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equations with nonlinear conservative noise”
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Abstract

We study the small-mass limit, also known as the Smoluchowski-Kramers diffusion
approximation (see [16] and [22]), for a system of stochastic damped wave equations,
whose solution is constrained to live in the unitary sphere of the space of square
integrable functions on the interval (0, L). The stochastic perturbation is given by a
nonlinear multiplicative Gaussian noise, where the stochastic differential is understood
in Stratonovich sense. Due to its particular structure, such noise not only conserves
P-a.s. the constraint, but also preserves a suitable energy functional. In the limit
we derive a deterministic system, that remains confined to the unit sphere of L?, but
includes additional terms. These terms depend on the reproducing kernel of the noise
and account for the interaction between the constraint and the particular conservative
noise we choose.
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1 Introduction

In recent years, there has been a considerable research activity on the Smoluchowski-
Kramers diffusion approximation for infinite-dimensional systems. This is related to
the study of the limiting behavior of the solution of a stochastic wave equation with
damping, when the mass vanishes. The first results in this direction dealt with the case
of constant damping term, with smooth noise and regular coefficients (see [9], [10],
[20], and [17]). More recently, the case of constant friction has been studied in [13]
and [24] for equations perturbed by space-time white noise in dimension d = 2, and in
[15] for equations with H6lder continuous coefficients in dimension d = 1. In all these
papers, the fact that the damping coefficient is constant leads to a perturbative result, in
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Small-mass limit for constrained SWEs

the sense that, in the small-mass limit, the solution u, of the stochastic damped wave
equation converges to the solution of the stochastic parabolic problem formally obtained
by taking u = 0. The case of SPDEs with state-dependent damping was considered
first in [11] for a single equation and later, in [8], in the case of systems of equations
(see also [12]). Notably, this scenario differs drastically from the previous one, as the
non-constant friction leads to an additional noise-induced term in the small-mass limit.

An analogous phenomenon has been identified in [1], where the case of SPDEs
constrained to live on a manifold in the functional space of square-integrable functions
L? was considered. The study of deterministic and stochastic constrained PDEs is not
a new field of study. In this context, we would like to mention the paper [19] by Rybka
and the paper [6] by Caffarelli and Lin, where, in order to find a gradient flow approach
to a specific minimization problem, deterministic heat flows in Hilbert manifolds were
explored. A constrained version of the deterministic 2-D Navier-Stokes equation was
studied in [4] by Brzezniak, Dhariwal and Mariani, as well as in [7] by Caglioti, Pulvirenti,
and Rousset, and later its stochastic version was investigated in [3] and [2] by Brzezniak
and Dhariwal.

In [1] we have introduced for the first time a class of damped stochastic wave
equations constrained to evolve within the unitary sphere of L? and we have shown
that the Smoluchowski-Kramers approximation leads to a stochastic parabolic problem,
whose solution is still confined to the unitary L2-sphere and where, as in [11] and [8], an
additional drift term appears. Somewhat surprisingly, such extra drift does not account
for the Stratonovich-to-It6 correction term.

In the present paper we continue the work started in [1] and we introduce the
following system of stochastic wave equations on the interval (0, L)

,uafuu(t, z) + /~L|atuu(t)|2L2(0,L)uu(ta T) = aiu#(t, z) + ‘azu,u(t)@?(o,L)uu(tv )
—YOpup(t, @) + /i (up(t) X Oyuy(t)) o Qyw(t, x), (1.1)
uu(0,2) = uo(z), Opuu(0,2) =wvo(x), uu(t,0)=wu,(t,L) =0,

depending on a parameter 0 < u << 1. Here u,(t,z) € R3, for every (¢,z) € [0, +00) x
(0, L), the friction coefficient + is strictly positive, and w(t) is a cylindrical Wiener process,
white in time and colored in space, defined on a stochastic basis (2, F, {F; },P), with
o denoting the Stratonovich stochastic differential. The solution u,(t) is subject to
the finite-codimension constraint of living on M = S;2(o,1)(0,1), the unitary sphere of
L?(0, L), with the initial data (ug,vo) in M, the tangent bundle of M.

The key and fundamental distinction between the present paper and [1] lies in the
nature of the random perturbation considered. Actually, unlike any previous work
related to the Smoluchowski-Kramers diffusion-approximation, both in finite and infinite
dimensions, here we consider a diffusion coefficient o,, which is nonlinear and includes
both the position u,(t) and the velocity d;u,(t), through the vector product ,/zu,(t) x
Oru,(t). The reason why in all previous works the diffusion does not depend on the
velocity is that, while one expects a limit for u,, there is no limit for d,u,, and it is
not clear how to make sense of the limit in the equation, especially when it comes to
the martingale term. However, as shown in previous work, the term /i1 9;u,, can have
non trivial limiting behavior, and with this new work we are trying to understand what
happens when o,,(u) = \/pu X v.

Since in [1] the diffusion coefficient did not include the velocity 6tuu(t), the It6 and
Stratonovich interpretations of the stochastic differential yielded the same equation.
In the current setting, however, the It6 and Stratonovich differentials lead to different
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Small-mass limit for constrained SWEs

equations, and our choice to interpret the stochastic differential in the Stratonovich
sense has significant implications. Because of the special structure of the diffusion
coefficient, both the Stratonovich and It6 integrals ensure that (u,(t), d;u,(t)) remains
within the tangent bundle M, for every ¢ > 0. However, the noise in the Stratonovich
sense exhibits a more substantial conservative behavior by preserving also the energy

t
Eu(t) = |u#(t)|i101(0,L) + 11O () 720, +/O |0t (9)[720,1 ds, (1.2)

almost surely with respect to IP. This phenomenon, well-understood in other contexts,
particularly in the parabolic setting, plays a critical role in the scenario considered here,
as it serves as a key tool in proving the necessary bounds for u,(t) and /i d;u,,(t) in the
appropriate functional spaces, uniformly with respect to u € (0,1). And those bounds
are fundamental in the proof of the tightness and in the identification of the limit.

After showing that for every fixed 4 € (0,1) and p > 1, and any initial condition
(ug,vo) € [HE(0,L) x L?(0, L)) N M and p > 1 there exists a unique mild solution

2 = (s D) € LP(9 ([0, +00); [Hy (0, L) x L*(0,2)] 1 M),

we study the limiting behavior of u,, as p | 0. Our main result consists in proving that if
(ug,v0) € [H?(0,L) x H'(0,L)] N M, then, for every T > 0 and § < 2 and for every > 0
we have

iiir%)]POuﬂ — e o) > n) = 0. (1.3)

Here u is the unique solution of the deterministic problem

VOru(t, x) + %w Or(Ju(t, x)|*u(t, 2)) = Bu(t, x) + |Opu(t) [Fru(t, x)

3p(z)

2, ([02ult. ) + 10ou®lFrult, )] - ult, 2)) u(t, @) (1.4

+

w(0,2) = up(x), wu(t,0) =u(t,L) =0,
where

o)=Y @), ae 0L,
i=1

and {¢;};cw is an orthonormal basis for the reproducing kernel K of the noise w(t).
In particular, this means that u, converges to a deterministic limit «, which solves a
deterministic problem, where the constraint to stay on the unitary sphere of L?(0, L)
is preserved. Remarkably, as in the previously mentioned cases - where however only
stochastic limits are obtained - in the small-mass limit several noise-induced terms
appear in the limiting equation, and such terms depend on the noise present in the
second-order problem through the function ¢.

