing this step until the loss given by (34) could roughly match the
loss given by (29) at C = C0 inside the interval.

2b) Perform MLDA by evaluating the following negative log-posterior in the coarse level

1
2ϵ2

S,L,T/∆t∑
s,i,n=1

(µ̃s
C(xi, t

n) + Ê(Bs,n
i )− us

DNS(xi, t
n))2 + (

√
(σs

C(xi, tn))2 + V̂[Bs,n
i ]

− γ|µs
C(xi, t

n) + Ê(Bs,n
i )− us

DNS(xi, t
n))2|) +

||C−C0||2l2
2σ̂2 ,

(37)

and the following negative log-posterior in the fine level

1
2ϵ2

S,L,T/∆t∑
s,i,n=1

(µs
C(xi, t

n)− us
DNS(xi, t

n))2 + (σs
C(xi, t

n)− γ|µs
C(xi, t

n)− us
DNS(xi, t

n))|2) +
||C−C0||2l2

2σ̂2 .

(38)

3: Postprocessing
Perform convergence check for the parallel chains, extract effective samples from the MCMC chain,

analyze the uncertainty of the corresponding solution and other quantities of interests.

4. APPLICATION: HOMOGENIZATION FOR A HETEROGENEOUS ELASTIC BAR2

In this section, we examine the efficacy of the proposed ENOR approach on inferring the nonlocal homogenized sur-3

rogate for modeling the propagation of stress waves through a one-dimensional bar [22,47]. In particular, we consider4
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Periodic (Ordered) Microstructure

2b

𝜆

𝛿

Material 1 𝑏! = 𝑏 Material 2 𝑏" = 𝑏

Random (Disordered) Microstructure

Material 1 
𝑏!~𝒰[ 1 − 𝐷 𝑏, 1 + 𝐷 𝑏]

Material 2 
𝑏"~𝒰[ 1 − 𝐷 𝑏, 1 + 𝐷 𝑏]

Fig. 2. One-dimensional bar composite of material 1 and material 2. (Top) periodic microstructure with fixed layer size= b. (Bottom)
Random microstructure with layer size satisfying random distribution∼ U [(1−D)b, (1+D)b].

a composite bar either made of periodic layers or randomly generated layers (see Fig.2), and we assume that the ampli-1

tude of the waves is sufficiently small, so that a linear elasticity model is a valid way to describe the wave motion within2

the layers and at their interfaces. With this assumption of linear elastodynamics, the propagation of waves through the3

bar can be described as:4

∂2u

∂t2
(x, t)− 1

ρ

∂

∂x

(
E(x)∂u

∂x
(x, t)

)
= 1

ρ
f(x, t), (39)

where ρ is the mass density which is assumed to be constant throughout the body, u is the displacement, and f is the5

external load density. E(x) is the elastic modulus which varies spatially according to the microstructure, i.e., we have6

E = E1 in the blue regions of Fig.2, and E = E2 in the yellow regions. s(x, t) := E(x)∂u∂x (x, t) is the stress. On the7

interfaces of two materials, the following jump conditions hold: [u(x, t)] = 0,
[
E(x)∂u

∂x
(x, t)

]
= 0.8

Ideally, one can solve (39) using numerical solvers on fine discretizations of the computational domain to ex-9

plicitly represent all interfaces. However, in real-world applications such as projectile impact modeling [21,83], one10

is interested in modeling the decay of the wave over distances that are several thousand times larger than the layer11

size. In these circumstances, a fine numerical solver is prohibitively expensive and a homogenized surrogate model is12

desired to provide scalable predictions.13

In this example, we first generate short-term high-fidelity simulation data by solving (39) using characteristic line14

method. This method, which we denote as the direct numerical simulation (DNS) technique, assumes that the waves15

running in the opposite direction converge on the node, and update the material velocity explicitly from the jumping16

condition which is a consequence of the momentum conservation. Due to this property, this DNS solver is free of17

truncation error and approximation error as in the classical PDE solver, which allow us to simulate the exact velocity18

of wave propagation through arbitrarily many microstructural interfaces. We refer the reader to [21,47] for more details19
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of this method for further details. Then, our goal is to construct a nonlocal homogenized surrogate model from this1

high-fidelity simulation dataset D.2

4.1 Example 1: Periodic Microstructure3

Throughout the section, a non-dimensionalized setting is employed for the physical quantities for the simplicity of4

numerical experiments, following the setup in [21]. First, we consider a periodic heterogeneous bar, where the layer5

size for the two materials is a constant b = 0.2. The bar length is L = 20 and the physical domain is set to be6

[−L/2, L/2]. Components 1 and 2 have the same density ρ = 1 and Young’s moduli are set as E1 = 1 and E2 = 0.25,7

respectively. For the purpose of training and validation, three types of datasets/settings are considered:8

