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ABSTRACT. We determine for which exotic tori 7 of dimension d # 4 the
homomorphism from the group of isotopy classes of orientation-preserving dif-
feomorphisms of 7 to SL4(Z) given by the action on the first homology group
is split surjective. As part of the proof we compute the mapping class group of
all exotic tori 7 that are obtained from the standard torus by a connected sum
with an exotic sphere. Moreover, we show that any nontrivial SL4(Z)-action
on 7 agrees on homology with the standard action, up to an automorphism
of SL4(Z). When combined, these results in particular show that many exotic
tori do not admit any nontrivial differentiable action by SLg4(Z).
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A homotopy d-torus T is a d-dimensional smooth manifold that is homotopy
equivalent to the standard torus T% = x4S' and hence also homeomorphic to it,
by a known instance of the Borel conjecture; see [HW69)] for d > 4, [FQ90} 11.5] for
d = 4, [Wal68, 6.5] and the Poincaré conjecture for d = 3. If T is not diffeomorphic
to the standard torus 7%, it is called ezotic. For instance, given an exotic sphere ¥
of dimension k < d, the connected sum (T*{¥) x T9* is an exotic d-torus.

One of the prominent features of the standard torus 7¢ = R?/Z¢ is that it admits
a faithful action SLq(Z) — Diff " (T9) by SL4(Z) through orientation-preserving
diffeomorphisms, induced by the linear action of SL4(Z) on R?. For a general
homotopy d-torus 7 one might thus wonder:

(A) Is there a faithful action SLq(Z) — Diff*(T)? If not, is there even any
nontrivial action?
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As the SL4(Z)-action on the standard torus splits the homomorphism Diff ¥ (T9) —
SL4(Z) induced by the action on the first homology group Hy(T9) & 7, (T%) = Z4,
it seems natural to approach Question by first considering the following weaker
question which is an instance of a high-dimensional version of a Nielsen realisation
problem posed by Thurston [Kir97, Prob. 2.6]:

(S) Is the homomorphism Diff* (T) — SL4(Z) given by the action on Hy(T) split
surjective?
This homomorphism factors through the mapping class group mo Diff *(7") of iso-
topy classes of orientation-preserving diffeomorphisms, so one can weaken the ques-
tion further to:

(So) Is the homomorphism mo Diff ™ (T) — SL4(Z) given by the action on Hy(T)
split surjective?
This work establishes several results regarding these three questions. Note that a

positive answer to implies positive answers to and [(So)l As part of our

results, we

« answer Question |(Sp)|in all dimensions d # 4,
« show that Questions|(S) and are in fact equivalent, and

« conclude that for many exotic tori the answer to all three questions is negative.

In what follows, we describe these results and various extensions of them in more
detail.

Splitting the homology action up to isotopy. Our first main result answers

ford7é4:

Theorem A. For a homotopy torus T of dimension d # 4, the morphism
mo Diff *(T) — SL4(Z)

induced by the action on Hq(T) is split surjective if and only if T is diffeomorphic
to T4Y for a homotopy sphere ¥ € ©4 such that n-% € Oq441 is divisible by 2 in
the abelian group ©441.

Here O, is Kervaire-Milnor’s finite abelian group of homotopy d-spheres [KM63]
and n-X € Oy for X € Oy is the value of n ® ¥ under the Milnor—Munkres—
Novikov pairing m S ® 4 — O441 where n € m S = Z/2 is the generator of the
first stable homotopy group of spheres (see [Bre67] for more on this pairing). The
question whether 7 -3 € ©441 for a given ¥ € Oy is divisible by 2 can in most
instances be reduced to a problem in stable homotopy theory which can in turn
be solved in many cases. This approach is discussed in Section [[.3] but to already
illustrate its practicability at this point, we display in Table [l the first groups of
homotopy spheres ©4 together with the subgroups @flpht < Oy of split spheres, i.e.,
those ¥ € ©4 for which 7 - ¥ is divisible by 2, which is by Theorem [A] equivalent
to o Diff t(T94%) — SL4(Z) being split. Note that among the dimensions d for
which O, is nontrivial, there are dimensions in which all spheres are split such as
d = 7, dimensions in which none are split such as d = 8, as well as dimensions in
which some but not all are split such as d = 9. In Section [L.3] we also explain why
both cases—the sphere 3 being split or not—occur for exotic spheres ¥ in infinitely
many dimensions.
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TABLE 1. The groups ©4 of homotopy d-spheres for d < 19 to-
gether with the subgroups @tht < Q4 of those ¥ € ©4 for which
n - X is divisible by 2

d |<6and#4| T | 8 | 9 |10 | 11 |12] 13

O4 0 Z/28|Z/2| (Z/2)**®Z/2|Z/6|Z/992| 0 |Z/3

Q:plit 0 Z/28] 0 | (Z/2)%2@®0 |Z/6|Z/992|0 |Z/3
14 | 15 | 16 | 17 | 18 | 19

Z/2|2/2®0Z/8128|2/2| (Z/2)P @ Z/2|Z/84Z/2| Z/2® Z/523264
0 |Z/2®Z/8128| 0 (Z/2)®3 00 |Z/8®Z/2| Z/2® Z/523264

Actions of SLy(Z) on homotopy tori. Our second main result shows that all
nontrivial SL4(Z)-actions on homotopy tori agree on homology with the standard
action up to an automorphism.

Theorem B. Fiz d > 3, a homotopy d-torus T, and an automorphism group
G € {Diff " (T), Homeo™ (T)}.

Any homomorphism SL4(Z) — G is either trivial or has the property that its
postcomposition

with the action on Hi(T) is an automorphism. Moreover, if also d # 4,5, then
the same holds when replacing G by the group my G of isotopy classes.

In particular, given any nontrivial homomorphism ¢: SL4(Z) — G, we obtain a
splitting of the action a: G — SL4(Z) on first homology, given by ¢ o (a0 @)~ 1.
Applying this to G = Diff 7(7) shows that the above questions and are in
fact equivalent. Applying it to 7o G = 7o Diff T (T") also shows that is equivalent
to the following isotopy-analogue of .

(Ao) Is there a faithful action SLy4(Z) — 7o Diff ™ (T)? If not, is there even any

nontrivial action?

Combining these implications with Theorem [A]results in Corollary [C which answers
all questions , in the negative for a large class of homotopy tori
and partially answers Question 1.4 and Problem 1.5 in work of Bustamante and
Tshishiku [BT21].

Corollary C. Let T be a homotopy torus of dimension d # 4. If

(i) T is not diffeomorphic to a connected sum T4Y with ¥ € O4, or
(ii) T is diffeomorphic to T4Y. for some ¥ € ©4 such that n-% € Qg4 is
not divisible by 2,

then every homomorphism from SLy(Z) to Diff ™ (T) or to mo Difft(T") is trivial.

Remark (The Zimmer programme). One motivation for considering Question
stems from the Zimmer programme, part of which studies actions of SL4(Z) on
manifolds. For instance, it follows from a version of Zimmer’s conjecture, now a the-
orem due to Brown-Fisher-Hurtado [BEH20], that SL4(Z) does not act faithfully
on smooth manifolds of dimension < d — 2. For actions of SLg(Z) on d-manifolds,
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there is a conjectural classification by Fisher—-Melnick [FM22, Conjecture 3.6] which
would imply that if SL4(Z) acts faithfully on a homotopy d-torus 7, then 7 is the
standard torus. Corollary [C implies this for a large class of homotopy tori.

Remark (Regularity). Our results are phrased in terms of the group Diff™(7) of
C>°-diffeomorphisms, but they also hold for the groups Diff™*(T) of C*-
diffeomorphisms for finite & > 1. For Theorems [A] and [D] this follows from the
isomorphism o Diff ™ (7) 2 7o Diff ¥ (7). For Theorem [B it follows from the ob-
servation that the statement for the group Homeo™ (7") also implies the statement
for all its subgroups. The deduction of Corollary [C| from Theorems [A] and [B] works
the same way. In particular, this shows that homotopy tori as in Corollary [Cl do
not admit any C'-action by SL4(Z).

We conclude this introduction by explaining two results featuring in the proofs
of Theorem [A] and Theorem [B that may be of independent interest.

Mapping class groups of exotic tori. As an ingredient for the proof of Theo-
rem[A] we determine the mapping class groups mo Diff * (T) of exotic tori of the form
T = T3 for ¥ € Q4 in all dimensions d > 7 in terms of the known mapping class
group 7o Diff *(T'?) of the standard torus. Note that ©4 is trivial when d < 6 and
d # 4, so in these cases there is nothing to show. To state the result, we first recall
the previously known description of o Diff ™ (7¢). As mentioned above, the action
of SLy4(Z) on T induces a splitting of the action map mo Diff ™ (T9) — SL4(Z), so
there is a semidirect product decomposition

mo Diff T(T%) = SLg(Z) x mo Tor®(T9)  with
o Tor®™ (T%) := ker (mo Diff " (T) — SLq4(Z)).

For d > 6, the kernel 7o Tor”(79) is abelian and isomorphic to the sum of
Z[SL4(Z)]-modules

1) = (Boeyca W) @ 00y ) @ (W22 02/2) & ((2/2)[2/(Z/2)11])
2

where SL4(Z) acts through the standard action on Z¢, and ()¢, denotes the
coinvariants with respect to the involution induced by multiplication by —1 on Z¢
(see [Hat78, Theorem 4.1, Remark (3) on p. 9] and [HS76l Theorem 2.5]). In
addition to this description of mo Tor®(T?), our identification of mo Diff ¥ (T94%)
involves the aforementioned homotopy sphere - € ©411 and the unique nontrivial
central extension

0 — Z/2 — SL4(Z) — SL4(Z) — 0

of SL4(Z) by Z/2; see Section 211 Our result identifies the group m Diff T (T94Y)
as a semidirect product of SLy4(Z) or SL4(Z) acting on a quotient of { by a nontrivial
subgroup depending on ¥ which is contained in the summand 0441 @ (Z? ® ©,4) of
(@) corresponding to the terms j =0, 1.

1[Hat78| Theorem 4.1] asserts that the computation of 7o Tor®(T¢) also holds for d = 5.
However, this relies on a claim attributed to Igusa (see the middle of p. 7 loc.cit.) for which—to
our knowledge—mno proof has been provided so far.
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Theorem D. For a homotopy sphere ¥ € O4 of dimension d > 7, there is an
isomorphism

SLa(Z) x |/ ((n- D) @ (Z4 @ (D)| if -3 € Oy is
not divisible by 2

SL4(Z) x [Q/(zd ® <2>)} ifn-% € Ouyy is
divisible by 2

7o Diff T (T94%) =

which is compatible with the homomorphisms to SL4(Z).

In particular, this result shows that the mapping class group mo Diff * (T#X) for
¥ € Q4 is given by a quotient of SLy(Z) x Q by a finite abelian subgroup which is
always of order at least 2 and has order precisely 2 if and only if ¥ is the standard
sphere, so from this mapping class point of view the standard torus admits “the
most symmetries”, as one would expect.

Endomorphisms of SLy4(Z). As an ingredient for the proof of Theorem [B, we
prove the following classification results for endomorphisms of SL;(Z) for d > 3:

Theorem E. Fix d > 3. FEvery nontrivial endomorphism of SLy4(Z) is an au-
tomorphism. Moreover, all automorphisms of SLq(Z) agree, up to postcomposi-
tion with a conjugation by an element in GL4(Z), with either the identity or the
inverse-transpose automorphism.

Remark. Some comments on Theorem [El

(i) The proof is “elementary” in that it does neither rely on Margulis’ superrigid-
ity or normal subgroup theorem, nor on the congruence subgroup property.
Using these results, there are likely other proofs. The argument we give was
hinted at by Ian Agol in a comment to a question on MathOverflow [Mat17]
and sketched by Uri Bader in the case d = 3 as a response to the question
(however this sketch has a small gap; see Remarks [4.3] and [4.8]).

(ii) For d = 2, the statement of Theorem [E] fails: consider the composition

where the first arrow is abelianisation and the second sends a generator to
—id € SLy(Z).