It is important to remark that this non trivial behavior emerges only in the ,/u scaling
for the diffusion coefficient, as in the case of u®, with o > 1/2, the limiting equation (1.4)
has to be replaced by the constrained parabolic problem

~yOu(t,x) = 3§u(t, x) + |0u(t)|Fult, x),

with the same initial and boundary conditions, where there are no noise-induced terms.
As for the limiting behavior of u,, in the scaling 1%, with « € [0,1/2), at this stage it is
not clear what we should expect. We believe that if any limiting point exists, it should
satisfy the deterministic equation

2 = 2 § t 2US'U8 uls)as § t U82U82USS
) Putt) = uoluo + 2 [ (@2u(s) -u)uits + 2 [ ouoyluts)Pus)as. 1.5)
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However, in order to prove the convergence of any limiting point of the family {u,},¢ (0,1
to a solution of (1.5), tightness in at least L?(0,T; H(0, L)) would be necessary, and,
because of the nature of the diffusion coefficient o(u,v) = u X v, the uniform bounds
required for its proof seem to be out of reach.

Under the ,/u scaling assumption, in addition to the energy identity (1.2), we can
prove suitable bounds for v, and 0,u, in spaces of higher regularity than the space
C([0,T); HE(0,L)) N L?(0,T; H*(0, L)) for u, and the space L?(0,T;L?(0,L)) for d;u,,
which are uniform with respect to p € (0, 1). Those bounds allow to show that the family
{L(u.)} e (0,1) is tight in C([0,T; H4(0, L)), for every § < 2, and any weak limit point
for u, is a solution of (1.4). Equation (1.4) is highly non trivial and the existence of
solutions is obtained only as a consequence of the small-mass limit. However, any limiting
point for {u,} e (0,1) turns out to belong to the space of functions in C([0,77; HL0,L)N
L?(0,T; H*(0, L)), which admit a weak derivative in time in L?(0,T; H). What is relevant
here is that despite its complex form, we can prove the uniqueness of the solution to
equation (1.4) in these functional spaces. Consequently, we can identify any limit point
for {uu}#€ (0,1) with the unique solution of equation (1.4) and limit (1.3) follows.

Before concluding, let us outline the structure of this paper. In Section 2, we introduce
all the assumptions and notations that will be used throughout the paper. Section 3
presents the main results. In Section 4, we study the well-posedness of equation (1.1),
and in Section 5, we establish bounds for the solution w, and /i d;u, which hold
uniformly with respect to u € (0,1). Section 6 focuses on the limiting equation (1.4);
we introduce an equivalent formulation and prove the uniqueness of the solution in a
suitable functional space. Finally, in Section 7, we demonstrate the validity of limit (1.3).
This is achieved by first integrating (1.4) with respect to time and rearranging all terms
in a proper way, and then by proving tightness and identifying any weak limit as the
unique solution of (1.4).

2 Notations and assumptions

Let H denote the Hilbert space L?(0, L; R?), for some fixed L > 0, endowed with the

inner product
3 L
(u,v), = Z<“i’”i>L2(07L) = /0 (u(z) - v(z)) dz,
i=1
and the corresponding norm |-|5. Notice that here and in what follows, we shall denote
the scalar product of two vectors h, k € R3 by (h-k). Moreover we shall denote the norm
of a vector h in R? by |h|gs, or just by |h|, when there is no risk of confusion.

Next, for every k € IN we shall denote by H* the closure of C§°([0, L]) in W*2(0, L),
where W*2(0, L) is the space of all functions « € H such that D"u exists in the weak
sense, for every h < k, and D"u € H. Due to the Poincaré inequality, we can endow H*
with the norm

[u| e = | D ulgr.

Moreover, we shall set H;, := H*T! x H*. When k = 0, we will simply denote #, by #.
Finally, for every function v : (0, L) — R3 we shall denote

uloo = supfu(a)]gs.
z€ [0,L]
Notice that since [0, L] C R, we have H! < L>(0, L).
If £ and F are Banach spaces, the class of all bounded linear operators from F to F

will be denoted by L(F, F'). We will use a shortcut notation £(E) for L(E, E). It is known
that L(E, F) is also a Banach space. By £Lo(E, F; F') we will denote the Banach space of
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all bounded bilinear operators from F x F =: E? to F. If K is another Hilbert space, by
T2(K, F'), we will denote the Hilbert space of all Hilbert-Schmidt operators from K to F,
endowed with the natural inner product and norm. It is known that 75(K, F) — L(K, F)
continuously. If {e;} ;e is an orthonormal basis of a separable Hilbert space K which is
continuously embedded into a Banach space E and

oo
> lejlh < oo,
j=1

then for every A € Lo(E x E; F) we put

trr(A) =Y Alej,e)). (2.1)
=1

In what follows, we denote by M the unit sphere in H
M={u€H:|ug=1},
and by M the corresponding tangent bundle

M = {(u,v) EMXH:<u,v>H =0}.

Now, we rewrite equation (1.1) as the following system

du,,(t) = v, (t)dt,

dvy(t) = % (020 (8) + 10010, (8) [ (t) — palvn (8) By () — yv, (8)] dt

(2.2)
+\/1ﬁ<u“(t) X vu(t)) o dw(t),
u,(0) = uo, v,(0) = vo, u,(¢,0) = u,(t, L) = 0.

Here w(t) is a cylindrical Wiener process in H. Thus, if we denote by K its reproducing
kernel Hilbert space, we have

w(t,z) = Zfi(x)ﬁi(t), (t,z) € [0,+00) x (0, L),

where {3;(t)}:c v is a sequence of independent standard Brownian motions, all defined on
the stochastic basis (Q, F, {F; }1>0, P), and { };cw is an orthonormal basis of K. In what
follows we shall denote by F a Banach space containing K, such that the embedding of
K in F is Hilbert-Schmidt. In particular

oo
Z |&il% < oo.
i=1

Moreover, we shall assume the following conditions are satisfied.
Hypothesis 1. All functions ¢; belong to C*([0, L]). Moreover, if we denote

pla) =) l&@)P,  eu(@) =) @), ze(0,L),
i=1 i=1
we have that ¢ and ¢; belong to L>°(0, L).
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Remark 2.1. Since for every x € (0, L), we have

| > G@E )] < Vel)e ).

thanks to Hypothesis 1 we have that y is weakly differentiable and
(oo}
Ple)=2) &(@)E@), we (0,L).
i=1

In particular, this allows to conclude that ¢ € W'°°(0, L) with
[¥']o0 < ¢ (lloo + [1]00)- O

3 Main results

In what follows, we denote by A the realization in H of the second derivative operator,
endowed with Dirichlet boundary conditions, and for all i > 0 define

Apz = (v,p " Au), 2= (u,v) € D(A,) = Hi.
Moreover, for every y > 0 we define
F.(2) = —pv|3u+ [0pulfu, 2= (u,v) € H.

With these notations, system (2.2) can be rewritten as

dz(t) = A,z (t)dt + % (0, F,(2(8)) — 7 v(8)) dt + \/lﬁ((),u“(t) % 0 (t)) o dw(t). (3.1)

with z,(0) = 2o = (uo, o).
The first result we will prove in this paper is the following well-posedness result for
system (2.2) in H.

Theorem 3.1. For every > 0 and zy = (ug,vg) € H N M, there exists a unique mild
solution to the stochastic constrained wave equation (2.2). Namely, there exists a unique
H N M-valued continuous and adapted process z,,(t) = (u,(t),v,(t)), t > 0, such that the
following hold.