Setting 1: Oscillating source (20 loading instances). We set L = 20. The bar starts from rest such that v(x, 0) =9

u(x, 0) = 0, and an oscillating loading is applied with f(x, t)= e−(
2x
5kb )2e−

(
t−t0
tp

)2
cos2

( 2πx
kb

)
with k = 1, 2, . . . , 20.10

Here we take t0 = tp = 0.8.11

Setting 2: Plane wave with ramp (11 loading instances). We also set the domain parameter as L = 20. The bar starts12

from rest (u(x, 0) = 0) and is subject to zero loading (f(x, t) = 0). For the velocity on the left end of the bar, we13

prescribe14

v(−L/2, t) =


sin(ωt) sin2

(
πt

30

)
, t ≤ 15

sin(ωt), t > 15

for ω = 0.35, 0.7, · · · , 3.85.15

Setting 3: Wave packet (3 loading instances). We consider a longer bar with L = 266.6, with the bar starting from16

rest (u(x, 0) = 0), and is subject to zero loading (f(x, t) = 0). The velocity on the left end of the bar is prescribed as17

v(−L/2, t) = sin(ωt) exp (−(t/5− 3)2) with ω = 2, 3.9, and 5.18

For all data types, the parameters for the nonlocal solver and the optimization algorithm are set to ∆x = 0.05,19

∆t = 0.02, δ = 1.2, and M = 24. For training purposes, we generate data of types 1 and 2 till T = 2. Then, to20

investigate the performance of our surrogate model in long-term prediction tasks we simulate till T = 100 for setting21

3. We choose σ̂2 = 0.012
0.35 and [ln(σlo

gp), ln(σhi
gp)] = [−2.5,−1.7] to achieve optimal performance. A detailed ablation22

study of these parameters is provided in Appendix A.23

International Journal for Uncertainty Quantification



Embedded Nonlocal Operator Regression 21

4.1.1 Results from MCMC Experiments1

We use PyMC [84] for all the MCMC computations below. We begin by verifying the convergence behavior of our2

algorithm. In particular, we test a single-level MCMC with the differential evolution Metropolis (DEMetropolis) al-3

gorithm [85] on the fine level with 4,000 draws and a burn-in stage of 300. DEMetropolis, or DEMetropolis(Z) is a4

variation of Metropolis-Hastings algorithm that uses randomly selected draws from the past to make more educated5

jumps. Results in Fig. 3 indicate that the single-level MCMC suffers from an extremely long burn-in stage and poor6

mixing. We treat these single-level results as a baseline which we use to examine the relative performance of the7

multilevel method below.8

(a) First parameter (b) Second parameter (c) ln(σgp)

Fig. 3. Trace plot for the MCMC using single-level DEMetropolisZ sampler.

We first illustrate the utility of the multilevel algorithm using a correlation length lgp = L/2. We run 6 inde-9

pendent chains, each with 4,000 draws, a burn-in stage of 300 and a subchain length on the coarse level of 100. Each10

chain is initialized using the scheme proposed in Section 3. We examine the quality of the chains both visually and11

quantitatively. Fig.4 illustrates that all the six independent chains attain essentially the same stationary state. Further,12

using the improved R̂ statistic [86] relying on ArviZ in Python, we find that the R̂ values for all 24 parameters are very13

close to 1, with the highest being 1.0019, again highlighting the convergence of the chains. Note that, for an ergodic14

process, this statistic decays to 1 in the limit of infinite chain length [86].15

The chains have 24,000 draws in total, with approximately 42% acceptance rate on average. To present the aggre-16

gate results, we use roughly 6,000 equally spaced samples out of the total, where this effective sample size (ESS) was17

calculated using the method in [87]. The trace plots shown in Fig.5 indicate good mixing, and, with the high ESS, we18

have reliable probability density functions (PDFs) and associated statistics.19
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(a) First parameter (b) Second parameter (c) ln(σgp)

𝐶!

𝐶"

𝐶! 𝐶"

(d) Joint distribution of the first and second parameters in C

𝐶!

ln(𝞼"#)

𝐶! ln(𝞼"#)

(e) Joint distribution of the third parameter in C and ln(σgp)

Fig. 4. Convergence check: Trace plots and PDFs for the traces. For each trace, we have an acceptance rate ≈ 0.42, and an effective
sample size ≈ 1,000 (out of 4,000 draws).
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(a) First parameter (b) Second parameter (c) ln(σgp)

𝐶!

𝐶!

𝐶"

𝐶"

(d) Joint distribution of the first and second parameters in C

𝐶!

ln(𝞼"#)

𝐶! ln(𝞼"#)

(e) Joint distribution of of the third parameter in C and ln(σgp)

Fig. 5. Trace plot and PDF for the combined trace. The acceptance rate ≈ 0.42, ESS ≈ 6,000 (out of 24,000 draws).
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4.1.2 Impact of GP Correlation Lengths1

As discussed in Section 3.1, to avoid the repeated cost of (20) and (21) at each MCMC step, we use the GP correlation2

length, lgp, as a tunable hyperparameter. In this section, we investigate the impact of different values of lgp on the3

learnt corrected kernels and the corresponding nonlocal solution behaviors.4

In Fig. 6, the uncertainty with several realizations for the kernel with GP, K(|x − y|)(1 + ξ(x+ y

