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Abstract: The demand for reconfigurable devices for emerging RF and microwave applications has
been growing in recent years, with additive manufacturing and photonic thermal treatment present-
ing new possibilities to supplement conventional fabrication processes to meet this demand. In this
paper, we present the realization and analysis of barium-strontium-titanate-(Bag 5Sr 5 TiO3)-based
ferroelectric variable capacitors (varactors), which are additively deposited on top of conventionally
fabricated interdigitated capacitors and enhanced by photonic thermal processing. The ferroelectric
solution with suspended BST nanoparticles is deposited on the device using an ambient spray pyrol-
ysis method and is sintered at low temperatures using photonic thermal processing by leveraging
the high surface-to-volume ratio of the BST nanoparticles. The deposited film is qualitatively charac-
terized using SEM imaging and XRD measurements, while the varactor devices are quantitatively
characterized by using high-frequency RF measurements from 300 MHz to 10 GHz under an applied
DC bias voltage ranging from 0 V to 50 V. We observe a maximum tunability of 60.6% at 1 GHz under
an applied electric field of 25 kV/mm (25 V/um). These results show promise for the implementation
of photonic thermal processing and additive manufacturing as a means to integrate reconfigurable
ferroelectric varactors in flexible electronics or tightly packaged on-chip applications, where a limited
thermal budget hinders the conventional thermal processing.

Keywords: barium-strontium-titanate (BST); interdigitated capacitors; additive manufacturing;
spray pyrolysis; photonic sintering

1. Introduction

Additive manufacturing (AM), also commonly referred to as 3D printing, has revolu-
tionized the way we create complex structures and components and has become a major
cornerstone in research and development in recent years. While the term 3D printing has
become almost synonymous with fused deposition modelling (FDM), AM encompasses
a large selection of technologies including a wide range of deposition techniques, such
as micro dispensing, binder jetting, inkjet printing, aerosol jet, as well as the aforemen-
tioned FDM, just to name a few. However, it is also often seamlessly combined with other
technologies and techniques, such as localized laser processing, in situ UV curing, mi-
cromilling, photonic thermal processing, etc., which are used for the fabrication of complex
multidimensional structures and allow for the postprocessing of deposited materials and
individual layers [1-5]. These technologies can not only be combined with each other
to create new processes or improve upon existing ones, but can, and have been, inte-
grated together with conventional fabrication technologies as part of hybrid co-designs,
which leverage the strengths of each set of technologies to address challenges faced by
conventional fabrication [2,4-7]. For example, this hybrid approach has allowed for the
incorporation of integrated bypass capacitors into a wideband chip carrier to ensure a clean
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and stable power source to an amplifier die [6] and the use of unconventional geometries,
along with selective material deposition, to address thermal management when packaging
amplifiers [7].

Such techniques have already been implemented in the fabrication of other perovskite
materials for optoelectronics, where AM has paved the way for the design and fabrica-
tion of fully 3D structures for the purpose of improving tailoring to meet specific needs
and systems, thus addressing the limitations of the planar structures of conventional fab-
rication [8-10]. This fabrication approach has allowed for greater versatility of design,
with some of the main advantages including the ability to generate 3D structures and the
design-to-manufacturing flexibility offered by many of these AM techniques. Among the
numerous applications of AM in electronics, for the purpose of this work, the main focus is
on reconfigurable devices, circuits, and systems, all of which can be realized through vari-
ous mechanisms such as mechanical microfluidic actuation or by implementing materials
such as ferroelectric, ferromagnetic, and meta-materials. The exact mechanism through
which each category of material can be reconfigured, or tuned, varies greatly and so does
their implementation into functional electronic devices [11-13].

