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MAPPING CLASS GROUPS
OF EXOTIC TORI AND ACTIONS BY SLd(Z)
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AND BENA TSHISHIKU

Abstract. We determine for which exotic tori T of dimension d != 4 the
homomorphism from the group of isotopy classes of orientation-preserving dif-
feomorphisms of T to SLd(Z) given by the action on the first homology group
is split surjective. As part of the proof we compute the mapping class group of
all exotic tori T that are obtained from the standard torus by a connected sum
with an exotic sphere. Moreover, we show that any nontrivial SLd(Z)-action
on T agrees on homology with the standard action, up to an automorphism
of SLd(Z). When combined, these results in particular show that many exotic
tori do not admit any nontrivial differentiable action by SLd(Z).
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A homotopy d-torus T is a d-dimensional smooth manifold that is homotopy
equivalent to the standard torus T d = ×dS1 and hence also homeomorphic to it,
by a known instance of the Borel conjecture; see [HW69] for d > 4, [FQ90, 11.5] for
d = 4, [Wal68, 6.5] and the Poincaré conjecture for d = 3. If T is not diffeomorphic
to the standard torus T d, it is called exotic. For instance, given an exotic sphere Σ
of dimension k ≤ d, the connected sum (T k!Σ) × T d−k is an exotic d-torus.

One of the prominent features of the standard torus T d ∼= Rd/Zd is that it admits
a faithful action SLd(Z) → Diff+(T d) by SLd(Z) through orientation-preserving
diffeomorphisms, induced by the linear action of SLd(Z) on Rd. For a general
homotopy d-torus T one might thus wonder:
(A) Is there a faithful action SLd(Z) → Diff+(T )? If not, is there even any

nontrivial action?

Received by the editors November 14, 2023, and, in revised form, June 26, 2024.
2020 Mathematics Subject Classification. Primary 57R10, 57R52; Secondary 20C12, 11F06.
The first author was supported by ANID Fondecyt Iniciación en Investigación grant 11220330.

The third author was supported by the Natural Sciences and Engineering Research Council of
Canada (NSERC) [funding reference number 512156 and 512250] and by an Alfred J. Sloan Re-
search Fellowship. The fourth author was supported by NSF grant DMS-2104346.

c©2024 by the author(s) under Creative Commons Attribution-NonCommercial 3.0 License (CC BY NC 3.0)

1316

https://www.ams.org/btran/
https://www.ams.org/btran/
https://doi.org/10.1090/btran/207


MAPPING CLASS GROUPS OF EXOTIC TORI 1317

As the SLd(Z)-action on the standard torus splits the homomorphism Diff+(T d) →
SLd(Z) induced by the action on the first homology group H1(T d) ∼= π1(T d) ∼= Zd,
it seems natural to approach Question (A) by first considering the following weaker
question which is an instance of a high-dimensional version of a Nielsen realisation
problem posed by Thurston [Kir97, Prob. 2.6]:
(S) Is the homomorphism Diff+(T ) → SLd(Z) given by the action on H1(T ) split

surjective?
This homomorphism factors through the mapping class group π0 Diff+(T ) of iso-
topy classes of orientation-preserving diffeomorphisms, so one can weaken the ques-
tion further to:
(S0) Is the homomorphism π0 Diff+(T ) → SLd(Z) given by the action on H1(T )

split surjective?
This work establishes several results regarding these three questions. Note that a
positive answer to (S) implies positive answers to (A) and (S0). As part of our
results, we

• answer Question (S0) in all dimensions d %= 4,
• show that Questions (S) and (A) are in fact equivalent, and
• conclude that for many exotic tori the answer to all three questions is negative.

In what follows, we describe these results and various extensions of them in more
detail.

Splitting the homology action up to isotopy. Our first main result answers
(S0) for d %= 4:

Theorem A. For a homotopy torus T of dimension d %= 4, the morphism
π0 Diff+(T ) −→ SLd(Z)

induced by the action on H1(T ) is split surjective if and only if T is diffeomorphic
to T d!Σ for a homotopy sphere Σ ∈ Θd such that η ·Σ ∈ Θd+1 is divisible by 2 in
the abelian group Θd+1.

Here Θd is Kervaire–Milnor’s finite abelian group of homotopy d-spheres [KM63]
and η · Σ ∈ Θd+1 for Σ ∈ Θd is the value of η ⊗ Σ under the Milnor–Munkres–
Novikov pairing π1 S ⊗ Θd → Θd+1 where η ∈ π1 S ∼= Z/2 is the generator of the
first stable homotopy group of spheres (see [Bre67] for more on this pairing). The
question whether η · Σ ∈ Θd+1 for a given Σ ∈ Θd is divisible by 2 can in most
instances be reduced to a problem in stable homotopy theory which can in turn
be solved in many cases. This approach is discussed in Section 1.3, but to already
illustrate its practicability at this point, we display in Table 1 the first groups of
homotopy spheres Θd together with the subgroups Θsplit

d ≤ Θd of split spheres, i.e.,
those Σ ∈ Θd for which η · Σ is divisible by 2, which is by Theorem A equivalent
to π0 Diff+(T d!Σ) → SLd(Z) being split. Note that among the dimensions d for
which Θd is nontrivial, there are dimensions in which all spheres are split such as
d = 7, dimensions in which none are split such as d = 8, as well as dimensions in
which some but not all are split such as d = 9. In Section 1.3 we also explain why
both cases—the sphere Σ being split or not—occur for exotic spheres Σ in infinitely
many dimensions.
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Table 1. The groups Θd of homotopy d-spheres for d ≤ 19 to-
gether with the subgroups Θsplit

d ≤ Θd of those Σ ∈ Θd for which
η · Σ is divisible by 2

d ≤ 6 and %= 4 7 8 9 10 11 12 13
Θd 0 Z/28 Z/2 (Z/2)⊕2 ⊕ Z/2 Z/6 Z/992 0 Z/3
Θsplit

d 0 Z/28 0 (Z/2)⊕2 ⊕ 0 Z/6 Z/992 0 Z/3

14 15 16 17 18 19
Z/2 Z/2 ⊕ Z/8128 Z/2 (Z/2)⊕3 ⊕ Z/2 Z/8 ⊕ Z/2 Z/2 ⊕ Z/523264
0 Z/2 ⊕ Z/8128 0 (Z/2)⊕3 ⊕ 0 Z/8 ⊕ Z/2 Z/2 ⊕ Z/523264

Actions of SLd(Z) on homotopy tori. Our second main result shows that all
nontrivial SLd(Z)-actions on homotopy tori agree on homology with the standard
action up to an automorphism.

Theorem B. Fix d ≥ 3, a homotopy d-torus T , and an automorphism group
G ∈ {Diff+(T ),Homeo+(T )}.

Any homomorphism SLd(Z) → G is either trivial or has the property that its
postcomposition

SLd(Z) −→ G −→ SLd(Z)
with the action on H1(T ) is an automorphism. Moreover, if also d %= 4, 5, then
the same holds when replacing G by the group π0 G of isotopy classes.

In particular, given any nontrivial homomorphism ϕ : SLd(Z) → G, we obtain a
splitting of the action α : G → SLd(Z) on first homology, given by ϕ ◦ (α ◦ ϕ)−1.
Applying this to G = Diff+(T ) shows that the above questions (S) and (A) are in
fact equivalent. Applying it to π0 G = π0 Diff+(T ) also shows that (S0) is equivalent
to the following isotopy-analogue of (A).
(A0) Is there a faithful action SLd(Z) → π0 Diff+(T )? If not, is there even any

nontrivial action?
Combining these implications with Theorem A results in Corollary C which answers
all questions (A), (S), (S0), (A0) in the negative for a large class of homotopy tori
and partially answers Question 1.4 and Problem 1.5 in work of Bustamante and
Tshishiku [BT21].

Corollary C. Let T be a homotopy torus of dimension d %= 4. If
(i) T is not diffeomorphic to a connected sum T d!Σ with Σ ∈ Θd, or
(ii) T is diffeomorphic to T d!Σ for some Σ ∈ Θd such that η · Σ ∈ Θd+1 is

not divisible by 2,
then every homomorphism from SLd(Z) to Diff+(T ) or to π0 Diff+(T ) is trivial.
Remark (The Zimmer programme). One motivation for considering Question (A)
stems from the Zimmer programme, part of which studies actions of SLd(Z) on
manifolds. For instance, it follows from a version of Zimmer’s conjecture, now a the-
orem due to Brown–Fisher–Hurtado [BFH20], that SLd(Z) does not act faithfully
on smooth manifolds of dimension ≤ d− 2. For actions of SLd(Z) on d-manifolds,
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there is a conjectural classification by Fisher–Melnick [FM22, Conjecture 3.6] which
would imply that if SLd(Z) acts faithfully on a homotopy d-torus T , then T is the
standard torus. Corollary C implies this for a large class of homotopy tori.

Remark (Regularity). Our results are phrased in terms of the group Diff+(T ) of
C∞-diffeomorphisms, but they also hold for the groups Diff+,k(T ) of Ck-
diffeomorphisms for finite k ≥ 1. For Theorems A and D, this follows from the
isomorphism π0 Diff+(T ) ∼= π0 Diff+,k(T ). For Theorem B it follows from the ob-
servation that the statement for the group Homeo+(T ) also implies the statement
for all its subgroups. The deduction of Corollary C from Theorems A and B works
the same way. In particular, this shows that homotopy tori as in Corollary C do
not admit any C1-action by SLd(Z).

We conclude this introduction by explaining two results featuring in the proofs
of Theorem A and Theorem B that may be of independent interest.

Mapping class groups of exotic tori. As an ingredient for the proof of Theo-
rem A, we determine the mapping class groups π0 Diff+(T ) of exotic tori of the form
T = T d!Σ for Σ ∈ Θd in all dimensions d ≥ 7 in terms of the known mapping class
group π0 Diff+(T d) of the standard torus. Note that Θd is trivial when d ≤ 6 and
d %= 4, so in these cases there is nothing to show. To state the result, we first recall
the previously known description of π0 Diff+(T d). As mentioned above, the action
of SLd(Z) on T d induces a splitting of the action map π0 Diff+(T d) → SLd(Z), so
there is a semidirect product decomposition

π0 Diff+(T d) = SLd(Z) ! π0 TorDiff(T d) with
π0 TorDiff(T d) := ker

(
π0 Diff+(T d) → SLd(Z)

)
.

For d ≥ 6, the kernel π0 TorDiff(T d) is abelian and isomorphic to the sum of
Z[SLd(Z)]-modules

(1) Ω :=
(⊕

0≤j≤d
(ΛjZd) ⊗ Θd−j+1

)
⊕
(
(Λd−2Zd) ⊗ Z/2

)
⊕
(
(Z/2)[Zd]/(Z/2)[1]

)

C2

where SLd(Z) acts through the standard action on Zd, and (−)C2 denotes the
coinvariants with respect to the involution induced by multiplication by −1 on Zd

(see [Hat78, Theorem 4.1, Remark (3) on p. 9]1 and [HS76, Theorem 2.5]). In
addition to this description of π0 TorDiff(T d), our identification of π0 Diff+(T d!Σ)
involves the aforementioned homotopy sphere η·Σ ∈ Θd+1 and the unique nontrivial
central extension

0 −→ Z/2 −→ SLd(Z) −→ SLd(Z) −→ 0

of SLd(Z) by Z/2; see Section 2.1. Our result identifies the group π0 Diff+(T d#Σ)
as a semidirect product of SLd(Z) or SLd(Z) acting on a quotient of Ω by a nontrivial
subgroup depending on Σ which is contained in the summand Θd+1 ⊕ (Zd ⊗Θd) of
(1) corresponding to the terms j = 0, 1.

1[Hat78, Theorem 4.1] asserts that the computation of π0 TorDiff(T d) also holds for d = 5.
However, this relies on a claim attributed to Igusa (see the middle of p. 7 loc.cit.) for which—to
our knowledge—no proof has been provided so far.
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Theorem D. For a homotopy sphere Σ ∈ Θd of dimension d ≥ 7, there is an
isomorphism

π0 Diff+(T d#Σ) ∼=






SLd(Z) !
[
Ω/

(
〈η · Σ〉 ⊕ (Zd ⊗ 〈Σ〉

)]
if η · Σ ∈ Θd+1 is

not divisible by 2
SLd(Z) !

[
Ω/

(
Zd ⊗ 〈Σ〉

)]
if η · Σ ∈ Θd+1 is

divisible by 2

which is compatible with the homomorphisms to SLd(Z).

In particular, this result shows that the mapping class group π0 Diff+(T d#Σ) for
Σ ∈ Θd is given by a quotient of SLd(Z) ! Ω by a finite abelian subgroup which is
always of order at least 2 and has order precisely 2 if and only if Σ is the standard
sphere, so from this mapping class point of view the standard torus admits “the
most symmetries”, as one would expect.

Endomorphisms of SLd(Z). As an ingredient for the proof of Theorem B, we
prove the following classification results for endomorphisms of SLd(Z) for d ≥ 3:

Theorem E. Fix d ≥ 3. Every nontrivial endomorphism of SLd(Z) is an au-
tomorphism. Moreover, all automorphisms of SLd(Z) agree, up to postcomposi-
tion with a conjugation by an element in GLd(Z), with either the identity or the
inverse-transpose automorphism.