1. The process u,(t) has M-valued trajectories of class C' and
vu(t) = Opuy(t), t>0.

2. The process z,(t) satisfies the equation

zu(t) = Su(t)zo + %/0 Su(t = 8)(0, Fu(zu(s)) — yvu(s))ds

1 [t
—|—\/ﬁ/0 Su(t— s)(O, (up(s) X vu(s)) o dw(s)),

for every t > 0, P-almost surely.
3. The following identity holds for everyt > 0

t
an)fe el + 27 [l (9 ds = fuolip + luoly, P -as. (32)
0
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The second result, which represents the main goal of this paper, concerns the limiting
behavior of the process u,(t), as p | 0.

Theorem 3.2. Fix (ugp,v9) € H1 N M. Then, for every T > 0 and 6 < 2 and for every
n > 0 we have

FlLiL%IP(Wu — ule(o,1);m5) > 7]) =0,

where u is the unique solution of the following deterministic problem

o[ (v + gelu® Ju(t)] = o2ut) + lo.u(t)Fyu(t)

ﬁ% ([02u(t) + [0zu(t) Fru(t)] - ult)) u(t),

uw(0,2) =up(x), wu(t,0)=wu(t,L)=0.

4 The well-posedness of system (2.2)

As known (see e.g. [5, Definition 3.1]), for an arbitrary function G : F — L(E, F) of
class C*

t t 1 t ,
/O G(s)) 0 dW(s) = /0 Cle() AW (s) + /O tric[G(=(s)G(a(s)] ds,  (41)
with trx defined as in (2.1). Note that
G'(2)G(z) € L(E;L(E,F))=Ly(Ex E,F), z¢€F,

and
G'(2)G(2)(e1,e2) = [G'(2)(G(2)e1)]e2, (e1,es) e ExXE, 2z¢€ F

This means that trx [G'(2)G(z)] is a well defined element of F' and satisfies

o0

trx[G'(2)G(2)] = ) _[G'(2)(G(2)e;)]es,

i=1
where {e;}cw is an orthonormal basis of K. In particular, if we take
G(u,v)k := (0,0(u,v)k), (u,v)€ H, ke E,
for some o : H — L(E, H'), we have
[ (u, 0) G, )] (ky B) = (0, B0 (11, ) o (w, 0) ()] ()

so that
tr[G'(2)G(2)] = (0, trg [Oyo (u, v)o(u,v)]). (4.2)

In what follows, we will take
o(u,v)k = (u x v)k.
The following result holds.

Lemma 4.1. The map o : H; — T2(K, H*) is Lipschitz-continuous on balls and has
polynomial growth, for k = 0,1. Moreover, its Fréchet derivative along any direction
v € H* is given by

Do)y =uxy, z=(uv)eHr vyeH",
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and the function
Hi 2 2 = (u,v) = trg [0,0(2)0(2)] = tr [u x (u x v)] = pux (uxv) € H*,  (4.3)
is Lipschitz-continuous on balls with polynomial growth.

Proof. Case k = 0. For every z; = (u1,v1) and zo = (ug,v2) in H we have

lo(z1) = o(z2) |17 (k1) = Z|(U(21) —o(22))&l|H

=1

L 00
= / luy () x vy (x) — uz(z) x va(2)|? Z €i(2)|? do < c|@|oo]ur X v1 — ug X V2%
0

i=1
< clploo (Jur — ualips o1l + lualiyson = vally ) < eloloo (121 + |2283) 121 — 2203,

Since o(0) = 0, this implies that o : H — T2(K, H) is well defined and locally Lipschitz
continuous, with quadratic growth.
For every u € H' fixed, the mapping o(u,-) : H — L(E, H) is linear and its derivative
0yo(u,-) is given by
Ovo(z)y=uxye L(E,H), z=(u,v) € H, ye H

In particular 9,0 (%) 0(z) € L(E x E, H) and
tri [0uo(2)0(2)] = trc [u x (uwx v)] = > (ux (uxv)&) & =@ (ux (uxwv)).
=1

Now, for every h, k € R? we have
hx (hxk)=—|h*k+ (h-k)h, (4.4)

so that we can write
trc [0,0(2)0(2)] = p(—|ul*v + (u - v)u),

and

[t [ux (u x v)][7 = /0 p(@)? |~ [u(@) Po(@) + (u(@) - v(@))u(@)|” do

L
= /0 p(@)? (Ju(@)[*o(@)? = Ju(@)* (u(@) - v(2)?)dz < elolZ |ul i ol f < clelZ |2l
Moreover,

2
|trK(u1 X (u1 X ’1)1)) — tI‘K(’LLQ X (’LLQ X 'UQ))|H

L
<e [ o@? (@ + [uz@)P) (oa@P + foa()?) (o) — uafe)
0
(fu @+ fuz(@)]*) o1 () = va(@) ) da
< cliplZ ((lus B+ o) (loa i =+ o) s = wal + (fualigs + sl for = vaf% )
< clel3 (213 + l22l3) |21 — 223
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This implies that the mapping z € H — trx [0,0(2)o(2)] € H is well-defined and locally
Lischitz-continuous, with cubic growth.

Case k = 1. For any z; = (u1,v1) and 2o = (usg, v2) in H;, we have

[eS)
lo(21) = oGzl 7, s,y = D |(0(21) = 0(22))&il 7
=1

(o) o0
S2Z’§i(u1 X U1 — U2 sz)/|§{+22|§,’»(u1 X V1 — Ug xvg)ﬁ{

=1 =1
/ 2 112 / 2 112
< C|<P|oo(|(ul —ug)" X vl + [(ur —ug) X Vil + |uy X (v1 —ve)|f + |ug X (v1 — va) |H)
elploo ([ — uz) x valfy + fuz x (01 = v2))
c(lloo + [@1lo0) (Jtr — wa B |v1 31 + [ua|F |vr — v2lF)

This implies the local Lipschitz-continuity and polynomial growth of the mapping o :
H1 — T2(K, H'). Finally, for every z; = (u1,v1) and zo = (uz, v2) in H;

|trac(ur x (ur X 01)) =t (u X (us X v2))|3,
< elplZ (1w = u2)’ x (> v0) g + |(wn = ua) x (wn x v1)'fy)
—|—c\<p|go(|u’2 X (u1 X v1 — ug X V)[4 + |ug X (ug X v1 — up X Uz)/ﬁ:,)
tel|@' 2 Jur x (ug x v1) —ug x (ug X vo)|%
¢ (lole + 1012) (a5, + I22f3,) 121 = 22f3e,
and this implies that the mapping
Hy > trg [u x (u xv)] € HY,

is locally Lipschitz continuous and has cubic growth. O

As a consequence of (4.1), (4.2) and (4.3), we can rewrite system (2.2) as

du,,(t) = v, (t)dt,

dv,(t) = %[@%uu(t) + |8zuu(t)|%1uu(t) — ,u|vu(t)|?quu(t) — yuu(t)

(4.5)
1 1
+—trg(u,(t) X (u,(t) x v,(t dt + — (u, (t) x v, (t))dw(t),
o (upa() % (un(t) x vu(t)))] \/ﬁ(;() u(t))dw(t)
u,(0) = uo, v,(0) = vo, u,(£,0) = u,(t, L) = 0.
EJP 30 (2025), paper 25. https://www.imstat.org/ejp
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In particular, equation (3.1) can be rewritten as

dz(t) = Az (B)dt + % (0, F(2,(6)) — you(2)) dt

1 1
+@@ﬂkaW%@X%@Wﬁ+7ﬁﬁwwxwwﬂmm
with 2,(0) = zo = (ug,v). This allows to say that if a process u,(t) has M-valued
trajectories of class C! and
vu(t) = Opuyu(t), t>0,
and z,(t) = (u,u(t),v,(t)), then the process z, is a mild solution of equation (2.2), with
initial condition zy, if for every ¢t > 0, P-almost surely,

) = 8,020+ % [ 8,0 =90 F(5) = () s
+i/0 Su(t— s)(O7 tric (upu(s) x (uu(s) x v,(s))) )ds

1 t
+\/ﬁ/0 St —5)(0, (uu(s) x vyu(s)) dw(s)).

