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Abstract—High-dimensional quantum key distribution (QKD) is
a popular protocol that provides information theoretically secure
keys to multiple parties. Two important steps of QKD are 1)
the information reconciliation (IR) step, where parties reconcile
mismatches in generated keys through classical communication,
and 2) the privacy amplification (PA) step, where parties distill
their common key into a new secure key that the adversary has
little to no information about. In general, these two steps have
been abstracted as two distinct problems. In this work, we design
our IR protocol to be aware of the PA step and utilize sampling to
relax the requirement on the IR step without sacrificing the final
key length of the PA step, allowing for more bits generated in key
creation utilizing practical decoders. We provide a novel PA-aware
LDPC code construction known as Block-MDS QC-LDPC codes
that can utilize the relaxed requirement. We demonstrate through
simulations that our technique of sampling can provide notable
gains in successfully creating secret keys.

I. INTRODUCTION AND MOTIVATION

Quantum communication technologies have been identified
as a valuable component of upcoming 6G systems for both
communication and computation [1], [2]. One important method
in quantum communications is Quantum Key Distribution
(QKD) which allows for secret key agreement between two
parties (Alice and Bob) using quantum mechanical principles
to guarantee security against eavesdroppers (Eve) [3]. QKD is
an important tool in a future where quantum computers can
break many of the cryptographic protocols we rely on today
and, thus, has received significant research attention [4]-[8].

QKD can be broken down into 3 major steps: 1) Raw Key
Generation: Alice and Bob generate keys from some quantum
mechanical source and they have some measure about how
much information Eve has about the keys; 2) Information
Reconciliation (IR): Due to imperfections in the channel,
Alice and Bob must reconcile the errors in their keys by
communicating through a classical channel where Eve can
eavesdrop; 3) Privacy Amplification (PA): Assuming the IR step
was successful, Alice and Bob now distill their common key
into a smaller key in order to remove any leaked information
that Eve may have. In this paper, we investigate how the IR
step can be improved with knowledge about the subsequent
PA step in order to improve the overall performance of the
QKD system. The main goal is to have a high secret key rate
which is the expected ratio of the final key length in bits over
the number of photons used to generate the keys [9], [10]. The
secret key rate depends on the success probability of the IR
step and the overall information provided to Eve.

To the best of our knowledge, many previous works have
considered each step of the QKD process individually and
have abstracted the problem into three separate problems [11]-
[13]. In this work, we seek to create a PA-aware IR protocol

for high-dimensional QKD, by relaxing the requirements of
the IR step, thereby allowing it to succeed more often and
increase the secret key rate. The key idea of our work is that
the PA step will be removing redundant information from the
common key reconciled during the IR step. As such, it seems
unnecessary for the IR step to reconcile all the mismatches if
redundant data will be removed during the PA step anyway.
By requiring the IR step to reconcile only a subset of the key
instead of the full key (essentially sampling the common key),
we increase the probability that the IR step will succeed. This
idea is similar to only decoding the systematic bits in classical
channel coding setting. Additionally, our scheme is agnostic
of the key generation and works for any high-dimensional
quantum key generation and, thus, we abstract the information
loss during key generation as will be discussed.

Our contributions are as follows. First, we demonstrate an
efficient sampling technique in the IR step that causes no
information loss for the PA step, thus relaxing the requirements
for the IR step without sacrificing the final key length. Second,
we construct PA-aware codes with Quasi-Cyclic Low Density
Parity Check (QC-LDPC) codes which we term as Block-
MDS QC-LDPC codes that work jointly with our sampling
technique. While designed with QKD in mind, we hypothesize
that Block-MDS QC-LDPC codes can have further uses in
other areas where LDPC codes are prominent. Finally, we
provide simulation results to demonstrate the benefits of our
novel decoding technique and code design.

The rest of this paper is organized as follows. In Section
I, we provide the preliminaries and the system model. In
Section III, we demonstrate our novel sampling technique for
privacy amplification. In Section IV, we provide the design of
our novel Block-MDS QC-LDPC codes. Finally, we provide
simulation results and concluding remarks in Section V.