Remark. Some comments on Theorem E.
(i) The proof is “elementary” in that it does neither rely on Margulis’ superrigid-

ity or normal subgroup theorem, nor on the congruence subgroup property.
Using these results, there are likely other proofs. The argument we give was
hinted at by Ian Agol in a comment to a question on MathOverflow [Mat17]
and sketched by Uri Bader in the case d = 3 as a response to the question
(however this sketch has a small gap; see Remarks 4.3 and 4.8).

(ii) For d = 2, the statement of Theorem E fails: consider the composition

SL2(Z) −→ H1(SL2(Z)) ∼= Z/12 −→ SL2(Z)

where the first arrow is abelianisation and the second sends a generator to
−id ∈ SL2(Z).

(iii) The second part of Theorem E holds more generally; see [O’M66, Theorem
A].

1. Collar twists
As preparation to the proof of Theorems A and D, we collect various results

on a certain map SO(d) → BDiff∂(M\int(Dd)) defined by twisting a collar of
the complement of an embedded d-disc in a closed smooth d-manifold M . After
explaining the construction, we discuss how this map behaves under taking products
and connected sums, followed by some results on the collar twisting map for specific
choices of M , first homotopy spheres and then homotopy tori.
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1.1. The collar twist. Given a closed connected oriented d-dimensional manifold
M , we write

M◦ := M\int(Dd)
for the complement of a fixed embedded disc Dd ⊂ M that is compatible with
the orientation (which is unique up to isotopy), and we write Diff∂(M◦) for the
group of diffeomorphisms of M◦ that fix a neighbourhood of the boundary sphere
∂M◦ = Sd−1 pointwise, equipped with the smooth topology. The latter is homotopy
equivalent to the larger group DiffT∗M (M) of diffeomorphisms of M that fix the
centre of the disc ∗ ∈ M as well as the tangent space at this point. The group
DiffT∗M (M) is the fibre of the fibration d : Diff+

∗ (M) → GL+
d (R) assigning to a

diffeomorphism that fixes ∗ its (orientation-preserving) derivative at that point, so
after delooping and using the equivalence GL+

d (R) 0 SO(d), there is a homotopy
fibration sequence

(2) BDiff∂(M◦) ext−→ BDiff+
∗ (M) d−→ BSO(d),

where ext is induced by extending a diffeomorphism of M◦ to M by the iden-
tity. The connecting map SO(d) 0 ΩBSO(d) → BDiff∂(M◦) has the following
geometric description: there is a homomorphism ΩSO(d) → Diff∂([0, 1] × Sd−1)
which sends a smooth loop γ ∈ ΩSO(d) that is constant near the endpoints to the
self-diffeomorphism of [0, 1] × Sd−1 given by mapping (t, x) to (t, γ(t) · x), and a
homomorphism ext : Diff∂([0, 1]×Sd−1) → Diff∂(M◦) induced by a choice of collar
of the boundary sphere in M◦. Delooping their composition gives a map

ΥM : SO(d) −→ BDiff∂(M◦)

that agrees with the aforementioned connecting map; see, e.g., [Kra21, p. 9]. Fol-
lowing Section 3 of loc.cit., we call ΥM the collar twisting map of M . This map is
relevant to the study of the mapping class groups of M and M◦, since the sequence
(2) induces an exact sequence of groups

(3)
(
π1 SO(d) ∼=

{
Z if d = 2
Z/2 if d ≥ 3

)
(ΥM )∗−−−−→ π0 Diff∂(M◦) ext−→ π0 Diff+

∗ (M) −→ 0,

so the second morphism in this sequence is an isomorphism if and only if the image

tM := (ΥM )∗(1) ∈ π0 Diff∂(M◦)

of the standard generator of the leftmost group under the first map (ΥM )∗ is trivial.
We call this element the collar twist of M . Note that the collar twist lies in the
centre of π0 Diff∂(M◦), because the image of the connecting map π2 X → π1 F in
the long exact sequence of homotopy groups for any fibration F → E → X has
this property. Alternatively, one could use that the collar twist is supported in a
collar and that every diffeomorphism fixing boundary can be isotoped to also fix
any chosen collar, thereby having disjoint support from the collar twist.

1.2. Collar twists of products and connected sums. Proposition 1.1 shows
that collar twisting maps behave well with respect to products and connected sums.
Here and in what follows, we identify (M!N)◦ with the boundary connected sum
M◦(N◦ via the preferred isotopy class of diffeomorphisms between these two man-
ifolds.
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Proposition 1.1. Let M and N be closed oriented connected manifolds of di-
mension m and n.

(i) The compositions

SO(m) ⊂ SO(m + n) ΥM×N−−−−→ BDiff∂((M ×N)◦)
and

SO(m) ΥM−→ BDiff∂(M◦) (−)×idN−−−−−−→ BDiff∂(M◦ ×N) ext−→ BDiff∂((M ×N)◦)
are homotopic. In particular,

tM×N = tM × idN ∈ π0 Diff∂((M ×N)◦) for m ≥ 2.
(ii) If M and N are of the same dimension d = m = n, then the map

SO(d) ΥM!N−−−−→ BDiff∂((M!N)◦) = BDiff∂(M◦(N◦)
and the composition

SO(d) diag−→ SO(d) × SO(d) ΥM×ΥN−−−−−−→ BDiff∂(M◦) × BDiff∂(N◦) (−)"(−)−−−−−→ BDiff∂(M◦"N◦)

are homotopic after restriction to the subspace SO(d − 1) ⊂ SO(d). In
particular, we have
tM"N = (tM (idN◦) + (idM◦(tN ) ∈ π0 Diff∂(M◦(N◦) for d ≥ 3.

In order to prove Proposition 1.1, it is convenient to view the collar twisting
map as the instance P = ∗ of a more general construction for a compact smooth
p-dimensional manifold P equipped with an embedding P ×Dd−p ⊂ M . First, one
extends the latter inclusion to an embedding P ×Dd−p

2 ⊂ M where Dd−p
2 ⊂ Rd−p

is the disc of radius 2 and P := P ∪∂P×{0} (∂P × [0, 1]) is obtained by attaching
an external collar to P . This extension is unique up to isotopy. Given a smooth
function λ : P × [0, 2] → [0, 1] and a smooth loop γ ∈ ΩSO(d− p) that is constant
near the endpoints, consider the diffeomorphism φλ(γ) : P ×Dd−p

2 → P ×Dd−p
2 by

sending (p, x) to (p, γ(λ(p, ‖x‖)) · x). In other words, thinking of P ×Dd−p
2 as foli-

ated by the leaves Sp,r := {p}×Dd−p
r for p ∈ P and r ∈ [0, 2], the diffeomorphism

φλ(γ) preserves the leaves and acts on the leaf Sp,r by rotation with the element at
time λ(p, r) of the loop γ. If one additionally assumes that

(i) λ = 1 on a neighbourhood of P ×Dd−p where Dd−p = Dd−p
1 ⊂ Dd−p

2 is the
unit disc,

(ii) λ = 0 on a neighbourhood of ∂(P ×Dd−p
2 ),

then φλ(γ) agrees with the identity on a neighbourhood of P ×Dd−p ⊂ P ×Dd−p
2

and so restricts to a diffeomorphism of the complement. This diffeomorphism of
the complement extends via the identity to a diffeomorphism of M\int(P ×Dd−p)
fixing a neighbourhood of the boundary pointwise, so we obtain a map

φλ(−) : ΩSO(d− p) −→ Diff∂(M\int(P ×Dd−p))
which depends continuously on λ and is a homomorphism with respect to pointwise
multiplication on the domain and composition on the target. Since the space of
smooth functions λ satisfying (i) and (ii) is contractible by linear interpolation, the
delooping of φλ(−)

ΦP : SO(d− p) −→ BDiff∂(M\int(P ×Dd−p))
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is independent of λ up to homotopy, so only depends on the isotopy class of the
embedding P × Dd−p ⊂ M . This map generalises the collar twisting map in the
following sense.

Lemma 1.2. For 0 ≤ p ≤ d, the maps

ΥM |SO(d−p) : SO(d− p) −→ BDiff∂(M◦) and
ΦDp : SO(d− p) −→ BDiff∂(M\int(Dp ×Dd−p)) ext0 BDiff∂(M◦).

are homotopic. Here the embedding Dp ×Dd−p ⊂ M is chosen to be compatible
with the orientation.

Proof. It suffices to show that the two maps ΩSO(d − p) → Diff∂(M◦) before de-
looping are homotopic as maps of topological groups. Going through the construc-
tion, one sees that both maps are instances of the following construction applied
to smooth loops γ ∈ SO(d − p) that are constant near the ends: pick a smooth
map λ : Dp

2 × [0, 2] → [0, 1] which is 0 in a neighbourhood of ∂(Dp
2 ×Dd−p

2 ), and 1
in a neighbourhood of Dd, consider the self-diffeomorphism of Dp−2

2 ×Dp
2 sending

(p, x) to (p, γ(λ(p, ‖x‖))·x), restrict it to a diffeomorphism of (Dp−2
2 ×Dp)\int(Dd),

and extend the result to a diffeomorphism of M◦ by the identity. As the space of
choices for λ is contractible by linear interpolation, all maps constructed this way
are homotopic. !

A similar argument also shows the following naturality property of the map ΦP .

Lemma 1.3. Given a compact submanifold Q ⊂ int(P ) of codimension 0, the
map

SO(d− p) ΦQ−→ BDiff∂(M\int(Q×Dd−p))
and the composition

SO(d− p) ΦP−→ BDiff∂(M\int(P ×Dd−p)) ext−→ BDiff∂(M\int(Q×Dd−p))
are homotopic. Here the embedding Q × Dd−p ⊂ M is the restriction of the
embedding P ×Dd−p ⊂ M .

Equipped with Lemmas 1.2 and 1.3, we now turn to the proof of Proposition 1.1.

Proof of Proposition 1.1. For part (i), note that the composition SO(m) →
BDiff∂(M◦ ×N) is an instance of ΦN using the embedding Dm ×N ⊂ M ×N , so
its postcomposition with ext: BDiff∂(M◦×N) → BDiff∂((M ×N)\int(Dm×Dn))
is homotopic to ΦDn by Lemma 1.3, which in turn implies the claim as a re-
sult of Lemma 1.2. For part (ii), view (M!N)◦ as being obtained from M◦ 3 N◦

by gluing on a pair-of-pants bordism W : Sd−1 3 Sd−1 " Sd−1. To show the
claim, it suffices to show that the maps tin, tout : SO(d − 1) → BDiff∂(W ) are
homotopic, where tin simultaneously twists collars of the two incoming boundary
spheres and tout twists a collar of the outgoing boundary sphere. Viewing W as
Dd\int((e(D1 3 D1)) × Dd−1) for an embedding e : D1 3D1 ↪→ int(D1), the map
tin is given by ΥD1'D1 : SO(d− 1) → BDiff∂(Dd\int(e(D1 3D1)×Dd−1)) and the
map tout as the composition of ΥD1 : SO(d−1) → BDiff∂(Dd\int(D1×Dd−1) with
ext: BDiff∂(Dd\int(D1 ×Dd−1)) → BDiff∂(Dd\int((e(D1 3D1)) ×Dd−1)), so the
claim follows from Lemma 1.3 applied to P = D1, Q = D1 3D1, and M = Dd. !
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Remark 1.4. Proposition 1.1 (ii) is a more general version of the “pants relation”
in [CT22, Lemma 2.5], where a proof of this relation is given by constructing an
explicit isotopy.
1.3. Collar twists of exotic spheres. We now turn to the collar twisting map
ΥΣ for homotopy spheres Σ, but we actually restrict our attention to the collar twist
tΣ ∈ π0 Diff∂(Σ◦) it induces on fundamental groups. We begin with a recollection
of the classification of homotopy spheres.

1.3.1. Classification of homotopy spheres. Recall (e.g., from [Lev85, p. 90–91])
that Kervaire–Milnor’s finite abelian group Θd of homotopy d-spheres [KM63] fits
for d ≥ 5 into an exact sequence

(4) 0 → bPd+1 → Θd
[−]−−→ coker(J)d →

{
Z/2 if d = 2k − 2, for some k

0 otherwise
where bPd+1 ≤ Θd is a certain cyclic subgroup and coker(J)d is the cokernel of
the stable J-homomorphism πd O → πd S from the homotopy groups of the stable
orthogonal group (which are known by Bott periodicity) to the stable homotopy
groups of spheres. The order of the cyclic subgroup bPd+1 is known in all cases
except d = 125 (combine [Lev85, Corollaries 2.2, 3.20, Theorem 4.9] with [HHR16,
Theorem 1.3]):

#bPd+1 =






22k−2(22k−1 − 1) num(4|B2k|/k) if d = 4k − 1 for k ≥ 2
2 if d = 4k + 1 for k ≥ 1

but d (= 2k − 3 if k ≤ 7
0 if d is even or if d = 2k − 3 for k ≤ 6
2 or 0 if d = 2k − 3 for k = 7.

The map coker(J)d → Z/2 in the sequence (4) is known to be trivial as long as
d %= 2k−2 for k > 7. It is known to be nontrivial for k ≤ 6, but the case k = 7 (i.e.,
d = 126) is still open (see [HHR16, Theorem 1.4]). The question whether bP126 = 0
or bP126 = Z/2 and the question whether coker(J)126 → Z/2 is surjective or not
(these questions turn out to be equivalent; see [Lev70, p. 88]) is the last remaining
case of the Kervaire invariant one problem. The upshot of this discussion is that
apart from the two problematic dimensions d = 125, 126, the group Θd is described
in terms of the group coker(J)d up to extension problems. In most cases, also these
extension problems have been resolved:
• For d even, bPd+1 vanishes and the map to Θd

[−]−−→ coker(J)d is an isomorphism
as long as d %= 2k−2 for k > 7, so in these cases there are no extension problems.