2
)), is plotted5

for correlation lengths lgp = 2L = 40 and lgp = L/128 = 0.15625, using 10,000 realizations in total. Since the6

behavior of the kernel is similar at each point in the one-dimensional bar, we pick the location x = 0.0 as an instance7

for illustration. We observe that the curve labeled ‘Mean’, which is the mean value of all the realizations, is consistent8

with the corresponding kernel as the mean of the ESS, which is a single push-forward of the embedded model (18)9

using the mean value of the effective samples and setting the GP to 0. In fact, without the GP the embedded model10

degenerates to the original nonlocal model (2). This consistency is because of the linearity of the nonlocal kernel and11

the independence of the ξ components. Further, for different lgp values, one can barely see changes in the mean and12

the confidence region. On the other hand, sampled GP realizations exhibit significant structural differences between13

the two cases, in Figs. 6(a) and 6(b), consistent with the large change in lgp between the two cases.14

To examine the dispersion behavior of these kernel realizations, we plot in Figs. 7(a,c) the group velocity of15

kernels corresponding to a GP with a large (lgp = 40) and relatively small (lgp = 0.625) correlation length. For each16

realization of the kernel, the group velocity is computed using a wave packet that travels a long enough distance such17

that the wave is away from the ends of the bar. In order to do this in numerical simulation, we set the bar length equal18

to 400 and generate realizations of the kernels with the same correlation length on this longer bar. We note that the19

reduction in lgp results in a smaller band stop location (the smallest frequency where the group velocity drops to zero).20

Further, it is evident that the confidence region matches the dispersion behavior better when using a large correlation21

length. At the same time, oscillation is observed in the low frequency (ω < 2.0) region in the small lgp case. Finally,22

in Figs. 7(b,d), we plot the dispersion curves of these kernels. Note that all learnt kernels are positive, highlighting the23

physical stability of the corresponding nonlocal models.24

Next, we investigate the posterior uncertainty on the predicted displacements from the learnt models. Two samples

from setting 1 and 2 datasets are considered, with forcing at k = 10 in setting 1 and ω = 1.05 in setting 2. Let us

first recall the definitions of two relevant push-forward posteriors for a typical additive data noise problem setup

y = fd(x, λ,σ) = f(x, λ)+ϵ(σ) given the parameter posterior p(λ,σ|D). We have the push-forward posterior (PFP)

as the push-forward of the parameter posterior through the predictive model f(x, λ), while the posterior predictive

(PP) is defined as the push-forward of the parameter posterior through the full data model fd(x, λ,σ) [88,89]. Note
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(a) Kernel at point x = 0.0 for lgp = 2L=40. (b) Kernel at point x = 0.0 for lgp =
L

128
=0.15625.

Fig. 6. Kernel with uncertainty for a bar with periodic microstructure using two different correlation length.

(a) Group velocity using lgp = 2L=40. (b) Dispersion curve using lgp = 2L=40.

(c) Group velocity using lgp =
L

32
=0.625. (d) Dispersion curve using

lgp =
L

32
=0.625.

Fig. 7. Group velocity and dispersion curve with uncertainty for a bar with periodic microstructure using two different correlation
lengths. The curve labeled ‘Mean of ESS without GP’ denotes the single push-forward with the GP set to 0 and using the mean
value of the effective samples. The curve labeled ‘Mean’ denotes the mean value of all the realizations.
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that, in an embedded model-error construction with no additive data noise, the PFP and PP are equivalent. In Fig.8,

the PFP, which is the push-forward of the posterior p(C,σgp|D) through the nonlocal model with embedded model

error, is plotted for two different lgp values. For each case, we see that both the 95% and 68% PFP confidence regions

generally cover the majority of the ground truth data over the spatial domain. However, we do observe that, visually,

and for these two samples, the kernel with a smaller lgp does a better job of spanning the ground truth data discrepancy

from the mean model. This is also illustrated in Fig.10, where the best choices of lgp for different training samples

are plotted according to the Continuous Ranked Probability Score (CRPS) [90]. The CRPS compares a single ground

truth value to a distribution. Assume that we have a ground truth ȳ and a cumulative distribution function (CDF) H

for a variable x̄, then the CRPS can be analytically written as

CRPS(H, ȳ) =
∫
(H(x̄)− 1{x̄≥ȳ})2dx̄.

In a numerical setting where only a sampling-based empirical CDF is available, [90] provides alternative forms of the1

CRPS which are feasible to estimate2

CRPS(H, ȳ) = E[|X̄ − ȳ|]− 1
2
E[|X̄ − X̄ ′|] (40)

= E[|X̄ − ȳ|] + E[X̄]− 2E[X̄ ·H(X̄)], (41)

where X̄ , X̄ ′ are independently and identically distributed according toH . Per the definition of the CRPS, the lower the3

score is, the better does our predicted displacement match the DNS data in distribution. Specifically, we use equation4

(40) here, but in principle the two expressions are equivalent. The average CRPS values across different training5

samples, at t = 2.0, are summarized in Table.1. As the correlation length lgp decreases, only a slight reduction in the6

CRPS is obtained, suggesting that all studied kernels have comparable performance in obtaining the correct distribution7

of the displacement.8

Material 2L L L/2 L/4 L/8 L/16 L/32 L/64 L/128
Periodic 0.0048 0.0048 0.0048 0.0048 0.0047 0.0046 0.0045 0.0044 0.0043
Disorder 0.0080 0.0080 0.0080 0.0079 0.0079 0.0077 0.0076 0.0076 0.0076

TABLE 1. Average CRPS of training samples for different lgp. The value of the CRPS is evaluated for all the training
samples on each grid in the physical domain at the last time step t = 2.0.