Notation: F, denotes a finite field of order ¢. For positive
integers n and m, Fy (F;»™) denotes all vectors (matrices)
of length n (size n x m) with elements from F,. For random
variables X and Y, Z(X;Y') denotes the mutual information
and H(X) denotes the Shannon entropy. All logarithms are in
base 2. For positive integers a and b, let [a] = {1,2,...,a}
and (a), = a mod b. Given two integers n and k such that
k < n, (") denotes all subsets of [n] of size k. For a vector x
(matrix H) of size n (m X n) and set S C [n], we denote x5
(Hys) as the subset of the elements (columns) of x (H) indexed
by S. Let S,, denote the set of all permutations of the set [n].
Given two polynomials f(z) and g(z), ged(f(x),g(x)) is a
polynomial of the highest possible degree that is a factor of
both f(x) and g(z).
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II. BACKGROUND AND MODEL
A. System Model

For the purposes of this work, QKD systems can be
broken down into three major components: Key Generation,

Information Reconciliation, and Privacy Amplification [9], [10].

We shall describe each of these steps and focus on the relevant
components of each step.

1) Key Generation: We assume Alice and Bob generate
high-dimensional raw keys, i.e., symbols in some alphabet. For
example, they could use energy-time entanglement protocols
[14]-[18]. The general idea of high-dimensional schemes is
that entangled photons pairs are generated at the source and
one member of the pair is sent to each user, who measures
their photon. In principle, the measurements should be the
same, allowing for both parties to extract keys. Yet, errors can
still occur due to detector imperfections or interference from
Eve. We abstract the key generation as follows.

Let x = {z1,...,2n}, 2 € Fgand y = {y1,...,yn},
y; € Fy be the raw keys of length IV recorded by Alice and
Bob, respectively. Each pair (x;,y;) is generated by a pair
of entangled photons. Due to the protocol, we can assume
that the random variables x;,¢ € [N] are independent and
uniform on F,. Due to imperfections in the detectors, the
raw keys may differ in some positions. For simplicity, we
assume that the symbol mismatch can be modeled by a g-ary

symmetric channel where the errors are independent, see [13].

As such, the conditional probability for z; given y; for i € [N]
is Pr(zily;) = 1—p if y; = x; otherwise Pr(z;|y;) = &
where p denotes the channel transition probability. Additionally,
the adversary Eve may contain some information, possibly from

the quantum channel, about the raw keys which we denote as &.

Since the keys are in the classical space, the information that
the adversary has is classical and, thus, we focus on Shannon
entropy as a measure of information.

2) Information Reconciliation: In this step, Alice and Bob
reconcile the raw keys by communicating through a public
channel which Eve has access to. Let z represent the data

communicated between Alice and Bob which Eve can access.

In this work, we consider single-round communication schemes
which are equivalent to asymmetric Slepian-Wolf coding with
side information at the receiver [12]. We employ a linear
coset scheme where Alice encodes the data x using a matrix
H € F)*" into syndrome z = Hx and transmits z to Bob.
Bob then uses the syndrome z and the side information y
in order to decode x. If Bob successfully decodes, i.e., x is
known to Bob, then the protocol proceeds to the next step. If
Bob fails, then the algorithm stops and no key is generated.
We assume that H is public.

3) Privacy Amplification: In this step, Alice and Bob start
with a common key x since the IR step succeeded. Eve
has information about x through (£,z) and Alice and Bob
wish to distill x into a smaller key which is independent of
(€,2). PA can be accomplished through the use of universal
hash functions [19]. The length of the final key depends on
the amount of information leaked from (€,z) and has to

be subtracted. Assuming that the PA step incurs no further
information leakage, the final key length can be written as
H(x) — Z(x;€,z) = H(x|€,z) where H(x) represents the
amount of information in the raw keys and Z(x; £, z) represents
the amount of information Eve knows about x.

For a key distribution system, we consider the main measure
of interest as the average number of generated bits in the final
key per photon pair detected which is named the secret key
rate. Thus, the secret key rate [9], [10] can be defined as
H(x) —ZI(x;€&,2)

N

where A is the event that the IR step is successful and is
necessary in the equation to account for wasted photons when
the IR step fails. We note that the success probability of the
IR step is highly dependent on not only the channel but the
type of decoder used for the linear coset scheme.

SKR = Pr(A) (1)

B. LDPC code preliminaries

An LDPC code over I, is defined by a sparse parity check
matrix H € F}"". For the coset scheme, LDPC codes can be
decoded using a variant of the sum-product decoding algorithm
specialized for the Slepian-Wolf problem (see [20] for more
details). All simulations in this work utilize this decoder.