• For d = 2k − 2 with k ≤ 6, we have an exact sequence 0 → Θd → coker(J)d →
Z/2 → 0 which admits a splitting since in these dimensions coker(J)d is known to
be annihilated by 2 (see, e.g., the table [IWX20, Table 1]), so Θd

∼= coker(J)d⊕
Z/2. For k = 7 the question whether the map coker(J)126 → Z/2 is split
surjective (rather than just surjective which is open too; see above) is known as
the strong Kervaire invariant one problem.

• For d ≡ 3 (mod 4), the map Θd → coker(J)d is split surjective by [Bru68,
Theorem 1.3] or [Fra73, Theorem 5], so Θd

∼= bPd+1 ⊕ coker(J)d.
• For d ≡ 1 (mod 4), the map Θd → coker(J)d is split surjective if d is not of the

form 2k − 3 for some k ≥ 1 by [Bru69, Theorem 1.2] and [Bru70, Theorem 1.1],
so Θd

∼= Z/2 ⊕ coker(J)d.
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1.3.2. Collar twists of homotopy spheres and the Milnor–Munkres–Novikov pair-
ing. We begin the discussion of collar twists of homotopy spheres with a general
observation: if M is a closed oriented manifold of dimension d ≥ 5 and Σ ∈ Θd is a
homotopy sphere, then writing Σ ∈ Θd for the inverse sphere obtained by reversing
the orientation, the maps

(−)(idΣ◦ : BDiff∂(M◦) −→ BDiff∂(M◦(Σ◦) = BDiff∂((M!Σ)◦)
(−)(idΣ◦ : BDiff∂((M!Σ)◦) −→ BDiff∂((M!Σ)◦(Σ◦) = BDiff∂(M◦)

are inverse homotopy equivalences, so in particular induce an isomorphism
π0 Diff∂(M◦) ∼= π0 Diff∂((M!Σ)◦) on fundamental groups. For M = Sd, com-
bining the latter with the usual isomorphism π0 Diff∂(Dd) ∼= Θd+1 given by gluing
together two copies Dd+1 along their boundary via diffeomorphisms of Sd supported
on a hemisphere results in a chain of isomorphisms

π0 Diff∂(Σ◦) ∼= π0 Diff∂(Dd) ∼= Θd+1.

We write
TΣ ∈ Θd+1

for the image of the collar twist tΣ ∈ π0 Diff∂(Σ◦) under these isomorphisms. This
defines a set-theoretical function T(−) : Θd → Θd+1 which can be rephrased (see
Proposition 1.5) in terms of a well-known construction in the study of homotopy
spheres, namely the bilinear Milnor–Munkres–Novikov pairing (see, e.g., [Bre67])
πk S ⊗ Θd → Θk+d for k < d− 1. The latter is related to the multiplication in the
stable homotopy groups of spheres by a commutative diagram

(5)
πk S ⊗ Θd Θk+d

πk S ⊗ coker(J)d coker(J)k+d

(−)·(−)

idπkS⊗[−] [−]
(−)·(−)

for k < d− 1

with bottom horizontal map induced by the multiplication on the stable stems,
using that products of elements in im(J)k and πd S contained in im(J)k+d if k <
d− 1 (see p. 442 of loc.cit.).
Proposition 1.5 (Kreck, Levine). We have TΣ = η · Σ where η ∈ π1 S ∼= Z/2 is
the generator.
Proof. Levine writes γ(Σ) ∈ Θd+1 for TΣ ∈ Θd+1 [Lev70, p. 245–246] and Kreck
writes ΣΣ ∈ Θd+1 for it [Kre79, p. 646]. For even d, the claim is [Kre79, Lemma
3 c)]. For odd d, the subgroup bPd+2 ≤ Θd+1 is trivial, so it suffices to show the
claimed equality after passing to coker(J)d+1 (see Section 1.3.1). The latter follows
from [Lev70, Corollary 4] using that Levine’s subgroup I1(Σ) ⊂ Θd+1 is generated
by γ(Σ) ∈ Θd+1 by definition; see p. 246 loc.cit. !
Remark 1.6. Proposition 1.5 has immediate consequences for collar twists of homo-
topy spheres. For example, since η is 2-torsion and the Milnor–Munkres–Novikov
pairing is bilinear, the sphere TΣ = η · Σ is trivial if Σ ∈ Θd has odd order, so the
collar twist of Σ is in these cases trivial too.

The combination of Proposition 1.5, the classification of homotopy spheres as
recalled in Section 1.3.1, and the diagram (5) allows one to reduce most questions
on collar twists of exotic spheres to questions in stable homotopy theory. As an
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example of this principle, we rephrase the condition featuring in the statements of
Theorems A and D (whether TΣ = η · Σ ∈ Θd+1 is divisible by 2 or not) in most
cases in terms of the cokernel of the stable J-homomorphism:
Lemma 1.7. If η · Σ ∈ Θd+1 is divisible by 2, then so is η · [Σ] ∈ coker(J)d+1.
The converse holds

(i) for d %≡ 4, 5 (mod 8),
(ii) for d ≡ 5 (mod 8) for d %= 125, and
(iii) for d ≡ 4 (mod 8) for d = 2k − 4 with k ≤ 6.

Proof. By commutativity of (5), the class η · [Σ] ∈ coker(J)d+1 is the image of
η ·Σ ∈ Θd+1 under the morphism [−] : Θd+1 → coker(J)d, so if the latter is divisible
by 2, then so is the former. To prove the partial converse, we distinguish some
cases and make frequent use of the classification of homotopy spheres as recalled in
Section 1.3.1, without further reference.
• For d + 1 ≡ 3, 7 mod 8, the map [−] : Θd+1 → coker(J)d+1 is split surjective,

so Θd+1 ∼= bPd+2 ⊕ coker(J)d+1. Since η · Σ has order 2 and bPd+2 is cyclic of
order divisible by 4, the bPd+2-component of the order 2 element η ·Σ has to be
divisible by 2, so the full element η · Σ is divisible by 2 if and only if its image
η · [Σ] ∈ coker(J)d+1 is divisible by 2.

• For d+1 ≡ 1 mod 8, the map [−] : Θd+1 → coker(J)d+1 is also split surjective, so
Θd+1 ∼= bPd+2⊕coker(J)d+1. In this case the bPd+2-component of η ·Σ ∈ Θd+1
turns out to vanish, which implies the result. The reason for this vanishing is
that η · Σ ∈ Θd+1 is contained in the subgroup bSpind+2 ≤ Θd+1 of homotopy
spheres that bound a spin manifold [Law73, §4 + Diagram (6)] and on this
subgroup the bPd+2-component can be computed as the image of the f -invariant
from [Bru69, §3] which vanishes for η · Σ by [Law73, Proposition 4.1] (this uses
that the pairings denoted by τn,k and ρn,k in loc.cit. are compatible, by diagram
(B) on p. 835 of loc.cit.).

• For d + 1 ≡ 0, 2, 4, 6 mod 8 and d + 1 %= 2k − 2 for k ≤ 7, and for d + 1 ≡ 5
(mod 8) with d + 1 = 2k − 3 for k ≤ 6, we have Θd+1 ∼= coker(J)d+1 and there
is nothing to show.

• For d+1 ≡ 6 (mod 8) with d+1 = 2k−2 for k ≤ 6 we have Θd+1 ∼= coker(J)d+1⊕
Z/2, so an element in Θd+1 is divisible by 2 if and only if this holds for its image
in coker(J)d+1. !

Remark 1.8. To extend Lemma 1.7 to d+1 ≡ 5 (mod 8) for d+1 %= 2k−3, it would
suffice to show that the bPd+2-component of η · Σ for Σ ∈ Θd under the splitting
Θd+1 ∼= coker(J)d+1 ⊕ bPd+2 recalled in Section 1.3.1 is trivial. We do not know
whether this is the case.

In view of Lemma 1.7, the question whether η · Σ ∈ Θd+1 is divisible by 2
can in many dimensions be analysed with inputs from stable homotopy theory.
Remarks 1.9 and 1.10 contain some applications in this direction:
Remark 1.9. As η has order 2, whether η ·Σ ∈ Θd+1 is divisible by 2 or not can be
tested 2-locally. At the prime 2, the groups coker(J)d and multiplication by η on
them have been computed up to dimensions about 90. The result is summarised in
[IWX20, Figure 1] where every dot represents a nontrivial element, the diagonal and
vertical lines indicate that two elements are related by multiplication with η or 2,
respectively, and the image of J consists of the blue dots, apart from the blue dots
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in degrees ≡ 1, 2 (mod 8). Combining this with Lemma 1.7 and the classification
of homotopy spheres recalled in Section 1.3.1, one can in most dimensions up to
about 90 determine the groups Θd and the subgroups Θsplit

d ≤ Θd of those Σ ∈ Θd

such that η · Σ is divisible by 2. The result of this analysis for d ≤ 19 is recorded
in Table 1 of the introduction.

Remark 1.10. There are also many infinite families of homotopy spheres Σ ∈ Θd

for which one can decide whether η · Σ ∈ Θd+1 is divisible by 2 or not. We again
rely on Section 1.3.1.
• As an infinite family of nontrivial Σ ∈ Θd in odd dimensions such that η · Σ is

divisible by 2, one may for instance take any Σ ∈ Θd for d ≡ 1, 3, 7 (mod 8)
that lies in the nontrivial subgroup bPd+1 ≤ Θd. This is because η · Σ ∈
Θd+1 ∼= coker(J)d+1 is trivial as a result of (5), so it is in particular divisible
by 2. There are also examples in even dimensions: as bP8k+3 = 0, the class
in coker(J)8k+2 of Adams’ element µ8k+2 ∈ π8k+2 S (which is nontrivial in
coker(J)8k+2 as π8k+2 O = 0) lifts uniquely to a homotopy sphere Σµ8k+2 ∈
Θ8k+2. As η · [µ8k+2] = 0 ∈ coker(J)8k+2 since η · µ8k+2 ∈ π8k+3 S is known to
be contained in im(J)8k+3, it follows from Lemma 1.7 that Σµ8k+2 is divisible
by 2.

• As an infinite family of nontrivial Σ ∈ Θd in odd dimensions such that η · Σ
is not divisible by 2, one may take any Σ ∈ Θ8k+1 that maps to the class in
coker(J)8k+1 represented by Adams’ element µ8k+1 ∈ π8k+1 S which is known
to have the property that η · µ8k+1 ∈ coker(J)8k+2 = π8k+2 S is not divisible by
2. In even dimensions, one may use the families of nontrivial homotopy spheres
Σ ∈ Θd for d ≡ 8 (mod 192) from [Kra21, Proposition 2.11 (i)] which have the
property that η · [Σ] ∈ coker(J)d is nontrivial and detected in the spectrum tmf
of topological modular forms (see the proof of the cited proposition). Moreover,
in these dimensions πd+1 tmf is known to be annihilated by 2 (see, e.g., [Beh20,
Figure 1.2]), so η · [Σ] is not divisible by 2 in πd+1 tmf and hence neither in
coker(J)d+1.

1.4. Collar twists of tori. The manifolds for which we establish some results on
the collar twists next, are homotopy tori. For this class of manifolds, it is convenient
to study the fibre sequence (2) involving the collar twisting maps by comparing it
to an analogous sequence for block-homeomorphisms (see, e.g., [HLLRW21, Section
2] for a discussion of block-automorphisms suitable for our needs) via a map of fibre
sequences

(6)
BDiff∂(M◦) BDiff+

∗ (M) BSO(d)

BH̃omeoT∗M (M) BH̃omeo
+
∗ (M) BSTop.

The bottom row of this diagram deserves an explanation. To construct it, first con-
sider the forgetful map H̃omeo

+
(M) → hAut+(M) from the space of orientation-

preserving block-homeomorphisms of M to the space of orientation-preserving ho-
motopy self-equivalences. The space H̃omeo

+
∗ (M) is defined as the homotopy

pullback of this map along the inclusion map hAut+∗ (M) → hAut+(M) of those
orientation-preserving self-equivalences of M that preserve the chosen point ∗ ∈ M .
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The delooping of the latter map is the universal M -fibration, so BH̃omeo
+
∗ (M) is

by construction equivalent to the total space of the universal oriented M -block-
bundle. The right-hand map in the bottom sequence is the delooping of the
map H̃omeo

+
∗ (M) → STop that takes the stable topological derivative of a block-

homeomorphism of M at ∗ ∈ M , or equivalently, it classifies the stable ver-
tical topological tangent bundle of the universal oriented M -block-bundle (see
[HLLRW21, Section 2]), similar to how the right-hand map of the upper sequence
classifies the vertical tangent bundle of the universal oriented smooth M -bundle.
The rightmost vertical map classifies the underlying stable Euclidean bundle of
an oriented d-dimensional vector bundle and the middle vertical map is induced
by the forgetful map Diff+

∗ (M) → H̃omeo
+
∗ (M). The left-hand map of the bot-

tom sequence is defined as the homotopy fibre inclusion of the right-hand map, or
equivalently, as the delooping of the derivative map.