This work focuses on ferroelectric materials for reconfigurable device applications,
more specifically barium-strontium-titanate (BST), which has received extensive research
attention due to its interesting properties. BST, as a ferroelectric material, has a Curie
temperature that can be directly modified by changing the Ba:Sr ratio in its stoichiometry.
It has both a high dielectric constant and piezoelectric properties, which can be tuned using
an external electric field, and displays low dielectric loss tangential losses, all of which
can be further tailored by changing the stoichiometry and introducing dopants [6,7,14-21],
therefore making BST an attractive material for reconfigurable high-frequency applications.
Prior research on BST has focused on the characterization and implementation of devices
in various fields including optics, communications, and RF and microwave [6,7,15-21].
Besides its use for RF electronics, BST shows potential for other applications such as
magnetic sensors. The most common way to achieve that is by iron (Fe) doping the
BST to exhibit the desired multiferroic and magnetic properties. Both [22,23] examined
the effect of Fe doping level on the average crystal size, the expansion of the BST unit
cell, the ferroelectric, magnetic, and optical properties, and the dielectric constant and
losses up to 1 MHz. Enriching BST’s capabilities to allow the sensing of a magnetic field
can lead to the employment of BST in a magnetic field sensor for various applications.
In that sense, researchers have also been exploring the sensor applications of magnetic
ceramics by using materials such as strontium hexaferrite. For instance, Safronov et al. [24]
reproduced biological tissues using ferrogels containing micron-sized magnetic particles
and developed a prototype magnetic field magnetoimpedance sensor. Another promising
application to magnetic field sensing, demonstrated by Yang et al. [25], for detecting cardiac
biomarker myoglobin (Mb) is conducted by using an integrated giant-magnetoimpedance
(GMI)-based immunosensor.

Prior work has shown that, among various parameters, the crystalline structure of the
deposited BST is a primary contributor, determining the effective dielectric permittivity
and tunability. To ensure that the BST films are not in an amorphous state and realize the
desired crystalline microstructure, BST films are deposited either at very high temperatures
or at lower temperatures and then annealed. The most common annealing method reported
in the literature involves the use of rapid thermal annealing (RTA) and high temperature
furnace annealing at typical temperatures of 700-850 °C for up to multiple hours. These
processing methods, while convenient, pose many limitations for flexible electronics, on-
chip, and high-density packaged designs due to the thermal budget. Substantial research
has been conducted to address these limitations, including the use of UV-wavelength radia-
tion via excimer laser to improve the quality of low-temperature-deposited BST films and
promote crystal grain growth [26-29]; however, laser annealing has a limited throughput
due to spot size limitations, and these studies have required substrate temperatures in
the range of 200-300 °C during either BST film deposition or annealing, making them
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unsuitable for integration with the majority of thermoplastics commonly used in AM pack-
aging and flexible electronics. In the case of AM or BST, some prior works have used inkjet
printing on alumina substrates to allow for sintering at temperatures upward of 1150 °C to
circumvent thermal budget limitations [30,31]. Ranasingha et al. [32] demonstrate the good
performance of sinterless-aerosol-jet-deposited BST nanoparticles, but the performance still
falls behind that of sintered BST [32]. This work, therefore, aims to fill a gap in the literature
with respect to the low-temperature sintering of BST films with the aid of AM techniques.
To realize additively manufactured BST films at low temperatures with a performance
comparable to that of fully furnace-sintered films, we leverage the increased radiation
absorption of nanoparticles that is due to their high surface-area-to-volume ratio combined
with photonic sintering to sinter the surface BST coating without causing a significant tem-
perature increase in both the substrate and the metallization layer underneath. This allows
for greater flexibility when integrating ceramic films, which require thermal processing for
the best performance, into flexible electronics, complex 3D structures, and high-density
electronic packaging designs without a significant thermal budget limitation.

The two main design topologies used for the integration of ferroelectric materials in
capacitive devices found in the literature are parallel plate implementations and interdigi-
tated designs [16,33,34]. Parallel plate implementations consist of a metal-insulator-metal
(MIM) topology where the ferroelectric material is sandwiched between two electrodes,
whereas the interdigitated capacitor (IDC) design consists of a planar metallic structure
with multiple overlapping fingers. The MIM topology has the advantage of allowing a
large and more uniform electric field concentrated in the active ferroelectric layer; however,
it comes with a more complex multilayer fabrication process, a greater dependance on
the electrode quality, and is more prone to resonant resistive effects [16,33,35,36]. The IDC
topology, on the other hand, consists of a single-layer planar structure typically fabricated
directly on top of or underneath the ferroelectric layer. However, due to the resolution
limits of conventional photolithography, IDC devices generate a lower electric field when
using an equivalent bias voltage compared to a MIM device. This limitation can be ad-
dressed by using the high resolution of nanolithography to reduce the finger gap, as shown
in [16]; however, this form of lithography adds greater complexity to the fabrication and
requires more tools, which are not as readily available as those used for conventional
photolithography. For these reasons, we decided to fabricate an IDC design to test the RF
performance of our BST films.