One method to construct an LDPC code is known as the
scaled protograph-based method [21], [22]. This method starts
with a small bipartite graph represented by a v X k base matrix
of non-negative integers and the parity check matrix of the
LDPC code is created by replacing each entry a by a summation
of a scaled permutation matrices of size z X z. We denote
~ as the column weight, x as the row weight, and z as the
lifting factor. When the base matrix is the all-ones matrix and
the permutation matrices are all circulant shift matrices, then
the resultant LDPC code is known as a Type-1 Quasi-Cycli
LDPC (QC-LDPC) code [23], [24]. For the rest of this paper,
we shall focus on these types of codes. Thus, the parity check
matrix of QC-LDPC codes can be written as

Sl)lcpl‘l SI)QCPLz SI)NCPI,N
82,101’2,1 82,201’2,2 SQ,NCPQ’N

H= ) , ) (2)
5y 1CP71 5y o CP72 8,k CP7r

where CP is a circulant shift matrix (CSM) of size z X z with a
one at column ((r—1)—p mod z)+1 forrow r,1 < r < z and
zero elsewhere. We note that H can be uniquely determined by
the scaling matrix S = {5, ;}ic[y),jels], 5i.j € Fq and power
matrix P = {p; ;}icpy),jer, 0 < piyj <2 — 1

An important measure for LDPC codes is the girth, which
is the length of the shortest cycle in the graph of the LDPC
code. A necessary and sufficient condition for a QC-LDPC
code to have a certain girth is given in the following lemma:

Lemma 1. /23] A QC-LDPC code in the form of Eq.(2) has
girth at least 2(g + 1) if and only if

Zkzlpik,jk ~ Pigyr,jr % 0 mod z (3)
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SJorallm, 2 <m <g, all i, © € [7], and all ji, j € [k] with
11 = Iy Tk 7 tht1, and Ji 7 Jrg1.

Finally, we note that a matrix of size m x n with m < n is
considered Maximum-Distance Separable (MDS) if and only
if every square submatrix of size m x m is full rank.

III. PRIVACY AMPLIFICATION WITH SAMPLING

In this section, we demonstrate how we can achieve privacy

amplification by properly sampling the decoded sequence x.

The benefit of this approach is that the IR decoder only needs to
decode a subset of x which has a higher probability of success
than fully decoding x. We term the decoder that decodes the
full x as the full codeword (FC) decoder and the decoder that

decodes a subset of x as the subset codeword (SC) decoder.

We formally define the SC decoder as follows:

Definition 1. Given a set S C [N], the SC decoder takes xs
from the output of the FC decoder and inputs it into the PA
step. As such, the secret key rate can be written as

SKR = PT(E)H(XS) *]%T(Xs;cf,z)

“

where A is the event that Xs is decoded successfully.

The following lemma provides sufficient conditions when
the SC decoder cannot have a lower secret key rate than the
FC decoder.

Lemma 2. Assume that there exists a set S C [N],|S|= N—M
such that the submatrix Hg is full rank. Thus, we can write
z = Hx = Hsxs+Hgxg. If SK Ry and SK R; are the secret
key rates of the FC decoder and SC decoder; respectively, then
SKRy < SKR,.

Proof. First, we note that the probability of success for the FC
decoder is clearly not higher than the probability of success for
the SC decoder since the event that x is correctly decoded is
encompassed in the event that xs is correctly decoded. Thus,

Pr(A) > Pr(A).
Next, we note that by Hg being invertible we have
z =Hgsxs + Hng — Xg = Hgl (Z - HSXS).
Thus, x5 is a function of z and xs. As such,

H(x)-1I(x;€,2z) = H(x|E,2) = H(xs,x3|€,2)
0
...
= H(xs|6,2) + H(x5|E,x5,2) = H(xs) — L(xs:&,2)

implying that the final key length is the same for both decoders.

Since the final key lengths are the same and the probability
of success of the SC decoder is not lower than for the FC
decoder, we guarantee that SK Ry < SKR,. O

The key idea of Lemma 2 is that carefully sampling x
allows us to use the entropy of the non-sampled bits to
increase privacy despite the reconciled vector xs being smaller
than x. In total, the final key length can be made the same
with relaxed requirements. The proposed approach relaxes the

success condition for the IR step. We note that this relaxation
would not improve a maximum likelihood decoder since it is
clear that Pr(A) = Pr(A). Yet, it can increase the success
probability of a sub-optimal but practical decoder such as the
sum-product belief propagation decoder used for LDPC codes.
Additionally, the proof of Lemma 2 did not rely on S being
the only set with this property. We can thus generalize the SC
decoder to decoding at least one of multiple subsets with the

full rank property as shown in the following definition:

Definition 2. Let S = {S, : i € [k]} be a set of k subsets of [n]
that are possibly non-disjoint. The multiple subset codeword
(MSC) decoder samples the subset xs, with the highest secret
key rate as defined by

~ H(xs,) — I(xs,;
SKR; = pr(A,) 1) N<Xsu€,Z)

where gl is the event that xs, is decoded successfully.