Note that the bottom row only depends on the underlying topological manifold
of M , so in particular agrees for homotopy tori M = T with the correspond-
ing sequence of the standard torus M = T d. For the latter, the middle space
BH̃omeo

+
∗ (M) has a very simple description:

Lemma 1.11. For any d ≥ 1, the map

BH̃omeo
+
∗ (T d) −→ BSLd(Z)

induced by the action on H1(T d) ∼= Zd is an equivalence.

Proof. As T d 0 K(Zd, 1), the analogous map hAut+∗ (T d) → SLd(Z) from the space
of orientation homotopy self-equivalences of M is an equivalence, so it suffices to
show that the forgetful map H̃omeo

+
∗ (T d) → hAut+∗ (T d) is an equivalence. We will

do so by proving that the right-hand map in the map of homotopy fibre sequences

T d BH̃omeo
+
∗ (T d) BH̃omeo

+
(T d)

T d BhAut+∗ (T d) BhAut+(T d)

comparing the universal T d-block-bundle with the universal T d-fibration is an
equivalence. Using the action of SLd(Z) on T d ∼= Rd/Zd and the action of T d

on itself, a diagram chase in the ladder of long exact sequences induced by this
map of fibre sequences shows that the middle arrow is surjective on all homotopy
groups. Injectivity on homotopy groups is equivalent to the claim that for k ≥ 0,
any self-homeomorphism of T d ×Dk fixing on the boundary that is homotopic to
the identity relative to the boundary is also concordant to the identity relative to
the boundary. For d ≥ 5, this from the fact that the topological structure sets
STop
∂ (T d ×Dk) in the sense of surgery theory are trivial as long as k + d ≥ 5

[KS77, p. 205, Theorem C.2], but there is also a more direct proof in all dimensions
[Law76]. !
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Corollary 1.12. Let T be a homotopy torus of dimension d ≥ 1. The collar
twisting map

ΥT : SO(d) −→ BDiff∂(T ◦)
is injective on πk(−) for k ≤ d− 2. In particular, tT ∈ π0 Diff∂(T ◦) is nontrivial
for d ≥ 3.

Proof. From the map of long exact sequences induced by the map (6) together with
the fact that the higher homotopy groups of BH̃omeo

+
∗ (T ) 0 BH̃omeo

+
∗ (T d) vanish

as a result of Lemma 1.11, we see that the map in question is injective on πk(−) if
the map πk SO(d) → πk Top is injective. This maps factors as the stabilisation map
SO(d) → SO followed by the forgetful map SO → Top. The latter is injective on
all homotopy groups (combine [Bru68] with [KS77, p. 246, 5.0.(1)]) and the former
for k ≤ d− 2 by stability, so the claim follows. !

Remark 1.13. The collar twist tT ∈ π0 Diff∂(T ◦) is also nontrivial for d = 2 which
follows for instance from Lemma 2.2. Moreover, for d = 2, 3 the map ΥT induces
an isomorphism on all higher homotopy groups since the component of the identity
Diff∗(T d)id 0 ∗ is contractible. This is well-known for d = 2 and follows for d = 3
from a combination of [Hat83] and [Hat76] using that T 3 is Haken.

Remark 1.14. Replacing SLd(Z) with Aut(π1 M), the statement of Lemma 1.11
(and thus also that of Corollary 1.12) holds for many other closed aspherical mani-
folds M , in particular for those of dimension d ≥ 5 whose fundamental group satis-
fies the Farrell–Jones conjecture and also for those of dimension d = 4 if the funda-
mental group is good in the sense of [FQ90, p. 99] (see, e.g., [HLLRW21, Proposition
5.1.1] for an explanation of this).

2. Mapping class groups of exotic tori and the proof of Theorem D
Equipped with the results on collar twists from Section 1, we turn towards

studying the mapping class groups of homotopy tori of the form T d!Σ.

2.1. Central extensions of special linear groups. The strategy will be to relate
the mapping class groups of homotopy tori to well-known central extensions of
special linear groups. We first recall these extensions and discuss some of their
properties. The universal cover of the stable special linear group over the reals
SL(R) = colimd SLd(R) gives a central extension

0 −→ Z/2 −→ SL(R) −→ SL(R) −→ 0
which we may pull back along the lattice inclusion SLd(Z) ≤ SL(R) to a central
extension
(7) 0 −→ Z/2 −→ SLd(Z) −→ SLd(Z) −→ 0
for d ≥ 1. For d = 2, also a different central extension will play a role, namely the
pullback
(8) 0 −→ Z −→ S̃L2(Z) −→ SL2(Z) −→ 0
along the inclusion SL2(Z) ≤ SL2(R) of the universal cover central extension

0 −→ Z −→ S̃L2(R) −→ SL2(R) −→ 0.
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Since the inclusion map SLd(R) → SLd+1(R) is surjective on fundamental groups
for d ≥ 2, the extension (7) agrees with the pushout of (8) along the quotient map
Z → Z/2. Everything we need to know about these extensions, together with some
useful information on the low-degree (co)homology of SLd(Z), is summarised in
Lemma 2.1.
Lemma 2.1.

(i) The first two homology groups of SLd(Z) are given by the following table.

d H1(SLd(Z);Z) H2(SLd(Z);Z)
2 Z/12 0
3 0 Z/2 ⊕ Z/2
4 0 Z/2 ⊕ Z/2
≥ 5 0 Z/2

(ii) The map
H2(SLd(Z);Z) −→ H2(SLd+1(Z);Z)

induced by stabilisation is nontrivial for d ≥ 3. For d = 3 its image has
order 2.

(iii) The extension (8) is classified by a generator of
H2(SL2(Z);Z) ∼= Z/12.

(iv) The extension (7) is nontrivial for d ≥ 2. For d ≥ 5, it is classified by the
generator of

H2(SLd(Z);Z/2) ∼= Z/2.
Proof. That the abelianisation H1(SLd(Z);Z) is cyclic of order 12 for d = 2 can be
read off from the standard presentation of SL2(Z) (see, e.g., [Mil71, Corollary 10.5]),
and the fact that H1(SLd(Z);Z) vanishes for d ≥ 3 follows for instance from [Mil71,
Corollary 10.3] together with the observation that for d ≥ 3 every elementary
square matrix can be written as a commutator of two elementary matrices. The
computation of H2(SLd(Z);Z) for d = 2 follows from the isomorphism SL2(Z) ∼=
Z/4∗Z/2 Z/6 [Ser03, 1.5.3] and the Mayer–Vietoris sequence for group homology of
amalgamated products [Bro94, Corollary II.7.7] (c.f. Exercise 3 on p. 52 of loc.cit.),
for d = 3, 4 from [vdK75], and for d ≥ 5 from [Mil71, Corollary 5.8, Remark on p. 48,
Theorem 10.1]. Using these calculations, the computations H2(SL2(Z);Z) ∼= Z/12
and H2(SLd(Z);Z/2) ∼= Z/2 for d ≥ 5 implicitly claimed in (iii) and (iv) follow
from the universal coefficient theorem. The latter also implies the part of (ii) for
d ≥ 3 once we show (iv). The claim on the stabilising map for d = 3 can be proved
via the arguments in [vdK75].

To prove (iii), we use the general fact that for a given central extension 0 →
A → E → G → 0, the Serre spectral sequence induces an exact sequence 0 →
H1(G;A) → H1(E;A) → H1(A;A) → H2(G;A) → H2(E;A). The identity map
induces a preferred class in H1(A;A) and its image in H2(G;A) is the class that
classifies the given extension. Applying this to the extension (8), we see that in
order to show that this extension generates H2(SL2(Z);Z) it suffices to show that
H2(S̃L2(Z);Z) vanishes. Now S̃L2(Z) agrees up to isomorphism with the braid
group B3 on three strands (see, e.g., [Mil71, p. 83]), so the claim follows from the
universal coefficient theorem and the facts that H1(B3;Z) ∼= Z and H2(B3;Z) ∼=
Z/2 [Arn14, p. 32].
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For (iv), we use the universal coefficient theorem to see that H2(SL2(Z);Z/2) ∼=
Z/2 is surjected upon by the map H2(SLd(Z);Z) → H2(SLd(Z);Z/2) induced by
reduction modulo 2, so it follows from (iii) that the extension (7) is nontrivial for
d = 2 and hence also for all higher values of d since the former is the pullback of
the latter along the inclusion SL2(Z) → SLd(Z). As H2(SLd(Z);Z/2) ∼= Z/2 has
only a single nontrivial element for d ≥ 5, this gives (iv). !

2.2. Mapping class groups of homotopy tori and Theorem D. We now
determine the mapping class groups of homotopy tori of the form T = T d!Σ. The
argument has three steps.

Step 1 Determine π0 Diff+
∗ (T d!Σ) in terms of π0 Diff∂((T d!Σ)◦).

Step 2 Determine π0 Diff+
∗ (T d!Σ).

Step 3 Determine π0 Diff+(T d!Σ).
Throughout this section, we abbreviate T d,◦ := (T d)◦, fix a basis of H1(T d,◦) ∼= Zd,
and use the bases for the first homology groups of T d, T d,◦(Σ◦ = (T d!Σ)◦, and
T d!Σ that are induced by the chosen basis of H1(T d,◦).

Step 1 (Fixing a disc or a point). We first determine the group π0 Diff∂(T ◦) in
terms of the group π0 Diff+

∗ (T ). This step works for general homotopy tori T , not
just those of the form T d!Σ.

Lemma 2.2. For a homotopy d-torus T , there are pull-back squares

π0 Diff∂(T ◦) π0 Diff+
∗ (T )

S̃Ld(Z) SLd(Z),

ext

∼= ∼= for d = 2 and

π0 Diff∂(T ◦) π0 Diff+
∗ (T )

SLd(Z) SLd(Z)

ext

for d ≥ 3.

Proof. If d = 2, then T is the standard 2-torus T 2 for which the claimed square is
well-known (for a reference, compare the standard presentations of π0 Diff∂(T d,◦)
and S̃Ld(Z), e.g., in [Mil71, p. 82–83] and [Kor02, Section 5]). For d ≥ 3, we
consider the map of central extensions

(9)
0 π1 SO(d) π0 Diff∂(T ◦) π0 Diff+

∗ (T ) 0

0 π1 STop π0 H̃omeoT∗Td(T d) π0 H̃omeo
+
∗ (T d) 0

∼=

induced by (6) for M = T , using that the bottom sequence only depends on
the underlying topological manifold. Exactness at π1 STop follows from the fact
that π1 H̃omeo

+
∗ (T d) = 0 by Lemma 1.11 and exactness at π1 SO(d) follows from

exactness at π1 STop. Lemma 1.11 also shows that the homology action map
π0 H̃omeo

+
∗ (T d) → SLd(Z) is an isomorphism, so we are left to show that the

bottom extension is isomorphic to 0 → Z/2 → SLd(Z) → SLd(Z) → 0. It suffices
to show this for large enough d, since the bottom extension in dimension d maps by
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taking products with S1 to the corresponding extension in dimension d+ 1 (which
have both kernel π1STop), so the extension for d is the pullback of the extension
for d + 1 along the inclusion SLd(Z) → SLd+1(Z). We may thus assume d ≥ 5
in which case there is a single nontrivial central extension of SLd(Z) by Z/2 (see
Lemma 2.1), so we only need to exclude that the bottom extension in (9) is trivial.
To show this, we consider (9) for T = T d and extend it to the top as

0 π1 SO(2) π0 Diff∂(T 2,◦) π0 Diff+
∗ (T 2) 0

0 π1 SO(d) π0 Diff∂(T d,◦) π0 Diff+
∗ (T d) 0

0 π1 STop π0 H̃omeoT∗Td(T d) π0 H̃omeo
+
∗ (T d) 0

inc∗

∼=

where the top middle vertical map is induced by taking products with idTd−2 fol-
lowed by restriction, commutativity of the left upper square follows by an applica-
tion of Proposition 1.1 (i) to M = T 2 and N = T d−2, and the right upper square
is induced by the commutativity of the left upper square. We will show that the
bottom extension is nontrivial by showing that its pullback along the composition
π0 Diff+

∗ (T 2) → π0 H̃omeo
+
∗ (T d) is nontrivial. This composition is isomorphic to

the inclusion SL2(Z) → SLd(Z) and the composition π1 SO(2) → π1 STop to the
quotient map Z → Z/2, so it follows that the pullback in question is isomorphic to
the mod 2 reduction of the extension 0 → Z → S̃L2(Z) → SL2(Z) → 0, i.e., the ex-
tension 0 → Z/2 → SL2(Z) → SL2(Z) → 0. The latter is nontrivial by Lemma 2.1
(iv). !

Step 2 (The pointed mapping class group of T d!Σ). Next, we determine the group
π0 Diff+

∗ (T d!Σ). For Σ = Sd the evaluation fibration Diff+(T d) → T d whose fibre
is Diff+

∗ (T d) has a splitting given by the standard action of T d on itself, so the long
exact sequence in homotopy groups induces the first out of two isomorphisms

π0 Diff+
∗ (T d) ∼= π0 Diff+(T d)

d≥6∼= SLd(Z) ! Ω;

the second isomorphism was explained in the introduction. Combining this with
Lemma 2.2 for T = T d, we obtain an isomorphism

(10) π0 Diff∂(T d,◦) ∼= SLd(Z) ! Ω for d ≥ 6.