(iii) The second part of Theorem [E] holds more generally; see [O'M66, Theorem
Al

1. COLLAR TWISTS

As preparation to the proof of Theorems [Al and [D] we collect various results
on a certain map SO(d) — BDiffy(M\int(D?)) defined by twisting a collar of
the complement of an embedded d-disc in a closed smooth d-manifold M. After
explaining the construction, we discuss how this map behaves under taking products
and connected sums, followed by some results on the collar twisting map for specific
choices of M, first homotopy spheres and then homotopy tori.
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1.1. The collar twist. Given a closed connected oriented d-dimensional manifold
M, we write

M° := M\int(D?)

for the complement of a fixed embedded disc D C M that is compatible with
the orientation (which is unique up to isotopy), and we write Diffy(M°) for the
group of diffeomorphisms of M° that fix a neighbourhood of the boundary sphere
OM° = S9! pointwise, equipped with the smooth topology. The latter is homotopy
equivalent to the larger group Diffr, (M) of diffeomorphisms of M that fix the
centre of the disc x € M as well as the tangent space at this point. The group
Diff7, 5/(M) is the fibre of the fibration d: Diff{ (M) — GL} (R) assigning to a
diffeomorphism that fixes * its (orientation-preserving) derivative at that point, so
after delooping and using the equivalence GL} (R) ~ SO(d), there is a homotopy
fibration sequence

(2) BDiff5(M°) 2% BDiff (M) - BSO(d),

where ext is induced by extending a diffeomorphism of M° to M by the iden-
tity. The connecting map SO(d) ~ QBSO(d) — BDiff5(M°) has the following
geometric description: there is a homomorphism QSO(d) — Diff5([0,1] x S471)
which sends a smooth loop v € Q2SO(d) that is constant near the endpoints to the
self-diffeomorphism of [0,1] x S¢~! given by mapping (¢,z) to (t,7(t) - =), and a
homomorphism ext : Diff5([0, 1] x S%~!) — Diff5(M°) induced by a choice of collar
of the boundary sphere in M°. Delooping their composition gives a map

Y1 SO(d) — BDiff(M°)

that agrees with the aforementioned connecting map; see, e.g., [Kra2ll p. 9]. Fol-
lowing Section 3 of loc.cit., we call Ty, the collar twisting map of M. This map is
relevant to the study of the mapping class groups of M and M°, since the sequence
@) induces an exact sequence of groups

(3) (m SO(d) = {;/2 ﬁ j ; ;) 00+, o Diff o (M) =% o DI (M) — 0,

so the second morphism in this sequence is an isomorphism if and only if the image
ty = (TM)*(l) € o Diff@(Mo)

of the standard generator of the leftmost group under the first map (1), is trivial.
We call this element the collar twist of M. Note that the collar twist lies in the
centre of mg Diff5(M°), because the image of the connecting map 72 X — 71 F' in
the long exact sequence of homotopy groups for any fibration FF — E — X has
this property. Alternatively, one could use that the collar twist is supported in a
collar and that every diffeomorphism fixing boundary can be isotoped to also fix
any chosen collar, thereby having disjoint support from the collar twist.

1.2. Collar twists of products and connected sums. Proposition [L.1] shows
that collar twisting maps behave well with respect to products and connected sums.
Here and in what follows, we identify (MfN)° with the boundary connected sum
M°hN°® via the preferred isotopy class of diffeomorphisms between these two man-
ifolds.
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Proposition 1.1. Let M and N be closed oriented connected manifolds of di-
mension m and n.

(i) The compositions

SO(m) € SO(m +n) ¥, BDiff((M x N)°)

and
SO(m) REN BDiff5(M?) (D)xidw, BDiff5(M° x N) o BDiff5((M x N)°)
are homotopic. In particular,
taxn =ty xidy € mo Diffg((M x N)°)  for m > 2.

(ii) If M and N are of the same dimension d = m = n, then the map

SO(d) ~M5¥, BDiff((MtN)°) = BDiffs(M°5N°)
and the composition

SO(d) 228 SO(d) x SO(d) 22X, BDiff,(M°) x BDiffs(N°) 2 BDiff(M°5N®)
are homotopic after restriction to the subspace SO(d — 1) C SO(d). In
particular, we have

t]\/[ﬁN = (f,MhidNo) + (idMohtN) € 7o Diﬂa(MohNo) for d > 3.

In order to prove Proposition [L.1] it is convenient to view the collar twisting
map as the instance P = % of a more general construction for a compact smooth
p-dimensional manifold P equipped with an embedding P x D?~? C M. First, one
extends the latter inclusion to an embedding P x Dgfp C M where Dgip C R
is the disc of radius 2 and P := P Uypx oy (OP x [0,1]) is obtained by attaching
an external collar to P. This extension is unique up to isotopy. Given a smooth
function A: P x [0,2] — [0, 1] and a smooth loop v € 2SO(d — p) that is constant
near the endpoints, consider the diffeomorphism ¢y (y): P x DY — P x D3P by
sending (p,z) to (p,7(A(p, ||z]|)) - ). In other words, thinking of P x DJ ? as foli-
ated by the leaves S, :== {p} x DZ7P for p € P and r € [0,2], the diffeomorphism
oA (y) preserves the leaves and acts on the leaf S, ;. by rotation with the element at
time A(p,r) of the loop ~. If one additionally assumes that

(i) A =1 on a neighbourhood of P x D¥? where D47 = D¢ ¢ D? is the
unit disc,
(ii) A =0 on a neighbourhood of (P x DI~7),

then ¢ () agrees with the identity on a neighbourhood of P x D?~P C P x Dgfp
and so restricts to a diffeomorphism of the complement. This diffeomorphism of
the complement extends via the identity to a diffeomorphism of M\int(P x D?~P)
fixing a neighbourhood of the boundary pointwise, so we obtain a map

oa(—): QSO(d — p) — Diffo(M\int(P x DP))

which depends continuously on A and is a homomorphism with respect to pointwise
multiplication on the domain and composition on the target. Since the space of
smooth functions A satisfying (i) and (ii) is contractible by linear interpolation, the
delooping of ¢ (—)

®p: SO(d — p) —> BDiff5(M\int(P x D7)
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is independent of A\ up to homotopy, so only depends on the isotopy class of the
embedding P x D4"P ¢ M. This map generalises the collar twisting map in the
following sense.

Lemma 1.2. For 0 < p <d, the maps
Yarlsoa—p) : SO(d — p) — BDiff5(M°) and
®ps  : SO(d — p) — BDiff(M\int(D? x D)) < BDiff5(M°).

are homotopic. Here the embedding DP x D¥™P C M 1is chosen to be compatible
with the orientation.

Proof. Tt suffices to show that the two maps 2SO(d — p) — Diff5(M°) before de-
looping are homotopic as maps of topological groups. Going through the construc-
tion, one sees that both maps are instances of the following construction applied
to smooth loops v € SO(d — p) that are constant near the ends: pick a smooth
map A: D8 x [0,2] — [0,1] which is 0 in a neighbourhood of (D% x D4™7), and 1
in a neighbourhood of DY, consider the self-diffeomorphism of D~? x D sending
(p, ) to (p, y(A(p, |z||))-z), restrict it to a diffeomorphism of (D52 x DP)\int(D%),
and extend the result to a diffeomorphism of M° by the identity. As the space of
choices for A is contractible by linear interpolation, all maps constructed this way
are homotopic. ([l

A similar argument also shows the following naturality property of the map ®p.

Lemma 1.3. Given a compact submanifold Q C int(P) of codimension 0, the
map

SO(d — p) 2% BDiffy(M\int(Q x D))

and the composition
SO(d — p) 25 BDiffs(M\int(P x D)) =% BDiffy(M\int(Q x D 7))

are homotopic. Here the embedding Q x D*P C M is the restriction of the
embedding P x D P C M.

Equipped with Lemmas[I.2] and [1.3] we now turn to the proof of Proposition [L1l

Proof of Proposition[l.1l For part note that the composition SO(m) —
BDiff5(M*° x N) is an instance of @y using the embedding D™ x N C M x N, so
its postcomposition with ext: BDiff5(M° x N) — BDiff5((M x N)\int(D™ x D™))
is homotopic to ®p~» by Lemma [1.3] which in turn implies the claim as a re-
sult of Lemma [1.2l For part [(ii), view (MfN)° as being obtained from M° LI N°
by gluing on a pair-of-pants bordism W: S9! 1§91 ~ §9=1 To show the
claim, it suffices to show that the maps ti,,tou: SO(d — 1) — BDiffg(W) are
homotopic, where t;, simultaneously twists collars of the two incoming boundary
spheres and to, twists a collar of the outgoing boundary sphere. Viewing W as
DN\int((e(D' U D)) x D4=1) for an embedding e: D! LI D! < int(D'), the map
tin is given by Ypip1: SO(d — 1) — BDiff5(D¥\int(e(D! LU D) x D471)) and the
map tou as the composition of Y p1: SO(d —1) — BDiffg(D\int(D! x D?~1) with
ext: BDiff5(D\int(D' x D4~1)) — BDiff5(D%\int((e(D' LI D)) x D?~1)), so the
claim follows from Lemma [[.3lapplied to P = D', Q = D' UD', and M = D*. O
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Remark 1.4. Proposition IE is a more general version of the “pants relation”
in [CT22, Lemma 2.5], where a proof of this relation is given by constructing an
explicit isotopy.

1.3. Collar twists of exotic spheres. We now turn to the collar twisting map
Ty, for homotopy spheres 3, but we actually restrict our attention to the collar twist
ts, € mo Diff 5(X°) it induces on fundamental groups. We begin with a recollection
of the classification of homotopy spheres.

1.3.1. Classification of homotopy spheres. Recall (e.g., from [Lev85, p. 90-91])
that Kervaire-Milnor’s finite abelian group ©4 of homotopy d-spheres [KM63] fits
for d > 5 into an exact sequence

Z/2 ifd=2*—2, for some k

(4)  0—DbPgr1 — Oy u> coker(J)q — )
0 otherwise

where bPg11 < ©y4 is a certain cyclic subgroup and coker(J)q is the cokernel of
the stable J-homomorphism 73O — 74 S from the homotopy groups of the stable
orthogonal group (which are known by Bott periodicity) to the stable homotopy
groups of spheres. The order of the cyclic subgroup bP411 is known in all cases
except d = 125 (combine [Lev85l Corollaries 2.2, 3.20, Theorem 4.9] with [HHRI6,
Theorem 1.3]):

226=2(92=1 _ 1) num (4| Bax|/k) if d =4k —1 for k > 2

2 ifd=4k+1fork>1

fbPyi1 = but d #£2F —3ifk <7
0 ifdisevenorifd=2*—-3for k<6
20r0 ifd=2F—3fork="1.

