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Improving Satellite Imagery Masking Using
Multitask and Transfer Learning
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Abstract—Many remote sensing applications require masking
of pixels in satellite imagery for further analysis. For instance,
estimating water quality variables such as suspended sediment con-
centration (SSC) requires isolating pixels depicting water bodies
unaffected by clouds, their shadows, terrain shadows, and snow and
ice formation. A significant bottleneck is the reliance on multiple
data products (e.g., satellite imagery and elevation maps) and
lack of precision in individual processing steps, which degrade
estimation accuracy. We propose a unified masking system that
predicts all necessary masks from harmonized landsat and sentinel
(HLS) imagery. Our model leverages multitask learning to im-
prove accuracy while sharing computation across tasks for added
efficiency. In this article, we explore recent deep learning archi-
tectures, demonstrating that masking performance benefits from
pretraining on large satellite imagery datasets. We present a range
of models offering different speed/accuracy tradeoffs: MobileNet
variants provide the fastest inference while maintaining compet-
itive accuracy, whereas transformer-based architectures achieve
the highest accuracy, particularly when pretrained on large-scale
satellite datasets. Our models provide a 9%F1 score improvement
compared to previous work on water pixel identification. When
integrated with an SSC estimation system, our models result in
a 30× speedup while reducing estimation error by 2.64 mg/L,
allowing for global-scale analysis. We also evaluate our model on a
recently proposed cloud and cloud shadow estimation benchmark,
where we outperform the current state-of-the-art model by at least
6% in F1 score.

Index Terms—Deep learning, global surface water detection,
multitask learning, suspended sediment, transfer learning.

I. INTRODUCTION

I
SOLATING different types of pixels is a prerequisite in
many remote sensing tasks. Prior to estimating a variable
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of interest, it is often crucial to isolate pixels covering specific
land cover types such as water [1], [2], forests [3], [4], agri-
culture [5], [6], urban areas [7], [8], or remove artifacts such
as clouds and shadows [3], [9]. Landsat and Sentinel-2 data
come with water masks processed with the function of mask
(Fmask) algorithm [10], [11], but these are often insufficient due
to the tendency of Fmask to miss clouds [9], misclassify water
in complex environments [12], and misclassify clear ice as open
water [13]. Therefore, remote sensing workflows across many
domains have developed specific preprocessing and masking
tasks essential in estimating a quantity of interest [9], [14], [15].

In this article, we demonstrate a new approach to masking for
a case of estimating suspended sediment concentration (SSC).
Although SSC is discussed here as an application, our proposed
masking procedure is broadly applicable to other remote sensing
estimation methods. SSC can be estimated in rivers from a given
satellite image by first classifying the pixels into water and non-
water classes to identify valid areas for analysis [1], [15], [16].
All artifacts from clouds, cloud shadows, terrain shadows, snow,
and ice, considered as nonwater, are also typically removed so
that only “good quality” water pixels remain [15]. Once good
quality pixels are identified, summary statistics such as mean,
variance, and counts from the reflective bands of water pixels
are used as input to train a model to predict SSC [17], [18], [19].
Threshold-based classification of pixels such as via the Fmask
algorithm [10] and the modified normalized difference water
index (MNDWI) [20] can be effective for water identification,
but they are highly dependent on the locations and weather
conditions where thresholds are determined for the different
types of masks [21]. Fmask applies spectral tests to thermal
and optical bands for identifying cloud, shadow, water, and
snow pixels with thresholds based on the global optima across
sampled reference images [10]. However, a lower threshold for
identifying clouds that works well in areas with predominantly
thin clouds could result in overestimation of clouds in areas with
no clouds at all. Similar issues arise with other masks, where
the distribution of dark surfaces (e.g., burned areas, wetlands)
could affect the prediction of shadows and water due to similar
spectral characteristics. MNDWI thresholds the ratio involving
the green and short-wavelength infrared (SWIR) bands since
radiation from SWIR is strongly absorbed by water [20]. How-
ever, it is also sensitive to shadows from different topographic
conditions [22] and is very sensitive to snow; it is identical in
form to the normalized difference snow index [23].

© 2025 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see
https://creativecommons.org/licenses/by/4.0/
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Once water is obtained (Fmask also returns snow, ice, and
clouds following the same threshold-based logic), water pixels
must be sorted into those of “good” quality. The definition of
“good” is subjective, but often sun glint and shadows are prob-
lematic for reflectance based applications [24], [25]. Ancillary
data are needed to model terrain shadows. Shadows can be
obtained using the approximate position of the sun (based on
the date and time of day) and the surrounding topography [using
digital elevation maps (DEM)]. DEMs are large files, especially
those that are global [26], so this shadowing process is data
intensive. While we have given examples of preprocessing for
SSC estimation, the same issues apply for other applications that
require the isolation of pixels to use the surface reflectance to
drive another estimation process.

Deep learning networks provide an alternative to threshold-
based methods; previous work has shown the promising perfor-
mance of deep learning models for segmenting images where
each pixel is classified to a specific class [27], [28], [29], [30].
In particular, semantic segmentation has been explored together
with deep learning methods similar to [30] where a fully convo-
lutional neural network (CNN) is used to detect cloud and cloud
shadows. DeepWaterMap (DWM) [29] uses a CNN to segment
water pixels from Landsat data. LANA [9] uses an improved
CNN with attention-based mechanisms [31] to identify cloud
and shadow pixels from Landsat 8 data. Other architectures,
such as DeepLabv3+ [32], MobileNet [33], SegNet [34], vision
transformers (ViT) [35], and swin transformers (Swin-T) [36]
have shown encouraging results for object-based pixel classifi-
cation in images.

Apart from architecture considerations, deep learning meth-
ods require a sufficient amount of labeled training data to achieve
competitive performance [37], [38], [39]. To reduce dependency
on large datasets, transfer learning is applied where models are
first trained on a different task (e.g., image classification) with a
large dataset (e.g., ImageNet [39] with more than 14 M images)
and then fine-tuned on a specific task (e.g., masking) [40], [41],
[42]. Several large datasets such as ImageNet [39], Prithvi [43],
and Satlas [44] have become available with millions of labeled
training images that were shown to be effective for pretrain-
ing. At the same time, fine-tuning can be applied using the
recently released dynamic surface water extent (DSWx) [45]
product associated with the harmonized landsat-sentinel (HLS)
project [46] contains labeled masking data with high frequency
and near-global coverage. It has been used for flood detection,
wildfire mapping, and reservoir monitoring using changes in
water bodies and vegetation, and can potentially be used for
masking applications (e.g., water, cloud, shadow identifica-
tion) [47]. While DSWx can be used as the sole source of
masks, it is limited by the required input sources to produce them
(Copernicus DEM, Copernicus land cover, ESA worldcover,
NOAA GSHHS shapefile, and HLS). DSWx is currently not
available for historical data and it would be challenging and
resource-intensive to generate [45]. In contrast, deep learning
models can predict masks without relying on multiple sources
(e.g., predict masks using only HLS).