Finally, we provide the prediction of a wave packet, a waveform that is substantially different from the training9

data. With this setting, we consider an extrapolation scenario: the learnt model is employed to generate a long-term10
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(a) Sample 10 from type 1 data at t=2.0, lgp = 40. (b) Sample 3 from type 2 data at t=2.0, lgp = 40.

(c) Sample 10 from type 1 data at t=2.0, lgp = 0.15625. (d) Sample 3 from type 2 data at t=2.0, lgp = 0.15625.

Fig. 8. Posterior uncertainty on training samples for a bar with periodic microsturcture using two different correlation length.

simulation up to t = 100, which is 50× the training time interval. In Fig.9, we plot the results using lgp = 40 and1

0.15625. For a low-frequency wave (ω = 2.0), lgp = 0.15625 works better, in the sense that the predictive distribution2

more closely follows the small features of the wave, roughly reflecting the local magnitude of the discrepancy between3

the two solutions. On the other hand, the case with lgp = 40 fails to do so, with a predictive distribution that broadly4

encompasses the two solutions, but does not capture the small-scale structure. In both cases, the confidence region5

fully covers the ground truth, providing a conservative estimation of uncertainty, and avoiding overconfidence, as is6

the intent of the embedded model error construction. Considering next the ω = 3.9 case, a frequency close to the7

band gap, we find that the larger correlation length lgp = 40 provides better predictions. Here, the case with smaller8

correlation length lgp = 0.15625 suffers from a mismatch between the uncertainty prediction, the single push-forward9

of the mean of ESS, and the ground truth. This observation is consistent with the results in Fig.7, where the band10

gap shifts from the ground-truth band gap and the confidence region fails to cover the DNS data. For the frequency11

(ω = 5.0) that is much larger than the band gap frequency, the stress wave is anticipated to stop propagating. In this12

setting we find that both small and large correlation length cases work well. The best lgp values for the validation13

samples are also provided in Fig.10, where the optimal correlation length lgp varies depending on the frequency and14

wave type.15
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In conclusion, the correlation length for the embedded model error impacts the results differently for different1

waves, so that the optimal choice would need to be selected according to the purpose of the task. A frequency/waveform-2

dependent lgp might be of interest. We leave this as a possible future direction. In the following, we choose the best lgp3

according to the fidelity of prediction of group velocity in Fig.7, choosing lgp = 2L = 40 as the optimal correlation4

length.5

(a) ω = 2, t=100.0, lgp = 40. (b) ω = 2, t=100.0, lgp = 0.15625.

(c) ω = 3.9, t=100.0, lgp = 40. (d) ω = 3.9, t=100.0, lgp = 0.15625.

(e) ω = 5, t=100.0, lgp = 40. (f) ω = 5, t=100.0, lgp = 0.15625.

Fig. 9. Validation on wave packet for the periodic material at the last time step t = 100.0. The columns correspond to different
correlation length lgp and the rows correspond to different frequencies ω.
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(a) Best lgp for training samples (b) Best lgp for validation sam-
ples

Fig. 10. Best lgp (with the lowest CRPS) on training and validation samples for a bar with periodic material.

4.1.3 Comparison with the Baseline1

To further illustrate the efficacy of the present ENOR construction in capturing model error, we compare the posterior2

uncertainty on model predictions (with lgp = 40) to the results from BNOR [47], where an additive iid noise model3

was used. Results are shown in Fig.11 for two training data samples at a given time instant t = 2.0. We compare the4

equivalent PP/PFP ENOR results with the corresponding BNOR PP and PFP results. From Figs.11 (c) and (d), one can5

see that the BNOR PFP exhibits an almost negligible confidence region. On the other hand, the BNOR PP, shown in6

Figs.11 (e) and (f), exhibits higher uncertainty with a uniform-width confidence region around the mean prediction, as7

is expected given the additive iid noise. Compared with these two baseline results, the uncertainty given by the ENOR8

PP/PFP, shown in Figs.11 (a) and (b), is somewhat more adaptive, exhibiting a degree of uncertainty that approximately9

tracks the discrepancy between the mean prediction and the DNS data, highlighting the effectiveness of the embedded10

model error setting. To provide a quantitative comparison, we note that the BNOR results at t = 2.0 in [47] exhibit11

a PFP CRPS of 0.051 and a PP CRPS of 0.039, which are both roughly 10× higher than the present ENOR result in12

the worst case (CRPS of 0.0048). To further compare the two models at different regions, we also consider point-wise13

comparisons at four locations in our exemplar samples. For sample 10 from type 1 data, we consider x = −3.5 and14

x = 0.0, which correspond to points in low-uncertainty region and high-uncertainty region, respectively, and highlight15

these two locations in the left column of Fig.11. At x = −3.5, the CRPS for ENOR, BNOR-PFP and BNOR-PP are16