The map coker(J)g — Z/2 in the sequence () is known to be trivial as long as
d # 2% —2 for k > 7. Tt is known to be nontrivial for k < 6, but the case k = 7 (i.e.,
d = 126) is still open (see [HHR16, Theorem 1.4]). The question whether bP196 = 0
or bP1og = Z/2 and the question whether coker(J)i126 — Z/2 is surjective or not
(these questions turn out to be equivalent; see [Lev70l p. 88]) is the last remaining
case of the Kervaire invariant one problem. The upshot of this discussion is that
apart from the two problematic dimensions d = 125,126, the group O, is described
in terms of the group coker(J)4 up to extension problems. In most cases, also these
extension problems have been resolved:

e For d even, bP 1 vanishes and the map to Q4 t]—> coker(J)g4 is an isomorphism
as long as d # 2¥ —2 for k > 7, so in these cases there are no extension problems.

o For d = 2¥ — 2 with k < 6, we have an exact sequence 0 — ©4 — coker(.J)g —
Z /2 — 0 which admits a splitting since in these dimensions coker(.J)4 is known to
be annihilated by 2 (see, e.g., the table [[WX20, Table 1]), so ©4 = coker(J)q @
Z/2. For k = 7 the question whether the map coker(J)i26 — Z/2 is split
surjective (rather than just surjective which is open too; see above) is known as
the strong Kervaire invariant one problem.

o For d = 3 (mod 4), the map ©, — coker(J), is split surjective by [Bru68|
Theorem 1.3] or [Era73| Theorem 5], so ©4 = bP 411 @ coker(J)q.

o For d =1 (mod 4), the map ©4 — coker(J)4 is split surjective if d is not of the
form 2% — 3 for some k > 1 by [Bru69, Theorem 1.2] and [Bru70, Theorem 1.1],
s0 O4 = Z/2 & coker(J)g4.
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1.3.2. Collar twists of homotopy spheres and the Milnor—Munkres—Novikov pair-
ing. We begin the discussion of collar twists of homotopy spheres with a general
observation: if M is a closed oriented manifold of dimension d > 5 and ¥ € O, is a
homotopy sphere, then writing ¥ € @4 for the inverse sphere obtained by reversing
the orientation, the maps

(—)bidse :  BDiffg(M°) — BDiffy(M°px°) = BDiffo((M X))
(—)bidge : BDiffa((M#%)°) — BDiffa((MﬁZ)ohio) = BDiffy(M°)
are inverse homotopy equivalences, so in particular induce an isomorphism
7o Diff(M°) = 7y Diff5((M4%)°) on fundamental groups. For M = S% com-
bining the latter with the usual isomorphism my Diffg(D?) = @44, given by gluing

together two copies D4*! along their boundary via diffeomorphisms of S% supported
on a hemisphere results in a chain of isomorphisms

mo Diff5(2°) 22 7o Diff(D?) = O gy 1.
We write
Ty € Og41
for the image of the collar twist ts; € o Diff5(X°) under these isomorphisms. This
defines a set-theoretical function T(_y: ©4 — ©g441 which can be rephrased (see
Proposition [LA]) in terms of a well-known construction in the study of homotopy
spheres, namely the bilinear Milnor-Munkres—Novikov pairing (see, e.g., [Bre67])

TS ® O4 — Okyq for k < d — 1. The latter is related to the multiplication in the
stable homotopy groups of spheres by a commutative diagram

(=)(=)

Tr S ® O4 Okta
(5) idwks®[—]l l[_] for k < d—1
7 S ® coker(J)q 0, coker(J)g+d
with bottom horizontal map induced by the multiplication on the stable stems,

using that products of elements in im(J), and 74 S contained in im(J)g4q if k£ <
d —1 (see p. 442 of loc.cit.).

Proposition 1.5 (Kreck, Levine). We have Ty, = n -3 where n € m S 2 Z/2 is
the generator.

Proof. Levine writes v(X) € ©441 for Ts, € O441 [Lev70l p. 245-246] and Kreck
writes Xy € Og441 for it [Kre79, p. 646]. For even d, the claim is [Kre79, Lemma
3 ¢)]. For odd d, the subgroup bPg2 < ©44; is trivial, so it suffices to show the
claimed equality after passing to coker(J)q41 (see Section[L.3.1)). The latter follows
from [Lev70l, Corollary 4] using that Levine’s subgroup I;(3) C ©441 is generated
by v(X) € ©441 by definition; see p. 246 loc.cit. a

Remark 1.6. Proposition [L.5l has immediate consequences for collar twists of homo-
topy spheres. For example, since 7 is 2-torsion and the Milnor—-Munkres—Novikov
pairing is bilinear, the sphere Ty, = n - ¥ is trivial if ¥ € ©4 has odd order, so the
collar twist of ¥ is in these cases trivial too.

The combination of Proposition [I.5] the classification of homotopy spheres as
recalled in Section [[L3.1] and the diagram (B]) allows one to reduce most questions
on collar twists of exotic spheres to questions in stable homotopy theory. As an
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example of this principle, we rephrase the condition featuring in the statements of
Theorems [A] and [D] (whether Ts; = 7+ ¥ € O441 is divisible by 2 or not) in most
cases in terms of the cokernel of the stable J-homomorphism:

Lemma 1.7. If n-X € O44q is divisible by 2, then so is n - [X] € coker(J)g41.
The converse holds
(i) ford #4,5 (mod 8),
(ii) ford=5  (mod 8) for d # 125, and
(ili) ford=4  (mod 8) for d = 2¥ — 4 with k < 6.

Proof. By commutativity of (B, the class n - [X] € coker(J)g41 is the image of
7-% € O441 under the morphism [—]: ©441 — coker(J)q4, so if the latter is divisible
by 2, then so is the former. To prove the partial converse, we distinguish some
cases and make frequent use of the classification of homotopy spheres as recalled in
Section [LL3.1] without further reference.

o For d+1 = 3,7 mod 8, the map [—]: Og41 — coker(J)q41 is split surjective,
50 Og+1 = bPgia @ coker(J)g41. Since n- X has order 2 and bP 444 is cyclic of
order divisible by 4, the bP 4, 2-component of the order 2 element 7 -3 has to be
divisible by 2, so the full element 7 - X is divisible by 2 if and only if its image
7 - [X] € coker(J)q41 is divisible by 2.

o For d+1 =1 mod 8, the map [—]: ©441 — coker(J)q41 is also split surjective, so
O441 =2 bP g @coker(J)g41. In this case the bPgyo-component of - € 441
turns out to vanish, which implies the result. The reason for this vanishing is
that 1 -3 € ©441 is contained in the subgroup bSping,, < ©g41 of homotopy
spheres that bound a spin manifold [Law73, §4 + Diagram (6)] and on this
subgroup the bP ;4 2-component can be computed as the image of the f-invariant
from [Bru69, §3] which vanishes for n - X by [Law73, Proposition 4.1] (this uses
that the pairings denoted by 7, 1, and p,, i in loc.cit. are compatible, by diagram
(B) on p. 835 of loc.cit.).

e Ford+1=0,2,46mod 8and d+1 # 2" —2for k< 7,and ford+1=5
(mod 8) with d + 1 = 2¥ — 3 for k < 6, we have ©4,1 = coker(J)q+1 and there
is nothing to show.

e For d+1 =6 (mod 8) with d+1 = 2¥—2 for k < 6 we have O 441 = coker(J)4+1®
Z/2, so an element in © 441 is divisible by 2 if and only if this holds for its image
in coker(J)g41- O

Remark 1.8. To extend Lemma[L.7to d+1 =5 (mod 8) for d+1 # 2 —3, it would
suffice to show that the bP4io-component of 1 - ¥ for ¥ € ©4 under the splitting
O441 = coker(J)g+1 @ bPgio recalled in Section [1.3.1]is trivial. We do not know
whether this is the case.

In view of Lemma [L.7] the question whether - € ©441 is divisible by 2
can in many dimensions be analysed with inputs from stable homotopy theory.
Remarks [[.9] and [L.10 contain some applications in this direction:

Remark 1.9. As n has order 2, whether n- X € ©44; is divisible by 2 or not can be
tested 2-locally. At the prime 2, the groups coker(.J)s and multiplication by 1 on
them have been computed up to dimensions about 90. The result is summarised in
[[WX20, Figure 1] where every dot represents a nontrivial element, the diagonal and
vertical lines indicate that two elements are related by multiplication with n or 2,
respectively, and the image of J consists of the blue dots, apart from the blue dots
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in degrees = 1,2 (mod 8). Combining this with Lemma [[.7] and the classification
of homotopy spheres recalled in Section [L.3.1, one can in most dimensions up to
about 90 determine the groups ©,4 and the subgroups @tht < Oy of those X € Oy
such that n - X is divisible by 2. The result of this analysis for d < 19 is recorded
in Table [l of the introduction.

Remark 1.10. There are also many infinite families of homotopy spheres ¥ € 04
for which one can decide whether n- % € 441 is divisible by 2 or not. We again
rely on Section [1.3.11

* As an infinite family of nontrivial ¥ € ©4 in odd dimensions such that n - X is
divisible by 2, one may for instance take any ¥ € 04 for d = 1,3,7 (mod 8)
that lies in the nontrivial subgroup bPgi; < ©4. This is because n - X €
O441 = coker(J)gy41 is trivial as a result of (), so it is in particular divisible
by 2. There are also examples in even dimensions: as bPgri+3 = 0, the class
in coker(J)sk+2 of Adams’ element pggio € mgpr2 S (which is nontrivial in
coker(J)gr 42 as mgp12 O = 0) lifts uniquely to a homotopy sphere X, ., €
Osg12. As - [usk42] = 0 € coker(J)gk12 since 7 - uggt2 € Tsrr3 S is known to
be contained in im(J)sg3, it follows from Lemma [1.7] that ¥ is divisible
by 2.

e As an infinite family of nontrivial ¥ € 04 in odd dimensions such that n - X
is not divisible by 2, one may take any 3 € Ogry; that maps to the class in
coker(J)gg+1 represented by Adams’ element pgii1 € msgr+1 S which is known
to have the property that 7 - pgi41 € coker(J)gg+2 = Ter42 S is not divisible by
2. In even dimensions, one may use the families of nontrivial homotopy spheres
¥ € 04 for d =8 (mod 192) from [Kra2ll Proposition 2.11 (i)] which have the
property that n - [¥] € coker(J), is nontrivial and detected in the spectrum tmf
of topological modular forms (see the proof of the cited proposition). Moreover,
in these dimensions 7441 tmf is known to be annihilated by 2 (see, e.g., [Beh20),
Figure 1.2]), so n - [¥] is not divisible by 2 in 7441 tmf and hence neither in
coker(J)g41-

H8k+2

1.4. Collar twists of tori. The manifolds for which we establish some results on
the collar twists next, are homotopy tori. For this class of manifolds, it is convenient
to study the fibre sequence (2)) involving the collar twisting maps by comparing it
to an analogous sequence for block-homeomorphisms (see, e.g., [HILLRW21, Section
2] for a discussion of block-automorphisms suitable for our needs) via a map of fibre
sequences

BDiffy(M°) —— BDiff} (M) ——— BSO(d)

(6) | | J

+
BHomeor, ps (M) —— BHomeo, (M) —— BSTop.

The bottom row of this diagram deserves an explanation. To construct it, first con-

— +
sider the forgetful map Homeo (M) — hAut* (M) from the space of orientation-
preserving block-homeomorphisms of M to the space of orientation-preserving ho-

+
motopy self-equivalences. The space Homeo, (M) is defined as the homotopy
pullback of this map along the inclusion map hAut] (M) — hAut™ (M) of those
orientation-preserving self-equivalences of M that preserve the chosen point x € M.
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— +
The delooping of the latter map is the universal M-fibration, so BHomeo, (M) is
by construction equivalent to the total space of the universal oriented M-block-
bundle. The right-hand map in the bottom sequence is the delooping of the

map I%I\n'goj(M ) — STop that takes the stable topological derivative of a block-
homeomorphism of M at * € M, or equivalently, it classifies the stable ver-
tical topological tangent bundle of the universal oriented M-block-bundle (see
[HLLRW?2I, Section 2]), similar to how the right-hand map of the upper sequence
classifies the vertical tangent bundle of the universal oriented smooth M-bundle.
The rightmost vertical map classifies the underlying stable Euclidean bundle of
an oriented d-dimensional vector bundle and the middle vertical map is induced

by the forgetful map Diff (M) — Homeoj(M ). The left-hand map of the bot-
tom sequence is defined as the homotopy fibre inclusion of the right-hand map, or
equivalently, as the delooping of the derivative map.

Note that the bottom row only depends on the underlying topological manifold
of M, so in particular agrees for homotopy tori M = 7T with the correspond-
ing sequence of the standard torus M = T?. For the latter, the middle space

o~ +
BHomeo, (M) has a very simple description:

Lemma 1.11. For any d > 1, the map

— +
BHomeo, (T%) — BSL4(Z)
induced by the action on Hi(T%) = Z? is an equivalence.