Now recall that the collar twist tTd ∈ π0 Diff∂(T d,◦) generates the kernel of the
map to π0 Diff+

∗ (T d) so it corresponds under the isomorphism (10) to the element
(td, 0) where td ∈ SLd(Z) is the central element that generates the kernel of the
map to SLd(Z). The composition

(11) Θd+1 ∼= π0 Diff∂(Dd) idTd,◦ $(−)
−−−−−−−→ π0 Diff∂(T d,◦),

which we abbreviate by ιd : Θd+1 → π0 Diff∂(T d,◦), can be identified in terms of
(10) as follows:
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Lemma 2.3. With respect to the isomorphism (10), the composition (11) agrees
with the inclusion Θd+1 ≤ SLd(Z) ! Ω given by the (j = 0)-summand in (1).
Proof. By an application of Lemma 2.2, this would follow from showing the anal-
ogous statement for π0 Diff+

∗ (T d) ∼= SLd(Z) ! Ω instead of for π0 Diff∂(T d,◦) once
we know that the postcomposition of (11) with the isomorphism (10) has image
in Ω ≤ SLd(Z) ! Ω. That the statement holds in π0 Diff+

∗ (T d) ∼= π0 Diff+(T d)
follows from [Hat83, p. 9, Remark (5)], so it suffices to show that (11) lands
in the subgroup Ω. To show that, note that diffeomorphisms in the image of
(11) are topologically isotopic to the identity since Homeo∂(Dd) is contractible
by the Alexander trick. In particular, (11) lands in the kernel of the forget-
ful map π0Diff∂(T d,◦) → π0 H̃omeoT∗Td(T d) which agrees via the isomorphism
π0 Diff+

∗ (T d) ∼= π0 Diff+(T d) ∼= SLd(Z) ! Ω precisely with the subgroup Ω (see the
proof of Lemma 2.2), so the claim follows. !

Given a homotopy sphere Σ ∈ Θd and d ≥ 7, we have the isomorphism discussed
in Section 1.3

(12) π0 Diff∂(T d,◦)
(−)$idΣ◦∼= π0 Diff∂((T d!Σ)◦),

so from the exact sequence (3), we see that π0 Diff∗(T d!Σ) is isomorphic to the
quotient of π0 Diff∂(T d,◦) ∼= SLd(Z) ! Ω by the central subgroup generated by the
preimage of the collar twist tTd"Σ ∈ π0 Diff∂((T d!Σ)◦) under (12).

Lemma 2.4. The preimage of tTd"Σ ∈ π0Diff∂((T d!Σ)◦) in SLd(Z)!Ω under the
combined isomorphisms (12) and (10) is (td, η · Σ) ∈ SLd(Z) ! Ω. Consequently,
we have an isomorphism
(13) π0 Diff+

∗ (T d!Σ) ∼=
(
SLd(Z) ! Ω

)
/〈(td, η · Σ)〉

for d ≥ 7 which is compatible with the homomorphisms to SLd(Z).
Proof. We already explained how the second part follows from the first. To prove
the first, we use the relation tTd"Σ = tTd(idΣ◦ + idTd,◦(tΣ in π0 Diff∂((T d!Σ)◦) en-
sured by Proposition 1.1 (ii), using which we express the element in question in
π0 Diff∂(T d,◦) as
(
tTd(idΣ◦+idTd,◦(tΣ

)
(idΣ◦ = tTd+idTd,◦((tΣ(idΣ◦) = tTd+ιd(η·Σ) ∈ π0 Diff∂(T d,◦).

Here we used the equality TΣ = η · Σ from Proposition 1.5 and the definition of
TΣ from Section 1.3. By the discussion above, tTd and ιd(η · Σ) correspond under
the isomorphism (10) to the elements (td, 0) and (0, η · Σ) in SLd(Z) ! Ω, so the
element we are looking for is indeed (td, η · Σ). !

The quotient of SLd(Z) ! Ω appearing in Lemma 2.4 can be further simplified:
Lemma 2.5. There is an isomorphism of groups
(
SLd(Z) ! Ω

)
/〈(td, η · Σ)〉∼=

{
SLd(Z) !

(
Ω/〈η · Σ〉

)
if η · Σ ∈ Θd+1is not divisible by 2

SLd(Z) ! Ω if η · Σ ∈ Θd+1is divisible by 2

that is compatible with the homomorphisms to SLd(Z).
Proof. Since the element η ·Σ of the finite abelian group Θd+1 is of order 2, it is not
divisible by 2 if and only if it generates a direct Z/2-summand. We first assume
that this is the case, so Θd+1 ∼= (Θd+1/〈η · Σ〉) ⊕ Z/2. Writing Ω′ ≤ Ω for the
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SLd(Z)-invariant subgroup complementary to the central summand Θd+1 ≤ Ω in
(1), we have SLd(Z) ! Ω ∼= SLd(Z) ! (Ω′ ⊕ (Θd/〈η · Σ〉) ⊕ Z/2). The latter admits
an epimorphism to SLd(Z) ! (Ω′ ⊕ (Θd/〈η · Σ〉)) given by sending (A, a+Σ′+x) to
(x·td ·A, a+Σ′). This is well-defined since the central element td ∈ SLd(Z) has order
2 and acts trivially on Ω since the action factors by construction through SLd(Z).
The kernel of this epimorphism is the subgroup generated by (td, η ·Σ), so we obtain
an isomorphism between

(
SLd(Z) ! Ω

)
/〈(td, η · Σ)〉 and SLd(Z) !

(
Ω/〈η · Σ〉)

)
, as

claimed.
Now assume that η ·Σ ∈ Θd+1 does not generate a direct summand, so is divisible

by 2. We have a (non-central) extension
(14) 0 −→

(
Ω⊕Z/2

)
/〈η ·Σ+[1]〉 −→

(
SLd(Z)!Ω

)
/〈(td, η ·Σ)〉 −→ SLd(Z) −→ 0.

As η · Σ has order 2, the SLd(Z)-equivariant map from Ω = Ω ⊕ 0 into the
kernel of (14) induced by inclusion is an isomorphism, so in order to show that(
SLd(Z) ! Ω

)
/〈(td, η · Σ)〉 is isomorphic to SLd(Z)!Ω it suffices to show that (14)

splits. Writing Ω = Θd+1 ⊕ Ω′ as in the previous case, the extension (14) is by
construction the sum of the trivial SLd(Z)-extension by the SLd(Z)-module Ω′

with the central extension classified by the image of the unique nontrivial element
in H2(SLd(Z);Z/2) under the composition H2(SLd(Z);Z/2) → H2(SLd(Z);Z/2 ⊕
Θd+1) → H2(SLd(Z); (Z/2 ⊕ Θd+1)/(td, η · Σ)) induced by the inclusion and quo-
tient maps of coefficients, so it suffices to show that this image is trivial. From the
universal coefficient theorem and the computations in Lemma 2.1, we see that for
any abelian group, the map H2(SLd(Z);A) → H2(SLd(Z);A/2) induced by reduc-
ing modulo 2 is an isomorphism, so to show that the class in question is trivial,
it suffices to do so after reducing modulo 2. The latter follows by noting that the
composition of SLd(Z)-modules Z/2 ⊂ Z/2 ⊕ Θd+1 →

(
Z/2 ⊕ Θd+1)/(td, η · Σ)

)
is

trivial after passing to
(
Z/2 ⊕ Θd+1)/(td, η · Σ)

)
/2 since η · Σ vanishes in Θd+1/2

by assumption. !

Step 3 (Fixing a point or not). Using the description of π0 Diff+
∗ (T d!Σ) from the

previous step, we are now in the position to determine π0 Diff+(T d!Σ). In view of
the fibration sequence
(15) T d!Σ −→ BDiff+

∗ (T d!Σ) −→ BDiff+(T d!Σ)
this amounts to understanding the image of the “point-pushing” homomorphism
p: π1 T d!Σ → π0 Diff+

∗ (T d!Σ). For Σ = Sd, the image is trivial a result of the
action of T d on itself (see the beginning of 2), but for any other homotopy sphere
such an action is not available and it in fact follows from Lemma 2.6 that the image
is never trivial.

Lemma 2.6. For d ≥ 7 and Σ ∈ Θd, the map

Zd = π1 T
d!Σ p−→ π0 Diff+

∗ (T d!Σ)
agrees with the composition

Zd (−)⊗Σ−→ Zd ⊗ Θd ≤ SLd(Z) ! Ω ∼= π0 Diff∂(T d,◦)
(−)$idΣ◦∼= π0 Diff∂((T d!Σ)◦)

ext−→ π0 Diff+
∗ (T d!Σ)

involving the isomorphism π0 Diff∂((T d!Σ)◦) ∼= SLd(Z) ! Ω from (10).
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Proof. It suffices to show that the two compositions agree on the first standard basis
vector e1 ∈ Zd, since both compositions are π0 Diff∂(T d,◦)-equivariant (the action
on the source is through SLd(Z) and the action on the target is by conjugation
after extending diffeomorphisms from T d,◦ to T d!Σ by the identity) and the orbit
of e1 ∈ Zd under the SLd(Z)-action spans Zd.

We work with the following model of T d!Σ: view T d−1 as Rd−1/Zd−1, choose
an orientation-preserving embedding ι : Dd−1 ↪→ T d−1 = Rd−1/Zd−1 disjoint from
the origin [0] ∈ Rd−1/Zd−1 = T d−1 and a representative fΣ ∈ Diff∂(Dd−1)
of Σ ∈ π0 Diff∂(Dd−1) ∼= Θd, extend fΣ by the identity to a diffeomorphism
FΣ ∈ Diff+(T d−1) supported in int(ι(Dd−1)), and form the mapping torus T d!Σ :=
([0, 1]×T d−1)/((1, x) ∼ (0, FΣ(x)). We parametrise this quotient by [0, 1)×T d−1 in
the evident way, use [0, 0] ∈ T d!Σ as base point, and we view T d,◦ as the complement
of an embedded disc Dd ⊂ T d!Σ that contains the part where the nontrivial gluing
happened (i.e., the image of {0}× ι(Dd−1) in the quotient) and is disjoint from the
image of [0, 1] × {0} in the quotient. The latter is so that the loop ([(t, 0)])t∈[0,1]
in T d!Σ is contained in T d,◦. We chose a basis for H1(T d,◦) such that this loop
represents e1 ∈ Zd.

The first claim we show is that the image of e1 ∈ Zd under the map p: π1 T d!Σ →
π0 Diff+

∗ (T d!Σ) is represented by the diffeomorphism φ ∈ Diff+
∗ (T d!Σ) given by

using id × fΣ on the image of id × ι in T d!Σ, and extending it to all of T d!Σ
by the identity. This is because being the connecting map in the long exact se-
quence induced by the evaluation fibration ev[0,0] : Diff+(T d!Σ) → T d!Σ with fibre
Diff+

∗ (T d!Σ), the point-pushing map sends e1 ∈ Zd to the isotopy class of any
diffeomorphism φ1 that arises as the value at time t = 1 of a path (φt)t∈[0,1] in
Diff+(T d!Σ) with φ0 = id and φt([0, 0]) = [t, 0]. A possible choice of such path is
given by φt([s, x]) := [s + t, x] for s + t < 1 and φt([s, x]) := [s + t − 1, FΣ(x)] for
s + t ≥ 1, which indeed agrees with φ at time 1.

The second claim we make is that the image of e1 ∈ Zd under the second com-
position in the statement is given by the diffeomorphism obtained by choosing an
orientation-preserving embedding ι′ : Dd−1 ↪→ T d−1 such that the image of id×ι′ in
T d!Σ is contained in T d,◦ and avoids the origin, using id×fΣ on the image of id× ι′

in T d!Σ and extending it to a diffeomorphism of T d!Σ by the identity. This would
imply the result, since the image of e1 under both maps in consideration arises
from the following construction: choose an embedding S1 ×Dd−1 ↪→ T d!Σ\{[0, 0]}
that represents e1 ∈ Zd = H1(T d!Σ) (which is unique up to isotopy as d ≥ 4), use
id × fΣ on this image, and extend by the identity.

To show this claim, we prove more generally that the composition Zd ⊗ Θd ≤
Ω ≤ SLd(Z) ! Ω ∼= π0 Diff∂(T d,◦) is given by sending x ⊗ Σ′ ∈ Zd ⊗ Θd to the
diffeomorphism obtained by representing x ∈ π1 T d,◦ by an embedding S1×Dd−1 ⊂
T d,◦ and Σ′ ∈ Θd

∼= π0 Diff∂(Dd) by a diffeomorphism fΣ′ ∈ Diff∂(Dd), using
id × fΣ′ on S1 × Dd−1 and extending it to T d by the identity. By the argument
from the proof of Lemma 2.3, it suffices to show that the described diffeomorphism
considered as a diffeomorphism of π0 Diff∗(T d) ∼= SLd(Z)!Ω agrees with the image
of e1⊗Σ′ under the inclusion Zd⊗Θd ≤ Ω. This follows from [Hat78, p. 9, Remark
(5)]. !
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Combining Lemma 2.6 with Lemma 2.4, the long exact sequence induced by (15)
implies:
Corollary 2.7. For d ≥ 7 and Σ ∈ Θd there is an isomorphism

π0 Diff+(T d!Σ) ∼=
(
SLd(Z) ! Ω

)
/
(
〈(td, η · Σ)〉 ⊕ (Zd ⊗ 〈Σ〉)

)

which is compatible with the homomorphisms to SLd(Z).
From this, the asserted identification of π0 Diff+(T d!Σ) in Theorem D follows

by proving that the right-hand quotient in Corollary 2.7 can be simplified to the
semidirect product





SLd(Z) !