4.1 Proof of Theorem 3.1

It is immediate to check that F), : Hy — H k is Lipschitz continuous when restricted to
balls, for all £ > 0, and has cubic growth. Thus, in view of Lemma 4.1, the proof follows
from a modification of the arguments introduced in [1, proof of Theorems 2.9 and 2.10].

Due to the local Lipschitz continuity of all coefficients in H, equation (3.1) admits a
unique maximal local mild solution z, € C([0,7,); H), defined up to a certain stopping
time 7,. Our purpose is showing that z,(t) € M, forallt € [0,7,), and

P(r, =o0) = 1. (4.6)

In this way, we get the existence and uniqueness of a global mild solution z, in the space
C([0,400); HNM).

In order to prove the invariance of the tangent bundle M, we introduce the following
processes

ﬂu(t) = % (|uu(t)|%1 - 1) ) nu(t) = <uu(t)vvu(t)>Hv te [O,TM).

If we show that they satisfy the linear system
d,,(t) = nu(t) dt

1 (4.7)

mmw+lwﬁw=(wa@rwm@@)mw, te0,m),

since 9,,(0) = 71,(0) = 0, we obtain that ¥,,(t) = n,(t) = 0, for every ¢t € [0,7,), P-a.s., and
this implies that z,(t) € M, for every t € [0,7,), P-a.s.
As in [1], it can be shown the following fact.

Lemma 4.1. Assume that a local process z,(t) = (u,(t),v.(t)), t € [0,0,) is a solution to
t t

zu(t) = Su(t)zo—&—/ Su(t—5)(0, f(s)) ds+/ Su(t—5)(0,9(s)) dw(s), te [0,0,). (4.8)
0 0
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Small-mass limit for constrained SWEs

where all processes are progressively measurable, f is H-valued and g is 72 (K, H)-valued.
Then, for every ¢t € [0,0,), P-almost surely,

MNMMWH=WNNW@M-%AHMMﬂ%%+AwM$ﬂ@M%

4.9)
+Ahmw%m+AwAaa$m@m,
and
|w@@+%@w®%:WMW%+%&W®%+2A@A%ﬂmH@
(4.10)
+zA<wwxwgmme+[]mwm%mﬂw&
O

Now, the local solution z,(t) = (u.(t),v,(t)) of equation (3.1) satisfies equation (4.8),
with

ﬂ$:ﬁ%@%%@+%%ﬁﬁm¢@—%M$+iuﬂw@w&M@XW@W
and

(8) = =0 (2(5)) = —= 1 (5) X v3(5)

g\s): N N ulS)-

Notice that
(wu(s), F(3)) i = —lvu(s) | Fluu(s) |5 + i|uu(5)|§{1‘“u(5)|§l - %m(sx

and for every £ € K
(up(s),9(s)§)u = 0.
Thus, thanks to identity (4.9) in Lemma 4.1, we have

10 =100 = - [ )i ()l — 1) s

! 2 2 Y K
—Ahmewme—ww—;AwAaw@mmS

t

_l tus s)ds — tvs SS*Z s)as
—MAIAN%%Ud AIAN%%Od MAnAﬁ#

In particular, the processes 9,(t) and 7,(t) satisfy equation (4.7), and, as explained
above, this implies that z,(t) € M, for every t € [0,7,), P-a.s.
Next, let us prove (4.6). Since (u,(t),v,(t)) € M, we have

(0u (), F(O)) i = —% o (O3 + i%(t),trK [ () X (wnls) X vu(s))]) -

As
<v#(t)7g(t)€>H = 01 é- S K7

EJP 30 (2025), paper 25. https://www.imstat.org/ejp
Page 11/27



Small-mass limit for constrained SWEs

for every t < 7, this gives

2 2y 1
dlv, (t)[} = ;(vu(t)ﬁﬁuu(t)>Hdt - ;|Uu(t)|12th + () x 0(6) |7, .1y Ot

+i<vu(t)7trz< [t (s) X (wp(s) X vu(s))]) o dt.

In view of (4.4), for every h, k € RR3 we have
|hx k|2 + (k-[h x (hxk)])=|hxk>+|(h-E)> = |h*k* =0.

Therefore, we obtain

1 2y
dlv. ()% = 7 dlu, (8)| 7 — ;Ivu(t)lirdt,

and this implies that for every ¢t < 7,

t
@) sl (O +27 [ Jou(6) s = uolis + e enfiy, P2, (4.11)
0

In particular, we can conclude that for every p > 0 there exists some deterministic
constant s, > 0 such that

sup |z, (6)|n < Ky, P—-as.,
te[0,7,)

and (4.6) follows. Finally, by combining together (4.6) and (4.11), we obtain (3.2).

5 Energy estimates

In Theorem 3.1 we have seen that for every (up,vo) € H N M and p > 0, equation
(2.2) (and, equivalently, equation (4.5)) admits a unique mild solution z,, = (u,“vu) €
C([0,400); H). Moreover, for every p > 0 and ¢ > 0 the following identity holds

t
lun ()3 + plva ()1 + QW/ [0, (8)[31ds = JuolFpn + plvolfy,  P-as. (5.1)
0

In this section, our purpose is proving that for every (ug, vg) € H1 N M, there exists a
constant ¢ > 0 such that for every u € (0,1) and ¢ > 0

t
E sup (I () Bre + el () 32 ) + B / [o,(8) 3 ds < c. (5.2)
rel0,t 0

The inequality above is a consequence of the following Lemma.

Lemma 5.1. For every (ug,vg) € Hi N M, there exist two constants c;, c2 > 0 depending
only on |(ug, \/ftv0)|3,, ¢ and 1, such that for every p € (0,1) and ¢ > 0

E sup (Jus(rliz + alou()li -+ i) o () )
re |0,

+E / (10 () s + Ve (3) e [0 (5) B + s () s 0, () s + sl () i o (5)1 ) dis

< 1 (luol3zs + plvol3ys + ol ool ) exp (ez (fuol3n + wlvol) )-
(5.3)
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Small-mass limit for constrained SWEs

Proof. By applying Itd’s formula to |v,(¢)[%,, we get
2
Ao (O = = (0082000 1 + () (0 0), 00

=0, ()3 (0,0 (1) 10 () 0 — 0w ()]s + %<vu(t)7trz< (wn(t) % (ua(t) X 0 (1)) g0

g It () % 0 O g vy ) —= (00, (1) X 0 (1)) (0)) 5,

Vi

=~ (0) s+ (O (O + [0,(0Fr) = 4l O 0,01

+%( — 2w ()31 + (v (t), tre (up (8) X (wu(t) X vu(8)))