With the increasing availability of datasets for both pretraining
and task-specific fine-tuning, deep learning models show great

potential to find patterns and generalize on unseen data for satel-
lite imagery masking. However, these architectures typically
use a single model to predict a single output. In the case of
predicting five masks (i.e., water, cloud, cloud shadow, snow/ice,
terrain shadow) as is required for SSC estimation, five such
models would be necessary, which would require more time
and resources for training and inference. Multitask models [48]
introduce a framework that allows the simultaneous prediction
of multiple outputs (e.g., water, shadow, cloud masks). It was
shown to improve generalization performance by learning mul-
tiple tasks at the same time, while simplifying the training to
a single model [49]. Instead of training five separate models
where each model predicts a single type of mask (e.g., water),
a multitask framework uses a single model to predict all five
masks (water, cloud, cloud shadow, terrain shadow, snow/ice).
Thus, approximately five times less resources would be needed
for training and inference.

In this article, we propose an end-to-end framework for esti-
mating SSC using a multitask deep learning model. We inves-
tigate the reliability and efficiency of identifying water pixels
and other artifacts (e.g., clouds, cloud shadows, terrain shadows,
snow/ice) from satellite imagery using multitask models and
transfer learning through different pretraining datasets (e.g.,
ImageNet, Satlas, Prithvi), and compare our results with existing
models such as LANA [9] and DWM [50]. We also compare
performance of combining single-task models against the mul-
titask equivalent. Finally, we show the impact of multitasking by
evaluating the effect of masking improvements on downstream
tasks—here using SSC estimation as a case study. Our code is
available at https://github.com/cvl-umass/improv-mask.

II. DATA SOURCES

A. Harmonized Landsat-Sentinel

The HLS project [46] uses the operational land imager (OLI)
and multispectral instrument sensors from the Landsat and
Sentinel remote sensing satellites. The combined temporal fre-
quency is 2–3 days at 30 m spatial resolution with Landsat data
starting from February 2013, and Sentinel-2 A/2B starting from
June 2015/March 2017. The satellites cover all land areas in the
globe except Antarctica. The HLS data provide 15 harmonized
bands as enumerated in Table I.

Input features for training the model were derived from
HLS—the bands Blue, Green, Red, near infrared (NIR), SWIR1,
SWIR2 were used, similar to DWM [29].

B. Annotated Global Surface Water Masks

More than 3 million tiles are available in the DSWx products
through NASA’s Earth Observing System Data and Information
System (EOSDIS) [45]. DSWx products cover inputs generated
from Sentinel-1, NISAR, and HLS. This work focuses primarily
on the DSWx product that uses HLS as the image-based input.
The product provides a map of the extent of surface waters across
all landmasses excluding Antarctica. Each tile has ten layers,
where each layer has a size of 3660 × 3660 pixels (each pixel
has a 30 m resolution).
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Fig. 1. Geographic distribution of train, validation, and test data. The dataset has a global coverage with train, validation, and test splits spanning different
locations. Each dot represents the center of the sampled tile. Gaps are present to prevent overlap between different data splits, since each tile has a coverage of
109.8 km × 109.8 km. Following the computer science convention, training set is used for updating model weights during training, validation set is used for
selecting hyperparameters, and test set is not seen by the model except when evaluating performance.

TABLE I
15 HARMONIZED BANDS PRESENT IN HLS

Labels were obtained from a year’s worth of DSWx data from
April 2023 to March 2024 to train a model to predict the different
masks. Labels included the five masks for water, cloud, cloud
shadow, snow/ice, and terrain shadow (from DEM [26]). Only
high confidence water pixels (both partial and open water) were
used as water mask labels based on the DSWx product. The
time frame was selected to obtain samples from varying seasons
and weather conditions. Each label from the DSWx tiles were
matched to available HLS tiles, and sampled as follows.

1) Temporally: for each tile, 20 data points were uniformly
sampled throughout the year to cover different seasons
and weather conditions. This is roughly 1 sample every 2
weeks.

2) Spatially: The globe was subdivided onto a 6◦ × 6◦ grid.
All available tiles contained in each cell were used. This
process was done to make sure that adjacent cells would
have no overlapping tiles.

In addition, satellite tiles that did not contain data (i.e., all
pixels flagged as having no data) were removed from the dataset.
Samples with incomplete labels were also removed such that
samples that had all 5 masks remained. Each HLS feature paired
with a DSWx label was cropped to a size of 512 × 512 pixels.
We applied spatial validation on the data to prevent data leakage
and to measure the predictive performance of the model on
unseen locations. Train, validation, and test data points were
based on the grid defined during sampling. Fig. 1 shows the
distribution of the sampled data. The extraction and processing
resulted in 107 250 labeled data—82 247 for training, 12 849
for validation, and 12 154 for testing. Throughout this article,
we use the computer science convention for defining train,
validation, and test splits. The training samples are used for
training the model, the validation samples are used for selecting
hyperparameters and thresholds (if any), and the testing sam-
ples are exclusively used to evaluate the performance of the
models. Table II shows the average number of pixels per image
sample across the different data splits. Different classes across
training, validation, and test have a similar number of pixels per
mask.

C. In Situ SSCs

SSCs were obtained from water quality databases [15], [51]
across different locations around the globe. Data were collected
in situ in different sites in the United States (U.S. Geological
Survey, 2018), Canada (The Water Survey of Canada, 2018),
South America (Agência Nacional de Águas, 2017), Taiwan
(Taiwan Water Resource Agency, 2018), and Europe (Euro-
pean Environment Agency, 2020). Additional databases such as
GEMStat [52] and Glorich [53] also have metadata that indicate
the quality of the measurements and the depth at which the
concentrations were measured.

The SSC data were obtained from the United States, Canada,
South America, Europe, and parts of Asia (e.g., Taiwan, Japan,
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TABLE II
AVERAGE NUMBER OF PIXELS PER IMAGE PER TYPE OF MASK ACROSS ALL SAMPLES IN THE DATA SPLITS

China). A total of 244 000 in situ SSC data were obtained. HLS
tiles and in situ SSC values were then matched based on the
location and date. Satellite images taken within one day of the
sampled SSC value, and images with nonzero data were used.
Using this matching criteria, we obtained 24 328 data points with
both in situ SSC values and corresponding HLS tiles. These data
points were split into train, validation, and test with 50%, 25%,
and 25% of the data, respectively. These three sets were sampled
to be in different spatial locations to prevent data leakage, and to
ensure an accurate assessment of the model’s generalizability.
The final set of SSC values range from 0.003 to 723.0 mg/L,
taken from April 2013 to October 2021 [54].

We removed samples that could not be reliably measured. The
metadata of each SSC sample includes the minimum measurable
amount at that location, which is defined by the specific sensor
used for SSC measurement. We define reliable samples as those
that are above the given minimum measurable amount. We
additionally only use samples near the river surface taken at a
depth of at most one meter, since the penetration of light—used
for obtaining image data—is at most only a few meters (less for
turbid water).

III. METHODS

A. Multitask Model

Fig. 2 shows how single-task models differ from multitask
models. When predicting five masks, single-task models would
require five separate models, each trained and run separately.
At the same time, five models are stored, requiring approx-
imately five times as much storage compared to having a
single model that predicts all masks at the same time. The
multitask model trains on five different masks with one single
backbone model that extracts a general feature. From a general
feature, five small “heads” for each of the masks is trained that
is composed of a few trainable layers (much smaller than the
backbone). Instead of five large models trained separately, the
multitask model only has to train one large model and five small
sets of trainable layers simultaneously. The multitask framework
would, thus, save time and resources for training and inference.