0.0031, 0.0046 and 0.0040, respectively. At x = 0.0, the CRPS for ENOR, BNOR-PFP and BNOR-PP are 0.0048,17

0.0061 and 0.0056. For sample 3 from type 2 data, we choose x = 2.5 for investigations in low-uncertainty region18
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and x = −2.5 for high-uncertainty region, and illustrate these in the right column of Fig.11. The CRPS (from top1

to bottom) are 0.00018, 0.0031, 0.0045 at x = 2.5 and 0.028, 0.14, 0.14 at x = −2.5. This again illustrates that the2

ENOR model provides an uncertainty that better reflects the discrepancy between the mean model prediction and the3

ground truth.4

x=-3.5

x=0.0

(a) ENOR PP (or PFP) for sample 10 from type 1 data at t=2.0.

x=-3.0
x=2.5

(b) ENOR PP (or PFP) for sample 3 from type 2 data at t=2.0.

x=-3.5

x=0.0

(c) BNOR PFP for sample 10 from type 1 data at t=2.0.

x=-3.0
x=2.5

(d) BNOR PFP for sample 3 from type 2 data at t=2.0.

x=-3.5

x=0.0

(e) BNOR PP for sample 10 from type 1 data at t=2.0.

x=-3.0 x=2.5

(f) BNOR PP for sample 3 from type 2 data at t=2.0.

Fig. 11. Comparison of posterior uncertainty (PFP and PP) between ENOR and BNOR for periodic material. The columns corre-
spond to different samples in training data and the rows correspond to different methods.

4.1.4 Parametric Uncertainty versus Model Error5

It is instructive to examine the role of parametric uncertainty versus model error in the resulting uncertainty in model6

predictions. We illustrate in Fig.12 the posterior predictive uncertainty under the following three scenarios.7
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1. In plots (a) and (b), we consider uncertainty from all sources, by sampling realizations from both the embedded1

error correction term ξ and the marginal distribution on kernel parameters.2

2. In plots (c) and (d), we consider the uncertainty from the embedded error correction term ξ only, using deter-3

ministic kernel parameters.4

3. In plots (e) and (f), we neglect the embedded error correction term but sample the kernel parameter C from the5

learnt marginal distribution. As such, only the uncertainty from the marginal distribution on kernel parameters6

is considered.7

By comparing the confidence regions from these three settings, one can observe that results from scenarios 1 and8

2 almost coincide, while the predicted uncertainty in scenario 3 is negligible. This indicates that nearly all of the9

predictive uncertainty comes from the embedded model error. This is typical in Bayesian estimation of one model10

against another in the absence of data noise and when there is a sufficiently large amount of data.11

4.2 Example 2: Random Microstructure12

To investigate the performance of the ENOR model on more complicated microstructures, we consider here a disor-13

dered heterogeneous bar, where the layer lengths of the two materials are random. In particular, the layer sizes are two14

uniformly distributed random variables: b1, b2 ∼ U [(1−D)b, (1+D)b], with the average layer size b = 0.2 and the15

disorder parameter D = 0.5. The density for both components is still set as ρ = 1 and their Young’s moduli are set at16

E1 = 1 and E2 = 0.25.17

To generate the training dataset, we consider the high-fidelity data under the same settings as in data types 1 and18

2 of the periodic bar case. Compared with the periodic microstructure case, from the group velocity generated by the19

DNS simulations we note that the band stop generally occurs at a lower frequency in the random microstructure case.20

In fact, for the microstructure considered here, an estimated band stop frequency ωbs ≈ 3 can be obtained from the21

DNS simulations. Therefore, for the validation data set, we study wave packets with frequencies ω = 1, 2, 3 and 4,22

with the purpose of investigating the performance of our nonlocal surrogate model when the loading frequencies are23

below (ω = 1, 2), around (ω = 3), and above (ω = 4) the estimated band stop frequency ωbs. We use σ̂2 = 0.012
0.3524

and [ln(σlo
gp), ln(σhi

gp)] = [−2.5,−1.7] to achieve optimal performance.25
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(a) Sample 10 from type 1 data at t = 2.0. Confidence region using
100 effective samples and 100 realization each.

(b) Sample 3 from type 2 data at t = 2.0. Confidence region using 100
effective samples and 100 realization each.

(c) Sample 10 from type 1 data at t = 2.0. Confidence region using
fixed values of kernel parametersC andσgp with 1000 GP realizations.

(d) Sample 3 from type 2 data at t = 2.0. Confidence region using
fixed values of kernel parametersC andσgp with 1000 GP realizations.

(e) Sample 10 from type 1 data at t = 2.0. Confidence region using
100 effective samples of C and σgp without GP (i.e. with ξm=0).

(f) Sample 3 from type 2 data at t = 2.0. Confidence region using 100
effective samples of C and σgp without GP (i.e. with ξm=0).