, 2
F lun () x v O 7 (ke 1y ) dt + ﬁ@u(t% (upu(t) X v (t))dw(t)) 1, o

According to (5.1), this implies that

A (e + o (0 s + (s Lo () )
= =2yl (O o (1)t — 210 (1) st + (0 (8). e (1, (8) > (a(8) X 0 (1)) 1l

+ ||, (t) x v#(t)H%(KHl) dt 4 23/p, (1), (u () X v, (8))dw(t)) ;-

Now, let us define

t
Y, o(t) :==exp (—a/ |vu(3)?{ds> , t>0, u>0, (5.5)
0
for some constant a > 0 to be determined later. We have
(Va0 (s ()= + o) s + sl () s o (0) ) )
=Y.a(t) ( — aluy, ()220, (0| F — apelon ()3 [0, (01 F — aplu ()3 [0, (1) 5

= 29w ()7 [ou @)1 = 29[vu ()5 + (Ut b (ua() < ((t) X vu(1)))) s

+ [luu (t) x v,t(t)HQTZ(K’Hl) )dt + 2/ Yy a () (v (1), (upu () X 0, (8))dw(t)) ;-

Thus, if we integrate with respect to ¢t > 0, we get

Vi) (s (8) iz + il () s + el (8) s o () ) + / Vi) (aluy () i [0 (5)1

agelvy(8) 3 [0 ()| + aplug(8) 310, (9) |5 + 27wy (9) 3 [ () [ + Q’Ylvu(S)lip)dS

= |uo|F= + plvoliys + pluolF lvol %

[ Vi) (9. () + 2 [V, Gl (3). () (s)
(5.6)
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Small-mass limit for constrained SWEs

where
J(u,v) := (v, trg(u X (u X v))) 4y + Jux UH%(K’Hl) , (u,v) € Hy,
and
G(u,v)€ := <v, (u x v)§>H1, (u,v) € H1, E€K.
Note that for every (u,v) € H;

D(tri (u x (uxv))) = (—|ul*v+ (u-v)u) ¢’

+( —2(Du - u)v — [u?Dv + (Du - v)u + (u- Dv)u + (u - U)Du) ©,

so that we have

L
(v, trg (u x (u x v))>H1 = /0 (_ lul?(v- Dv) + (u-v)(u- Dv)> o'dx
L
+/() ( —2(Du - u)(Dv - v) — |ul*|Dv|? + (Du - v)(u - Dv))godx (5.7)

L
— u-u v-(u- U2 u-v u - v Z.
+ [ (= 2Duu)(Du- (w Do+ (- 0)(Du- D))
Moreover,

2
[Ju % UHTZ(K,Hl)

oo L L oo
:Z/ |(u><v)f§+D(u><v)§i|2dm:/ Z|(uxv)§§+D(uxv)§i|2dx
i=170 0 =1
L L ) L
= *p1d D d 2/ -D i&id
/0 lu x v|*p; m—i—/o |D(u x v)|"pdx + ; (uxwv (uxv))zi:ffzx (5.8)
L L )
:/ |u><v\2<p1d;1:—|—/ |Du><v—|—u><Dv| pdx
0 0

L
+2/ (uxv)-(Duxv—l—uxDv)Zfifgdm.
0 i

Due to the well-known identity

((axb)-(exd)=(a-c)b-d)—(a-d)(b-0c), a,b,c,d € R3,
from (5.7) and (5.8) we get

L L
J(u,v) = /0 (u x v)%prdx + 2/0 ((uxv)- (Duxwv)) Zfifg dz

(5.9)
L
—|—/ [(Du x v)? = ((Du x u) - (Dv x v))]¢p dz.
0
In particular, this implies that for any ¢ > 0
[T (u,0)] < elrloolulfpn 0l + ev/[@loolr]ooul e [ul 2 v[F
elloolul a2 ul g [v] vl < € [ulf [vlFn + c(e)ulfalolF,
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Small-mass limit for constrained SWEs

for some constant c(e) = ¢(e, |¢|oo, |¢1]ec) > 0. Hence, according to (5.1), we obtain

E sup
re [0,t]

Axw@ﬂw@mes

< e (Juol2 + ulvol?) /nmnmmmmmw n/mahmnmmumw

(5.10)
Next, for every (u,v) € H; and k € K we have
L
G(u,v)k :/ (Dv - (u x v)k' + [Du x v +u x Dv]k) dx
0
L
= / (Dv - (u x v)k" + (Du x v)k) dz,
0
so that
2 = (" 2
1G s 0)I 7 rem) = D \ /0 [(Dv - (ux v))& + (Dv- (Du x v)) &] dz‘
i=1
< [l - (1 x )&l + 1(Du x 0)6il% ) < e(lihoo + loaloo) ulfyz ol ol
i=1
(5.11)

This implies that for every ¢ > 0 we can fix some c(e) = c(€, [¢]oo, |¢1]00) > 0 such that,

/O Y, a(5)Glun(s), (3))du(s)|

Vi E sup

rel0,t]
1
2

gm{[ Mammwmwwm&mm%)

1
2

¢ ([ehe + lp1]oo) *E (/0 1Y;2 o (9) | () T2 0 (9) 1 [uu () dS)

<euE sup Yy, q(r)|v.(r)|Fn + cle / (8w (8) 372 v, (5) |3 ds.

relo, ]
(5.12)
Therefore, if we pick

B 1 -1
=5 Ay (JuolFn + plvol?)

and @ = a(€) > 0 large enough in (5.10) and (5.12), from (5.6) we get

lep(nﬂmowwﬁp+umvﬁp+uwvmpmvﬁg>

rel0,t]
+B [ Yialo) (o) + a0 o) s

t
+CE/O Yya(s) (N‘vu(s)ﬁll‘vu(s)@l + M|Uu(8)|ip|vu(8)|§1)d8
< Juol2 + plvol 3 + pluo 3 [volf-
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Small-mass limit for constrained SWEs

Finally, since (5.1) gives for every ¢t > 0

t
1
[ s s < o (ol + mlooly), P - as.
0 2y
we conclude

E sup (Junr)s + o (i + i) s o)y )
re|0,t

t
+eF / (10 () + 1) Bz o, () + sl () s () i =+ () i o) 3 ) s

a
< (Juofs2 + ool + huol3s ol ) exp (5 (ol + plvoliy) ).
and this implies (5.3). O

6 The limiting equation

We consider the following deterministic equation
1
ouf (7 + gelutt, ) P )ult,2)| = 2u(t, @) + () Frut, )

+?;% ([&%u(u x) + |6$u(t)|%{u(t, gj)] ~ult, 1‘)) u(t, z), (6.1)

w(0,2) = up(x), w(t,0) =u(t,L) =0,

where, we recall, p(z) := Y .o, |&(2)|% for z € (0, L).
Definition 6.1. Let uo € H'! N M. We say that u is a solution to equation (6.1) in [0, T if

u € C([0,T]; H') n L*(0,T; H?), Owu € L*(0,T; H),

and the identity

(7 + %gp\u(t)ﬁ)u(t) = (7 + %s@\uoP)uo

t 2 2 3780 2US uls 2US culS))uls S
[ (22006 + (o () + 32 ([020(6) + 0,(6) o)) u(s) uls) ) s,

holds in H, for a.e. t € [0,T].

In the following lemma we show that equation (6.1) has an equivalent formulation.