More formally, a single model is a parameterized function
f that transforms an input x into output ŷ by learning the
function parameters θ : fθ(x) = ŷ. The parameters θ are learned
by training f on a dataset ofn image-label pairs using a specified
loss function. Given a training dataset D = {(xi, yi)}ni=1 where
xi is the input image and yi is the corresponding label, the
goal is to have the model output fθ(xi) = ŷi be as close as
possible to yi. In our work, xi ∈ R

512×512×6 is the 512× 512
pixel image composed of six bands from HLS (red, green, blue,
NIR, SWIR-1, SWIR-2), and yi ∈ R

512×512×1 is one of water,

Fig. 2. Comparison of multiple single-task models and multitask model.

(a) Evaluating a model for each output is resource intensive, since it would
require running five separate models. (b) Multitask model setup where only
one model is predicting all five outputs at the same time, using approximately
one-fifths of the resources for training.

cloud, cloud shadow, snow/ice, or terrain shadow mask. For
a multitask model that outputs five masks at the same time,
there would be five labels ymi and five corresponding model
outputs ŷmi where m ∈ [water, cloud, cloud shadow, snow/ice,
terrain shadow]. The multitask model can then be represented
as follows:

zi = fθ(xi) (1)

ymi = gmφm
(zi). (2)

Equation (1) computes the general feature used for all masks
in the model. To compute each mask m, there are five smaller
networks gm parameterized byφm—the networks have the same
structure but have different parameters for each maskm—so that
each output mask can be obtained through (2). Both f and g are
trained simultaneously using the loss function in (3) where Lbce

is the binary cross entropy loss computed for each of the five
labels. L is minimized by optimizing the parameters θ and φm

for all m

L =
1

N

N
∑

i=1

∑

m

Lbce (ŷ
m
i , ymi ) . (3)
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The binary cross entropy loss Lbce ∈ [0,∞) can be computed
by comparing all pixels in the prediction ŷmi and the ground
truth ymi . For an image with W ×H pixels, (4) shows the loss
between the predicted and ground truth for maskm. The variable
ym
i,(j,k) ∈ {0, 1} is the label or ground truth value for the pixel in

position (j, k), and ŷm
i,(j,k) ∈ [0, 1] is the predicted probability

of the mask for the pixel in position (j, k)

Lbce (ŷ
m
i , ymi ) =

1

WH

W
∑

j=1

H
∑

k=1

−
(

ymi,(j,k) log ŷ
m
i,(j,k)

+
(

1− ymi,(j,k)

)

log
(

1− ŷmi,(j,k)

)

)

. (4)

Using a multitask model, we explore different architectures and
setups for the backbone, which is crucial for extracting useful
features to predict the different masks simultaneously.

1) Network Architectures: CNNs [55] and transformers [35]
are two main types of model architectures that have recently
emerged for various computer vision tasks such as mask-
ing/segmentation [34], [56], image classification [35], [57], and
object detection [40], [58]. While both architectures are effec-
tive, they have different compositions. CNNs use a learnable
kernel that slides across an image to extract features [55];
transformers [35], [36] decompose an image into patches and
use attention [31] to learn global dependencies and better context
across the whole image. We describe both architectures in more
detail as follows.

Convolutional neural networks: CNNs are networks where
the model f encodes translational invariance and spatial local-
ity. Translational invariance and spatial locality are achieved
through the convolution layer, a key operator in CNNs. The
convolution layer learns a kernel K ∈ R

k×k applied to an image
I ∈ R

W×H . Equation (5) shows the operation where Sij is
the output of the layer at the input image pixel location (i, j). The
same operation is applied to all pixel positions (i, j) in I to form
a feature map S ∈ R

(W−k+1)×(H−k+1). Other layer parameters
such as stride, dilation, and padding can also control the size of
the feature map

Sij = (I ∗K)ij =

k−1
∑

a=0

k−1
∑

b=0

Ii+a,j+bKa,b ∀i, j. (5)

In addition to convolution layers, other operators such as
pooling layers, nonlinear activations, and fully connected layers
are also used to create CNNs. Pooling layers contribute to the
translational invariance of CNNs by dividing the input image
into patches, and aggregating each patch (e.g., by taking the max-
imum) to produce smaller feature maps. Nonlinear activations
apply nonlinear transformations to the input to learn complex
relations between inputs and outputs. Some examples include
rectified linear unit: ReLU(x) = max(0, x) [59] and sigmoid:
σ(x) = 1/(1 + exp(−x)) [60]. Fully connected layers apply
a linear transformation to all pixels in the input to produce a
value in the output. Multiple linear transformations could be
applied simultaneously to all input pixels to output multiple
values.

CNNs are created by stacking a series of layers described
above. Typical sequences are composed of multiple blocks
of convolution—pooling—nonlinear. DeepLabv3+ [32], Mo-
bileNet [33], SegNet [34], U-Net [61], and ResNet [62] are
commonly used architectures for various vision applications
(e.g., object detection, segmentation, classification) that use a
combination of these layers.

Transformers: Transformers do not have inductive biases on
spatial locality that are present in CNNs due to the latter’s
use of sliding window kernels. As a result, transformers can
learn global features that could perform better than CNNs [35].
The attention layer [63] is a critical block in transformers that
models long-range dependencies in images to learn a global
representation. To apply it, the input image is divided into n
patches and flattened into a d-dimensional vector to have an
input X ∈ R

n×d. Each attention layer learns a set of query
(WQ ∈ R

d×dq ), key (WK ∈ R
d×dk ), and value (WV ∈ R

d×dv )
weight matrices. These are applied to the input to produce
queries Q = XWQ, keys K = XWK , and values V = XQV .
The output of the attention layers is then computed [see (6)].
Additional learnable parameters such as positional embeddings
are also added to the input patches to give information on the
original position of the image patch [35]

Attention(Q,K, V ) = softmax

(

QKT

√
dk

)

V. (6)

Similar to CNNs, a transformer model f stacks a series of
blocks and use other layers such as nonlinear activations and
fully connected layers. ViT [35] and Swin-T [36] are commonly
used architectures applied to vision tasks such as classification
and segmentation.

2) Transfer Learning: Deep learning models have millions
of parameters that need to be optimized during training. When
only a small dataset is available for training, there is a risk
of model overfitting, where the model simply memorizes the
training data and does not learn to generalize to unseen samples.
To mitigate this risk, transfer learning first trains the model on a
very large dataset and then fine-tunes it on a separate dataset
for the specific application [40], [41], [42]. Training on the
larger dataset teaches the model to extract useful feature maps
from images that could be helpful for a general understanding
of images, which could then be used for applications such as
classification [40].

Building on this idea, we apply transfer learning by first pre-
training the backbone model fθ [see Fig. 2(b)] on a different but
much larger dataset to learn the parameters θ̂. Then, we replace
the last layer with the task-specific heads (gφ) and train the model
in Fig. 2(b) using the annotated global surface masks (introduced
in Section II-B) and with the backbone parameters θ initially
set to θ̂. Unlike other methods that start the optimization from
random parameters, we optimize the multitask model starting
from parameters that can already extract acceptable features for
understanding images (i.e., we apply transfer learning from other
larger existing datasets).