;i€ [K]

Note that the MSC decoder chooses which S to sample at
the time of decoding based on which subset is most likley to
provide the highest secret key rate. Utilizing Lemma 2, we get
the following lemma for the MSC decoder.

Lemma 3. If |S|= N — M and Hg is full rank for every
S €S, then the MSC decoder achieves a secret key rate that is
equal to or greater than the secret key rate of an SC decoder
for any particular S € S. Additionally, the secret key length is
the same for all choices of S € S.

In the sequel, we assume that S satisfies Lemma 3 whenever
we discuss the MSC decoder. To properly utilize Lemma 3, the
FC decoder must be able to estimate Pr(A4;) in order to select
which set to sample, a property that works naturally with the
belief propagation decoder for LDPC codes.

IV. BLoCK-MDS QC-LDPC CODES
In this section, we demonstrate how to construct QC-LDPC

codes for the MSC decoder. In theory, we could randomly
sample an LDPC code from a code ensemble and find all
the square full rank submatrices of the parity check matrix to
satisfy Lemma 3. Yet, this approach would be quite difficult to
analyze since the number of full rank submatrices can differ
between samples. As such, we turn towards structured codes
such as QC-LDPC codes and devise construction methods
that guarantee certain subsets have the full rank property. We
formally define this notion as follows:

Definition 3. A QC-LDPC code is Block-MDS if all the sub-
matrices Hs,, B € ([i]) are full rank, where S = {(i — 1) x
z+4+7j:i€B,j€z]}, K is the row weight, ~y is the column
weight, and z is the lifting factor.

At a high level, a Block-MDS QC-LDPC code guarantees
that every square submatrix that corresponds to the lifting of a
v % v submatrix in the parity check matrix of the protograph is
full rank. This is conceptually similar to an MDS matrix where
every square submatrix is full rank but instead we focus on the
lifted block matrices being full rank. As such, the MSC decoder
subsets for the Block-MDS code are S = {S; : B € ([,'j])}
Example 1 demonstrates Definition 3.
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Example 1. Consider the following parity check matrix of a
QC-LDPC code with (v, k) = (2,3) (see Section II-B):

sl’lcpl,l 81,20111,2 81’3CP1,3:|

H= )
5271CP2,1 32720;02,2 5273CP2,3

H is Block-MDS if the following submatrices are full rank:

H . sl,lcpl,l 81’20;01,2
S1,2 = So 1CP2,1 S 2CP2,2 ’

L ’ ’ -

H B Sl,lcpl,l 51730;01,3
S1,3 = 32,10172,1 32,3Cp2’3 ’

H . 51,20?1,2 5173(_‘3171,3
Sa3 — 82,20172,2 82’30;02,3 '

By focusing on Block-MDS QC-LDPC codes, we can

significantly simplify the design of LDPC codes that can
utilize the MSC decoder. For the rest of this section, we
shall investigate techniques to construct Block-MDS QC-LDPC
codes. We first state an important result in linear algebra that
we rely on extensively in this paper:
Lemma 4. [25, Theorem 1] Let 'R be a commutative subring
of ¥, i.e, R is a set of matrices of size z X z that form
a commutative ring with the standard operations of matrix
addition and multiplication. Let M € Rexb je M is a block
matrix where each block is an element in R. Then,

q;it(M) = %it(dgt(M)), (6)

where detp is the determinant function over a ring F.

Consider the set C C [F3# as the set of all circulant matrices
of size z x z with elements in the field F,. It is well known
that C is a commutative ring in regards to operations of the
standard matrix addition and multiplication [26, Theorem 7.3.2].
Since a QC-LDPC code is a block matrix consisting of CSMs,
Lemma 4 states that a necessary and sufficient condition for
the QC-LDPC code to be Block-MDS is that it satisfies

~
Z sign(o) H So(i),r(i)CP7 @ | 20, V1 € ([:]>7
1

oc€eSy i=

(N
where we have expressed the determinant function using the
well-known Leibniz formula and sign(c) is the parity of the
permutation o. Note that the inner sum must be a circulant due
to C being a commutative ring. Thus, the Block-MDS condition
can be checked for a particular QC-LDPC code by whether
(”’) circulant matrices of size z X z are singular. The direct way
would be to take the determinant of each circulant matrix in the
field F,. For circulant matrices, there is a much easier check
for singularity. First, let us define the associated polynomial of
a circulant matrix as f(z) = >.._; a;z"~! € Fy[z] where a;
is the i element in the first column of the circulant matrix.
The following lemma provides a simple condition to check
whether a circulant matrix is singular [27], [28]:

det

q

Lemma 5. Ler f(x) be the associated polynomial of a circulant
matrix A € F2*. Then, A is non-singular if and only if

ged(f(z),z* — 1) =1.