[
Ω/

(
〈η · Σ〉 ⊕ (Zd ⊗ 〈Σ〉

)]
if η · Σ ∈ Θd+1is not divisible by 2

SLd(Z) !
[
Ω/

(
Zd ⊗ 〈Σ〉

)]
if η · Σ ∈ Θd+1 is divisible by 2

which follows by replacing Ω by Ω/(Zd ⊗ 〈Σ〉) in the proof of Lemma 2.5.

3. Splitting the homology action and the proof of Theorem A
To deduce Theorem A from Theorem D, we first determine for which homotopy

tori T the map π0 Diff+(T ) → SLd(Z) is surjective. The following was stated in
[BT21, p. 4] without proof.
Lemma 3.1. For a homotopy torus T of dimension d %= 4, the map π0 Diff+(T ) →
SLd(Z) is surjective if and only if T is diffeomorphic to T d#Σ for some Σ ∈ Θd.
Proof. The direction ⇐ is easy: if T ∼= T d!Σ, then π0 Diff+(T ) → SLd(Z) is
surjective because we can precompose it with the map ext∗ : π0 Diff∂((T d)◦) →
π0 Diff+(T ) and use that π0 Diff∂((T d)◦) → SLd(Z) is surjective which holds for
instance as a result of Lemma 2.2.

For the direction ⇒, we may assume d ≥ 5 since for d ≤ 3 any torus T is
diffeomorphic to the standard torus T d. This allows us to use smoothing theory
[KS77, Essay V] which we briefly recall in a form suitable for our purposes: given a
closed topological manifold M of dimension d ≥ 5, the set Smcon(M) of concordance
classes of smooth structures on M is the set of equivalence classes of pairs (T,ψ)
of a smooth manifold T together with a homeomorphism ψ : T → M , where two
pairs (T,ψ) and (T ′,ψ′) are equivalent if there is a diffeomorphism Φ : T → T ′ such
that the homeomorphisms ψ and ψ′ ◦ Φ are concordant. The group π0 H̃omeo(M)
of concordance classes of homeomorphisms acts on Smcon(M) by postcomposition
and the set of orbits is in bijection with the set Smdiff(M) of diffeomorphism classes
of smooth manifolds homeomorphic to M , induced by sending (T,ψ) to T . There
is a map

η : Smcon(M) −→ Lift(M,BO → BTop)
to the set of isomorphism classes of pairs of a stable vector bundle over M together
with an isomorphism of the underlying stable Euclidean bundle with the stable
topological tangent bundle τTop

M of M . The map η is given by assigning a pair
(T,ψ) to the pullback (ψ−1)∗τDiff

T of the stable tangent bundle of T along ψ−1,
together with the isomorphism induced by the stable topological derivative of ψ−1.
The map η turns out to be a bijection, by one of the main results of smoothing
theory. Unwrapping definitions, one sees that the action of α ∈ π0 H̃omeo(M) on
[T,ψ] ∈ Smcon(M) is induced by pulling back the bundle along ψ−1 and post-
composing the isomorphism with the stable topological derivative of ψ−1. The set
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Lift(M,BO → BTop) is a torsor for the group [M,Top/O] of stable vector bun-
dles on M together with a trivialisation of the underlying stable Euclidean bundle;
the group structure and the action are induced by taking direct sums. Thus, if
M comes already equipped with a smooth structure then we obtain a bijection
Lift(M,BO → BTop) ∼= [M,Top/O], postcomposition with which gives a bijection

δ : Smcon(M) −→ [M,Top/O].

Going through the definition, the action of α ∈ π0 H̃omeo(M) on [T,ψ] ∈ Sm(M)
translates to δ(T,α ◦ ψ) = (α−1)∗δ(T,ψ) + δ(M,α).

We now specialise to M = T d. Given a homotopy torus T of dimension d ≥ 5, a
choice of homeomorphism ϕ : T → T d induces a class [T ,ϕ] ∈ Smcon(T d) and a mor-
phism π0 Diff+(T ) → π0 H̃omeo

+
(T d) by conjugation with ϕ. This agrees with the

map to SLd(Z) when precomposed with the action map π0 H̃omeo
+
(T d) → SLd(Z).

The latter is an isomorphism as a result of Lemma 1.11 and the isomorphism
π0 H̃omeo

+
∗ (T d) ∼= π0 H̃omeo

+
(T d) (use the action of T d on itself to see this), so it

suffices to show that π0 Diff+(T ) → π0 H̃omeo
+
(T d) is not surjective unless T is dif-

feomorphic to T d!Σ for some Σ ∈ Θd. The image of π0 Diff+(T ) → π0 H̃omeo(T d)
is contained in the stabiliser of [T ,ϕ] ∈ Smcon(T d), so it is enough to show that
[T ,ϕ] ∈ Sm(T d) is not contained in the invariants of this action unless T ∼= T d!Σ
for some Σ ∈ Θd. Since any α ∈ π0 H̃omeo

+
(T d) ∼= SLd(Z) is isotopic to a diffeo-

morphism of T d, the terms δ(T d,α) in the above description of the π0 H̃omeo(T d)-
action Smcon(T d) ∼= [T d,Top/O] vanishes, and thus the action is simply by pre-
composition. In particular, it is an action by group homomorphisms if we equip
[T d,Top/O] with the group structure induced by the infinite loop space structure
on Top/O. Using this infinite loop space structure and the fact that T d stably splits
into a wedge of spheres we also get a direct sum decomposition of SLd(Z)-modules
[T d,Top/O] ∼= ⊕d

r=1Hom(ΛrZd,πr Top/O). We will show below that the invariants
of this action are given by the subgroup Hom(ΛdZd,πd Top/O) ∼= πd Top/O ∼= Θd.
This will imply the claim, since the subgroup Θd ≤ [T d,Top/O] ∼= Smcon(T d) cor-
responds to the classes of the pairs (T d!Σ, idTd!β) where β : Σ → Sd is the unique
homeomorphism up to isotopy that fixes the disc where the connected sum is taken,
so in particular [T ,ϕ] ∈ Smcon(T d) is not contained in this subgroup unless T is
diffeomorphic to T d!Σ for some Σ ∈ Θd.

To finish the proof, it thus suffices to show that for a finitely generated abelian
group A, the SLd(Z)-action on Hom(ΛrZd, A) by precomposition with the inverse
has no invariants for 0 < r < d. This is isomorphic to the standard action on
ΛrZd ⊗ A up to the automorphism of SLd(Z) given by taking inverse transpose,
so we may equivalently show that ΛrZd ⊗ A has no invariants. Without loss of
generality we may assume that A = Z/n is cyclic. In this case, ΛrZd ⊗ Z/n has
a basis as a Z/n-module indexed by subsets I ⊂ {1, . . . , d} of cardinality r, where
the basis vector xI corresponding to I ⊂ {1, . . . , d} is xi1 ∧ · · ·∧xir for i1 < . . . < ir
and I = {i1, . . . , ir} where x1, . . . , xd is the standard Z/n-basis of Zd ⊗ Z/n. Now
observe that an elementary matrix (I + Eij) ∈ SLd(Z) for 1 ≤ i, j ≤ d acts by
sending xI to xI ± x(I\i)∪j if i ∈ I and j /∈ I, and to itself otherwise. On a general
element v =

∑
I λI(v) · xI ∈ ΛrZd ⊗ Z/n, the matrix (I + Eij) thus acts by

v 8−→
∑

i∈I or j .∈I
λI(v) · xI +

∑
i .∈I and j∈I

(λI(v) + λ(I\j)∪i(v)) · xI ,
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so if v is an invariant, then λ(I\j)∪i(v) = 0 for all I with i %∈ I and j ∈ I. But since
1 ≤ i, j ≤ d were arbitrary and 0 < r < d, these are in fact all coefficients, so all
invariants are zero. !

3.1. Proof of Theorem A. We conclude this section with the proof of Theorem A,
which says that the map π0 Diff+(T ) → SLd(Z) given by the action on H1(T ) = Zd

admits a splitting if and only if T = T d!Σ for Σ ∈ Θd such that η·Σ ∈ Θd+1 divisible
by 2.

Proof of Theorem A. We distinguish the cases whether a given homotopy torus T
of dimension d %= 4 is diffeomorphic to T d!Σ for some Σ ∈ Θd or not. If it is not,
then the map π0 Diff+(T ) → SLd(Z) is not surjective by Lemma 3.1, so it is in
particular not split surjective. If it is, then by Theorem D the group π0 Diff+(T )
is isomorphic, compatibly with the map to SLd(Z), to a semidirect product of
SLd(Z) or SLd(Z) depending on whether η · Σ ∈ Θd+1 is divisible by 2 or not. In
the first case, the map to SLd(Z) visibly admits a splitting. In the second case,
a hypothetical splitting would in particular induce a splitting of the projection
SLd(Z) → SLd(Z), which does not exist since this extension is nontrivial. This
finishes the proof. !

4. Endomorphisms of SLd(Z) and the proofs of Theorems B and E
This section serves to deduce Theorem B from the classification result for endo-

morphisms of SLd(Z) stated as Theorem E, and to prove the latter.

4.1. Proof of Theorem B assuming Theorem E. Assuming Theorem E, we
prove Theorem B. We first assume G = Homeo+(T ) ∼= Homeo+(T d). Given a
nontrivial homomorphism ϕ : SLd(Z) → Homeo+(T d) for d ≥ 3, the composition
with the action on homology Homeo+(T d) → SLd(Z) is by Theorem E either trivial
or an isomorphism, so we have to exclude the former. If it were trivial, then ϕ
would have image in TorTop(T d) = ker(Homeo+(T d) → SLd(Z)). Suppose for
contradiction that ϕ : SLd(Z) → TorTop(T d) is nontrivial. Its kernel is a normal
subgroup, so by [Men65, Corollary 1, p. 36] it is either (a) contained in the centre
Z(SLd(Z)), which is trivial or Z/2 depending on the parity of d, or (b) of finite
index. In either case, the image of φ contains a nonabelian finite group H: in case
(a) it contains SLd(Z) or PSLd(Z), so in particular a nonabelian finite group H,
and in case (b) the image of ϕ is finite itself, and also nonabelian since otherwise
ϕ would be trivial since SLd(Z) is perfect for d ≥ 3 (see Lemma 2.1).

To make use of the nonabelian finite subgroup H ≤ TorTop(T d), following [LR81],
we consider the extension 0 → Zd → NHomeo(T̃d)(Zd) → Homeo(T d) → 0 whose
middle group is the normalizer of Zd = π1(T d) considered as a subgroup of the
homeomorphism group Homeo(T̃ d) of the universal cover. Note that the induced
action of Homeo(T d) by Zd agrees by construction with the action on the fun-
damental group. The pullback 0 → Zd → E → H → 0 of this extension along
H ≤ Homeo(T d) is, by the Corollary on p. 256 of loc.cit. admissible in the sense
of p. 256 loc.cit. The proof of Proposition 2 loc.cit. then shows that the centraliser
CE(Zd) of Zd in E is abelian. But since H ≤ TorTop(T d) acts trivially on Zd we
have CE(Zd) = E, so E is abelian and thus the same holds for H which cannot be
true by the choice of H, so ϕ has to be trivial.
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The case G = Diff+(T ) follows from the case Homeo+(T ) by postcomposing
a given homomorphism ϕ : SLd(Z) → Diff+(T ) with the inclusion Diff+(T ) ≤
Homeo+(T ), so we are left to prove the addendum concerning homomorphisms
from SLd(Z) into π0 Diff+(T ) or π0 Homeo+(T ) under the additional assumption
d %= 4, 5. By the same argument as before, it suffices to show that all homomor-
phisms from SLd(Z) into π0 TorDiff(T ) or π0 TorTop(T ) are trivial. Lemma 4.1 says
that the latter two groups are abelian, so such morphisms factor over the (trivial)
abelianisation of SLd(Z) (see Lemma 2.1) and are therefore trivial, as claimed.

Lemma 4.1. For a homotopy torus T of dimension d %= 4, 5, the kernels of the
homology actions

π0 TorTop(T ) = ker
[
π0 Homeo+(T ) → SLd(Z)

]

π0 TorDiff(T ) = ker
[
π0 Diff+(T ) → SLd(Z)

]

are both abelian.

Proof. For d ≤ 3, the homotopy torus T is diffeomorphic to the standard torus and
both kernels π0 TorTop(T ) and π0 TorDiff(T ) are trivial, so in particular abelian.
To show the claim for d ≥ 6, note that π0 TorTop(T ) ∼= π0 TorTop(T d) because T
is homeomorphic to T d, so π0 TorTop(T ) is abelian since we have π0 TorTop(T d) ∼=
(Z/2)∞ by [Hat78, Theorem 4.1]. To show that π0 TorDiff(T ) is abelian, note
that as T 0 K(Zd, 1) we may view the map π0 Diff+(T ) → SLd(Z) as the in-
duced map on path components of the map Diff+(T ) → hAut+(T ) to the space
of orientation-preserving homotopy equivalences, so π0 TorDiff(T ) receives an epi-
morphism from π1(hAut+(T )/Diff+(T )). Replacing T d by T in the argument
for (3) on page 8 of [Hat78] and using that T is homeomorphic to T d, we get
that π1(hAut+(T )/Diff+(T )) is isomorphic to the abelian group (⊕0≤j≤d(ΛjZd)⊗
Θd−j+1) ⊕ ((Λd−2Zd) ⊗ Z/2) ⊕ Z/2∞, so the claim follows (the final step can also
be proved via smoothing theory). !