Lemma 6.1. Letuy € H' N M. Then any function v € C([0,T]; H') N L%(0,T; H?), with
Owu € L2(0,T; H), satisfies equation (6.1) if and only if satisfies the following equation

YOuu(t, x) = O2u(t, ) + |0pu(t)|3ult, z) + %trK (u(t,x) x (u(t,x) x atu(t,x))), 62

u(0, z) = uo(z), u(t,0) = u(t, L) = 0.

Proof. If u satisfies equation (6.2), then we have

YOpu(t) = ORult) + |0zu(t) | Fu + %w( = [u(®)*Opu(t) + (u(t) - deu(t))u(t))

= 2u(t) + |9eu(t) Byu(t) + 5o — Aullut)Pu(t)) + 3ut) - duut)u(r)),
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Small-mass limit for constrained SWEs

the identity holding in L?(0,T; H). Then, since
yu(t) - dpu(t) = Foult) - ult) + |Bzu(t) 3 |ut)?,

we have
Y(u(t) - Fpu(t))u(t) = (gu(t) - u(t))u(t) + |0pu(t) 7 [u(t)Pu(t).
This implies that

10u(t) + 0 (u(t) Pu)

= ult) + |0su(t)Fu(t) + %(@fw) ~u(t))u(t) + %IawU(t)\?{\u(t)IZU(t)-

On the other hand, if « is a solution of equation (6.1), in order to prove that it is also
a solution to (6.2) it suffices to show that

yu(t) - Gpu(t) = Ozu(t) - u(t) + |Oxu(t) 3 |u(t).

Indeed, note that

10uu(t) + 50(20u() - deu(t)u(t) + u(t) POru(r))

3 3
= OZu(t) + |dsu(t) | Fu(t) + %(Qﬁuw ~u(t))u(t) + %Iazu(t)\%\U(t)IZU(t),
so that if we take the scalar product by u of both sides, we get

(1+ 5ol ) (u(t) - rut) = @2u(®) - u(®) = D) ) 2) = 0
which completes the proof. O

Remark 6.2. By using the (6.2) formulation of equation (6.1), it is immediate to check
that if ug € M then u(t) € M, for every ¢t € [0,T]. Actually, for any ¢ > 0 we have

S I (o) —1) = (@), u(0) ; + 2eu) (o)

1

5 (pult) x (ult) x dru(t))),u(®)), = ) (Ju(®) i —1)-

Combined with the fact that |ug|y — 1 = 0 and d,u € C([0,T]; H), this implies that
|u(t)|g = 1, for any ¢t > 0.

Lemma 6.3. Let u be a solution to equation (6.1), with ug € H' N M. Then for every
t > 0 we have

t
O +27 [ 0l ds < ol (6.3)
0
Proof. If we use the (6.2) formulation of equation (6.1), we get

Wouult) fy = (Du(e), Bu(t)) -+ (00u(B)3ru(t), Du(t))
— 5 O Du(t), Beu())  + 3 (ou(t) - duu(t))u(e), Du(r))
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Recalling that |u(t)|g = 1, this gives

1d

)y = — 5 (e — 5 (a0, o) ,

b3 {(ult) - Au(t))u(t), deu(t)) , < —3 S u(t)

and (6.3) follows once we integrate both sides in time. O

Proposition 6.2. Let u; and us be any two solutions of equation (6.1), with initial
conditions uj g,u2 0 € H N M, respectively. Then there exist some constants ci,cs > 0,
depending only on u1 9, u2,0 and ¢, such that for every ¢ > 0

t
|ug (t) — uz(t)ﬁp —|—/ |Opus(s) — 8tuQ(s)|?{ds < ecluo — ug,oﬁp et (6.4)
0

In particular, there is at most one solution to equation (6.1) in C([0, T]; H') N L%(0,T; H?),
with d;u € L*(0,T; H).

Proof. Let us fix u1,0,u2,0 € H' N M and let u;, us be solutions of equation (6.1) with
initial conditions w4 o, u2,, respectively. If we denote v; = O;u; and vy = J,us, then,
recalling (5.5)

(o1 = v2) ()7 = (92 (ur — ua2)(t), (v1 = va2)(1))

(0w (1) [Fun (8) — [0zua (1) [Frua(t), (v —v2) (1)) 4
—%<¢(|u1(t)|201 (t) = luz(t)Po2(t)), (v1 — v2) (1))
+%<<ﬂ((u1(t) cwr(8)un () = (ug(t) - va(t))ua(t)), (v1 — v2)(t)) -
Hence, if a is an arbitrary positive constant and we denote
Y. (t) :=exp (—a/o (1+ |U2(S)|%{)d8) , t>0, (6.5)

we get

@Yol (ur — ) (1) ) = Yalt) (Sl —w) (O — a1+ fea 03 a1 — o) (1) 3 )

= Yalt) (= a1+ o2 (8) ) (un = u2) (1)
2 Jur (D0 (8) = [ua (O ua(8), (01 = v2)(0))
—29|(v1 — v2) (1) — (@ (Jur(®)Pv1(t) — [ua(t)Pva(t)), (v — v2) (),

+(o((ur(t) - vr (E))ur (t) = (ua(t) - va(t))ua(t)), (v1 — vz)(t)>H)~
(6.6)
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Now, for any € > 0 we can find ¢(¢) > 0 such that

(Jur (8)[Frrun () = |uz(8)[Frua(t), (v1 —v2)(2))
= Jur (8) |32 ((ur — u2) (), (01 — v2) (1)) 1 + ((lua ()71 — fua ()7 ) ua(t), (v1 — v2) (1)),

< Jur () s (€l 01 = v2) () + ()| (wn — ua) @)/ )

efuz (Ol (Jur ()l + s ()] 10) (el(vr = va) (OF + ()] (w1 = uz) (O) )
(6.7)
Moreover

(s (8) Pon () — fua(0) Poa(6)) (01— v2) (8))
= —(plur (1) (01 = v2)(1), (01 = 02)(1)) 5 = (o (fur ()2 = fuz (D) v (2), (01 = v2)(1))
< ~(plur (O @1 — v2) (1), (00 —v2) (1)),
oo (Jus (8) 1 + [z (O] a1 )| — 2) (O] [02(8) 1] (01 — v2) (8)
< ~(plur (O @1 — v2) (1), (00 — 1) (1))
elploo (Jur (1) s+ ua(t) 2) (el(on = 02)(0) 3 + e(©) o2 (O] (1 = w2) () ),

(6.8)
and

(o((ua (1) - va (1))ua (1) — (ua () - va(D)ua (1)), (01 — 02)(1))
= (p(un(t) - (01 — v2)(O)ur (1), (01 — 02) (D),
(1 — ua)(£) - va())) s (1), (01 — v2) (1))
H(p(uzt) - va(t))(ur — u2) (1), (01— 02)(1))
< (p(wr(t) - (v — va)(D)er (1), (01— v2) (1))
oo (Jun (1) s+ ua(t) 0) (el(on = 0a) () + () oa (8) (11 = w2)(0) 3 ).

(6.9)
Since ¢ > 0, we have

—(plur?(vr = v2),v1 = v2) y + (p(ur - (v1 = v2))ur, v1 = v2) y <0
>0

Hence, thanks to (6.3) we can take € > 0 sufficiently small and a = a(e) sufficiently
large so that if we replace (6.7), (6.8) and (6.9) into (6.6), we get
t
Ya(t)|ur (1) —uz ()3 + C/ Ya(s) (14 [va(s) ) [ua (s) — uz(s)|Fds
0
(6.10)
t
be [ Yaoloa(s) = va(s) s < furo — waalip
0
for some constant ¢ = ¢(uy,9,u2,0, ) > 0. Finally, since from (6.3)
Yat) 2 exp (= a(t+usolfn/27)), t>0,
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we can complete the proof of (6.4). O

7 Proof of the validity of the small-mass limit
In this final section, we conclude the proof of Theorem 3.2. We first prove some

identities, then we investigate tightness and finally we proceed with the proof of the
theorem.