Proof. As T? ~ K(Z%1), the analogous map hAut] (T%) — SL4(Z) from the space
of orientation homotopy self-equivalences of M is an equivalence, so it suffices to

—~— +
show that the forgetful map Homeo, (T'%) — hAut] (T'?) is an equivalence. We will
do so by proving that the right-hand map in the map of homotopy fibre sequences

— + — +
T¢ —— BHomeo, (T?) —— BHomeo (T9)

l |

T4 — BhAut] (T%) ——— BhAut*(T9)

comparing the universal T%-block-bundle with the universal T%-fibration is an
equivalence. Using the action of SL4(Z) on T¢ =2 R4/Z¢ and the action of T
on itself, a diagram chase in the ladder of long exact sequences induced by this
map of fibre sequences shows that the middle arrow is surjective on all homotopy
groups. Injectivity on homotopy groups is equivalent to the claim that for £ > 0,
any self-homeomorphism of 7% x DF fixing on the boundary that is homotopic to
the identity relative to the boundary is also concordant to the identity relative to
the boundary. For d > 5, this from the fact that the topological structure sets
SgOP(Td x D¥) in the sense of surgery theory are trivial as long as k +d > 5
[KST7, p. 205, Theorem C.2], but there is also a more direct proof in all dimensions
[LawT76]. O
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Corollary 1.12. Let T be a homotopy torus of dimension d > 1. The collar
twisting map

YT7: SO(d) — BDiff5(7°)
is injective on mi(—) for k < d—2. In particular, t7 € mo Diff5(T°) is nontrivial
for d>3.

Proof. From the map of long exact sequences induced by the map (@l together with

the fact that the higher homotopy groups of BHomeo:(T) ~ BHomeor (T?) vanish
as a result of Lemma [L.TT] we see that the map in question is injective on mj(—) if
the map 7, SO(d) — 7, Top is injective. This maps factors as the stabilisation map
SO(d) — SO followed by the forgetful map SO — Top. The latter is injective on
all homotopy groups (combine [Bru68] with [KS77, p. 246, 5.0.(1)]) and the former
for k < d — 2 by stability, so the claim follows. O

Remark 1.13. The collar twist t7 € m Diffg(7°) is also nontrivial for d = 2 which
follows for instance from Lemma [2.2 Moreover, for d = 2,3 the map Y+ induces
an isomorphism on all higher homotopy groups since the component of the identity
Diff, (T%);q ~ * is contractible. This is well-known for d = 2 and follows for d = 3
from a combination of [Hat83] and [Hat76] using that 72 is Haken.

Remark 1.14. Replacing SL4(Z) with Aut(m M), the statement of Lemma [L.11]
(and thus also that of Corollary [L.12]) holds for many other closed aspherical mani-
folds M, in particular for those of dimension d > 5 whose fundamental group satis-
fies the Farrell-Jones conjecture and also for those of dimension d = 4 if the funda-
mental group is good in the sense of [FQI0, p. 99] (see, e.g., [HLLRW21| Proposition
5.1.1] for an explanation of this).

2. MAPPING CLASS GROUPS OF EXOTIC TORI AND THE PROOF OF THEOREM [D]

Equipped with the results on collar twists from Section [1, we turn towards
studying the mapping class groups of homotopy tori of the form T943.

2.1. Central extensions of special linear groups. The strategy will be to relate
the mapping class groups of homotopy tori to well-known central extensions of
special linear groups. We first recall these extensions and discuss some of their
properties. The universal cover of the stable special linear group over the reals
SL(R) = colimg SL4(R) gives a central extension

0 — Z/2 — SL(R) — SL(R) — 0

which we may pull back along the lattice inclusion SL4(Z) < SL(R) to a central
extension

(7) 0 — Z/2 — SL4(Z) — SL4(Z) — 0

for d > 1. For d = 2, also a different central extension will play a role, namely the
pullback

(8) 0 —> Z —» SLo(Z) — SLo(Z) — 0
along the inclusion SLy(Z) < SLy(R) of the universal cover central extension

0 — Z —» SLy(R) —> SLy(R) — 0.
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Since the inclusion map SL4(R) — SLg4+1(R) is surjective on fundamental groups
for d > 2, the extension (7) agrees with the pushout of (&) along the quotient map
Z — Z/2. Everything we need to know about these extensions, together with some
useful information on the low-degree (co)homology of SLy4(Z), is summarised in
Lemma [2.1]

Lemma 2.1.
(i) The first two homology groups of SL4(Z) are given by the following table.

d | Hi(SLa(2); 2) | Ha(SLa(Z); 2)

2 | Z/12 0

310 Z)2® 72
4 0 Z/2®Z)2
>5]0 Z/2

(ii) The map
Ho(SL4(Z);Z) — Hs(SLyy1(Z); Z)
induced by stabilisation is nontrivial for d > 3. For d = 3 its image has
order 2.
(iii) The extension () is classified by a generator of

H?(SLy(Z); Z) = Z/12.

(iv) The extension () is nontrivial for d > 2. For d > 5, it is classified by the
generator of
H?(SLy(Z); Z/2) = Z/2.

Proof. That the abelianisation H; (SLg(Z); Z) is cyclic of order 12 for d = 2 can be
read off from the standard presentation of SLa(Z) (see, e.g., [Mil71] Corollary 10.5]),
and the fact that Hy (SL4(Z); Z) vanishes for d > 3 follows for instance from [Mil71]
Corollary 10.3] together with the observation that for d > 3 every elementary
square matrix can be written as a commutator of two elementary matrices. The
computation of Hy(SL4(Z);Z) for d = 2 follows from the isomorphism SLy(Z) =
Z /4 %72 Z/6 [Ser03, 1.5.3] and the Mayer—Vietoris sequence for group homology of
amalgamated products [Bro94, Corollary I1.7.7] (c.f. Exercise 3 on p. 52 of loc.cit.),
for d = 3,4 from [vdK75|, and for d > 5 from [Mil71, Corollary 5.8, Remark on p. 48,
Theorem 10.1]. Using these calculations, the computations H?(SLy(Z); Z) = Z/12
and H?(SL4(Z);Z/2) = Z/2 for d > 5 implicitly claimed in and |(iv)| follow
from the universal coefficient theorem. The latter also implies the part for
d > 3 once we show The claim on the stabilising map for d = 3 can be proved
via the arguments in [vdK75].

To prove , we use the general fact that for a given central extension 0 —
A —- FE — G — 0, the Serre spectral sequence induces an exact sequence 0 —
HY(G; A) — HY(E; A) — HY(A4; A) — H?(G; A) — H2(E; A). The identity map
induces a preferred class in H'(A; A) and its image in H*(G; A) is the class that
classifies the given extension. Applying this to the extension (8), we see that in
order to show that this extension generates H?(SLy(Z); Z) it suffices to show that
H2(SLy(Z);Z) vanishes. Now SLy(Z) agrees up to isomorphism with the braid
group Bs on three strands (see, e.g., [Mil71l p. 83]), so the claim follows from the
universal coefficient theorem and the facts that Hy(Bs;Z) = Z and Ho(B3;Z) =
Z/2 [Arnl4l p. 32].



MAPPING CLASS GROUPS OF EXOTIC TORI 1331

For we use the universal coefficient theorem to see that H?(SLy(Z); Z/2) =
Z/2 is surjected upon by the map H?(SL4(Z);Z) — H?(SL4(Z);Z/2) induced by
reduction modulo 2, so it follows from that the extension () is nontrivial for
d = 2 and hence also for all higher values of d since the former is the pullback of
the latter along the inclusion SLy(Z) — SL4(Z). As H%(SL4(Z);Z/2) = Z/2 has
only a single nontrivial element for d > 5, this gives ]

2.2. Mapping class groups of homotopy tori and Theorem We now
determine the mapping class groups of homotopy tori of the form 7 = T3, The
argument has three steps.

Step [l Determine 7o Diff 7 (T94X) in terms of m Diff5((T?4X)°).

Step 2 Determine 7y Diff (T44).

Step 3] Determine 7o Diff *(7T94%).
Throughout this section, we abbreviate T%° := (T9)°, fix a basis of Hy (T%°) = Z4,
and use the bases for the first homology groups of T9, T%°§%° = (T¥4¥%)°, and
T94Y, that are induced by the chosen basis of Hy (7'%°).

Step 1 (Fixing a disc or a point). We first determine the group mg Diffg(7°) in
terms of the group Diﬁj(T). This step works for general homotopy tori 7, not
just those of the form T¢¥.

Lemma 2.2. For a homotopy d-torus T, there are pull-back squares
) Diffa(To) *)eXt o Dlﬂ: (T)
lg lg ford=2 and
SL4(Z) ——— SLa(Z),
mo Diff (T°) =% o Diff ()
i l for d > 3.
SLy4(Z) ——— SLq4(Z)

Proof. If d = 2, then T is the standard 2-torus 72 for which the claimed square is
well-known (for a reference, compare the standard presentations of mg Diff5(7%:°)

and SL4(Z), e.g., in [Mil7I p. 82-83] and [Kor02, Section 5]). For d > 3, we
consider the map of central extensions

0 —— m SO(d) ——— mo Diffy(7T°) ———— mo Diff} (T) ——— 0

0 | | |

0 —— w1 STop —— 7o Homeop pa(T?) —— o H/o_r\nzo* (T4 —— 0

induced by (@) for M = T, using that the bottom sequence only depends on
the underlying topological manifold. Exactness at m; STop follows from the fact

P
that m; Homeo, (T%) = 0 by Lemma [L.I1] and exactness at 7 SO(d) follows from
exactness at mp STop. Lemma [L.11] also shows that the homology action map

e~ +
mo Homeo, (T%) — SLq(Z) is an isomorphism, so we are left to show that the
bottom extension is isomorphic to 0 — Z/2 — SL4(Z) — SL4(Z) — 0. It suffices
to show this for large enough d, since the bottom extension in dimension d maps by
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taking products with S! to the corresponding extension in dimension d + 1 (which
have both kernel m1STop), so the extension for d is the pullback of the extension
for d + 1 along the inclusion SLy(Z) — SLg11(Z). We may thus assume d > 5
in which case there is a single nontrivial central extension of SLg(Z) by Z/2 (see
Lemma [2.1]), so we only need to exclude that the bottom extension in (9) is trivial.
To show this, we consider (Q) for 7 = T and extend it to the top as

0 — m SO(2) —— 7 Diffy(T%°) —— m Difff (T2) ——— 0

- 1 |

0 — 71 S0(d) —— g Diffg(T%°) ———— 7o Diff/ (T9) —— 0

R l 1

—_~—

+
0 —— m STop —— 7o Homeoy, 74 (T?) —— mo Homeo, (T¢) —— 0

where the top middle vertical map is induced by taking products with idpa—2 fol-
lowed by restriction, commutativity of the left upper square follows by an applica-
tion of Proposition [L1I[(i)] to M = T2 and N = T%"2, and the right upper square
is induced by the commutativity of the left upper square. We will show that the
bottom extension is nontrivial by showing that its pullback along the composition
7o Difff (T?) — 7 H/o_r\n;oj(T 4) is nontrivial. This composition is isomorphic to
the inclusion SLa(Z) — SL4(Z) and the composition m SO(2) — 71 STop to the
quotient map Z — Z/2, so it follows that the pullback in question is isomorphic to
the mod 2 reduction of the extension 0 — Z — SLy(Z) — SL2(Z) — 0, i.e., the ex-
tension 0 — Z/2 — SLy(Z) — SLy(Z) — 0. The latter is nontrivial by Lemma 2.1]

(iv)) O

Step 2 (The pointed mapping class group of T9Y). Next, we determine the group
7o Difff (T94Y). For ¥ = S? the evaluation fibration Diff*(7¢) — T whose fibre
is Diff [ (T'?) has a splitting given by the standard action of T¢ on itself, so the long
exact sequence in homotopy groups induces the first out of two isomorphisms

d>6
mo Diff | (T9) = 7o Diff T (T9) = SL4(Z) x Q;

the second isomorphism was explained in the introduction. Combining this with
Lemma 2.2/ for 7 = T%, we obtain an isomorphism

(10) mo Diffg(T%°) 2 SLy(Z) x @ for d > 6.

Now recall that the collar twist t7a € mg Diﬂ’a(Td"’) generates the kernel of the
map to mo Diff} (T'%) so it corresponds under the isomorphism (10) to the element
(ta,0) where t; € SL4(Z) is the central element that generates the kernel of the
map to SL4(Z). The composition

ide,oh(_)
—

(11) 0441 = o Diff5(D?) mo Diffo(T%°),

which we abbreviate by tq4: ©4.1 — 7 Diffg(T%°), can be identified in terms of
(@A) as follows:
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Lemma 2.3. With respect to the isomorphism ([10), the composition (1) agrees
with the inclusion ©441 < SLg(Z) x Q given by the (j = 0)-summand in (1)).