Fig. 12. An illustration of the relative impact of parametric uncertainty and model error on resulting predictive uncertainty, in the
periodic material. The columns correspond to different samples in the training data and the rows correspond to posterior prediction
using different sources of uncertainty.
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4.2.1 Results from MCMC Experiments1

To demonstrate the convergence of MCMC in this case, we again pick correlation length lgp = L/2 as an example case2

to test the utility of ENOR in disordered materials. Following the same settings of the periodic microstructure study,3

we run 6 independent chains. The results pass the same convergence check both visually and quantitatively, where the4

improved R̂ statistics for all the 24 parameters are very close to 1, with a maximum of 1.0038, which again verifies the5

convergence. The chains provide 24,000 draws in total, with approximately 39% acceptance rate on average and the6

combined chain shows good mixing. Compared with the periodic bar with inferred ln(σgp) ≈ −2.0, a slightly larger7

kernel variation, ln(σgp) ≈ −1.8, is obtained here. That suggests that the randomness in the material with disordered8

microstructure results in a larger model discrepancy relative to the DNS results.9

4.2.2 Impact of GP Correlation Length10

We now study the impact of different correlation length (lgp) values in the disordered material, again considering11

lgp values ranging from 0.15625 to 40. In Fig.13, we observe that the uncertainty in the kernel with an embedded12

GP, K(|x − y|)(1 + ξ(x+ y

2
)), has the same pattern of mean and confidence region variation as in the periodic bar13

case, given the same random kernel structure and GP properties. In Fig.14, we investigate the behavior of the group14

velocity, and observe that a larger correlation length provides better fitting of the group velocity, and that reducing15

the correlation length lgp results in a left shift of the band gap in prediction. While this trend was also observed in16

the periodic microstructure case (see Fig.7), severer oscillations and larger confidence regions are observed at low17

frequencies here in the small correlation length lgp = 0.625 case, possibly because of the higher uncertainty levels18

introduced by the disordered microstructure in the material. In Figs.14 (b) and (d), we show the dispersion curves of19

the learnt kernels, noting again that positivity of all dispersion curves indicates physical stability of the learnt models.20

(a) Kernel at point x = 0.0 for lgp = 2L=40. (b) Kernel at point x = 0.0 for lgp =
L

128
=0.15625.

Fig. 13. Kernel with uncertainty for a bar with periodic microstructure using two different correlation lengths.
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(a) Group velocity using lgp = 2L=40. (b) Dispersion curve using lgp = 2L=40.

(c) Group velocity using lgp =
L

32
=0.625. (d) Dispersion curve using

lgp =
L

32
=0.625.

Fig. 14. Group velocity and dispersion curve with uncertainty for a bar with disordered microstructure using two different correlation
lengths.
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Finally, we provide again the prediction of a wave packet for a larger domain and longer time as a validation, not1

present in the training set. Overall, the same conclusion on the correlation length as section 4.1.2 can be reached for2

disordered material. We refer the reader to FigB.27 in Appendix B for more details on this experiment. In Fig.15,3

we provide the best lgp for all the training and validation samples according to the value of the CRPS. Note that the4

optimal lgps are different from the ones illustrated in Fig.10, highlighting the dependence of the optimal lgp on the5

material microstructure.6

(a) Best lgp for training samples (b) Best lgp for validation sam-
ples

Fig. 15. Best lgp (with the lowest CRPS) on training and validation samples for a bar with disordered microstructure.

4.2.3 Comparison with the Baseline7

Comparing the CRPS for the posterior PDF on the learnt ENOR model predictions with lgp = 40, to that from the8

baseline model (BNOR) [47], at the same time instant t = 2.0, we find again superior performance from the present9

construction. Specifically, the ENOR CRPS is 0.008 while the BNOR PFP and PP CRPS values are 0.041 and 0.02510

respectively. Thus, consistent with the findings in the periodic material, the BNOR CRPS values are much higher than11

the ENOR CRPS, again indicating that the embedded model error construction provides a better statistical fit for the12

DNS data.13

Further, in Fig.16 we compare the posterior predictive density from ENOR and the BNOR PFP/PP densities for14

two samples from two wave types at t = 2. While ENOR again provides a better prediction for solution uncertainty,15

the 95% confidence region is significantly larger, especially in Fig.16(a). Note that according to Table.1 and Fig.15,16

lgp = 0.3125 is best for sample 10 in wave type 1, while lgp = 2.5 is best for sample 3 in wave type 2. Thus, the17

correlation length lgp = 40 employed here is not ideal for both samples. This again suggests that different correlation18
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length should ideally be employed for different loading scenarios. When comparing the level of solution uncertainty1

from periodic (see Fig.11 (a) and (b)) and disordered materials (Fig.16 (a) and (b)), a larger confidence region is2

observed in the later case. In fact, the average standard deviation over the bar in sample 10 of data setting 1 is 0.00373

in the periodic microstructure case and 0.0122 in the disordered case. Similarly, the average standard deviations in4

sample 3 are 0.0232 and 0.0262 for the periodic and disordered microstructure cases, respectively. These results5

highlight the increase in uncertainty when randomness is introduced in the microstructure.6

(a) ENOR PP (or PFP) for sample 10 from type 1 data at t=2.0. (b) ENOR PP (or PFP) for sample 3 from type 2 data at t=2.0.