ImageNet [39], Satlas [44], and Prithvi [43] were explored
for pretraining in this work. ImageNet is an image classification
dataset of 1000 object classes containing more than 1 million
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training images, 50 000 validation images, and 100 000 test im-
ages. Pretraining on ImageNet has shown impressive results on
image classification [64], image segmentation [65], and object
detection [66]. Satlas was recently introduced as a remote sens-
ing dataset that combines images from Sentinel-2 and National
Agriculture Imagery Program to produce 302 million labeled
images for various tasks including classification, regression,
object detection, and segmentation. Their work shows competi-
tive performance against other ImageNet-pretrained models on
remote sensing related tasks. Prithvi was pretrained on HLS
data for the contiguous U.S. using a transformer architecture.
It was shown to perform well on flood mapping and burn scar
segmentation. In our work, ImageNet, Satlas, and Prithvi are
explored as pretraining methods as a way to apply transfer
learning, an as a starting point before further training on the
annotated DSWx dataset introduced in Section II-B.

B. Baselines for Masking

We describe the methods previously used to find water and
cloud pixels from satellite data to compare the performance of
our proposed model. Fmask and MNDWI are based on finding
empirically derived thresholds to isolate cloud and water pixels.
Deep learning methods [9], [29], [67] train a model to predict
pixels similar to our proposed model. We discuss each of these
as follows.

1) Fmask: The Fmask algorithm [10] uses the reflective
bands and brightness temperatures from HLS to compute the
probability of each pixel in the image being water or cloud.
Optimal thresholds are empirically determined from a combi-
nation of the different bands and their ratios. The thresholds are
fixed for reflective bands based on empirical results, whereas
thresholds for thermal bands from HLS use the histogram of the
image pixel values of the brightness temperatures.

2) Modified Normalized Difference Water Index:

MNDWI [20] uses the green and SWIR-1 bands from HLS
to capture water pixels. Equation (7) shows the pixel-wise
operation to compute the probability of water pixels in the
image. SWIR was used due to the observed higher absorption
of water in this band [20]. At the same time, land tends to reflect
SWIR light more than green light, resulting in lower MNDWI
for nonwater areas

MNDWI =
green − SWIR
green + SWIR

. (7)

From the computed values, the final water mask is determined
by choosing an optimal static threshold t such that the mask is 1
for pixel values greater than t, and 0 otherwise. The threshold is
chosen using the validation set. The same threshold is used for
evaluation on the test set for comparison with other methods.
The Otsu method [68] is also explored as a procedure to choose
the threshold t.

3) Deep Learning Methods: LANA [9] is a recently released
model for cloud and cloud shadow masking. Similar to Fmask, it
uses the reflective bands and brightness temperatures to predict
cloud masks. It learns cloud masks by utilizing a U-Net archi-
tecture (a type of CNN) with attention mechanisms incorporated
in the skip connections between the encoder and decoder. Their

proposed changes resulted in better performance compared to
baseline methods Fmask [10] and U-Net Wieland [67]. In ad-
dition to the model, their work also introduced a collection of
manually annotated satellite images from Landsat 8 for cloud
and cloud shadow prediction. The labels come from USGS
personnel annotations, the Spatial Procedures for Automated
Removal of Cloud and Shadow project, and manually annotated
tiles from Landsat. Their work resulted in 100 sets of annotated
data from different global locations. LANA was trained on 99
out of the 100 sets and evaluated on the remaining set. This
procedure was done five times, and the average was obtained
and reported as the performance.

U-Net Wieland [67] was recently introduced in the literature
for detecting cloud and cloud shadows, and was used as a
baseline in LANA [9]. Similar to our model, it uses the visible,
NIR, and SWIR bands. However, the architecture follows U-Net
with an encoder, decoder, and skip connections. The model
also outputs per-pixel labels to identify clouds and shadows.
The model was trained using the specified train and test splits
from LANA [9], and compared against our model for predicting
clouds and cloud shadows.

DWM [29], [50] also uses six bands (visible, NIR, and SWIR
bands) as input to predict a water mask. The model adopts a
U-Net architecture. However, instead of having large feature
maps in the early layers similar to the original U-Net, it was
modified to use a constant feature map size throughout the net-
work. Additional changes in the architecture were also applied
to save memory such as increasing the stride in the convolution
operation instead of using max pooling. For comparison, we train
DWM on the DSWx train set for water mask prediction. We use
the most updated released version of the model for comparison,
while following the training procedure and parameters as closely
as possible.

C. Performance Assessment

The models were evaluated based on the following:
1) masking performance;
2) efficiency;
3) accuracy of the downstream application to SSC estima-

tion.
We discuss each of the evaluation methods as follows.
1) Masking: The performance for masking is computed

through pixel-based metrics F1, recall, precision, and intersec-
tion over union (IoU) on the test set. The test set is composed of
samples not seen by the model during training and validation.
Recall (sometimes referred to as user’s accuracy) is computed
as the ratio of correctly predicted pixels to the total number
of actual positive pixels in the label as shown in (8). Precision
(also called producer’s accuracy) is computed as the ratio of
correctly predicted pixels to the total number of pixels that the
model predicted as positive as shown in (9). F1 Score in (10) is
the harmonic mean of recall and precision. Finally, IoU in (11)
is the ratio of correctly predicted positive pixels to the union
of the positive-labeled pixels and the positive-predicted pixels.
In the equations below, TP is the true positive pixels, FN is the
false negative pixels, and FP is the false positive pixels. For F1
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Fig. 3. Pipeline for estimating suspended SSC. (a) Standard SSC pipelines involve multiple inputs and several processing steps, which contribute to the memory
and runtime requirements. (b) Our proposed pipeline only uses readily available HLS satellite images and estimates all masks faster by using a single multitask
model. Using good quality water pixels by masking cloud, cloud shadow, snow/ice, and terrain shadow results in significantly better SSC estimates.

score, recall, precision, and IoU, better performing models
would have higher corresponding quantities, with a maximum
value of 100%

recall =
TP

TP + FN
(8)

precision =
TP

TP + FP
(9)

F1 Score =
2 · precision · recall
precision + recall

(10)

IoU =
TP

TP + FP + FN
. (11)

2) Runtime, Memory, and Storage: In addition to masking
performance, we also evaluate efficiency of the proposed multi-
task pipeline. Deploying on a global scale with frequent pre-
dictions requires a scalable model in terms of both runtime
and memory consumption. We evaluate on both these charac-
teristics, focusing on peak memory consumption and storage
costs for the latter. The runtime is measured by aggregating
the processing time of the different modules in Fig. 3. For
comparisons between different methods, the runtime does not in-
clude downloading HLS data and assumes the HLS is already in
memory.

Peak memory consumption would measure the required
random access memory (RAM) requirement for running the
pipeline. Storage costs are associated with the amount of space
(e.g., in hard drive) to store auxiliary data to run the pipeline such

as DEMs or pretrained models. Ideally, the proposed pipeline
would require fewer resources (i.e., less total time and less
memory) due to the introduction of the multitask model. The
evaluations are done on AMD EPYC 7763 machine where 4
cores and 4 GB RAM are used for the process across 100 random
samples.

3) Effect on Downstream SSC Estimation: The standard
pipeline for SSC estimation from satellite images [see Fig. 3(a)]
takes the HLS tiles, Fmask data, and DEMs as input. Water,
cloud, cloud shadow, terrain shadow, and snow/ice masks are
estimated to isolate good quality water pixels where the SSC is
predicted. The terrain shadow mask is estimated by taking the
metadata from HLS tiles to know the date, time, and location of
the tile [69], [70], [71], [72]. From the metadata, the position of
the sun is estimated. Taking the position of the sun and the to-
pography of the area from the DEM, the approximate location of
the terrain shadows can be calculated. The other masks required
are then obtained as the outputs of Fmask algorithm, which are
also accessible from the HLS project. The combination of these
masks produce the good quality water pixels.