Proof. By an application of Lemma [2.2] this would follow from showing the anal-
ogous statement for mo Diff] (T?) = SL4(Z) x Q instead of for 7o Diff5(T%°) once
we know that the postcomposition of (L1) with the isomorphism (10 has image
in Q < SLy(Z) x Q. That the statement holds in 7 Diff] (T?) = 7o Diff ¥ (T9)
follows from [Hat83, p. 9, Remark (5)], so it suffices to show that (1) lands
in the subgroup Q. To show that, note that diffeomorphisms in the image of
(1) are topologically isotopic to the identity since Homeog(D?) is contractible
by the Alexander trick. In particular, (1)) lands in the kernel of the forget-
ful map moDiff5(T%°) — m Homeop 74 (T9) which agrees via the isomorphism
7o Diff (T?) 22 7o Diff T (T%) =2 SLy(Z) x Q precisely with the subgroup  (see the
proof of Lemma [2.2]), so the claim follows. O

Given a homotopy sphere ¥ € ©4 and d > 7, we have the isomorphism discussed
in Section [L3]

(—)hidso
(12) 7o Diffp(T%°) = 1o Diff((TU45)°),

so from the exact sequence @, we see that o Diff,(T94Y) is isomorphic to the
quotient of 7 Diff5(T%°) = SL4(Z) x € by the central subgroup generated by the
preimage of the collar twist t7ays; € mo Diff5((T945)°) under (12).

Lemma 2.4. The preimage of trays € moDiffo((T74X)°) in SLa(Z) x Q under the
combined isomorphisms (12) and (1Q) is (tg,n-X) € SLy(Z) x 2. Consequently,
we have an isomorphism

(13) mo Diff f (T%4%) = (SLa(Z) x Q) /{(ta,n - T))

for d > 7 which is compatible with the homomorphisms to SL4(Z).

Proof. We already explained how the second part follows from the first. To prove
the first, we use the relation tpaysy; = tpafidse + idpaefts in 7o Diff5((T%X%)°) en-
sured by Proposition LL__'L| using which we express the element in question in
7o Diff(T%°) as

(tTdhidzo +idpa.o htg)hidfo = tTd-Hde,oh(tzhidEO) = tpatia(n-X) € mp Diﬁa(Td’O).
Here we used the equality Ty, = n - ¥ from Proposition [L.5] and the definition of
Ty, from Section [L.3l By the discussion above, tra and ¢4(n - X) correspond under

the isomorphism (I0) to the elements (t4,0) and (0,7 - ) in SLg(Z) x 2, so the
element we are looking for is indeed (t4,7 - X). |

The quotient of SLy(Z) x © appearing in Lemma [2.4] can be further simplified:
Lemma 2.5. There is an isomorphism of groups

SL4(Z) x (Q/(n - E)) if n-X € Oqt1is not divisible by 2

SLa(Z) x Q) /{(te,n - X)) =
(SLa(Z) x Q) /{(ta,n-2)) {SLd(Z)le if - % € Ogy1is divisible by 2

that is compatible with the homomorphisms to SL4(Z).

Proof. Since the element 7- ¥ of the finite abelian group ©441 is of order 2, it is not
divisible by 2 if and only if it generates a direct Z/2-summand. We first assume
that this is the case, so G411 = (Og11/(n - X)) & Z/2. Writing ' < Q for the
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SL4(Z)-invariant subgroup complementary to the central summand O44; < € in
(@), we have SL4(Z) x Q2 SLy(Z) x (' & (04/(n- X)) ® Z/2). The latter admits
an epimorphism to SL4(Z) x (' @ (04/(n - X))) given by sending (A4, a+ %' +2) to
(z-tq-A,a+%'). This is well-defined since the central element t4 € SLy(Z) has order
2 and acts trivially on Q since the action factors by construction through SL4(Z).
The kernel of this epimorphism is the subgroup generated by (¢4,7-%), so we obtain
an isomorphism between (SL4(Z) x Q)/((ta,n- X)) and SLa(Z) x (2/(n-X))), as
claimed.

Now assume that n-% € ©441 does not generate a direct summand, so is divisible
by 2. We have a (non-central) extension

(14) 0 — (Q®Z/2)/(n-2+[1]) — (SLa(Z) x Q) /{(ta,n-2)) — SLa(Z) — 0.

As n - ¥ has order 2, the SLy(Z)-equivariant map from Q@ = Q @ 0 into the
kernel of (14]) induced by inclusion is an isomorphism, so in order to show that
(SLa(Z) x ) /{(ta,n - X)) is isomorphic to SL4(Z) x it suffices to show that (14)
splits. Writing Q = O441 ® Q' as in the previous case, the extension (14) is by
construction the sum of the trivial SL4(Z)-extension by the SL4(Z)-module €’
with the central extension classified by the image of the unique nontrivial element
in H?(SLy4(Z); Z/2) under the composition H*(SL4(Z);Z/2) — H2(SL4(Z);Z/2 ®
Oar1) — H2(SL4(Z);(Z/2 ® ©441)/(ta,n - X)) induced by the inclusion and quo-
tient maps of coefficients, so it suffices to show that this image is trivial. From the
universal coefficient theorem and the computations in Lemma 2.1] we see that for
any abelian group, the map H?(SL4(Z); A) — H?(SL4(Z); A/2) induced by reduc-
ing modulo 2 is an isomorphism, so to show that the class in question is trivial,
it suffices to do so after reducing modulo 2. The latter follows by noting that the
composition of SLq(Z)-modules Z/2 C Z/2® Ogqy1 — (Z/2® Ogy41)/(ta,n- X)) is
trivial after passing to (Z/2 & ©411)/(ta,n - X)) /2 since n - ¥ vanishes in ©411/2
by assumption. O

Step 3 (Fixing a point or not). Using the description of 7 Diff{ (T%4%) from the
previous step, we are now in the position to determine mo Diff " (T94%). In view of
the fibration sequence

(15) T4y, — BDiff] (T%4%) — BDiff ' (T4%)

this amounts to understanding the image of the “point-pushing” homomorphism
p: 1 TUY — 7o DiffF(T94%). For ¥ = S? the image is trivial a result of the
action of T? on itself (see the beginning of [2I), but for any other homotopy sphere
such an action is not available and it in fact follows from Lemma[2.6]that the image
is never trivial.

Lemma 2.6. Ford>7 and X € ©4, the map
74 = m Ty 25 1y DiffF(T9%)
agrees with the composition
_ __ (—)gidso
74 % 74 9 0, < SLy(Z) x Q = 7 Diffo(T°) = o Diff((TU%%)°)
4 1o DiffH(T9y)

involving the isomorphism mo Diff5((T94X)°) = SL4(Z) x Q from (0.
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Proof. It suffices to show that the two compositions agree on the first standard basis
vector e; € Z?, since both compositions are 7 Diff5(T%°)-equivariant (the action
on the source is through SL4(Z) and the action on the target is by conjugation
after extending diffeomorphisms from 7%° to T94Y by the identity) and the orbit
of e; € Z4 under the SL4(Z)-action spans Z<.

We work with the following model of T4 view 79! as R4~1/Z~!, choose
an orientation-preserving embedding ¢: D41 < T9=1 = R4~1/Z4~1 disjoint from
the origin [0] € RI71/Z4~! = T9-1 and a representative fx € Diffy(D?!)
of ¥ € mDiffg(D41) = 4, extend fx by the identity to a diffeomorphism
Fy, € Diff t(T?~!) supported in int(¢(D?1)), and form the mapping torus 7Y ==
([0, 1] x T4 1) /((1,z) ~ (0, Fs(x)). We parametrise this quotient by [0,1) x 791 in
the evident way, use [0,0] € T94Y as base point, and we view T%° as the complement
of an embedded disc D? C T%4¥ that contains the part where the nontrivial gluing
happened (i.e., the image of {0} x ¢(D?"!) in the quotient) and is disjoint from the
image of [0,1] x {0} in the quotient. The latter is so that the loop ([(t,0)]):e[0,1]
in T3 is contained in T%°. We chose a basis for H;(7%°) such that this loop
represents e; € Z%.

The first claim we show is that the image of e; € Z¢ under the map p: m TH4Y —
7o Diff 1 (T?4Y) is represented by the diffeomorphism ¢ € Diff[ (T?4¥) given by
using id x fs; on the image of id x ¢ in TY, and extending it to all of T?4%
by the identity. This is because being the connecting map in the long exact se-
quence induced by the evaluation fibration evyg g): Diff H(TUY) — TUY with fibre
Diff (T94Y), the point-pushing map sends e; € Z? to the isotopy class of any
diffeomorphism ¢; that arises as the value at time ¢t = 1 of a path (¢¢)ep,1] in
Diff T (T94Y) with ¢o = id and ¢;([0,0]) = [t,0]. A possible choice of such path is
given by ¢:([s,z]) == [s + t,z] for s+t < 1 and ¢¢([s,z]) = [s+t — 1, Fx(z)] for
s+t > 1, which indeed agrees with ¢ at time 1.

The second claim we make is that the image of e; € Z% under the second com-
position in the statement is given by the diffeomorphism obtained by choosing an
orientation-preserving embedding ¢/: D% < T91 such that the image of id x ¢/ in
T3 is contained in T%° and avoids the origin, using id x fs; on the image of id x ¢/
in T3 and extending it to a diffeomorphism of 7943 by the identity. This would
imply the result, since the image of e; under both maps in consideration arises
from the following construction: choose an embedding S* x D=1 — T4\ {[0, 0]}
that represents e; € Z% = H;(T94X) (which is unique up to isotopy as d > 4), use
id X fsx, on this image, and extend by the identity.

To show this claim, we prove more generally that the composition Z¢ ® 04 <
Q < SL4(Z) x Q =2 7o Diff(T9°) is given by sending * ® ¥/ € Z¢ ® O, to the
diffeomorphism obtained by representing 2 € m; 7%° by an embedding S' x D4~
T4° and ¥/ € O4 = myDiff5(D?) by a diffeomorphism fs, € Diffs(D?), using
id x fsy on S x D41 and extending it to T¢ by the identity. By the argument
from the proof of Lemma [2.3] it suffices to show that the described diffeomorphism
considered as a diffeomorphism of 7 Diff, (T'?) = SL4(Z) x 2 agrees with the image
of e; ® ¥ under the inclusion Z?® 04 < Q. This follows from [[Hat78} p. 9, Remark
(5)]. O
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Combining Lemma 2.6l with Lemma [2.4] the long exact sequence induced by (L5
implies:

Corollary 2.7. Ford > 7 and ¥ € O4 there is an isomorphism
7o DIff* (T945) = (STa(Z) x Q)/({(tasn - £)) @ (27 @ ()
which is compatible with the homomorphisms to SLy(Z).

From this, the asserted identification of 7o Diff *(7?¢%) in Theorem [DI follows
by proving that the right-hand quotient in Corollary .7 can be simplified to the
semidirect product

SL4(Z) x {Q/((n )6 (24 <E>)} if n- 3 € Ogq1is not divisible by 2
SL4(Z) x [Q/(zd ® <z>)} if -3 € Oqpy is divisible by 2
which follows by replacing Q by Q/(Z? ® (X)) in the proof of Lemma [2.5]

3. SPLITTING THE HOMOLOGY ACTION AND THE PROOF OF THEOREM [A]

To deduce Theorem [A] from Theorem [D] we first determine for which homotopy
tori 7 the map mo Diff T (7) — SL4(Z) is surjective. The following was stated in
[BT21, p. 4] without proof.

Lemma 3.1. For a homotopy torus T of dimension d # 4, the map o Diff ™ (T) —
SL4(Z) is surjective if and only if T is diffeomorphic to T#Y. for some ¥ € ©g4.