In this work, we report the initial results of our study on BST capacitors fabricated with
a mix of conventional lithography for the electrode layer and AM techniques, using ambient
air spray pyrolysis deposition of suspended BST nanoparticles, which are further enhanced
by localized sintering and crystallization via photonic thermal processing. The device
performance is evaluated using S-parameter measurements from 300 MHz to 10 GHz
under a bias voltage range from 0 V to 50 V, from which the capacitance, tunability, and
permittivity are extracted using equations. The deposited films are evaluated qualitatively
using SEM imaging and XRD measurements. We demonstrate effective photonic sintering
and initial crystallization of the deposited film, which achieves a performance comparable
to that of BST devices thermally processed using conventional techniques without the need
to expose the electrode and substrate layers to high temperatures for extended periods
of time.

2. Materials and Methods
2.1. Capacitor Design and Fabrication

The initial designs of the fabricated devices were taken from [16] and were modified
to better suit our fabrication process. The full layout design consisted of devices with four,
six, eight, 10, and 14 interdigited fingers, each having a version with 2 um, 5 ym, 10 pm,
and 20 um finger gaps and each exhibiting both one-port and two-port configurations. In
this work, we present the measured results for the eight-finger one-port configuration,
as depicted in Figure la,b, which has a finger length of L = 400 pm, a finger width of
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F8_LF400_WF50_G2_P1_,

00.00pm

W =50 um, and a gap of g = 2 um. This particular configuration was preferred for a
number of reasons. First of all, the one-port configuration is not only easier to measure,
but also allows for accurate extraction of the performance parameters. Second, the 2 um
gap is the smallest we could consistently fabricate with conventional lithography methods
and, thus, provides the highest electric field under a certain level of applied bias voltage
potential. Third, the eight-finger configuration is right in the middle of the range of designs,
thus providing a measurement of the median capacitance and operating frequency range.
As it can be seen in Figure 1c,d, the complete device consists of the IDC as well as a segment
of coplanar waveguide (CPW) line, which serves as a landing pad for our ground-signal—-
ground (GSG) probes employed for the RF measurement. The CPW line was designed to
be longer than its typical design as a compromise to allow for some degree of misalignment
during the masking process, which is used during the BST deposition. The complete
dimensions for the measured design can be found in Table 1.

(©) (d)

Figure 1. (a) Diagram of IDC device fabricated with key dimensions labeled; (b) diagram depicting
how BST is deposited to only cover the finger area; (c) microscope image of fabricated electrode layer;
(d) SEM image of a device after BST deposition.
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Table 1. A set of key design dimensions for the measured IDC device.

Dimension Size (um)
Finger length 400
Finger width 50
Finger gap 2
Interconnect width 50
Feedline width 65
CPW gap 25
Feedline length 500
CPW ground width at IDC region 150

The electrodes were fabricated on top of a Pyrex substrate with a thickness of 500 um
by means of conventional cleanroom microfabrication techniques. A lift-off process with
positive photoresist was used to pattern the metallization layer, along with RF sputtering,
to deposit 300 nm gold electrodes on top of a 30 nm chrome adhesion layer.