(c) BNOR PFP for sample 10 from type 1 data at t=2.0. (d) BNOR PFP for sample 3 from type 2 data at t=2.0.

(e) BNOR PP for sample 10 from type 1 data at t=2.0. (f) BNOR PP for sample 3 from type 2 data at t=2.0.

Fig. 16. Comparison of posterior uncertainty (PFP and PP) between ENOR and BNOR for the disordered material. The columns
correspond to different samples in training data and the rows correspond to different methods.

International Journal for Uncertainty Quantification



Embedded Nonlocal Operator Regression 37

4.2.4 Parametric Uncertainty versus Model Error1

With the purpose of investigating the impact of different source of uncertainty, we examine the predictive uncertainty2

resulting from parametric uncertainty versus model error for the disordered material, following the same steps in sec-3

tion 4.1.4. As shown in Fig.17, the embedded model error again dominates the posterior uncertainty, with a negligible4

role for parametric uncertainty.5

(a) Sample 10 from type 1 data at t = 2.0. Confidence region using
100 ess and 100 realization each.

(b) Sample 3 from type 2 data at t = 2.0. Confidence region using 100
effective samples and 100 realization each.

(c) Sample 10 from type 1 data at t = 2.0. Confidence region using
fixed value of kernel parameters C and σgp with 1000 realization of
GP.

(d) Sample 3 from type 2 data at t = 2.0. Confidence region using
fixed value of kernel parameters C and σgp with 1000 realization of
GP.

(e) Sample 10 from type 1 data at t = 2.0. Confidence region using
100 effective samples of kernel parameters C and σgp without GP (i.e.
set ξm=0).

(f) Sample 3 from type 2 data at t = 2.0. Confidence region using 100
effective samples of kernel parameters C and σgp without GP (i.e. set
ξm=0).

Fig. 17. An illustration of the relative impact of parametric uncertainty and model error on resulting predictive uncertainty, in the
disordered material. The columns correspond to different samples in training data and the rows correspond to posterior prediction
using different sources of uncertainty.
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5. CONCLUSION1

In this work, we proposed ENOR, a novel Bayesian embedded model error framework, to learn the optimal nonlocal2

surrogate for multiscale homogenization while also characterizing the impact of model error on predictive uncertainty.3

When learning the bottom-up nonlocal surrogate from microscale simulations, we find that the best fit surrogate has un-4

avoidable discrepancy from the microscale model, rendering a model error UQ study necessary. While the prior work5

[47] focused on an additive iid error construction, we here introduce, for the first time, an embedded model error repre-6

sentation in nonlocal operator learning, capturing the impact of model error on predictive uncertainty. The algorithm7

is developed by adding a Gaussian process to the nonlocal kernel, such that the kernel parameters and the Gaussian8

process parameters can be inferred simultaneously. To solve the Bayesian inference problem, a two phase algorithm,9

Alg.1, and a multilevel delayed acceptance Markov chain Monte Carlo (MLDA-MCMC) method are proposed, to10

provide efficient sampling and fast converging chains. The effectiveness of ENOR is demonstrated on the stress wave11

propagation problem in heterogeneous bars. Comparing to the prior work [47], ENOR improves the accuracy in (1)12

capturing the correct group velocity; (2) producing high-fidelity training data and predicting the substantially different13

wave type with accurate confidence region structure; (3) posterior sampling of the model parameters; and (4) selection14

for the correlation length for different tasks.15

From both visual inspection and quantitative tests, it was observed that the optimal choice of the GP correlation16

length may differ for different frequencies and wave types. As a natural extension, we plan to investigate frequency-17

dependent models. We also plan to explore uncertainty quantification for more complex data-driven homogenization18

models, such as peridynamics models [22,23] in 2D or 3D, and nonlinear models based on neural networks [34,42,19

91]. Since the number of trainable parameters increases substantially in these models, efficient Bayesian inference20

techniques and reduced order error models would be desired.21

ACKNOWLEDGMENTS22

YF and YY acknowledge support by the National Science Foundation under award DMS-2436624, the National In-23

stitute of Health under award 1R01GM157589-01, and the AFOSR grant FA9550-22-1-0197. Portions of this re-24

search were conducted on Lehigh University’s Research Computing infrastructure partially supported by NSF Award25

2019035. HNN acknowledges the support of the U.S. Department of Energy, Office of Science, Office of Advanced26

Scientific Computing Research (ASCR), Scientific Discovery through Advanced Computing (SciDAC) Program through27

the FASTMath Institute. Sandia National Laboratories is a multi-mission laboratory managed and operated by National28

Technology & Engineering Solutions of Sandia, LLC (NTESS), a wholly owned subsidiary of Honeywell International29

International Journal for Uncertainty Quantification



Embedded Nonlocal Operator Regression 39

Inc., for the U.S. Department of Energy’s National Nuclear Security Administration (DOE/NNSA) under contract DE-1