Using Lemmas 4 and 5, we arrive at the following theorem:

Theorem 1. A sufficient condition for a QC-LDPC code with
parameters (7, k, z) to be Block-MDS is that for all T € ([:])
the scaling matrix S and power matrix P satisfy

5
f‘r(x) = Z Sign(a) (H Sa(i)n’(i)) x(EzZIPU(i)’TU))Zy
ocES, i=1
(®)
ng(fT($)7$Z - 1) =1, (9)

~
an(i),f(i) —DPp(i),r(i) Z 0 mod 2, Vp,o € S, p # 0. (10)
i=1
Proof. To simplify Eq. (7), we can enforce that all circulant
matrices in the inner sum (after performing the products) do
not have any overlap in their non-zero positions. This ensures
that each matrix contributes to only one coefficient in the
associated polynomial of the summed up circulant matrix. Eq.
(10) accomplishes this by requiring that for a given column
subset 7 all the matrix powers in that particular sum are distinct
which ensures no overlap in the non-zero terms of the summed
circulant matrix. As such, the associated polynomial f;(z) for
a given 7 can be written as Eq. (8). Applying Lemma 5 results
in Eq. (9) which completes the proof. O

At first glance, Theorem 1 seems to provide a sufficient
condition that is quite restrictive on the parameters due to
Eq.(10). In fact, the following example demonstrates that
Theorem 1 broadly applies to QC-LDPC codes of high girth
which are attractive for their error correcting performance.

Example 2. Consider the QC-LDPC code in Example 1.
According to Theorem 1, the following equations are sufficient
for this QC-LDPC code to be Block-MDS:

ng(SL18272(E(p1‘1+p2’2)z _ 82’181’2:6(P2,1+P1,2)z’x2 _ 1) =1

(11)

ng(SL18273$(p1'1+p2’3)z _ 82118173x(P2,1+P1,3)z7xZ’ _ 1) =1
(12)

ng(Sl728273$(p1’2+p2’3)z _ 52,28173x(172,2+p1,3)z’x2 _ 1) =1
(13)

P12+ P23 Zp22+p13 mod 2z (14)
pi1+Dp23FEp21+pi3 modz (15)

P12 + P23 #Fp22+p1,3 modz (16)

Note that Eqgs.(14),(15),(16) are a subset of the cycle
conditions in Lemma 1 to ensure that the QC-LDPC code
has no cycles of length 4. In fact, we can see that Eq. (10)
in Theorem 1 is always a subset of the cycle conditions in
Lemma 1 for containing no cycles of length . Thus, we get
the following corollary:

Corollary 2. A QC-LDPC code with column weight v and
girth 2~v+2 is Block-MDS if and only if it satisfies the equations
in Theorem 1.

Theorem 1 is sufficient to guarantee Block-MDS among
high girth QC-LDPC codes, which are the class of QC-LDPC
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TABLE I: (Code Parameters) All lifting factors z were chosen to get code
lengths close to 2000 for fair comparison while satisfying Theorem 3.

Code | (v,x) Lifting Factor Rate  Length
Ch 4.5) 389 1/5 1945
Ca 3.4 491 1/4 1964
C3 3.5) 389 2/5 1945

codes of general interest due to their higher error-correcting
performance. We note that Corollary 2 becomes less meaningful
for v > 6 as it is well known that type-I QC-LDPC codes have
a minimum girth of 12 [23]. This is not a problematic constraint
since many practical type-I QC-LDPC codes generally have
v be 3 or 4. A future research direction is generalizing our
result to more complex constructions of QC-LDPC codes that
permit a higher girth.