The good quality water pixels are then used as inputs to the
SSC prediction model introduced in [54], which uses a two-stage
machine learning model. The method uses an ensemble of two
neural networks with the first network used for predicting low
SSC values (0 to 20 mg/L), and the second network used for
predicting middle to high SSC values (14 mg/L and above). Each
network is composed of three fully connected layers, following
the design of multilayer perceptrons [73]. Given a location
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(latitude, longitude) where the SSC is to be estimated, both
models take as input the various statistics of the good quality
water pixels within 300 m of the location. This includes the
mean, median, standard deviation, minimum, and maximum for
each HLS band. In addition, tiles identified with more than 30%
cloud cover were not used for training.

The outputs of the two models are then combined based
on two empirically determined SSC threshold values using the
validation set. That is, if the output of the first model (predicting
low SSC values) is below the first threshold, the output of the
first model is used. Otherwise, we compare the second model’s
output (predicting middle to high SSC values) to the second
threshold. If the output is above the second threshold, we take
the second model’s output. Otherwise, we take the average
of the first and second model outputs. The two threshold values
that give the lowest error on the validation set are used on the
test set for model evaluation. The same threshold values are also
used when deploying the model.

While the standard pipeline is straightforward and uses readily
available data, it involves several processing steps and could
benefit from not just improving the accuracy of isolating good
quality water pixels, but also from streamlining the process.
Using a single multitask model, we can take only HLS data
as input and predict multiple masks at the same time. Mem-
ory is saved by limiting the input data required to just HLS
reflective bands. Run time is also significantly reduced since all
the processing is done by a single model. Fig. 3(b) shows the
proposed pipeline. While we show the pipeline specific to SSC
estimation, similar frameworks exist for other applications, and
can similarly be optimized by introducing a multitask masking
module.

To further evaluate our framework, we compare the perfor-
mance of downstream application of SSC predictions when
using the standard pipeline without a multitask model, and
the optimized pipeline with the multitask model. Ideally, we
expect the performance of the SSC model to either stay
the same or improve with the use of the multitask model.
We use the metrics RMSE [see (12)], MAE [see (13)], and
bias [see (14)] on the predicted SSC values to evaluate the
performance of the SSC model across the different pipelines.
We also report various statistics of the absolute error |yi − ŷi|
for all i in the test dataset—we include the median, maximum,
minimum, and standard deviation. In the following equations,
the metrics are computed across N samples, where yi is the
ground truth or SSC label, and ŷi is the predicted SSC for
sample i. An optimal model would have values close to zero
for the following metrics:

RMSE =

√

1

N

∑N

i=1
(yi − ŷi)2 (12)

MAE =
1

N

N
∑

i=1

|yi − ŷi| (13)

bias =
1

N

N
∑

i=1

(yi − ŷi) . (14)

IV. RESULTS

A. Masking Performance

1) Comparison Between Multitask and Single-Task Models:

We compare the quantitative performance of the multitasking
model to the single-task counterparts. The single-task models
use five separate models, where one model is trained on only
one task [see Fig. 2(a)]. The multitask model is trained on all
five tasks simultaneously [see Fig. 2(b)]. Table III shows that
the performance of the multitask models is either similar or
better than the single-task models. Three different architectures
that use CNN (DeepLabv3+, MobileNetv3) and transformer
(Swin-T) were evaluated. Most of the improvement from using
multitask models can be observed on snow/ice masking when
using CNN-based models DeepLabv3+ and MobileNetv3 with
more than 10% metric improvement.

2) Comparison of Multitask Models Across All Masks: All
five masks predicted by the multitask models were evaluated
on the held out DSWx test set. Fig. 4 shows qualitative results
from training a DeepLabv3+ multitasking model across the five
masks. The results show DeepLabv3+ can successfully identify
water, cloud, cloud shadow, snow/ice, and terrain shadow si-
multaneously. Table IV shows the F1 score across the different
masks for various architectures, pretraining methods (transfer
learning), and model types. The best performance is in bold,
while the second best is underlined. While all multitask models
can reasonably predict the different masks, Swin-T pretrained
on Satlas demonstrates superior performance compared to other
architectures. While the architecture itself plays a role in higher
accuracy due to its larger capacity and global feature represen-
tations, the pretraining method also plays a significant role in
improving the performance. When comparing the performance
of the same architecture (Swin-T) pretrained on ImageNet and
pretrained on Satlas, the latter version has as much as 30% F1
score improvement for cloud shadow masking. We additionally
find that not applying transfer learning at all reduces perfor-
mance. For a DeepLabv3+ model that is not pretrained, water
masking on the test set resulted in 86.04% F1 score, almost a
4% decrease in performance from the 89.67% F1 score of the
same model pretrained with ImageNet.

3) Water Mask Comparison of Multitask Models With Base-

lines: In addition to the performance of simultaneously predict-
ing all masks, the performances of individual masks were also
compared and evaluated. Table V shows the performance of
the different methods for water masking using the DSWx test
set. The best performance is in bold, while the second best is
underlined. In the evaluation, only the water mask output of
the multitask model was used; other masks were discarded.
The baseline method DWM [50] was trained on the train set
of DSWx and only predicts water masks. It was trained with
the same parameters and setup recommended in their paper.
The baseline MNDWI was evaluated out of the box for fair
comparison, resulting in a 16.62% F1 score. However, stan-
dard practice in hydrology has moved beyond straightforward
application of MNDWI. To achieve results similar in practice,
we apply cloud and shadow masking from DSWx and remove
predictions over regions with no data. We include these results in
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TABLE III
MASKING PERFORMANCE OF THE MULTITASK MODEL COMPARED TO THE SINGLE-TASK MODELS ON DSWX TEST SET (HIGHLIGHTED CELLS INDICATE BETTER

METRICS WHEN USING THE MULTITASK MODEL COMPARED TO ITS SINGLE-TASK EQUIVALENT)

TABLE IV
F1 SCORE FOR VARIOUS MULTITASKING MODELS ACROSS MASK TYPES ON THE DSWX TEST SET

TABLE V
PERFORMANCE OF THE VARIOUS METHODS AND BASELINES FOR WATER MASKING
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Fig. 4. DeepLabv3+ multitasking model results on three samples from OPERA DSWx test set. The RGB images are shown together with the corresponding
ground truth and predicted masks. White pixels denote the presence of the mask, and black pixels otherwise. The model predictions across different types of masks
closely match the ground truth based on DSWx.

Table V, resulting in a 58.43%F1 score. Other methods were not
applied with the same cloud and shadow masking, yet the results
still show multitask models Swin-T (Satlas pretrained) and
DeepLabv3+ (ImageNet pretrained) have the best performance
when masking water pixels with 91.10% and 89.67% F1 score,
respectively. MobileNetv3 also has competitive performance
against other models. The multitask models introduce around
10% F1 score improvement compared to baseline methods
DWM and MNDWI.

Fig. 5 shows results of predicting the water mask across
different methods. The top 3 best performing multitask models
are displayed and compared against the baselines. The visual
results show that MNDWI is sensitive high reflectance values,
which leads to pixels that are falsely identified as water. It
also frequently fails to identify water pixels. DWM tends to
predict smooth water boundaries, and can fail to capture fine
details such as branching out in rivers. Due to the multitasking

setup of the proposed model, the outputs are less sensitive to
clouds and shadows, since the model is trained to identify all
the different types of masks at the same time. At the same time,
the multitask models are able to capture fine details in the water
boundaries.