2.2. BST Deposition and Thermal Processing

The BST solution was purchased from TPL inc. and it consisted of 50 nm BST particles
suspended in an ethylene glycol solution. The particles had a Bag 551 5 TiO3 stoichiometry
and accounted for 49% of the weight of the solution. The solution was deposited using
an ambient spray pyrolysis setup, as illustrated in Figure 2. As seen in the diagram, the
die with the deposited electrodes was placed on top of a hot plate, which was mounted
on a single axis motorized stage. The die was masked using the Kapton tape to cover the
feedlines for probing, leaving only the main IDC finger area exposed for deposition, as
seen in Figure 1b,d. Before deposition, the solution was placed in a centrifugal planetary
mixer (ARE-310 Thinky Mixer) to break down any particle agglomerations and ensure
homogeneity. It was then loaded into an Iwata HP-TH2 airbrush with a 0.06 mm nozzle
connected to a commercial air compressor set to 35 psi and deposited on the IDC device
die. The hot plate was maintained at a temperature of ~100 °C during deposition to begin
the curing process and prevent overaccumulation of the liquid solution on the surface.
To enhance the repeatability of the deposition process, the spray gun was kept at an
approximate angle of 30° and at a height of 10 cm from the hot plate surface, the controller
for the stage was set to a speed of 20 mm/s with an acceleration and deceleration of
80 mm/s?, and the die passed below the spray region a total of ten times, with five passes
in each direction to improve the uniformity of deposition. This process consistently yielded
films with a thickness of approximately 18 um and an average roughness of 2.5 um. After
deposition, the die was left on the hot plate for 2 min to promote the evaporation of most of
the solvent before being put into a vacuum oven at 100 °C for 2 h to ensure that any trapped
moisture and residual solvent evaporated. Initial attempts to fully cure the films with only
the hot plate showed an increased likelihood of surface cracking and delamination of the
films due to the rapid and uneven heating, while the sample was under a partially liquid
state and occasionally still retained trapped moisture.

After the die was fully cured and dehydrated, the BST nanoparticles that made up
the film were thermally processed using a PulseForge photonic thermal processing unit
integrated into an nScrypt 3Dn-450-HP additive manufacturing platform. The PulseForge
unit uses a flash lamp with a wavelength ranging from 200 nm to 1500 nm to produce
high-energy broadband microsecond pulses, covering the UV to near IR range, to irradiate
the surface layer and induce rapid transient heating of the top surface. The high surface-to-
volume ratio of the BST nanoparticles increased the heat generated by these pulses, leading
to high temperatures of the film layer and to the sintering of the nanoparticles, while the
short length of the pulses ensured that the rise in temperature of the subsequent metal
and substrate layers was mitigated. For the pulses, we used a 10 ms envelope made up
of 10 pulses, with 50% duty cycle and a driving voltage of 300 V which generated a total
energy of 4.44 ] /cm?. Because annealing is not a quick process, we exposed the films to a
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total of 1000 repetitions of the envelope applied over five 200 pulse sessions to allow for the
substrate to fully dissipate the heat and for the lamp to cool down and prevent overheating.

Spray Gun

170cm

Substrate/Die
Stand

Hot Plate

Motorized
Stage

Figure 2. Diagram of ambient spray pyrolysis setup.

The high frequency RF performance of the fabricated devices was measured using a
Keysight PNA N5227A (Keysight, Santa Rosa, CA, USA) vector network analyzer (VNA)
with built-in bias tees rated for 250VDC and 2A. The GGB Model 40A GSG (GGB Industries
Inc., Naples, FL, USA) probes with a 250 um pitch size rated for 50 V were used and the
biasing voltage was provided by a Rohde & Schwarz NGA100 (Rohde & Schwarz USA Inc.,
Columbia, IN, USA) power supply with a max DC output of 100 V and 2A per channel.
A discreet series resistor of 1 M() was used between the power supply and the bias tee
input as a precaution, serving as a current limiter in the event of a short circuit. Calibration
was performed at 0 V bias voltage using a CS-5 calibration substrate and the one-port
S-parameter frequency response of the device was measured over the range from 300 MHz
to 10 GHz at various bias voltages from 0 V to 50 V. The voltage readout of the NGA100
has an accuracy of £ (<0.02% + 10 mV) and the accuracy of the CS-5 calibration substrate
standards is £0.25%.

The thickness and roughness of the deposited BST layers were measured using a
C-BXT Bruker XT-A profiler. The deposited BST films were qualitatively assessed using
XRD measurements and SEM imaging. SEM images were taken using a FEI Quanta 200 3D
Dual Beam system (FEI Company, Hillsboro, OR, USA) under low vacuum conditions to
mitigate electronic charge buildup. Due to the minimum film area required for the XRD
measurements, a different sample had to be prepared. A BST film processed under the same
processing conditions was deposited on a quarter of a 2-inch silicon wafer and measured
using a Bruker D2 Phaser XRD (Bruker, Billerica, MA, USA).