4.2. Proof of Theorem E. In the remainder of this section, we prove Theorem E.
The proof makes use of the subgroup Ud < SLd(Z) of unipotent upper triangular
matrices which in particular contains the elementary matrices Eij for 1 ≤ i < j ≤ d;
these have 1 on the diagonal and at the (i, j)th entry, and 0 at all other entries. It
is well-known that Ud is an (d− 1)-step nilpotent group whose centre is generated
by the elementary matrix E1d, which is an iterated commutator of length (d− 1),
namely E1d = [E12, [E23, [. . . , [Ed−2,d−1, Ed−1,d]]]]. An important ingredient in
the proof of Theorem E is Lemma 4.2 on complex representations of Ud. In its
statement and in all that follows, we write

(−)−t : SLd(Z) −→ SLd(Z)
for the automorphism of SLd(Z) given by taking inverse-transpose.

Lemma 4.2. Fix d ≥ 3 and a homomorphism φ : Ud → GLm(C) with m ≤ d.
(i) Assume d ≥ 4. If m < d, or if m = d and φ(E1d) is not a scalar, then

φ(E1d) is unipotent.
(ii) If m < d and φ(Eij) is unipotent for each i < j, then φ(E1d) = id.
(iii) If m = d and φ(Eij) is unipotent for each i < j and φ(E1d) %= id, then

φ(E1d) − id has rank 1.
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(iv) If φ(Eij) is unipotent and φ(Eij) − id has rank 1 for all i < j, then after
possibly precomposing φ with (−)−t, the matrices φ(E1d), . . . ,φ(Ed−1d) all
have the same fixed set.

Remark 4.3. The argument in Bader’s MathOverflow post [Mat17] contains the
claim that for any representation φ : U3 → GL3(C) the matrix φ(E13) is unipotent.
This is incorrect: Lemma 4.4 (iii) gives a representation U3 → GL3(C) for which
φ(E13) is a nontrivial scalar. Also Lemma 4.2 (i) fails for d = m = 3 (the case (ii) of
Lemma 4.4 involves representations U3 → GL3(C) for which φ(E13) is a non-scalar
semisimple matrix).

For d = 3, we will circumvent the use of Lemma 4.2 (i) in later proofs by means
of the following:
Lemma 4.4. Fix a homomorphism φ : U3 → GLm(C). If m = 2, then either

(i) φ(E13) is unipotent, or
(ii) there are µ, ν ∈ C× and C ∈ GL2(C) so that after postcomposing φ with

conjugation by C,

E12 8→
(
µ 0
0 −µ

)
E23 8→

(
0 ν
1 0

)
E13 8→

(
−1 0
0 −1

)
.

If m = 3, then either
(i) φ(E13) is unipotent,
(ii) φ = φ1 ⊕ φ2, where φi : U3 → GLi(C), up to conjugation, or
(iii) there are λ, µ, ν ∈ C× and C ∈ GL3(C) so that λ is a nontrivial cube root

of 1, and after postcomposing φ with conjugation by C,

E12 8→




µ 0 0
0 λµ 0
0 0 λ2µ



 E23 8→




0 0 ν
1 0 0
0 1 0



 E13 8→




λ 0 0
0 λ 0
0 0 λ



 .

We omit the proof of Lemma 4.4 since it is based on similar (and easier) analysis
as the base case in the proof of Lemma 4.2 (i) which we explain now.

Proof of Lemma 4.2 (i). We do an induction on d. To simplify the notation we set
uij := φ(Eij).

Base case. We treat the case d = 4 by hand. To show that u14 is unipotent, it
suffices to prove that all its eigenvalues λ equal 1. Let Vλ be the λ-eigenspace for u14.
Since E14 is central in U4, restricting to Vλ gives a homomorphism U4 → GL(Vλ)
whose image of Eij is denoted by u′

ij . Next we distinguish cases depending on the
dimension of Vλ. By the assumption that u14 = φ(E14) is not a scalar when m = d,
we know dim(Vλ) ≤ 3. If dim Vλ = 1, then since GL1(C) = C× is abelian, we have
u′

14 = 1 because E14 = [E13, E34] is a commutator, so λ = 1. If dimVλ = 2, we
consider the subgroup 〈u′

13, u
′
34, u

′
14〉 ≤ GL(Vλ) generated by the images of E13, E34,

and E14 in GL(Vλ). By assumption u′
14 = λ · id2×2. Let x ∈ Vλ be an eigenvector

for u′
13 with eigenvalue µ. Using the relation [E13, E34] = E14 we conclude that

(u′
34)i(x) is an eigenvector for u′

13 with eigenvalue λiµ. Since dim Vλ = 2, this forces
λ2 = 1 because eigenvectors with different eigenvalues are linearly independent, and
thus λ = ±1. Suppose for a contradiction that λ = −1. Then u′

13 has two distinct
eigenvalues µ and −µ. Since E13 is central in 〈E12, E23〉 ∼= U3, we deduce that u′

12
and u′

23 are simultaneously diagonalisable; in particular they commute. But since
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E13 = [E12, E23], this implies u′
13 = id, which is a contradiction, so λ has to be 1.

Finally, suppose that dimVλ = 3. In this case the argument is very similar to the
preceding case: by assumption u′

14 = λ · id3×3, and the relation [E13, E34] = E14
implies that 〈λ〉 ⊂ C× acts freely on the eigenvalues of u′

13 which implies λ3 = 1.
If λ %= 1, then u′

13 has distinct eigenvalues µ, λµ, and λ2µ for some µ. Using the
fact that E13 is both central and a commutator in 〈E12, E23〉 ⊂ U4, we reach a
contradiction.

Induction step. Fix an eigenvalue λ for u1d = φ(E1d), and let Vλ be the corre-
sponding eigenspace. We have to show λ = 1. As in the base case, since u1d is not
a scalar if d = m, so dim(Vλ) ≤ d− 1 and since E1d is central in Ud, the represen-
tation restricts to Ud → GL(Vλ). As before we write u′

ij for the image of Eij under
this homomorphism. Consider the subgroup 〈E1,d−1, Ed−1,d, E1,d〉 ∼= U3 of Ud.
Let µ be an eigenvalue of u′

1,d−1 and let Vµ ≤ Vλ be the corresponding eigenspace.
As above, λiµ is also an eigenvalue for u′

1,d−1 for each i. Consider the subgroup
〈Eij | i < j ≤ d − 1〉 ∼= Ud−1 of Ud. Since E1,d−1 is central in this copy of Ud−1,
there is an induced map Ud−1 → GL(Vµ), Eij 8→ u′′

ij . If λ %= 1, then Vµ is a proper
subspace of Vλ (since the eigenspaces for µ and λµ are linearly independent). Then
dim(Vµ) ≤ d − 2, so the induction hypothesis implies that u′′

1,d−1 is unipotent, so
µ = 1. Since the same argument applies for each eigenspace of u′

1,d−1, we conclude
that 1 = µ = λµ, so λ = 1 as claimed. !

Proof of Lemma 4.2 (ii). Fixing φ : Ud → GLm(C) such that φ(Eij) is unipotent
for all 1 ≤ i < j ≤ d, we want to show φ(E1d) = id. As before we write uij = φ(Eij).
Note that the special case m = d−1 implies the case m < d−1, because if m < d−1
then we may restrict φ to the subgroup Um+1 ∼= 〈Eij | 1 ≤ i < j ≤ m + 1〉 ≤ Ud

to conclude u1,m+1 = id from the special case, so using E1d = [E1,m+1, Em+1,d] we
get u1d = [u1,m+1, um+1,d] = id. To prove the special case m = d − 1, we do an
induction on the dimension d.

Base case. To settle the case φ : U3 → GL2(C), suppose for a contradiction that
u13 is not the identity. Since it is unipotent by assumption, it has up to conjugation
the form ( 1 1

0 1 ), so by postcomposing φ with this conjugation we may assume that
u13 equals this matrix. Since E13 is central in U3, the image of φ is contained in
the centraliser of ( 1 1

0 1 ) which consists of matrices of the form ( a b
0 a ). This is an

abelian subgroup, so u13 = [u12, u23] is identity, a contradiction.

Induction step. For the induction step, we fix φ : Ud → GLd−1(C) and suppose
for a contradiction that u1d %= id. Consider the subspaces K1 ⊂ K2 ⊂ Cd−1 where
Ki = ker(u1d − id)i. Writing ki := dimKi we have k1 > 0 since u1d is unipotent,
3 := k2 − k1 > 0 since u1d %= id, and 3 ≤ k1 (one way to see this is to consider the
Jordan normal form). Note that since E1d is central in Ud, the image of φ preserves
K2 so we obtain a morphism φ′ : Ud → GL(K2) by restriction. We write u′

ij for
its image of Eij . Setting m := k1 − 3 ≥ 0, we choose a basis for K2 that extends a
basis for K1 and that has the property that

(16) u′
1d =




id%×% 0 id%×%

0 idm×m 0
0 0 id%×%




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in this basis. To see that such a basis exists, it is again helpful to use the Jordan nor-
mal form. Since E1d is central in Ud, the morphism Ud → GL(K2) ∼= GL2%+m(C)
lands in the centraliser of (16) which are the matrices of the form

(17)




A X Z
0 B Y
0 0 A



 .

We claim that u′
1,%+m+1 and u′

%+m+1,2%+m+1 have the form

(18) u′
1,%+m+1 =

(
id#×# 0 Z

0 idm×m 0
0 0 id#×#

)
and u′

%+m+1,2%+m+1 =
(

id#×# X Z′

0 B Y
0 0 id#×#

)

for some B,X, Y, Z, and Z ′. Assuming this claim for now, we observe that the
matrices (18) commute, so u′

1,2%+m+1 = [u′
1,%+m+1, u

′
%+m+1,2%+m+1] is the identity.

If 23 + m + 1 = d then we are done since this contradicts (16). If 23 + m + 1 < d
then the relation u′

1d = [u′
1,2%+m+1, u

′
2%+m+1,d] shows that u′

1d is the identity, which
again contradicts (16). This leaves us with showing (18). We first treat u′

1,%+m+1.
Since φ′ has image in (17), we may postcompose it with




A X Z
0 B Y
0 0 A



 8→
(
A X
0 B

)
and




A X Z
0 B Y
0 0 A



 8→
(
B Y
0 A

)

to obtain two homomorphisms Ud → GL%+m(C). We may apply the induction
hypothesis to the restriction of these to the subgroup U%+m+1 ∼= 〈E1,i | 1 < i ≤
3+m+ 1〉 to conclude that the image of u′

1,%+m+1 under these two homomorphism
is the identity, so u′

1,%+m+1 has the claimed form.
To deal with the second matrix u′

%+m+1,2%+m+1 we argue similarly: postcompose
φ′ with the restriction to A to obtain a morphism Ud → GL%(C), restrict them to
the subgroup U%+1 ∼= 〈E%+m+1,i | 3 + m + 1 < i ≤ 23 + m + 1〉 in Ud, and apply
the induction hypothesis. !

Proof of Lemma 4.2 (iii). Fix φ : Ud → GLd(C) such that u1d = φ(E1d) is unipo-
tent and nontrivial. The subspace K2 = ker(u1d − id)2 is nontrivial, preserved by
the image of φ, each φ(Eij) acts on it by a nontrivial unipotent, and φ(E1d) acts
nontrivially on it, so Lemma 4.2 (ii) implies K2 = Cd. Arguing as in the proof of
Lemma 4.2 (ii), up to changing basis (corresponding to postcomposing φ with a
conjugation), we can assume that (16) holds and by the same argument as in the
previous proof φ has image in matrices of the form (17) and u1,%+m+1 has the form
(18). We are left to show 3 = 1 since then u1d has rank 1 in view of (16). Assuming
for a contradiction that 3 > 1, then 3 + m + 1 < d, so u1d = [u1,%+m+1, u%+m+1,d].
Written out in matrices this equation reads as



id 0 id
0 id 0
0 0 id



 =




id 0 Z
0 id 0
0 0 id








A X Z ′

0 B Y
0 0 A








id 0 −Z
0 id 0
0 0 id








A X Z ′

0 B Y
0 0 A




−1

which implies ZA − AZ = A, but this is a contradiction because the trace of
ZA−AZ is 0, whereas that of A is nonzero since A is unipotent because so is u′

1d,
by assumption. !
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Before proving Lemma 4.2 (iv), we discuss some properties of rank-1 operators.
Given subspaces H,L ≤ Cd with dimH = d − 1, dimL = 1, there is a rank-1
operator with kernel H and image L, which is unique up to a unit, namely the
composition Cd # Cd/H ∼= C → C ∼= L ↪→ Cd. In what follows, it will be
convenient to consider rank-1 operators up to scalars; abusing notation, we will use
ΠH,L to denote either this equivalence class of rank-1 operator with kernel H and
image L. In terms of equivalence classes, the composition behaves as

ΠH,L ◦ ΠH′,L′ =
{

0 if L′ ⊂ H,

ΠH′,L if L′ %⊂ H.