4) Cloud Mask Comparison of Multitask Models With Base-

lines: The cloud masking performance of the multitask models
were also evaluated on both the DSWx test set, and the LANA [9]
benchmark. The evaluation on the LANA benchmark involved
training the multitask models on the sets of data not used for
evaluation, and evaluated on five unseen sets of data, similar
to the evaluation outlined in their paper for fair comparison.
The dataset contains manually labeled cloud pixels from USGS
personnel. Table VI shows the difference in performance be-
tween the different multitask models and the baselines LANA,
Fmask, and U-Net Wieland. The best performance is in bold,
while the second best is underlined. The baselines are models
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Fig. 5. Water masking results of different methods. MNDWI results shown here were filtered to remove clouds and shadows, while results from other methods
were not filtered in any way. MNDWI fails to identify several water pixels, while DWM tends to predict smooth water boundaries which could miss details.
DeepLabv3+, MobileNetv3, and Swin-T outperform the baselines but DeepLabv3+ is more robust to noise (see row four in the figure).

TABLE VI
PERFORMANCE OF CLOUD MASKING ON MANUALLY LABELED LANA [9] DATASET

developed specifically for cloud and cloud shadow masking.
Although the proposed multitask models are using only 6 bands
from the Landsat data—as opposed to LANA and Fmask that
use 8 bands for prediction—the performance is similar (for cloud
masking), or even better (for cloud shadow and clear masks) than
the baselines.

As additional reference, a previous method of cloud and
cloud shadow detection on Landsat data [30] explored different
CNN models and compared against a variant of Fmask (CF-
mask). They obtained around 94% overall accuracy for detecting

cloud-based classes (cloud, cloud shadow, thin cloud, clear),
and improved over CFmask accuracy by around 10%. However,
their sampling of Landsat data into training, validation, and
test sets differs from our setup since they sample their data at
the patch-level, where each training patch is a small crop of
the larger Landsat image scene (and could potentially have an
overlap with another patch in the validation/test set), similar
to [74], [75], [76]. In contrast, our training uses data sampled at
the scene-level, ensuring that training and testing patches do not
come from the same image and have no spatial overlap, similar
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Fig. 6. Cloud masking results for different methods on the test set. False positive pixels are colored red, and false negatives are colored blue. While all models
perform similarly, MobileNetv3 tends to miss more true positives, i.e., it incorrectly classifies could pixels as noncloud.

to LANA [9]. We do this to avoid inflating the reported metrics
since patches from the same scene could have similar cloud and
surface conditions.

Figs. 6 and 7 show additional results for predicting cloud and
cloud shadow pixels of the multitask models on the DSWx test
set. These model results were based on training on the DSWx
train set. The results show that all three models DeepLabv3+,
MobileNetv3, and Swin-T can accurately predict both clouds
and cloud shadows when compared to the ground truth labels, as
supported by the results in Table IV. There are slight differences
in MobileNetv3 and DeepLabv3+, where MobileNetv3 would
sometimes miss true positive pixels, and DeepLabv3+ would
sometimes have false positive pixels. However, overall, the
performance of the models are comparable.

5) Additional Qualitative Results on Other Masks: Figs. 8
and 9 show qualitative results on predicting terrain shadow
and snow/ice, respectively. The three best performing multitask
models are visualized with the RGB bands and the label for
each of the samples. Looking at the visual results in Fig. 8
for terrain shadow, Swin-T pretrained on Satlas have closely
aligned outputs with the ground truth, where it is able to capture
finer details and even predict parts partially occluded by clouds.
DeepLabv3+ terrain predictions are more sensitive to cloud

occlusions in comparison. This supports the reportedF1 score in
Table IV for terrain shadow where Swin-T slightly outperforms
DeepLabv3+ and MobileNetv3.

Snow/ice pixel identification results in Fig. 9 show
DeepLabv3+ being able to identify more snow/ice pixels, but
it tends to exceed the boundaries and falsely predict surround-
ing pixels as snow/ice, and thus, has more false positives.
MobileNetv3 and Swin-T have less false positives and while
the predictions show less pixels identified as snow/ice, the
positive predictions appear in accurate locations. As a result,
MobileNetv3 and Swin-T have higher quantitative metrics on
snow/ice masking (see Table IV).

B. Effect on Downstream Application: SSC Estimation

1) Time: Table VII shows comparisons on the amount of
time to process a single sample for an SSC model, and the
amount of time to process 400 k samples.The best performance
with the lowest amount of processing time is in bold, while the
second best is underlined. On average, there are 400 k samples
per day released as part of HLS based on the data from EOS-
DIS. Assuming a linearly increasing runtime based on a single
sample, processing 400 k samples would take approximately
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Fig. 7. Cloud shadow masking results for different methods on the test set. False positive pixels are colored red, and false negatives are colored blue. The
performance of the models on cloud shadows is similar to cloud masking, and show that the models have comparable results.

TABLE VII
RUNTIME COMPARISON OF STANDARD SSC PIPELINE AND THE PROPOSED MULTITASK SSC PIPELINE ON 4 CORES OF AN AMD EPYC 7763 MACHINE

86.84 days when using the standard SSC pipeline. In contrast,
using a MobileNetv3 multitask model would result in only 2.78
days for 400 k samples, a 30× speedup (or 96.80% runtime
improvement). Table VIII shows how each module contributes
to the amount of time to process a single sample. Majority of
the runtime in a standard SSC pipeline comes from combining
masks from different sources to get good quality water pixels.
Unlike the standard SSC pipeline that requires reprojections and

alignments due to the different sources of data, our proposed
pipeline predicts masks that can be directly combined without
additional processing overhead. Four cores of an AMD EPYC
7763 was used to evaluate the runtime and memory.

2) Memory and Storage: Table IX shows the difference in
memory consumption between the standard and the proposed
multitask pipelines. The lowest memory consumption is in bold.
The peak memory consumption is measured by running the
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Fig. 8. Terrain shadow masking results of different methods on the test set. DeepLabv3+ is more sensitive to clouds and its surrounding pixels, while MobileNetv3
and Swin-T can still predict near clouds.

TABLE VIII
RUNTIME BREAKDOWN OF A STANDARD SSC PIPELINE AND OUR PROPOSED MULTITASK SSC PIPELINE WITH DEEPLABV3+ ON 4 CORES OF AN AMD EPYC

7763 MACHINE FOR A SINGLE SAMPLE

pipelines to produce features for the SSC model. The standard
SSC pipeline requires at least 1.85 GB of RAM. However,
when using MobileNetv3 as the multitask model in the proposed
pipeline, the required RAM reduces to 0.833 GB, less than half
the requirement of the standard pipeline. The other models,
DeepLabv3+ and Swin-T, also require less RAM than the stan-
dard pipeline. At the same time, the storage costs associated with
any of the multitask models are about a hundredth of the standard
SSC pipeline, since the proposed pipeline would only need

to store the pretrained models. The standard pipeline requires
storing all DEMs covering all landmasses, which is 96 GB in
size, while the proposed multitask pipeline only requires the
models themselves to be stored, which is around 1 GB in size.