3. Results
3.1. High Frequency S-Parameter Measurments

As we increased the bias voltage applied to the capacitor, the dielectric constant of the
BST decreased, in turn reducing the capacitance of the IDC. This decrease in capacitance
led to an increase in the frequency at which series resonance occurs, as we can observe
from Equation (1). This change in the self-resonance frequency was due to the fact that the
contribution for the series inductance in the capacitor equivalent circuit originated from
the metallization layer; thus, the inductance should remain largely unchanged in response
to the increase in bias voltage [37]. We can observe from Figure 3a that the magnitude
of the reflection coefficient increased along with the applied bias voltage, a phenomenon
which was due to a decrease in the roll-off of the reactance of the device from the smaller
capacitance. Also, as shown in Figure 3b, the device exhibited a series resonance at 9.2 GHz
which was observed at 0 V. As seen in the literature [14-21], the dielectric constant of BST
under an applied bias voltage should decrease consequently, decreasing the capacitance.
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From Equation (1), we can observe that, if the inductance remains constant, then, as the
bias voltage increases, the capacitance decreases, thus shifting the self-resonance to a higher
frequency. As shown in Figure 3a,b, the self-resonance, as given by Equation (1), shifted to
a higher frequency when a bias voltage was applied, and it no longer appeared within our
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Figure 3. (a) Magnitude of the reflection coefficient (S11) of the BST IDC device under a varied bias
voltage (0-50 V), and (b) phase of the reflection coefficient of the BST IDC device under a varied bias
voltage (0-50 V).

3.2. BST Parameter Extraction

From the one-port S;; measurement results shown in Figure 3a,b, we can extract the
capacitance C and the series resistance R by using Equations (2)-(5):

1+ S1q
Zn =Zo— 5 (2)
Zyp = R+j(XL+X¢) @3)
1
1
€= 2nfXc ©)

We first converted the measured Sq; to Z11 by using Equation (2). Then, from Equation (3),
we observe that the real part and imaginary part of Z1; corresponds to the series resistance
and the total reactance of the device, respectively. In the frequency range where X¢ > X,
the total reactance in Equation (3) can be approximated by Equation (4). Equation (5) can
then be applied to calculate the capacitance from the imaginary part of Z1;.

Figure 4a,b show the real and imaginary parts of the calculated Z1; parameters,
respectively. Based on Equation (4), as the bias voltage increased, the capacitance decreased,
leading to a larger negative reactance, which can be observed in Figure 4b. As also shown
in Figure 4a, when the bias voltage increased, the series impedance decreased to the
lower frequency region. This can be explained most likely by a greater contribution of the
dielectric losses to the equivalent series resistance (ESR) of the BST varactor device at a
lower frequency. At higher frequencies, the resistance contribution from the metallization
layer dominated. One can also observe from Figure 4a,b that the effect of the noisy response
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in Figure 3a at low frequencies for the 40 V and 50 V measurements can be seen prominently
in the extracted impedance, but the reactance was only minimally affected.
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Figure 4. (a) Real part of the calculated Z;; (impedance) for different bias conditions, (b) imaginary
part of the calculated Z; (reactance) for different bias conditions, (c) calculated capacitance for the
IDC device under different bias conditions, and (d) zoomed-in region of the calculated capacitance
versus the frequency below 3 GHz.

The calculated capacitance shown in Figure 4c highlights the reduction in capacitance
as a function of the bias voltage and it is observed that there was more than a 50% decrease
between 0 V and 50 V. This decrease in capacitance was due to the decrease in the dielectric
constant of BST as a result of applying an external electric field. This occurred because
the applied electric field shifted the titanium ion at the center of the BST crystal structure,
reducing its ability to store charge, lowering the effective dielectric constant [16]. The
electric field tuning behavior observed is similar to what has been previously reported
in the literature for BST exhibiting a similar stoichiometry [20,21,33-35]. It is observed in
Figure 4d that the calculated capacitances were constant within the low-frequency region.