For special values of the lifting factor z, Theorem 1 can

also be used to derive a simpler condition that allows for
decoupling the search for matrices S and P. The following
theorem provides sufficient conditions where a high girth QC-
LDPC code can be made into a Block-MDS code where the
finite field size scales linearly with &.
Theorem 3. If the lifting factor z is an odd prime and the
polynomial Zf;ol x® is irreducible in F,, then a QC-LDPC
code with girth 2y + 2 can be made into a Block-MDS code
with a careful choice of S for all k < |F,| and ! < z.

Proof. Let us consider Eq.(9). When z is a prime, then we can
easily factor * — 1 into (z — 1)(2:;01 x%). By the theorem
statement, these are the irreducible factors of x* — 1. The left
factor indicates that for the gcd to be 1, then 1 cannot be a
root of f,(x), i.e.,

v
(1) = Z sign(o) (H Sg(i)j(i)> #0eF,. (A7)
i=1

o€S,

Note that f, (1) is simply the determinant of the -y Xy submatrix
of S where the columns are selected by 7. Since this condition
needs to be true for every choice of 7, then S must be an MDS
matrix. Now, we only need to prove that f.(z) is not a factor
of 2;—01 x' since the degree of f,(z) is less than or equal to
z—1. Since Zf:_ol z* is irreducible, we only need to show that
Zf;ol 2 # f,(x). This is true by noting that the number of
non-zero elements in the polynomial f-(x) is upper bounded
by ~! which is less than z by the theorem statement. Hence,
Eq.(9) is equivalent to requiring that S is an MDS matrix.

We complete the proof by using the well-known Vander-
monde matrix of size v X x for S since it is MDS and it only
needs a field size of k < |F,| [29]. O

Theorem 3 allows us to decouple the constructions of
matrices P and S. Thus, we can first find a matrix P with
sufficient girth properties and then transform it using an easily
defined matrix S where the finite field size scales linearly with
the row weight. This property is very useful in practice since
large finite field sizes incur significant complexity in decoding
which translates to higher latency or more complex circuitry.
Our design allows for Block-MDS QC-LDPC codes that are
almost independent of the block length since the field size
depends on « for lifting factors that satisfy Theorem 3.

TABLE II: Secret Key Rates at representative points for high noise regime.
Code \ Transition Probability =~ FC SKR ~ MSC SKR

Ch p=0.28 04114 0.45
Ca p=0.275 0.3913 0.4832
Cs p=0.2 0.8883 0.9679
101 &
C2
102 - C
8
3103
& 104
E =5
1054 &
10-¢
016 018 020 022 024 026

Transition probability: p

Fig. 1: Probability of IR failure for different transition probabilities for a
8-ary symmetric channel. Bold line indicates the FC decoder and dotted lines
indicates the MSC decoder.

V. SIMULATIONS AND CONCLUSION
In this section, we shall demonstrate the benefits of using

our new decoding method to jointly perform information
reconciliation and privacy amplification on our Block-MDS
QC-LDPC codes. We shall be comparing the secret key rate
using FC and MSC decoding on our Block-MDS QC-LDPC
codes to demonstrate the gains offered by the relaxation of
the IR step. Since the final key length for a code is the same
regardless of the decoder chosen (FC or MSC), the major
measure of interest is the IR failure probability for the secret
key rate. As such, we shall demonstrate the improvements that
the MSC decoder has over the FC decoder in terms of the IR
failure probability for the low noise regime and the secret key
rate at the high noise regime.

We perform simulations on three QC-LDPC codes with
parameters described in Table I. All codes were constructed
to have girth 10. The power matrix P and scaling matrix S
for each code can be found in the Appendix of the full paper
[30]. Fig. 1 plots the probability of IR failure for different
values of the transition probability for an 8-ary symmetric
channel. We see that the MSC decoder can improve the IR
failure probability by about 0.25 orders of magnitude. Clearly,
the gains differ for different code parameters which suggests
further study into how code parameters affect the decoding
probability of the MSC decoder. Yet, we see that the MSC
decoder can provide significant gains. Additionally, Table II
demonstrates the improvement in the SKR at the high noise
regime which is commonly found in practice. In this regime,
even a small improvement in the FER can have significant gains
in the secret key rate as demonstrated by the MSC decoder.

In conclusion, we demonstrated a relaxation for the IR step
in QKD utilizing sampling, thus allowing us to improve the
success rate of the IR step. This allowed use to create PA-aware
LDPC codes in the form of Block-MDS QC-LDPC codes that
can capitalize on this relaxation. We empirically demonstrate
the improvements of our new decoder on these LDPC codes
through simulations. Future work is focused on generalizing
our ideas to a broader set of graph codes and providing a full
security analysis on the total QKD system.
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