3) Accuracy: The effect of using a more accurate multitask
model was also evaluated on the downstream application of SSC
estimation. DeepLabv3+ pretrained on ImageNet was used as
the multitask model. While MobileNetv3 is faster, DeepLabv3+
showed a better performance for water masking and is
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Fig. 9. Snow/ice masking results of different methods on the test set. Results from MobileNetv3 and Swin-T are able to capture true positive pixels for snow/ice.
While DeepLabv3+ classifies more pixels as snow/ice, there are more false positives (red pixels) present. On the other hand, MobileNetv3 has more false negatives
(blue pixels).

TABLE IX
PEAK MEMORY CONSUMPTION AND STORAGE OVERHEAD COMPARISON BETWEEN THE STANDARD AND PROPOSED MULTITASK SSC PIPELINES

smaller than Swin-T pretrained on Satlas. Table X shows the
performance of the SSC model when trained on features pro-
duced by the standard SSC pipeline using Fmask and DEM
compared to the SSC model when trained on features produced
by the optimized multitask pipeline. We report the statistics of
the error on the test set of the dataset. The model from [54]
for SSC estimation was trained and evaluated as outlined in

their methodology. The results show that the performance of the
SSC model either improved or stayed similar across the metrics
when using the proposed multitask pipeline. The RMSE between
ground truth and predicted SSC values reduced by 2.64 mg/L.
There is also significant reduction in the 95th (E95) and 90th
(E90) percentile error with 13.55 mg/L and 6.25 mg/L error
reduction, respectively. This can be attributed to better quality
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TABLE X
SSC MODEL PREDICTION METRICS USING THE STANDARD SSC PIPELINE AND

THE PROPOSED MULTITASK PIPELINE USING A TWO-STAGE ML MODEL (↓
MEANS LOWER IS BETTER)

water pixels isolated for training the SSC model, as produced by
the multitask model. Fmask, the water mask used in the standard
SSC pipeline, tends to falsely identify areas of water, which
could contribute to incorrect features being used to estimate SSC
values.

V. DISCUSSION

Classifying pixels from satellite images for downstream ap-
plications on a global level requires both accurate and efficient
frameworks. Evaluation should also be done on the full end-to-
end pipeline to capture the positive effects, if any, of the intro-
duced masking. SSC estimation for all rivers in all landmasses,
for example, relies on good quality water pixels not occluded by
clouds, cloud shadows, terrain shadows, and snow/ice. At the
same time, frequent analysis of SSC in global surface waters
would only be possible with pipelines that produce these masks
at a fast rate. A standard SSC pipeline uses the Fmask algorithm
on HLS and DEMs to isolate good quality water pixels, but
the reprojections and alignments needed to process information
from different data sources introduce compute overhead. In
addition, Fmask has limitations for accurately isolating water
pixels due to its dependence on empirically derived thresholds.
We introduced a more efficient framework that uses a multitask
model to predict all necessary masks for SSC estimation while
illustrating that its improved masking performance also results
in better performance for SSC estimation.

A. Masking Performance

We showed through our experiments that the multitask model
can benefit from learning different masks in a consistent man-
ner. In the DSWx dataset, since all five masks are predicted
together, the multitask model has context on where clouds are,
and can learn to predict other masks such as water and terrain
shadow that are not occluded by clouds. This advantage is
apparent for the water and snow/ice masks that show significant
improvement when trained with the multitask model over the
single-task model equivalents (see Table III). There are espe-
cially large improvements for snow/ice in particular for CNN

models DeepLabv3+ and MobileNetv3 with more than 10%
improvement on all metrics. This could be due to the smaller
number of positive samples for snow/ice globally, which limits
the accuracy of the single-task model. In contrast, the ability
of the multitask model to identify other types of masks (e.g.,
water) can significantly help the model identify, which ones
are not snow/ice and reduce false positives as observed in the
increase in precision for the multitask models. The advantage is
further supported by the higher accuracy in both water mask (see
Table V and Fig. 5) and cloud mask (see Table VI) experiments
compared to existing models LANA, Fmask, U-Net Wieland,
and DWM.

Performance of both single-task and multitask models are
relatively lower for snow/ice and cloud shadow masks in DSWx
compared to other masks such as water and cloud masks (see
Table III). This is expected due to the smaller number of positive
samples the models can learn from as reported in Table II.
These classes are also harder to classify due to ambiguity
with other classes, such as clouds that could be mistaken for
cloud shadow and vice versa. Similar phenomena could also be
observed for snow/ice and clouds. In contrast, there are a large
number of positive samples for cloud and terrain shadow, where
we see better performance across all models (around 90% F1
score). In addition to limited snow/ice samples that the model
can learn from, it should also be noted that while DSWx provides
sufficient labels for snow/ice, there are occasional misclassifi-
cations. These typically occur over waters with unusual colors
due to high sediment concentrations or dissolved solids (Jones,
2019). It is possible that some disagreements between model
predictions and labels come from erroneous labels. Examining
manual cloud annotations from LANA, and comparing them
against DSWx labels, we find that cloud labels from DSWx
have an F1 score of 89.81%.

Experiments on the LANA dataset (see Table VI) show that
predicting cloud shadow is more challenging than clouds or clear
pixels due to the smaller number of samples available. Clouds
and clear pixels are also easier to identify due to their distinct
features. However, there is at least a 10%F1 score improvement
in the prediction of cloud shadow when using the multitask
model Swin-T (pretrained with Satlas) when compared with
LANA, Fmask, or U-Net Wieland. Similar to previous results,
DeepLabv3+ and MobileNetv3 also show competitive results
with Swin-T. While Swin-T performs well, other transformer
architectures pretrained with ImageNet or Prithvi have signif-
icantly lower performance on the LANA dataset as compared
to the DSWx dataset. This is due to the small number of data
samples used for training; the LANA dataset only contains
around 16 000 training samples as opposed to the DSWx dataset
with more than 80 000 training samples.

Although DSWx labels are also generated by an algo-
rithm, DSWx requires data from Copernicus DEM, Copernicus
land cover, ESA worldcover, NOAA GSHHS shapefile, and
HLS [45]. The workflow for generating DSWx labels involve
applying multiple steps to the aforementioned data sources such
as filtering, and conducting diagnostic tests to produce masks.
While their method is sufficiently robust for detecting water,
clouds, and shadows, applying it on large amounts of data (e.g.,
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decades of historical data from Landsat and Sentinel) would be
a difficult task. Our work introduces a promising framework
that runs fast using only HLS data, making it possible to run
even on past satellite images. In addition, we show that our
framework can be used on manually labeled data from LANA [9]
(see Table VI). Even when evaluating on datasets with manually
labeled data, we show our method’s generated masks perform
better than current state-of-the-art methods. These results are
encouraging and offer an interesting way forward for operational
production of OPERA data: the huge effort required to generate
DSWx can be used and honored with a more efficient and likely
more accurate (via LANA) representation of itself, potentially
saving resources for the operational production of OPERA.

B. SSC Estimation End-to-End Pipeline Efficiency

The standard SSC pipeline had a measured processing of
86.84 days, which is impractical when running almost daily
SSC predictions for in-depth global surface water analyzes (see
Table VII). As an alternative, multiple machines can be used in
parallel to reduce processing time. However, this would require
significant resources and result in larger costs. The large memory
overhead required for a standard pipeline (see Table IX) also
contribute to the impracticality of increasing the hardware scale
to reduce processing time. Table VIII shows the breakdown
of the runtime and how different modules contribute to the
processing time. The bulk of the processing time comes from
aligning the different masks to isolate good quality pixels. Since
different masks come from different sources (e.g., DEM or
Fmask), the projection could be different, requiring warping and
reprojections to be applied.