The operator uH,L := id + ΠH,L (which is well-defined up to scaling uH,L − id by
a unit) is unipotent if and only if L ⊂ H (otherwise uH,L is diagonalisable and
nontrivial). In this case the fixed set of uH,L is H and its inverse is id−ΠH,L which
is another representative of uH,L. Fixing two such equivalence classes of unipotent
operators uH,L and uH′,L′ , we have the commutator relation

(19) [uH,L , uH′,L′ ] =






uH′,L if L ⊂ H ′ and L′ %⊂ H,

uH,L′ if L %⊂ H ′ and L′ ⊂ H,

id if L ⊂ H ′ and L′ ⊂ H.

If L %⊂ H ′ and L′ %⊂ H, then the commutator is not unipotent.
The following observation will play a role in the proof of Lemma 4.2 (iv): Fixing

unipotent operators uHi,Li as above for i = 1, 2, 3 and assuming firstly that uH1,L1

commutes with uHj ,Lj for j = 2, 3 and secondly that uH1,L1 = [uH2,L2 , uH3,L3 ], we
may use the commutator formula from above to conclude that Lj ⊂ H1 for j = 2, 3
and that H2 = H1 or H3 = H1.

Proof of Lemma 4.2 (iv). Since φ(Eij) − id has rank 1 for i < j, the operators
uij := φ(Eij) = id + (φ(Eij) − id) are for i < j of the form uHij ,Lij as discussed
above where Hij is the kernel of φ(Eij)− id, i.e., the fixed set of φ(Eij). We claim
that either H1d = H2,d = · · · = Hd−1,d or H1d = H1,d−1 = · · · = H12. This would
imply the result, because the two cases are interchanged when precomposing φ with
(−)−t. To show this claim, we use that u1d commutes with uij for i < j. Since
u1d = [u12, u2d], it follows from the discussion after (19) that either H12 = H1d or
H2d = H1d. In the first case, we also have H1j = H1d for all 2 ≤ j ≤ d, using
u1j = [u12, u2j ] and the fact that u2j preserves H1d since it commutes with u1d.
Similarly, in the second case we also have Hj,d = H1d for all 2 ≤ j ≤ d using
uj,d = [uj,2, u2,d] and that uj,2 commutes with u1,d. !

We illustrate the utility of Lemma 4.2 to study representations of SLd(Z) by
Corollaries 4.5 and 4.6, which will both play a role in the proof of Theorem E.

Corollary 4.5. For d ≥ 3 and m < d, all homomorphisms φ : SLd(Z) → GLm(C)
are trivial.

Under the additional assumption that φ factors through SLm(Z) ≤ GLm(C),
this corollary is proved in [Wei97, Lemma 3] using superrigidity and the congruence
subgroup property.
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Proof of Corollary 4.5. If d ≥ 4 then φ(E1d) is unipotent by Lemma 4.2 (i) and
since the Eij are conjugate in SLd(Z) so are all φ(Eij). We then apply Lemma 4.2
(ii) to see that φ(E1d) is trivial, so the conjugates φ(Eij) are as well. As the Eij

generate SLd(Z) the result follows. For (d,m) = (3, 1) we use that SL3(Z) is perfect
(see Lemma 2.1) and GL1(C) is abelian. For (d,m) = (3, 2) we apply the first part
of Lemma 4.4: in case (i) we proceed as for d = 4 and the case (ii) is ruled out
because the images of E12 and E13 are not conjugate. !

Corollary 4.6. Fix d ≥ 3 and a nontrivial homomorphism φ : SLd(Z) → SLd(C).

(i) If d ≥ 4, then for all i %= j the matrix φ(Eij) is unipotent and φ(Eij) −
id has rank 1. Moreover, after possibly precomposing φ with (−)−t, the
matrices φ(E1d), . . . ,φ(Ed−1,d) all have the same fixed set.

(ii) If d = 3, then the same conclusion holds under the additional assumption
im(φ) ⊂ SLd(Z).

Proof. We begin with two observations based on the fact that Eij ∈ SLd(Z) is for
all i %= j conjugate to E1d. Firstly, to show the first claim of (i) and (ii), it suffices
to consider φ(E1d). Secondly, φ(E1d) is nontrivial since otherwise φ were trivial as
SLd(Z) is generated by the Eij .

In the case d ≥ 4, it suffices to prove that φ(E1d) is not a scalar, for then
everything follows from Lemma 4.2, using that E1d is conjugate in SLd(Z) to Eij for
any i %= j. If φ(E1d) were a scalar, then all φ(Eij) are scalars, so φ would have image
in scalar matrices because the Eij generate SLd(Z). But since E1d is a commutator
and scalar matrices commute, this would imply φ(E1d) = [φ(E12),φ(E2d)] = id,
which is not the case.

Next we consider the case d = 3, for which we imposed the additional assumption
im(φ) ≤ SLd(Z). It suffices by Lemma 4.2 to prove that the nontrivial matrix
φ(E13) is unipotent which we prove by contradiction. We consider the restriction
of φ to 〈E12, E23〉 ∼= U3 and consult the classification in Lemma 4.4. Since we
assumed that φ(E13) %= id is not unipotent, we do not need to consider the case
(i). Cases (ii) and (iii) of Lemma 4.4 can be excluded by showing that for these
representations the matrices φ(E12),φ(E23),φ(E13) are not all conjugate in SL3(Z).
In almost all cases this can be seen considering their eigenvalues, except in the case

φ(E12) =




1 0 0
0 −1 0
0 0 −1



 φ(E23) =




0 1 0
1 0 0
0 0 −1



 .

Also these matrices are not conjugate in SL3(Z) which one can see by reducing
modulo 2. !

Theorem 4.7. Fix d ≥ 3 and a nontrivial homomorphism φ : SLd(Z) → SLd(Z).
There exist linearly independent vectors v1, . . . , vd ∈ Zd so that, after possibly
precomposing φ with (−)−t, the image of φ preserves the lattice Λ = Z{v1, . . . , vd}
and for all A ∈ SLd(Z) the matrix of the restriction φ(A)|Λ with respect to the
basis v1, . . . , vd is A.
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Remark 4.8. One might suspect that given φ : SLd(Z) → SLd(C) there exists a
basis v1, . . . , vd for Cd so that the same conclusion of Theorem 4.7 holds (this is
claimed in the MathOverflow post mentioned in Remark 4.3). This is not the case.
For example, there is a nontrivial representation φ : SL3(Z) → SL3(C) with finite
image, constructed by setting

φ(E12) =




1 0 0
0 −1 0
0 0 −1



 φ(E23) =




0 1 0
1 0 0
0 0 −1





φ(E32) =




−1 0 0
0 0 1
0 1 0



 φ(E21) =




−1

2 −1
2

−1−
√
−7

4
−1

2 −1
2

1+
√
−7

4
−1+

√
−7

4
1−

√
−7

4 0





and then defining φ(E13) := [φ(E12),φ(E23)] and φ(E31) := [φ(E32),φ(E21)]. One
can then check directly that this extends to a morphism SL3(Z) → SL3(Q(

√
−7)) ⊂

SL3(C) by checking that these matrices satisfy the relations in the standard pre-
sentation of SL3(Z) in terms of Eij (see [Mil71, Corollary 10.3]). This peculiar
representation has finite image because for each i %= j, the matrix φ(Eij) has order
2, and the subgroup generated by {E2

ij} has finite index in SL3(Z) by a general
theorem of Tits [Tit76] (see also [Mei17, Theorem 3]).

Proof of Theorem 4.7. Fix a nontrivial homomorphism φ : SLd(Z) → SLd(Z). We
write uij = φ(Eij), considered as a matrix in SLd(C). After possibly precomposing
φ with (−)−t, we know from Corollary 4.6, that for i %= j, the matrix uij is unipotent
and uij − id has rank 1, and that H1d = H2d = · · · = Hd−1,d where Hij ≤ Cd be
the fixed set of the matrix uij for i %= j. Note that each Hij is (d− 1)-dimensional,
since uij − id has rank 1. Using the fact that for each fixed 1 ≤ k ≤ d, the matrices
E1k, E2k, . . . , Edk (skipping Ekk) are simultaneously conjugate to E1d, . . . , Ed−1,d,
we find that also the d− 1 hyperplanes H1k, H2k, . . . , Hdk (skipping Hkk) all agree.
We abbreviate this hyperplane by Hk. Next we claim that the intersections of
hyperplanes Li = H1 ∩ · · · ∩ Ĥi ∩ · · · ∩ Hd for 1 ≤ i ≤ d are all lines. For this it
suffices to show that H1 ∩ · · · ∩ Hd is trivial. Assume by contradiction that this
intersection is nontrivial. By construction, it is the common fixed set for the uij

for all i %= j, so it is in fact fixed by the whole image of φ since the uij = φ(Eij)
generate the image because the Eij generate SLd(Z). Moreover, since the Hi are
defined over Q, also L := H1 ∩ · · ·∩Hd ∩Zd is nontrivial, so the free abelian group
Zd/L has rank < d. Combining this with Corollary 4.5, we see that the morphism
SLd(Z) → SL(Zd/L) induced by φ is trivial, so φ factors over the additive group
Hom(Zd/L, L). The latter is abelian, so φ must be trivial since SLd(Z) is perfect
(see Lemma 2.1). This contradicts our choice of φ.

Claim. The image of uij − id is Li.

Proof of Claim. For definiteness, we prove the statement for u1d. Since u1d − id
has rank 1 and L1 = H2 ∩ . . . ∩ Hd is 1-dimensional, it suffices to show that the
image of u1d − id is contained in Hj for all j %= 1. Recall that Hj = H1j is the
fixed set of u1j . Since u1j commutes with u1d, the matrix u1j preserves the image
of u1d − id, but since this image is only 1-dimensional, it is an eigenspace for u1j ,
which implies im(u1d − id) ⊂ H1j since u1j is unipotent. This proves the claim.
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Now we construct the basis v1, . . . , vd. Fix a nonzero vector vd ∈ Ld which we
may choose to be an integer vector as Ld is defined over Q since φ has image in
SLd(Z). Now define inductively vi = (ui,i+1 − id)(vi+1) ∈ Li. Note that the vi
are integer vectors as ui,i+1 = φ(Ei,i+1) ∈ SLd(Z). Moreover, each vi is nonzero:
if vi were trivial then vi+1 would be contained in Li+1 ∩ Hi+1 = H1 ∩ · · · ∩ Hd

which we saw above is trivial, so we get vi+1 = 0 and inductively vd = 0 which
is not true. Now we examine what properties the vectors v1, . . . , vd have. First
observe that they form a basis for Cd, by the general fact that if H1, . . . , Hd are
hyperplanes of Cd with trivial intersection, then a choice of nonzero vector from
each of the lines Li = H1∩ · · ·∩ Ĥi∩ · · ·∩Hd gives a basis for Cd. By construction,
with respect to the basis v1, . . . , vd, the matrix of ui,i+1 = φ(Ei,i+1) is Ei,i+1. Now
using the commutator relations in Ud, we conclude that after this change of basis
the restriction of φ to upper triangular matrices is the inclusion, so to finish the
proof suffices to show the same for the lower triangular matrices since SLd(Z) is
generated by upper and lower triangular matrices. As for upper triangular matrices,
it suffices to consider Ei+1,i for every i. By construction, φ(Ei+1,i) has fixed set
〈v1, . . . , v̂i, . . . , vd〉 and (φ(Ei+1,i) − id)(vi) = ai · vi+1 for some scalar ai, so we are
left to show ai = 1. This follows from the braid relation E−1

i,i+1 Ei+1,i E
−1
i,i+1 =

Ei+1,i E
−1
i,i+1 Ei+1,i. !

Proof of Theorem E. Fix a nontrivial homomorphism φ : SLd(Z) → SLd(Z) and
let v1, . . . , vd ∈ Zd be the linearly independent vectors promised by Theorem 4.7,
so that possibly after precomposing φ with (−)−t, the matrix φ(A) for A ∈ SLd(Z)
preserves the lattice Λ = Z{v1, . . . , vd}, and the restriction φ(A)|Λ is represented
by the matrix A when written in the basis v1, . . . , vd. In particular, this has as
consequence that every orientation-preserving automorphism of Λ ≤ Zd extends to
an orientation-preserving automorphism of Zd. We claim that this in turn implies
Λ = 3Zd for some 3 > 0. Dividing the basis by 3, this would show that we can
choose v1, . . . , vd to form a basis of Zd, so φ is given by conjugation by an element
of GLd(Z). That Λ = 3 ·Zd for some 3 > 0 follows from two facts: (a) for every non-
characteristic subgroup L ⊂ Zd of full rank, there exists an (orientation-preserving)
automorphism of L that does not extend to Zd, so Λ has to be characteristic, and
(b) every characteristic subgroup L ≤ Zd of full rank has the form 3 · Zd for some
3 > 0. To see these two facts, we fix a subgroup L ≤ Zd of full rank. By the
elementary divisor theorem, there is a basis b1, . . . , bd of Zd and natural numbers
31, . . . , 3d such that 31 · b1, . . . , 3d · bd is a basis of L. If L is non-characteristic,
then 3i %= 3j for some i and j (since 3 · Zd ≤ Zd is clearly characteristic), so the
automorphism of L that interchanges 3i · bi and 3j · bj does not extend to Zd (by
interchanging a second pair of basis vectors we also find an orientation-preserving
example of such an automorphism). This shows (a). Moreover, if we assume 3i %= 3j
for some i and j, then the automorphism of Zd that interchanges bi and bj does
not restrict to L, so L cannot be characteristic. This shows (b). !
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