Based on the calculated capacitance under a certain level of applied bias voltage,
Equation (6) can be used to determine the tunability as a function of the bias voltage (x):

T(x) _ CVdc:O - CVdc:x 100 (6)
Cvdc=0
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Figure 5a,b present the tunability as a function of bias voltage plotted over different fre-
quency ranges. As it is shown, at each bias voltage, the tunability remained quasi-constant
within the low-frequency range, after which the tunability level in terms of percentages
started to rapidly change due to the effects of the resonance. At 1 GHz, with a bias voltage
of 50 V, which is equivalent to an electric field of 25 kV/mm, a maximum tunability of about
60% was observed, and, even at a relatively low electric field of 7.5 kV/mm, a tunability of
about 18% was demonstrated.

Tunability (%)

Frequency (GHz)

90 2gv
aov —
80— o —
70 N
o — N
é 60— ———— o [ —
‘2\ -
% 50_,
€ 40|
— 20v = 1
_— aov — 30—
— 50V —— i _—
20
10—
T I I T ‘ T | T ‘ T 0 T 1T l L [ LI I T T 17T | T 1T l T T 17T
4 5 6 7 8 9 10 0.0 0.5 1.0 15 2.0 25 3.0

Frequency (GHz)
(a) (b)

Figure 5. (a) Tunability vs. frequency of a measured IDC device at various bias voltages, and
(b) zoomed-in tunability vs. frequency for a reduced frequency range up to 3 GHz, over which the
tunability exhibits quasi-constant values.

The calculated capacitance and Equations (7) and (8) found in [37] can be used to
derive the dielectric constant of the IDC device:

C = (e, + 1)L[(N — 3)A; + Ay] )

C
8r:L[(N—3)A1—|—A2]_1 (8)

where L is the interdigit finger length in um, N is the number of fingers, A; is the capacitance
per unit length of the interior fingers, and A, is the capacitance per unit length of the two
exterior fingers. A1 and Aj; are functions of the substrate thickness to finger width ratio;
however, for our case with no ground plane, their values became 4.409 x 10~® pF/um
for A and 9.92 x 10~® pF/um for A,. Equation (7) shows that the capacitance is linearly
dependent on the dielectric constant for an IDC device. Therefore, we can expect the plot of
the derived dielectric constant to show the same trend as that exhibited by the capacitance,
as it can be seen in Figure 6a,b. At 1 GHz, a maximum dielectric constant of 57 with no bias
voltage and a minimum of 22 under a 50 V bias were observed.

Lastly, Equation (9) was used to calculate the quality factor Q of the measured IDC,
and its inverse can be used to determine the loss tangent.

Xc
= 2C 9
Q= ©)

In Figure 7, a trend whereby the Q factor increased as the bias voltage increased can
be observed. This behavior was expected, as, from Equation (9), it can be seen that X¢

becomes larger as the capacitance decreases due to the applied electric field.
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Figure 6. (a) Graph of the derived dielectric constant, and (b) zoomed-in dielectric constant graph.

Q Factor

100

ov

P{0)V
40V —
50V ——

Frequency (GHz)

Figure 7. Calculated Q Factor of the IDC device as a function of frequency under various bias voltages.

The loss tangent, as seen in Figure 8a,b, was found to decrease as the applied bias
voltage increased, which is consistent with the behavior presented by Muzzupapa et al. [33].
The loss tangent remained below 0.15 throughout the frequency range up to 3 GHz under
a 0 V bias and below 0.05 under a 50 V bias, as observed in Figure 8b. We expected this
to be the case because of the inverse relationship between the loss tangent (1/Q) and Q.
A summary of all key characterization parameters of the BST IDC device at 1 GHz can be
found in Table 2, and a comparison with other works can be found in Table 3.
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Figure 8. (a) Calculated loss tangent vs. frequency at a varied bias voltage (0-50 V), and (b) zoomed-in
loss tangent vs. frequency at a reduced frequency range up to 3 GHz under a varied bias voltage
(0-50 V).

Table 2. Key characterization parameters extracted from BST IDC measurements at 1 GHz.