Proof. The direction < is easy: if 7 = TUY, then o Diff *(T) — SL4(Z) is
surjective because we can precompose it with the map ext,: my Diff5((T4)°) —
7o Diff T (7) and use that o Diff5((79)°) — SL4(Z) is surjective which holds for
instance as a result of Lemma [2.2]

For the direction =, we may assume d > 5 since for d < 3 any torus 7 is
diffeomorphic to the standard torus 7¢. This allows us to use smoothing theory
[KST7, Essay V] which we briefly recall in a form suitable for our purposes: given a
closed topological manifold M of dimension d > 5, the set Sm“" (M) of concordance
classes of smooth structures on M is the set of equivalence classes of pairs (T, )
of a smooth manifold T together with a homeomorphism v : T" — M, where two
pairs (T, 1) and (T",1)’) are equivalent if there is a diffeomorphism ®: 7' — T” such
that the homeomorphisms ¢ and ¢’ o @ are concordant. The group mp Homeo(M)
of concordance classes of homeomorphisms acts on Sm®" (M) by postcomposition
and the set of orbits is in bijection with the set Sm¥ (M) of diffeomorphism classes
of smooth manifolds homeomorphic to M, induced by sending (T, ¢) to T. There
is a map

n: Sm®" (M) — Lift(M, BO — BTop)
to the set of isomorphism classes of pairs of a stable vector bundle over M together
with an isomorphism of the underlying stable Euclidean bundle with the stable
topological tangent bundle 7,7" of M. The map 7 is given by assigning a pair
(T,v) to the pullback (p~1)*7RH of the stable tangent bundle of T along 1,
together with the isomorphism induced by the stable topological derivative of 1 ~".
The map n turns out to be a bijection, by one of the main results of smoothing
theory. Unwrapping definitions, one sees that the action of a € o Homeo(M) on
[T,%] € Sm®"(M) is induced by pulling back the bundle along %~! and post-
composing the isomorphism with the stable topological derivative of 1 ~'. The set
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Lift(M,BO — BTop) is a torsor for the group [M, Top/O] of stable vector bun-
dles on M together with a trivialisation of the underlying stable Euclidean bundle;
the group structure and the action are induced by taking direct sums. Thus, if
M comes already equipped with a smooth structure then we obtain a bijection
Lift(M,BO — BTop) = [M, Top/0O], postcomposition with which gives a bijection

d: Sm“* (M) — [M, Top/O].
Going through the definition, the action of o € mo Homeo(M) on [T, 4] € Sm(M)
translates to 6(T, o)) = (a=1)*6(T, ) + 6(M, ).

We now specialise to M = T?. Given a homotopy torus 7 of dimension d > 5, a
choice of homeomorphism p: 7 — T4 induces a class [T, ¢] € Sm®"(T%) and a mor-
phism 7y Diff " (7) — 79 Homeo (T?) by conjugation with . This agrees with the
map to SL4(Z) when precomposed with the action map mo Homeo (79) — SL4(Z).
The latter is an isomorphism as a result of Lemma [L.11] and the isomorphism
7o Homeo,, (T?%) = mo Homeo (T¢) (use the action of T on itself to see this), so it
suffices to show that mo Diff (7)) — mo Homeo (7'¢) is not surjective unless 7 is dif-
feomorphic to T?Y. for some ¥ € ©4. The image of mo Diff (7)) — 7o Homeo(T9)
is contained in the stabiliser of [T, ] € Sm®"(T'%), so it is enough to show that
[T, ] € Sm(T?) is not contained in the invariants of this action unless 7 = T4y
for some ¥ € ©4. Since any o € mo Homeo (T'?) 22 SL4(Z) is isotopic to a diffeo-
morphism of 7%, the terms §(T¢, &) in the above description of the mo Homeo(T'?)-
action Sm®"(T9) = [T, Top/O] vanishes, and thus the action is simply by pre-
composition. In particular, it is an action by group homomorphisms if we equip
[T, Top/O] with the group structure induced by the infinite loop space structure
on Top/O. Using this infinite loop space structure and the fact that 7 stably splits
into a wedge of spheres we also get a direct sum decomposition of SL4(Z)-modules
(T4, Top/0] = ®¢_,Hom(A"Z¢, 7, Top/O). We will show below that the invariants
of this action are given by the subgroup Hom(A%Z¢, 7y Top/O) = w4 Top/O = ©,.
This will imply the claim, since the subgroup ©4 < [T'%, Top/O] & Sm°*(T9) cor-
responds to the classes of the pairs (T3, idra#3) where 8: ¥ — S is the unique
homeomorphism up to isotopy that fixes the disc where the connected sum is taken,
so in particular [T, ] € Sm®™(T¢) is not contained in this subgroup unless 7 is
diffeomorphic to T94% for some ¥ € O,4.

To finish the proof, it thus suffices to show that for a finitely generated abelian
group A, the SLg(Z)-action on Hom(A"Z%, A) by precomposition with the inverse
has no invariants for 0 < r < d. This is isomorphic to the standard action on
A"Z% ® A up to the automorphism of SL4(Z) given by taking inverse transpose,
so we may equivalently show that A"Z¢ ® A has no invariants. Without loss of
generality we may assume that A = Z/n is cyclic. In this case, A"Z% ® Z/n has
a basis as a Z/n-module indexed by subsets I C {1,...,d} of cardinality r, where
the basis vector x; corresponding to I C {1,...,d} is z;, A---Ax; forip < ... <i,
and I = {iy,...,i,} where x1,..., 7, is the standard Z/n-basis of Z¢ ® Z/n. Now
observe that an elementary matrix (I + E;;) € SL4(Z) for 1 < 4,5 < d acts by
sending x to x7 & x(p\;u; if i € T and j ¢ I, and to itself otherwise. On a general
element v = >"; A\;(v) - 21 € A"Z% ® Z/n, the matrix (I + E;;) thus acts by

ve— > M) xzr+ Y (Ar(v) + Anyui(v)) -z,
i€l or g1 iZI and jeI
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so if v is an invariant, then A\ jyui(v) = 0 for all I with i ¢ I and j € I. But since
1 <i,j < d were arbitrary and 0 < r < d, these are in fact all coefficients, so all
invariants are zero. (|

3.1. Proof of Theorem[A]l We conclude this section with the proof of Theorem[A]
which says that the map 7 Diff ¥ (7") — SL4(Z) given by the action on H;(T) = Z¢
admits a splitting if and only if 7 = 794X for ¥ € O such that 7-X € ©,4, divisible
by 2.

Proof of Theorem[Al We distinguish the cases whether a given homotopy torus 7~
of dimension d # 4 is diffeomorphic to T94% for some ¥ € 64 or not. If it is not,
then the map 7o Diff *(7) — SL4(Z) is not surjective by Lemma [B.1] so it is in
particular not split surjective. If it is, then by Theorem [D] the group mo Diff " (T)
is isomorphic, compatibly with the map to SL4(Z), to a semidirect product of
SL4(Z) or SL4(Z) depending on whether - ¥ € ©44, is divisible by 2 or not. In
the first case, the map to SL4(Z) visibly admits a splitting. In the second case,
a hypothetical splitting would in particular induce a splitting of the projection
SL4(Z) — SL4(Z), which does not exist since this extension is nontrivial. This
finishes the proof. O

4. ENDOMORPHISMS OF SL4(Z) AND THE PROOFS OF THEOREMS [B AND [El

This section serves to deduce Theorem [B from the classification result for endo-
morphisms of SLy(Z) stated as Theorem [E] and to prove the latter.

4.1. Proof of Theorem [B] assuming Theorem [E. Assuming Theorem [E] we
prove Theorem [B. We first assume G = Homeo™ (7)) = Homeo' (T¢). Given a
nontrivial homomorphism ¢: SLy(Z) — Homeo™ (T'?) for d > 3, the composition
with the action on homology Homeo™ (T¢) — SL4(Z) is by Theorem [E either trivial
or an isomorphism, so we have to exclude the former. If it were trivial, then ¢
would have image in Tor ™" (T%) = ker(Homeot(T%) — SL4(Z)). Suppose for
contradiction that ¢: SLg(Z) — Tor™P(T?) is nontrivial. Its kernel is a normal
subgroup, so by [Men65, Corollary 1, p. 36] it is either (a) contained in the centre
Z(SL4(Z)), which is trivial or Z/2 depending on the parity of d, or (b) of finite
index. In either case, the image of ¢ contains a nonabelian finite group H: in case
(a) it contains SLg(Z) or PSLg(Z), so in particular a nonabelian finite group H,
and in case (b) the image of ¢ is finite itself, and also nonabelian since otherwise
¢ would be trivial since SL4(Z) is perfect for d > 3 (see Lemma [2.1]).

To make use of the nonabelian finite subgroup H < Tor™°P(T ), following [LRSI],
we consider the extension 0 — Z¢ — NHomeO(;Fd)(Zd) — Homeo(T?) — 0 whose
middle group is the normalizer of Z¢ = 7,(T¢) considered as a subgroup of the
homeomorphism group Homeo(7'¢) of the universal cover. Note that the induced
action of Homeo(T?) by Z¢ agrees by construction with the action on the fun-
damental group. The pullback 0 — Z% — E — H — 0 of this extension along
H < Homeo(T?) is, by the Corollary on p. 256 of loc.cit. admissible in the sense
of p. 256 loc.cit. The proof of Proposition 2 loc.cit. then shows that the centraliser
Cg(Z%) of Z¢ in E is abelian. But since H < Tor °(T?) acts trivially on Z?¢ we
have C(Z?) = E, so E is abelian and thus the same holds for H which cannot be
true by the choice of H, so ¢ has to be trivial.
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The case G = Diff"(T) follows from the case Homeo'(7) by postcomposing
a given homomorphism ¢: SLy(Z) — Diff*(7T) with the inclusion Diff"(7) <
HomeoJr(T)7 so we are left to prove the addendum concerning homomorphisms
from SLg4(Z) into mo Diff ™ (7") or 7o Homeo™ (7)) under the additional assumption
d # 4,5. By the same argument as before, it suffices to show that all homomor-
phisms from SLy(Z) into o Tor®™ (T) or 7o Tor™P(T) are trivial. Lemma d.1]says
that the latter two groups are abelian, so such morphisms factor over the (trivial)
abelianisation of SL4(Z) (see Lemma [2.1]) and are therefore trivial, as claimed.

Lemma 4.1. For a homotopy torus T of dimension d # 4,5, the kernels of the
homology actions

7o Tor "°P(T") = ker [mo Homeo™ (7) — SLq(Z)]
7o Tor® ™ (T) = ker [mo Diff " (T) — SLa(Z)]
are both abelian.

Proof. For d < 3, the homotopy torus T is diffeomorphic to the standard torus and
both kernels o Tor™P (7)) and mo Tor®™ (7)) are trivial, so in particular abelian.
To show the claim for d > 6, note that my Tor °P(T") = my Tor °P(T%) because T
is homeomorphic to 7%, so my Tor °P(T) is abelian since we have 7y Tor °P(T'%) =
(Z/2)>® by [Hat78, Theorem 4.1]. To show that mo Tor®(T) is abelian, note
that as 7 ~ K(Z% 1) we may view the map mo Diff*(7) — SL4(Z) as the in-
duced map on path components of the map Diff " (7) — hAut™(7) to the space
of orientation-preserving homotopy equivalences, so g TorDiff(T) receives an epi-
morphism from 7 (hAut*(7)/Diff*(7)). Replacing T¢ by 7 in the argument
for (3) on page 8 of [Hat78] and using that 7 is homeomorphic to T%, we get
that 71 (hAut™ (7)/Diff (7)) is isomorphic to the abelian group (@o<;j<q(AZ?) @
Ou—j+1) ® (AT2Z%) @ Z/2) & Z/2°°, so the claim follows (the final step can also
be proved via smoothing theory). O

4.2. Proof of Theorem [EL In the remainder of this section, we prove Theorem [El
The proof makes use of the subgroup Uy < SL4(Z) of unipotent upper triangular
matrices which in particular contains the elementary matrices F;; for 1 <17 < j < d;
these have 1 on the diagonal and at the (¢, j)th entry, and 0 at all other entries. It
is well-known that Uy is an (d — 1)-step nilpotent group whose centre is generated
by the elementary matrix F14, which is an iterated commutator of length (d — 1),
namely Eiq = [Eh2,[Fas,[ -, [Ea—2.d-1, Fa—1.4]]]]. An important ingredient in
the proof of Theorem [El is Lemma [£.2] on complex representations of Uy. In its
statement and in all that follows, we write

(—)_ti SLd(Z) — SLd(Z)
for the automorphism of SL4(Z) given by taking inverse-transpose.