NA0003525. This written work is authored by an employee of NTESS. The employee, not NTESS, owns the right,2

title and interest in and to the written work and is responsible for its contents. Any subjective views or opinions that3

might be expressed in the written work do not necessarily represent the views of the U.S. Government. The publisher4

acknowledges that the U.S. Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish5

or reproduce the published form of this written work or allow others to do so, for U.S. Government purposes. The6

DOE will provide public access to results of federally sponsored research in accordance with the DOE Public Access7

Plan.8

APPENDIX A. ABLATION STUDY9

Herein, we discuss the tuning procedure of two hyperparameters: the standard deviation of the prior distribution of C,10

and the lower and upper bounds on σgp.11

For the tuning of the prior distribution of C (denoted as σ̂), we choose the parameter to reach good performance12

in terms of the ESS and the acceptance rate. In Figures A.18-A.20 we show how σ̂ affects the MCMC algorithm per-13

formances. The results are based on a chain with 2,000 draws with other settings identical to the paper and modifying14

only σ̂. Generally, if σ̂ is too large, the proposed chain samples are more likely to result in low posterior values, re-15

sulting in a low acceptance rate (as shown in Fig.A.18). On the other hand, σ̂ is too small, the resultant strong prior16

may dominate the likelihood (as shown in Fig.A.20). To achieve a good balance, we choose σ̂ = 0.012
0.35 for the results17

in the main text.18

(a) First parameter (b) Second parameter (c) ln(σgp)

Fig. A.18. Trace plot for the case σ̂2= 0.12
0.35 , with acceptance rate ≈ 0.44 and ESS ≈ 685 out of 2,000 draws.

For the tuning of the lower and upper bounds of σgp, we choose the range to have the Adaptive Error Model19

(AEM) provide good agreement between the coarse and fine models. Generally, the ABC-likelihood approximated by20
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(a) First parameter (b) Second parameter (c) ln(σgp)

Fig. A.19. Trace plot for the case σ̂2= 0.012
0.35 (the hyperparameter used in this work), with acceptance rate ≈ 0.44 and ESS ≈ 705

out of 2,000 draws.

(a) First parameter (b) Second parameter (c) ln(σgp)

Fig. A.20. Trace plot for the case σ̂2= 0.0012
0.35 , with acceptance rate ≈ 0.44 and ESS ≈ 727 out of 2,000 draws. As can be observed,

the prior dominates the likelihood and all samples are in a very narrow regime.
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the coarse model should not be too far away from that of the fine model. In Fig.A.21 we plot the value of the negative1

ABC log-likelihood vs the value of ln(σgp). One can see that the two models have small discrepancy when ln(σgp)2

is between -2.5 and -1.7. To further demonstrate the impact of this range, in Figs. A.22-A.26 we present results from3

different upper and lower bounds. The results are based on a chain with 2,000 draws. To achieve a high ESS, we choose4

[ln(σlo
gp), ln(σhi

gp)]=[−2.5,−1.7] for best performance in the main text.5

Fig. A.21. Comparison of negative ABC log-likelihood for the fine and coarse (with AEM) model.

(a) First parameter (b) Second parameter (c) ln(σgp)

Fig. A.22. Trace plot for the case [ln(σlo
gp), ln(σhi

gp)]=[−3.5,−1.7], with acceptance rate ≈ 0.37 and ESS ≈ 592 out of 2,000
draws.

APPENDIX B. ADDITIONAL RESULTS6

In this section, we provide additional results for example 2. In Figure B.27, we provide the validation results using7

lgp = 40 and lgp = 0.15625 on wave packet for the random microstructure material, at the last time step t = 100.0. At8

low frequencies (ω = 1, 2), lgp = 0.15625 works better in reflecting the local magnitude of the solution discrepancy.9

Near the band stop (ω = 3), lgp = 40 works better since the confidence region from the small lgp case fails to cover10
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(a) First parameter (b) Second parameter (c) ln(σgp)

Fig. A.23. Trace plot for the case [ln(σlo
gp), ln(σhi

gp)]=[−3.0,−1.7], with acceptance rate ≈ 0.38 and ESS ≈ 627 out of 2,000
draws.

(a) First parameter (b) Second parameter (c) ln(σgp)

Fig. A.24. Trace plot for the case [ln(σlo
gp), ln(σhi

gp)]=[−2.5,−1.7], with acceptance rate ≈ 0.44 and ESS ≈ 705 out of 2,000
draws.

(a) First parameter (b) Second parameter (c) ln(σgp)

Fig. A.25. Trace plot for the case [ln(σlo
gp), ln(σhi

gp)]=[−2.5,−1.2], with acceptance rate ≈ 0.17 and ESS ≈ 368 out of 2,000
draws.
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(a) First parameter (b) Second parameter (c) ln(σgp)

Fig. A.26. Trace plot for the case [ln(σlo
gp), ln(σhi

gp)]=[−3.0,−0.7], with acceptance rate ≈ 0.15 and ESS ≈ 340 out of 2,000
draws.

the DNS data. For the large frequency case (ω = 4), both ENOR models have successfully predicted that the stress1

wave should stop propagating. These observations are consistent with the results from the periodic microstructure2

material.3
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