7.1 An identity for the solution of system (2.2)
Lemma 7.1. For every p > 0 and (uo,vo) € Hi N M the solution (u,(t),v,(t)) of system
(2.2) (or, equivalently system (4.5)) satisfies the following identity, for every ¢ > 0

1
Yup() + el ()P (t) + pou(t)

1 t t
=0+ geluolPuo -+ o+ [ Ouu()ds + [ 10ru (o) runs)ds
0 0

3 K 5 3 ¢ 2 2
‘1‘590/0 ((%uu(s) ~uu(s))uu(s)d5+ %(P/o 0, (8) | |y (3)] uu(s)dS+Ru(tzv7 )
where .
Ry (t) = %wmo - vp)tig — g—jwm(t) () () — g / [0 (5) Byt (5)dls
Si ! Uy lS) v v, \Ss)ds 37,11 t?} S 2’Z,L s)as
e [ s) vl + 3 [ uo)Puns)d
(7.2)

3 ' 2 2 '
o / [0 (5) 21ty (5) P ()l + /70 / (11 (3) X 0 (5))dw(s)

6
3
=: %gp(uo - vp)ug + Z Jyu,i(t).
i=1

Proof. In view of (4.5), we have

At (1) - v (1)) = [0, (1) 2t + i(azum) () dt + §|am<t>|z|uu<t>|2dt

o (), (1) 2t — g<uu<t> v (t))dt

+i§0( - ‘uu(t)|2vu(t) + (uu(t) : Uu(ﬂ)“u(ﬂ) : uu(t)dt

+¢1ﬁuu<t> () x 0, (0)dw(t) = [, (8)dt + i(aium u, (1)) dt

+i|3muu(t)lifluu(t)|2dt = [vu ()17 | ()Pt — %(“u(t) “vu(t))dt.
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This implies that

A (wat) - o)1)

= (upu(t) - v () v (t)dt + v, () Pu, (t)dt + %(873%(75) () )y, (t)dt

+%|aafuu(t)|§J|uu(t)|2“u(t)dt = [v (015 e (8) P (£)dt — g(uu(t) ~ou(8))u(t)dt.

Hence, for every ¢t > 0, we obtain

y / (1 (3) - V() (5)dls

:/ (8iuu(5)'uu(3))uu(3)ds+/o Oy (8) 1 ()P (s)ds

0
(7.3)

— (g (t) - vu(8)uu(t) + pluo - vo)uo + u/o (up(s) - vu(s))vu(s)ds

t t
Ty / [0 (5) [P (5)ls — / [0 (5) 21t (5) P () s
By using the fact that
Aty (1) P () = 20000 (8) - 00(8)) 1 (8) + [t Py (8),
this implies

/t ( - |uu(3)|20u(5) + (uu(s) 'UM(S))UH(S))dS

0

= _|uu(t)|2uu(t> + |u0|2u0 + 3/0/(%1(5) “vu(8))up(s)ds = _‘uu(t)|2uu(t) + ‘UO‘ZUO

3 [t 3 [t
+;/O (@3%(8)~uu(8))uu(8)d8+§/o |0y, ()| [y () P (5)ds

3u 3 3 [*
_T(Ult(t) v () uu(t) + 7(u0 - vo)ug + 7 /0 (up(s) - vu(s))vu(s)ds

3 [* 3 [*
A2 @ Puntds = 2 [ o,(6) (o) P (s)ds.
7 Jo 7 Jo
(7.4)
Finally, we rewrite system (4.5) in the following form

Yup(t) + pou(t) = yuo + pvo

t t t
+/ 3§Uu(5)d8+/ \3muu(8)|§{uu(5)d87u/ [0 () Fruyu(5)ds
0 0 0

1

3

@/O ( - ‘“u(5)|2vu(5) + (“u(s) 'UM(S))UM(S))dS + \//7/0 (uu(s) X vu(s))dw(s).
(7.5)

Therefore, if we replace (7.4) into (7.5), we get (7.1), with R,(t) defined by (7.2). O
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Lemma 7.2. For every (ug,vg) € H1 N M and ¢ > 0 we have

lim E sup |R,(r)|% = 0.
iy B s 17 (1)

Proof. First, note that, since

a1 (O] < e lelooptlu, (O3 [0, (8)] 1,

due to (5.1) we have

lim E sup |J,1(r)|% =0,
p—0 rE[O,t]

and since

t t
a0y < et [ Jou(s)ids < et [ lou(s)ihun(o) i ds, e
0 0

due to (5.3) we have
lim E sup |JM72(7")|?{ =0.
r=0 g0,

Moreover, thanks to (5.1), (5.3) and

t
|3 (M) + [Jua ()l < Ctlwlio;ﬂ/o [ (8)1 711 vy (8) 32 10,0 () [ s,

we have

lim E Jus () + | Jua(r)? ) ~0.
fim 1 sup, (I w3 (M) 4 [ Jwa (r)r

From (5.1), (5.3), and
t
sl < ctloBon®E [ i, (o) lons)lyds, v e 0.1,
0
it follows that

lim E sup |J,.5(r)|3 = 0.
p—0 re[o,t]

Furthermore, we have

t

2

B sup o (r)fy < e ) 05 .
re|0,

t
< cliploot | 1) 0, (5 .
so that, thanks again to (5.1),

lim E sup |J,6(r)|5 = 0.
B=0 0 ef0,4]

Finally, combining (7.7)-(7.11), we complete our proof.

7.2 Tightness

(7.6)

(7.7)

[07 t]v

(7.8)

re (0,4,

(7.9)

(7.10)

(7.11)

Proposition 7.1. For every (ug,vg) € H1 N M and T > 0, the family of probability

measures {L(u,)} is tight in C([0, T); H®), for every 6 < 2.

ne(0,1)
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Proof. According to (5.2), we have that

T
sup E( sup |u,, (t)|3 —|—/ |8tu#(5)|§pds> < 4o00. (7.12)
pe(0,1)  \te[o,T] 0

This, in particular, implies that for every ¢ > 0 there exists L. > 0 such that if we denote
by K. the ball of radius L. in C([0,T]; H?) N W2(0,T; H'), then

f Pluy, € K)>1—e
iy Pl €50 21

Due to the Aubin-Lions lemma, we know that the set K, is compact in C([0,7]; H%), for
every § < 2. O

7.3 Proof of Theorem 3.2
Proof. Thanks to Proposition 7.1 and (5.2), we have the family {L(u#, uﬁtu#)}ue(o 1 is
tight in C([0,T]; H%) x C([0,T]; H'), for any 6 < 2. If for every T > 0 and § < 2 we define

D5 = C(0,T); HY) x C(0, T); H')  C((0,T}; B),

where F is any Banach space such that the embedding K C F is Hilbert-Schmidt, then
as a consequence of Skorokhod’s theorem, for any sequence {u}ren, converging to
zero, there exists a subsequence, still denoted by {u, }ren, and some I'y 5-valued random
variables