Lemma 4.2. Fiz d >3 and a homomorphism ¢: Uy — GL,,(C) with m < d.

(i) Assume d > 4. If m < d, or if m = d and ¢(E14) is not a scalar, then
¢(Fhq) s unipotent.
(ii) If m < d and ¢(E;;) is unipotent for each i < j, then ¢(E1q) = id.
(iif) If m = d and ¢(E;;) is unipotent for each i < j and ¢(Eqq) # id, then
¢(Frq) —1id has rank 1.
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(iv) If ¢(E;;) is unipotent and ¢(E;;) —id has rank 1 for all i < j, then after
possibly precomposing ¢ with (—)~t, the matrices ¢(Erq), ..., p(FEq_14) all
have the same fized set.

Remark 4.3. The argument in Bader’s MathOverflow post [Matl7] contains the
claim that for any representation ¢: Uz — GL3(C) the matrix ¢(E;3) is unipotent.
This is incorrect: Lemma [4.4][(iii) gives a representation Uz — GL3(C) for which
¢(E13) is a nontrivial scalar. Also Lemmal4.2](i)] fails for d = m = 3 (the case|(ii) of
Lemma [4.4] involves representations Us — GL3(C) for which ¢(F13) is a non-scalar
semisimple matrix).

For d = 3, we will circumvent the use of Lemma IE in later proofs by means
of the following:

Lemma 4.4. Fiz a homomorphism ¢: Uz — GL,,(C). If m = 2, then either
(i) ¢(F13) is unipotent, or
(ii) there are p,v € C* and C € GL3(C) so that after postcomposing ¢ with
conjugation by C,

0 0 -1 0
FEio— ('l(; —,LL) FEo3 — (1 g) FEi3— ( 0 _1> .
If m = 3, then either
(i) ¢(E13) is unipotent,
(il) & = 1 ® ¢2, where ¢;: Uz — GL;(C), up to conjugation, or
(iii) there are A\, p,v € C* and C € GL3(C) so that A is a nontrivial cube root
of 1, and after postcomposing ¢ with conjugation by C,

w0 0 00 v A0 0
Eio— 10 /\M 0 Fos— |1 0 O Fis— 10 A0
0 0 Npu 010 0 0 A

We omit the proof of Lemma 4.4l since it is based on similar (and easier) analysis
as the base case in the proof of Lemma Im which we explain now.

Proof of Lemma Iﬂ. We do an induction on d. To simplify the notation we set
uj = ¢(Eyj ).

Base case. We treat the case d = 4 by hand. To show that ui4 is unipotent, it
suffices to prove that all its eigenvalues A equal 1. Let V) be the A-eigenspace for u14.
Since F14 is central in Uy, restricting to V) gives a homomorphism Uy — GL(Vy)
whose image of E;; is denoted by ugj. Next we distinguish cases depending on the
dimension of V). By the assumption that w4 = ¢(FE14) is not a scalar when m = d,
we know dim(Vy) < 3. If dim V), = 1, then since GL;(C) = C* is abelian, we have
uly = 1 because E1y = [E3, E34] is a commutator, so A = 1. If dim V) = 2, we
consider the subgroup (u}5, us, uf,4) < GL(V)) generated by the images of E13, E34,
and F14 in GL(V)). By assumption u}j, = X -idaxo. Let € V), be an eigenvector
for u}; with eigenvalue u. Using the relation [Fi3, F54] = E14 we conclude that
(uby)t(z) is an eigenvector for u}5 with eigenvalue A'ji. Since dim V) = 2, this forces
A2 = 1 because eigenvectors with different eigenvalues are linearly independent, and
thus A = +1. Suppose for a contradiction that A = —1. Then u/; has two distinct
eigenvalues 1 and —p. Since Fi3 is central in (E12, Fa3) = Uj, we deduce that uf,
and u)4 are simultaneously diagonalisable; in particular they commute. But since
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E13 = [En9, Eas), this implies u}5 = id, which is a contradiction, so A has to be 1.
Finally, suppose that dim V), = 3. In this case the argument is very similar to the
preceding case: by assumption u}, = X -idsxs, and the relation [Ei3, F34] = E14
implies that (\) C C* acts freely on the eigenvalues of u}; which implies \* = 1.
If A\ # 1, then w5 has distinct eigenvalues u, Ay, and A2y for some p. Using the
fact that Ej3 is both central and a commutator in (F1a, E23) C Uy, we reach a
contradiction.

Induction step. Fix an eigenvalue A for w1y = ¢(E14), and let V) be the corre-
sponding eigenspace. We have to show A = 1. As in the base case, since u4 is not
a scalar if d = m, so dim(V)) < d — 1 and since E4 is central in Uy, the represen-
tation restricts to Ug — GL(V)). As before we write u;; for the image of E;; under
this homomorphism. Consider the subgroup (E1 4—1, Eq—1,4,E1,4) = Us of Ug.
Let p be an eigenvalue of “/17d—1 and let V,, < V) be the corresponding eigenspace.
As above, Ay is also an eigenvalue for u’l 41 for each i. Consider the subgroup
(Bij |t <j<d—1)=Ug_y of Ug. Since Ey 41 is central in this copy of Ug_1,
there is an induced map Ug_1 — GL(V,,), Ei; = ;. If A # 1, then V,, is a proper
subspace of V) (since the eigenspaces for p and A are linearly independent). Then
dim(V,,) < d — 2, so the induction hypothesis implies that u{ ; , is unipotent, so
u = 1. Since the same argument applies for each eigenspace of u’l 4—1, wWe conclude
that 1 = u = A, so A =1 as claimed. (Il

Proof of Lemma [£.2)[(ii). Fixing ¢ : Ug — GL,,(C) such that ¢(E;;) is unipotent
forall 1 <i < j <d, we want to show ¢(E14) = id. As before we write u;; = ¢(E;;).
Note that the special case m = d—1 implies the case m < d—1, because if m < d—1
then we may restrict ¢ to the subgroup U,,41 = (E;; |1 <i<j<m+1) < Uy
to conclude uq 41 = id from the special case, so using E1q = [E1 m+1, Em+1,d] We
get uig = [U1,m+1,Um+1,4) = id. To prove the special case m = d — 1, we do an
induction on the dimension d.

Base case. To settle the case ¢: Uz — GL2(C), suppose for a contradiction that
u13 is not the identity. Since it is unipotent by assumption, it has up to conjugation
the form (1), so by postcomposing ¢ with this conjugation we may assume that
u13 equals this matrix. Since Fi3 is central in Ug, the image of ¢ is contained in
the centraliser of ({ ) which consists of matrices of the form (&?). This is an
abelian subgroup, so w13 = [u12, usg] is identity, a contradiction.

Induction step. For the induction step, we fix ¢: Uy — GL4—1(C) and suppose
for a contradiction that w4 # id. Consider the subspaces K; C Ko C C?~! where
K; = ker(uq — id)*. Writing k; := dim K; we have k; > 0 since u4 is unipotent,
£ := ko — k1 > 0 since u14 # id, and ¢ < k; (one way to see this is to consider the
Jordan normal form). Note that since E14 is central in Uy, the image of ¢ preserves
K3 so we obtain a morphism ¢’: Uy — GL(K3z) by restriction. We write u;; for
its image of E;;. Setting m := k; — £ > 0, we choose a basis for K5 that extends a
basis for K7 and that has the property that

idexe 0 idexe
(16) dy={ 0 idpxm 0
0 0 idyxe
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in this basis. To see that such a basis exists, it is again helpful to use the Jordan nor-
mal form. Since Ey4 is central in Uy, the morphism Uy — GL(K2) & GLapm (C)
lands in the centraliser of (16) which are the matrices of the form

A X Z
(17) 0 BY
0 0 A

: !/ /
We claim that u} ,,,, 1 and wpy ., 11 2041 have the form

, idexe ) 0 Z , idee X A
(18) U17e+m+1 = 0 idpmxm . 0 and u[+m+1,2£+m+l — 0 B . 0%
0 0 ld[X[ 0 0 ldgxg

for some B,X,Y,Z, and Z'. Assuming this claim for now, we observe that the
matrices (L8) commute, 50 U} 94,1 = (U1 gyt 1 Wormr1,204m1] 18 the identity.
If 2¢ +m + 1 = d then we are done since this contradicts (16). If 20+ m+1 < d
then the relation u); = [U} 91,115 Usp iy i1,4] Shows that u, is the identity, which
again contradicts (L6). This leaves us with showing (I8). We first treat u/u Ll
Since ¢’ has image in (I7), we may postcompose it with

A X 7 A X Z
0 B Y|~ <61 ‘g) and 0 B Y|~ (g X)
0 0 A 0 0 A

to obtain two homomorphisms Uy — GLgy,(C). We may apply the induction
hypothesis to the restriction of these to the subgroup Upypmyr = (B, |1 <i <
¢+ m+1) to conclude that the image of u/l ¢+mo1 under these two homomorphism
is the identity, so u'u 4+my1 has the claimed form.

To deal with the second matrix ) 4m+1,20+m+1 We argue similarly: postcompose
¢’ with the restriction to A to obtain a morphism U; — GL(C), restrict them to
the subgroup Upt1 = (Epgm14 | L+m+1<i <20+ m+1)in Uy, and apply
the induction hypothesis. ]

Proof of Lemma Iﬂ, Fix ¢: Uy — GL4(C) such that ujq = ¢(E14) is unipo-
tent and nontrivial. The subspace Ko = ker(u;q — id)? is nontrivial, preserved by
the image of ¢, each ¢(FE;;) acts on it by a nontrivial unipotent, and ¢(E14) acts
nontrivially on it, so Lemma |_4_._2| implies Ky = C%. Arguing as in the proof of
Lemma Iﬂ@, up to changing basis (corresponding to postcomposing ¢ with a
conjugation), we can assume that (16) holds and by the same argument as in the
previous proof ¢ has image in matrices of the form (17)) and w1 ¢4m+1 has the form
(I8). We are left to show £ = 1 since then wu;4 has rank 1 in view of ([16). Assuming
for a contradiction that £ > 1, then £ +m + 1 < d, s0 u1g = [U1 t4m+1, Uetm+1.d]-
Written out in matrices this equation reads as

-1

id 0 id id 0 Z A X 7 id 0 —-Z A X Z
0 id 0)J=10 id O 0 B Y 0 id O 0 B Y
0 0 id 0 0 id 0 0 A 0 0 id 0 0 A

which implies ZA — AZ = A, but this is a contradiction because the trace of
ZA— AZ is 0, whereas that of A is nonzero since A is unipotent because so is v/,
by assumption. ([l
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Before proving Lemma IE we discuss some properties of rank-1 operators.
Given subspaces H,L < C% with dimH = d — 1, dim L = 1, there is a rank-1
operator with kernel H and image L, which is unique up to a unit, namely the
composition C¢ — C¢/H =2 C — C = L — C% In what follows, it will be
convenient to consider rank-1 operators up to scalars; abusing notation, we will use
I 1, to denote either this equivalence class of rank-1 operator with kernel H and
image L. In terms of equivalence classes, the composition behaves as

: li

g pollg = {0 %f L, cH,

HH’,L if L §Z H.
The operator ug,r, := id + IIg,, (which is well-defined up to scaling ug ;, —id by
a unit) is unipotent if and only if L C H (otherwise uy j is diagonalisable and
nontrivial). In this case the fixed set of up 1, is H and its inverse is id — Iy , which
is another representative of ug 1. Fixing two such equivalence classes of unipotent
operators ug,r, and ug 1/, we have the commutator relation

UH'L if L C H and L/§ZH,
(19) [ww,r, ugr /) = ugp if L¢ H and L' C H,
id if Lc H and L' C H.

If L¢ H and L' ¢ H, then the commutator is not unipotent.