Resonance
E Field Capacitance Tunability Dielectric Loss Tangent
Voltage (V) (KV/mm) (pF) (%) Constant Q Factor 1/Q) Frequency
(GHz)
0 0 0.932 0.0 57.3 10.9 0.092 9.2
20 10 0.711 23.7 43.5 17.9 0.056 10.5
40 20 0.474 49.2 28.6 31.3 0.032 13.1
50 25 0.367 60.6 22.0 41.7 0.024 14.9
Table 3. Comparison of the performances of BST capacitive devices.
Deposition Thermal e g0 .
Ref Method Processing Tunability (%) E Field (kV/mm) Cov (pP)
[18] PLD * Furnace 15 4.38 1.00
[32] Aerosol jet Sinterless 15 10.00 Not reported
33] Sol-gel RTA 40 16.70 0.15
This work Spray pyrolysis Photonic sintering 60 25.00 0.93

* Plasma laser deposition.

3.3. SEM Imaging and XRD Measurements

The SEM images shown in Figure 9a—d were taken from the BST film on the measured
IDC device. Figure 9a shows the entire IDC device, depicting the BST film completely
covering the IDC finger region as well as the slight misalignment offset during deposition as
a result of the Kapton masking tape placement. As shown in Figure 9b—d, the as-deposited
BST nanoparticles agglomerated into clusters, which were then sintered via photonic
thermal processing. While the individual nanoparticles were originally 50 nm, the average
size of the sintered crystals was observed to be roughly 500 nm.
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Figure 9. SEM images of the BST film deposited on the IDC device at different magnifications:
(a) 240 x magnification, (b) 1000x magnification, (c) 4000 x magnification, and (d) 8000 x magnification.

The results of the two-theta scan of the thermally processed film, as seen in Figure 10a,
show that all the Bag 551 5TiO3 crystal orientations were present with a clear preference for
the (110) orientation. All peaks corresponding to the BST and to the Si wafer were analyzed
with X’pert HighScore and labeled accordingly, with the small unlabeled peaks belonging
to the Kf radiation. The comparison of the (110) peak between the as-deposited film and
the film after the thermal processing in Figure 10b shows that the peak slightly shifted to a
lower angle and its intensity increased after thermal processing, suggesting an induced
change in the lattice parameter. The XRD peak of the as-deposited film slightly shifted to
the right from the BST (110) peak, a phenomenon which suggests residual compressive
stress [38]. This residual stress was released as the peak for the thermally annealed sample
returned to the anticipated peak position after the photonic thermal processing. From this,
it can be inferred that stress relaxation occurred.
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Figure 10. (a) Full span two-theta XRD scan of the BST film after the photonic thermal processing
(unlabeled peaks correspond to K3), and (b) a comparison of XRD responses of as-deposited and
thermally processed BST films.

4. Discussion

In this work, we fabricate and characterize reconfigurable BST IDC devices using a mix
of conventional microfabrication and AM techniques. We sintered the deposited films at
low temperatures by using photonic thermal processing, thus allowing for the direct heating
of the top surface while minimizing the effect on the metallization layer and substrate.
No delamination was observed after processing and film metrology verification using
XRD and SEM, demonstrating that thermal processing caused sintering of the deposited
nanoparticles and reduced the residual compressive stress in as-deposited samples. Device
characterization using S-parameter measurements showed a good performance, with a
maximum measured tunability of 60.6% at an applied electric field of 25 kV/mm and an
acceptable loss tangent on par with those reported in prior works. The results presented
here show promising initial results for the hybrid implementation of photonic thermal
processing and AM with conventional fabrication to produce high-frequency reconfigurable
ferroelectric varactors, which can potentially be integrated into tightly packaged and
on-chip configurations where the thermal budget may limit the compatibility of in-situ
thermal processing.

Future work includes the optimization of BST film deposition and thermal process-
ing, and implementation and integration of BST reconfigurable devices into functional
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RF circuit modules. The current deposition and photonic thermal sintering processes are
still being improved and refined. Further optimization of the photonic pulses will be
investigated to balance film quality improvement and heat generated on the substrate to
increase compatibility with low thermal budget substrates such as thermoplastics used in
AM. For the deposition, a compressed nitrogen with a regulator will be employed in place
of the commercial air compressor currently used, as the latter cannot maintain a constant
35 psi pressure throughout the entire spray process. This should help improve the uni-
formity of each deposited layer, thus allowing for fewer layers to be deposited to achieve
complete coverage and reduce layer roughness.
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