With the proposed multitask pipeline, all the reprojections
that come from using different data sources are eliminated. The
processing time can be reduced by as much as 96.80%, such
that 400 k samples can be processed in less than 3 days on a
4-core CPU (see Table VII). This approach would require fewer
machines in parallel, if necessary at all. MobileNetv3+ has the
fastest runtime of 2.78 days for 400 k samples, with Swin-T
pretrained with ImageNet and DeepLabv3+ having runtimes of
5.80 and 9.27 days, respectively.

The multitask pipeline also has comparably lower require-
ments for memory and storage compared to the standard pipeline
(see Table IX). When running multiple parallel processes for
obtaining features for SSC models, this could significantly
reduce costs. In addition to efficiency improvements, it was
shown that our proposed multitask pipeline improves SSC es-
timation accuracy (see Table X). Taking the improvements in
performance, runtime, and memory consumption, the multitask
pipeline presents a promising framework for downstream appli-
cations such as global SSC prediction.

C. Performance of Different Architectures and Pretraining

Experiments discussed in this work show that using multi-
task models for simultaneously predicting water, cloud, cloud
shadow, terrain shadow, snow/ice result in a better performance
over its single task equivalent while requiring less training
resources (see Fig. 2). Different architectures MobileNetv3,

DeepLabv3+, and Swin-T also show larger performance im-
provements when using a multitask model for predicting labels
with small positive samples (e.g., snow/ice). Our experiments
have shown that a multitask model using Swin-T pretrained with
Satlas have superior masking accuracy compared to baselines
and other multitask models using a different architecture. This
was illustrated on different types of masks. For water masking,
Swin-T performed better than Fmask [10], MNDWI [20], and
DWM [50] with at least a 10% increase in F1 score. Swin-T
also outperformed other baselines Fmask, LANA, and U-Net
Wieland on cloud masking on the LANA-introduced dataset,
where Swin-T has 10%, 12%, and 6%F1 score improvement for
cloud, cloud shadow, and clear pixel identification, respectively
(see Table VI). More generally, Swin-T pretrained on Satlas
was also shown to perform better than other architectures for
predicting five masks simultaneously (see Table IV).

Our experiments also show the effect of transfer learning
through various pretraining datasets. CNN models DeepLabv3+
and MobileNetv3, both ImageNet pretrained, show compet-
itive masking performance when compared to Swin-T, with
only around 3% F1 score difference across most masks (see
Table IV). Despite also being pretrained on ImageNet, trans-
former models Swin-T and ViT-B/16 have lower F1 score than
their CNN counterparts. This could be attributed to the lack of
inductive bias in transformers, requiring models to be trained
with larger datasets (e.g., Satlas) to take advantage of the global
representation learning. While ImageNet is considered a large
dataset with 1 million training images, Satlas is around 100×
larger. At the same time, Satlas is curated for remote sensing
data, but ImageNet is a general dataset that covers multiple
objects (e.g., animals, musical instruments, plants) that are not
typically seen from satellite images.

While Swin-T (pretrained with Satlas) performs well on
simultaneously predicting water, cloud, cloud shadow, terrain
shadow, and snow/ice, it should be noted that it is also larger
and slower than other architectures (see Tables VII and IX).
Depending on the application, it would be advantageous to also
consider a multitask MobileNetv3 model, which is almost as
good as Swin-T in terms of masking accuracy, but only runs for
a sixth of the time required for Swin-T, and consumes less RAM
and storage. DeepLabv3+ can also be another choice, which can
perform more accurately than MobileNetv3, but also consumes
less RAM and storage than Swin-T. Our work provides an
in-depth analysis of the advantages and disadvantages of the
different architectures, enabling other researchers to identify a
setting that best suits their requirements.

D. Limitations and Future Work

DSWx was used as the training data throughout this work.
While it can sufficiently identify water and artifacts such as
clouds and shadows, there are inherent limitations in the dataset
that could affect our model’s performance upon deployment. In
particular, snow/ice labels can erroneously occur in areas near
the equator and in low elevation areas due to coloration from
high sediment concentrations or areas in the water where waves
are breaking. Cloud labels from DSWx can also be dilated and,
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thus, cover areas that are not necessarily cloud. At the same time,
there are instances where DSWx labels fail to detect clouds over
water, which are mislabeled as nonwater.

Furthermore, we recognize that we are, in essence, making
a model of a model by predicting DSWx output. Ideally, we
would have a robust dataset of high quality labels generated
from the ground, or from digitization of HLS data. In this way,
we could assess our performance better—the best we can do is to
recreate DSWx, so any errors there become our errors. Our use
of the LANA dataset was, therefore, purposeful to assess model
performance against manually digitized labels, even though the
data volumes for LANA are far smaller. We are encouraged by
our performance relative to LANA and use these results as strong
evidence for our claims of skill for our multitask model.

Nonetheless, the framework we introduce in this work is
broadly applicable for masking applications beyond learning
from DSWx. Manual labels (e.g., cloud labels from the LANA
dataset), when available, can also be used to fine tune the model.
Once an adequate quantity of manually labeled data is available,
the same model we introduced could be used, with similar
performance as shown in our experiments in Table VI. This fine
tuning, coupled with pretraining on large remote sensing datasets
such as Satlas and using a sufficiently large architecture such as
DeepLabv3+ or Swin-T could serve as a starting point for future
research on satellite masking and reflectance-based estimation.

VI. CONCLUSION

Experiments in this article show that our proposed multitask
models do well to supplement global surface water analysis,
illustrating the simultaneous identification of different types of
pixels (i.e., water, cloud, cloud shadow, terrain shadow, and
snow/ice) in satellite images can result in more accurate masks
with a faster runtime. We were able to speedup the runtime by as
much as 30× while using less than half of the standard memory
requirement. At the same time, we show that the introduction
of our multitask model in a downstream application results in
a better performance with an RMSE reduction of 2.64 mg/L
for SSC estimation. In particular, the replacement of several
modules with a single multitask model for isolating good quality
water pixels results in more accurate SSC predictions.

While we show multiple options and comparisons across
different architectures, we recommend future researchers to start
with DeepLabv3+ (pretrained with ImageNet). Its performance
on all masking tasks (water, cloud, cloud shadow, terrain shadow,
snow/ice) indicate better performance than all baselines, and
better than almost all the other multitask architectures. At the
same time, its runtime and memory consumption are reasonable
for its performance. From this starting point, we recommend
future researchers to evaluate their needs and scale up or down
as necessary (e.g., scale up to Swin-T for a better performance
or scale down to MobileNetv3 for a smaller and faster model).

The framework presented here is an important step for global
surface water analysis, and is part of the SWOT mission wrapper
Confluence [77] used for SSC estimation. The proposed pipeline
will be used to generate reliable, frequent, sediment flux estima-
tions for every river in the SWORD database [78], based on

global satellite observations. While we show results specific for
water pixel identification and SSC estimation, our model can be
applied to other areas as well that require distinguishing different
types of entities in satellite images such as cloud and cloud
shadows. The same proposed pipeline can also be used for other
global downstream applications as a faster and resource-efficient
alternative.
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