The following observation will play a role in the proof of Lemma @ Fixing
unipotent operators ug, 1, as above for ¢ = 1,2, 3 and assuming firstly that ug, 1,
commutes with up; 1, for j = 2,3 and secondly that uy, L, = [um,,L, , UHs,Ls], We
may use the commutator formula from above to conclude that L; C H; for j = 2,3
and that H2 = H1 or H3 = Hl.

Proof of Lemma Iﬂ, Since ¢(FE;;) — id has rank 1 for ¢ < j, the operators
uij = ¢(EBi;) = id 4 (¢(E;;) — id) are for @ < j of the form up,; r,; as discussed
above where H;; is the kernel of ¢(E;;) —id, i.e., the fixed set of ¢(E;;). We claim
that either Hiqg = Ho g = -+ = Hg_1 4 0r Hig = Hyq-1 == Hiz. This would
imply the result, because the two cases are interchanged when precomposing ¢ with
(—)_t. To show this claim, we use that u;4 commutes with u;; for ¢ < j. Since
U1g = [u12, uaq), it follows from the discussion after (19)) that either Hio = Hyq or
Hyq = Hyq. In the first case, we also have Hy; = Hyq4 for all 2 < j < d, using

u1; = [u12,ug;] and the fact that ug; preserves Hiq since it commutes with wuqg.
Similarly, in the second case we also have H; 4 = Hyq for all 2 < j < d using
uj.d = [uj2,us q] and that u; o commutes with uq 4. a

We illustrate the utility of Lemma 4.2] to study representations of SLg(Z) by
Corollaries [4.5] and [4.6] which will both play a role in the proof of Theorem [El

Corollary 4.5. For d > 3 and m < d, all homomorphisms ¢: SLy(Z) — GL,,(C)
are trivial.

Under the additional assumption that ¢ factors through SL,,(Z) < GL,,(C),
this corollary is proved in [Wei97, Lemma 3| using superrigidity and the congruence
subgroup property.
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Proof of CorollaryldBl If d > 4 then ¢(E14) is unipotent by Lemma @ and
since the Ej; are conjugate in SLq(Z) so are all ¢(E;;). We then apply Lemma [4.2]
@ to see that ¢(FE14) is trivial, so the conjugates ¢(E;;) are as well. As the Ej;
generate SLy(Z) the result follows. For (d,m) = (3,1) we use that SL3(Z) is perfect
(see Lemma [2.1) and GL;(C) is abelian. For (d,m) = (3,2) we apply the first part
of Lemma [4.4t in case we proceed as for d = 4 and the case is ruled out
because the images of E15 and E13 are not conjugate. O

Corollary 4.6. Fiz d > 3 and a nontrivial homomorphism ¢: SLy(Z) — SL4(C).

(i) If d > 4, then for all i # j the matriz ¢(E;;) is unipotent and ¢(E;;) —
id has rank 1. Moreover, after possibly precomposing ¢ with (—)~¢, the
matrices ¢(E1q), ..., ¢(Edq—1,4) all have the same fized set.

(ii) If d = 3, then the same conclusion holds under the additional assumption

im(¢) € SLy(Z).

Proof. We begin with two observations based on the fact that E;; € SLq4(Z) is for
all 7 # j conjugate to E14. Firstly, to show the first claim of |(i)| and @, it suffices
to consider ¢(FE14). Secondly, ¢(E14) is nontrivial since otherwise ¢ were trivial as
SL4(Z) is generated by the E;;.

In the case d > 4, it suffices to prove that ¢(Ej4) is not a scalar, for then
everything follows from Lemma[4.2] using that E14 is conjugate in SLq(Z) to E;; for
any ¢ # j. If ¢(E14) were a scalar, then all ¢(E;;) are scalars, so ¢ would have image
in scalar matrices because the E;; generate SL4(Z). But since E14 is a commutator
and scalar matrices commute, this would imply ¢(E14) = [¢(E12), ¢(Eaq)] = id,
which is not the case.

Next we consider the case d = 3, for which we imposed the additional assumption
im(¢) < SLgq(Z). It suffices by Lemma .2 to prove that the nontrivial matrix
¢(F13) is unipotent which we prove by contradiction. We consider the restriction
of ¢ to (E12, Eag) = Uz and consult the classification in Lemma [4.4l Since we
assumed that ¢(F13) # id is not unipotent, we do not need to consider the case
Cases and of Lemma [4.4] can be excluded by showing that for these
representations the matrices ¢p(E12), p(Fa3), ¢(E13) are not all conjugate in SL3(Z).
In almost all cases this can be seen considering their eigenvalues, except in the case

1 0 0 01 0
¢(Er2)=(0 -1 0 P(Ers) =1 0 0
0 0 -1 0 0 -1

Also these matrices are not conjugate in SL3(Z) which one can see by reducing
modulo 2. O

Theorem 4.7. Fiz d > 3 and a nontrivial homomorphism ¢ : SLa(Z) — SL4(Z).
There ezist linearly independent vectors vy, ...,vq € Z% so that, after possibly
precomposing ¢ with (=)™, the image of ¢ preserves the lattice A = Z{vy,...,vq}
and for all A € SLy4(Z) the matriz of the restriction ¢p(A)|x with respect to the
basis v1,...,vq s A.
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Remark 4.8. One might suspect that given ¢ : SLg(Z) — SL4(C) there exists a
basis v1,...,vq for C% so that the same conclusion of Theorem [4.7] holds (this is
claimed in the MathOverflow post mentioned in Remark [4.3]). This is not the case.
For example, there is a nontrivial representation ¢ : SL3(Z) — SL3(C) with finite
image, constructed by setting

1 0 0 01 0
¢(F12)= |0 -1 0 p(Es)= [1 0 O
0o 0 -1 0 0 -1
~1.0 0 -3 -3 ==
$(Bz)= | 0 0 1|  o(Exn)= -1 e =
0 1 0 —1+4\/—_7 1—ﬁ 0

and then deﬁning ¢(E13) = [¢(E12),¢(E23)] and (b(Egl) = [¢(E32),¢(E21)} One
can then check directly that this extends to a morphism SL3(Z) — SL3(Q(v/=7)) C
SL3(C) by checking that these matrices satisfy the relations in the standard pre-
sentation of SL3(Z) in terms of E;; (see [Mil71, Corollary 10.3]). This peculiar
representation has finite image because for each ¢ # j, the matrix ¢(E;;) has order
2, and the subgroup generated by {Efj} has finite index in SL3(Z) by a general
theorem of Tits [Tit76] (see also [Meil7, Theorem 3]).

Proof of Theorem 4.1l Fix a nontrivial homomorphism ¢ : SL4(Z) — SLg(Z). We
write u;; = ¢(E;;), considered as a matrix in SL4(C). After possibly precomposing
¢ with (=) 7", we know from Corollary[4.6] that for ¢ # j, the matrix u,; is unipotent
and u;; — id has rank 1, and that Hiq = Hoq = --- = Hg_1,4 where H;; < C? be
the fixed set of the matrix u;; for i # j. Note that each H;; is (d — 1)-dimensional,
since u;; —id has rank 1. Using the fact that for each fixed 1 < k < d, the matrices
Eig, Eay, ..., Eq, (skipping Fjy) are simultaneously conjugate to Eig,. .., E4_1.4,
we find that also the d — 1 hyperplanes Hi, Hay, . .., Hqx, (skipping Hyy) all agree.
We abbreviate this hyperplane by Hjy. Next we claim that the intersections of
hyperplanes L; = Hi N ---N quz N---NHy for 1 <i < d are all lines. For this it
suffices to show that Hy N--- N Hy is trivial. Assume by contradiction that this
intersection is nontrivial. By construction, it is the common fixed set for the w;;
for all ¢ # j, so it is in fact fixed by the whole image of ¢ since the u;; = ¢(E;;)
generate the image because the E;; generate SL4(Z). Moreover, since the H; are
defined over Q, also L := H, N---N HyNZ? is nontrivial, so the free abelian group
Z%/L has rank < d. Combining this with Corollary [4.5] we see that the morphism
SL4(Z) — SL(Z%/L) induced by ¢ is trivial, so ¢ factors over the additive group
Hom(Z¢/L, L). The latter is abelian, so ¢ must be trivial since SL4(Z) is perfect
(see Lemma [2.1]). This contradicts our choice of ¢.

Claim. The image of u;; —id is L;.

Proof of Claim. For definiteness, we prove the statement for ui4. Since uiq — id
has rank 1 and Ly = Hs N ...N Hy is 1-dimensional, it suffices to show that the
image of u14 — id is contained in Hj; for all j # 1. Recall that H; = Hy; is the
fixed set of uy;. Since uq; commutes with uq4, the matrix u;; preserves the image
of u14 — id, but since this image is only 1-dimensional, it is an eigenspace for u;,
which implies im(u14 —id) C Hy; since ug; is unipotent. This proves the claim.
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Now we construct the basis vy, ...,v4. Fix a nonzero vector vq € Lg which we
may choose to be an integer vector as Ly is defined over Q since ¢ has image in
SL4(Z). Now define inductively v; = (u;41 — id)(vi+1) € L;. Note that the v;
are integer vectors as u; i+1 = ¢(F;+1) € SLq(Z). Moreover, each v; is nonzero:
if v; were trivial then v;;; would be contained in L;41 N H;41 = HiN---N Hy
which we saw above is trivial, so we get v;11 = 0 and inductively vy = 0 which
is not true. Now we examine what properties the vectors vy,...,vq have. First
observe that they form a basis for C?, by the general fact that if Hy, ..., Hy are
hyperplanes of C% with trivial intersection, then a choice of nonzero vector from
each of the lines L, = HiN--- ﬂfl\i N---NHyg gives a basis for C?. By construction,
with respect to the basis v1, ..., vq, the matrix of w; ;41 = ¢(E; ;11) is E; ;41. Now
using the commutator relations in Uy, we conclude that after this change of basis
the restriction of ¢ to upper triangular matrices is the inclusion, so to finish the
proof suffices to show the same for the lower triangular matrices since SL4(Z) is
generated by upper and lower triangular matrices. As for upper triangular matrices,
it suffices to consider E;yq; for every i. By construction, ¢(E;t1,) has fixed set

(v1,...,0i,...,vq) and (¢(Fit1,:) —id)(vi) = a; - vi41 for some scalar a;, so we are
left to show a; = 1. This follows from the braid relation Ez_ll+1 Eir1, El_llle =
Eit1, By Bigae O

Proof of Theorem [El Fix a nontrivial homomorphism ¢: SLy4(Z) — SL4(Z) and
let vy,...,vq € Z% be the linearly independent vectors promised by Theorem 4.7]
so that possibly after precomposing ¢ with (=), the matrix ¢(A) for A € SLy4(Z)
preserves the lattice A = Z{vy,...,vq4}, and the restriction ¢(A)|, is represented
by the matrix A when written in the basis v1,...,vq. In particular, this has as
consequence that every orientation-preserving automorphism of A < Z? extends to
an orientation-preserving automorphism of Z¢. We claim that this in turn implies
A = (Z? for some ¢ > 0. Dividing the basis by ¢, this would show that we can
choose v1, ..., vq to form a basis of Z?, so ¢ is given by conjugation by an element
of GL4(Z). That A = ¢-Z¢ for some ¢ > 0 follows from two facts: (a) for every non-
characteristic subgroup L C Z< of full rank, there exists an (orientation-preserving)
automorphism of L that does not extend to Z¢, so A has to be characteristic, and
(b) every characteristic subgroup L < Z? of full rank has the form ¢ - Z¢ for some
¢ > 0. To see these two facts, we fix a subgroup L < Z? of full rank. By the
elementary divisor theorem, there is a basis by, ..., bq of Z¢ and natural numbers
li,...,44 such that £y - by,..., €4 - by is a basis of L. If L is non-characteristic,
then ¢; # {¢; for some ¢ and j (since £ - Z? < 7% is clearly characteristic), so the
automorphism of L that interchanges ¢; - b; and ¢; - b; does not extend to Z¢ (by
interchanging a second pair of basis vectors we also find an orientation-preserving
example of such an automorphism). This shows (a). Moreover, if we assume ¢; # (;
for some i and j, then the automorphism of Z? that interchanges b; and b; does
not restrict to L, so L cannot be characteristic. This shows (b). (]
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