Vi = (o Oy, i), = (0.9, w), ke,

all defined on some probability space ({2, F, {]-'t}te 0,7) IP), such that
L(Ve) = L(upy, peOpuy, ,w), keN, (7.13)
and
klggo (\Qk — oleo,;m) + BeVkl oo,y HY) + [Wn — UA)|C([O,T];E)) =0, P-as. (7.14)
In particular, due to (5.1), (5.2), (7.12) and (7.13), we have
) T
sup | E sup (|gk(t)\%{2 +uk|19k(t)|%,1> +E/ [0k (8)|%4:ds | < 400, (7.15)
keN \  t€[0,T] 0

and there exists a deterministic ¢ > 0 such that

T
sup( sup |ok(t)| s +/ \&ggk(s)ﬁ{ds) <ec, P-as. (7.16)
keIN Mte[0,T)] 0

Thanks to (7.14) and (7.16), it follows that ¢ € LQ(Q; L>(0,T; H‘S)), for every § < 2, and

sup |o(t)|m <¢, P-as. (7.17)
t€[0,T]

Moreover, from (7.15) and (7.16) we get that o is weakly differentiable in time, with
dy0 € L*(0,T; H) and

T
/ 10:0(s)|% ds < ¢, P-as. (7.18)
0
Finally, as a consequence of (7.14) and (7.15), we have
T A
/ E|o(s)|32 ds < oo. (7.19)
0
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Now, if we can show that o solves equation (6.1), then by the uniqueness of solutions
for equation (6.1), due to the classical argument by Gyongy and Krylov (see [14]), we
can conclude that u,, converges to u in C([0,T]; H®), for every sequence yy, | 0, and the
convergence is in probability.

Due to (7.13) and identities (7.1) and (7.2), we have that for every ¢y € C§5°([0, L])

(vo(1) + 3 2lou(0)?0(1) + (1), )

1 t
= (i + oluolun + o, + [ (O20u(s) v)ds
0

+ / <\@k<s>|%pgk<s>,¢>Hds+% / (0(020k(5) - 04()) or(5), ) rds

—/ (10w () 2 2 ()2 0r (), ) srds + (Ru(), ) .

where
~ RYTP 3
Ry(t) = 2” @(ug - vo)u o—gikf(gk() Dp(t Nk/ 19k(s)Hon(s
3uce [ uw
+5 (ok(s) - U(t))Vn(s |19k %ok(s
Y Jo
3,%
|19k ) 7|0k (s) P ok (s d5+\ﬁ (0k(8) x Vk(s))dig(s).
We have

sup[io(len(D)2ex(6) = (1) o) |

t€[0,T H

< gl sup (I(2x®) = 1e(®) ) ex(t)] 5 + 1@ (er(t) = o) ;)

< clploe sup ((lon(®)f3 + o) 3)lon(t) - o(t)lx).

t€[0,T)

Then, in view of (7.14), (7.16) and (7.17) we conclude

1 1
lim sup | {yor(t) + 5 @loe(t)*er(t) + mde(t), ) m — (vo(t) + selo®)Po(t), ) u | = 0,
k—o0 te [0 T] 2 2
(7.20)
P-a.s. Since
T
sup | [ @2ex~ 06) 0yus| < ol [ 0u(s) — o)
te(0,T] 0
due to (7.14) we have
t t N
lim sup / (02 0k(8),0) pds — / (020(s),%) g ds| = 0, P-as., (7.21)
k=00 te(0,1] 0
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and since
t
sup | [ (low()f0us) ~ lo(s) nels))ds|
teo, 7] ' Jo H
T T
< / 10k(5) 27 — lo(s) 22 |ds + / 10(5) 211 |k () — o(s)]wrds,
we get
t t R
din sy | [ oo on(s)ohmds — [ o)ols) v)nds| =0, Pas. (7.22)
—0 e 0,7] /0 0

Moreover, for every n € C([0,7]; H') N L?(0,T; H?) and s € [0,T] we have
((9Zn(s) -n(s))n(s)e, ) = —((9an(s),n(s))n(s)e, V") i
—((@an(s), 1(s)) (Ozn(s) +n(s)") + |0un(s)*n(s) 0, ¥} -

This implies that

/0 (020k(s) - 01(5)) ox(3)0 — (020(s) - 0(s)) o5 ¥ dis
= _/O <[(6LQ1€(S)’ Qk(s))Qk(S) - (6J,Q(S)7 Q(S))Q(S)} @vw,>H ds
- /O ([(Bx0k(5), 0k (5)) (Owor(s) + 0k(s)¢") — (Dz0(s), 0(s)) (Bzo(s)p + 0(s)¢") |, ) 1 ds

t 3
—/0 ([10:0(5) P or(s) = |0z0(5) P o) 0, ) mr ds =2 Y Tin(1).

i=1

We have

T
[ (t)] < Clso\ooWloo/O |0k () — o(s)| 1 lor(s) 3 ds

T
+6|<p|oo\1//|oo/ lok(s) — o(s)|mrlo(s) [ (|ok(s)|mr + [o(s)|m1) ds,
0
and, thanks to (7.14), (7.16) and (7.17), we conclude that

lim sup [Jix(t)]=0, P—aus. (7.23)
k=00 e (0,1]

Next, we have

|2,k ()]
T
< CWIOO/O lox(s) — o(s)| a1 (Jor(s)|ar + lo(s)a1) (Jok(s)| a2 ¢l + [0k (8)| a1 1@ |o0) ds

T
+e¢loo (Iploo + Iw’\oo)/o |0k () = e(s)m]e(s) m2le(s) r ds.
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Thus, as a consequence of (7.14) and bounds (7.15), (7.16), (7.17) and (7.19), we can
conclude that

lim B sup |Jox(t)] = 0. (7.24)
k—=oo  te0,1]

Finally, we have

T
|3,k ()] < 0|</>Ioo|¢|oo/0 ok (s) = o(s) | a [low(s)mr (lon(s)|a> + lo(s)|a) + lo(s) |3 ] ds,
and, due again to (7.14), (7.15) and(7.19), we conclude

lim B sup |Js.(t)] = 0. (7.25)
k—oo  teo0,17

Therefore, as a consequence of (7.23), (7.24) and (7.25), we conclude that

lim E sup
k—=oo  tei0,1]

/0((8§Qk(8)-9k(8))9k(8)<ﬁ—(359(8)-9(8))9(8)%w>}1ds =0. (7.26)

Next, for every t € [0,7] we have

t
0

o [ (lex(o B lon(s) Pers) = lo(o) s el Pets))ds|,
T
< clploo </0 |low(s)[Frn — lo(s) |7 | - [lor ()P on(s)| yds
T T
+AmQ@JwMQQ—gwwmmmH@+1ﬂmazwmg%%@ww@mH%>
T
< ol [ loelin (l0n(s) i + 1) len(s) = ols) o

T
[ Gl + 1)) lowls) - o(s) ).

Thus, thanks again to (7.16) and (7.17), we get

t

/0<w\gk(8)|§11IQk(S)IQQk(S),des—/O (lo(s)|31]0(s)o(s), ¥)u ds| = 0,

(7.27)
P-a.s. By using the same arguments as in the proof of Lemma 7.2, we conclude that

lim sup
k=00 e (0,1]

lim £ sup <Rk(t)7'(/)>H‘2

‘ R —0. (7.28)
k—oo  te0,1]

Finally, combining (7.20), (7.21), (7.22), (7.26) and (7.27) together with (7.28), we can
conclude that p satisfies equation (6.1). As we have seen above, this allows to conclude
the proof of Theorem 3.2. O
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