
E l e c t r
o n

i
c

J
o
u
r
n a l

o
f

P
r
o
b a b i l i t y

Electron. J. Probab. 30 (2025), article no. 25, 1–27.

ISSN: 1083-6489 https://doi.org/10.1214/25-EJP1284

The small-mass limit for some constrained wave

equations with nonlinear conservative noise*

Sandra Cerrai† Mengzi Xie‡

Abstract

We study the small-mass limit, also known as the Smoluchowski-Kramers diffusion

approximation (see [16] and [22]), for a system of stochastic damped wave equations,

whose solution is constrained to live in the unitary sphere of the space of square

integrable functions on the interval (0, L). The stochastic perturbation is given by a

nonlinear multiplicative Gaussian noise, where the stochastic differential is understood

in Stratonovich sense. Due to its particular structure, such noise not only conserves

P-a.s. the constraint, but also preserves a suitable energy functional. In the limit

we derive a deterministic system, that remains confined to the unit sphere of L2, but

includes additional terms. These terms depend on the reproducing kernel of the noise

and account for the interaction between the constraint and the particular conservative

noise we choose.
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1 Introduction

In recent years, there has been a considerable research activity on the Smoluchowski-

Kramers diffusion approximation for infinite-dimensional systems. This is related to

the study of the limiting behavior of the solution of a stochastic wave equation with

damping, when the mass vanishes. The first results in this direction dealt with the case

of constant damping term, with smooth noise and regular coefficients (see [9], [10],

[20], and [17]). More recently, the case of constant friction has been studied in [13]

and [24] for equations perturbed by space-time white noise in dimension d = 2, and in

[15] for equations with Hölder continuous coefficients in dimension d = 1. In all these

papers, the fact that the damping coefficient is constant leads to a perturbative result, in
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Small-mass limit for constrained SWEs

the sense that, in the small-mass limit, the solution uµ of the stochastic damped wave

equation converges to the solution of the stochastic parabolic problem formally obtained

by taking µ = 0. The case of SPDEs with state-dependent damping was considered

first in [11] for a single equation and later, in [8], in the case of systems of equations

(see also [12]). Notably, this scenario differs drastically from the previous one, as the

non-constant friction leads to an additional noise-induced term in the small-mass limit.

An analogous phenomenon has been identified in [1], where the case of SPDEs

constrained to live on a manifold in the functional space of square-integrable functions

L2 was considered. The study of deterministic and stochastic constrained PDEs is not

a new field of study. In this context, we would like to mention the paper [19] by Rybka

and the paper [6] by Caffarelli and Lin, where, in order to find a gradient flow approach

to a specific minimization problem, deterministic heat flows in Hilbert manifolds were

explored. A constrained version of the deterministic 2-D Navier-Stokes equation was

studied in [4] by Brzezniak, Dhariwal and Mariani, as well as in [7] by Caglioti, Pulvirenti,

and Rousset, and later its stochastic version was investigated in [3] and [2] by Brzezniak

and Dhariwal.

In [1] we have introduced for the first time a class of damped stochastic wave

equations constrained to evolve within the unitary sphere of L2 and we have shown

that the Smoluchowski-Kramers approximation leads to a stochastic parabolic problem,

whose solution is still confined to the unitary L2-sphere and where, as in [11] and [8], an

additional drift term appears. Somewhat surprisingly, such extra drift does not account

for the Stratonovich-to-Itô correction term.

In the present paper we continue the work started in [1] and we introduce the

following system of stochastic wave equations on the interval (0, L)





µ∂2t uµ(t, x) + µ|∂tuµ(t)|2L2(0,L)uµ(t, x) = ∂2xuµ(t, x) + |∂xuµ(t)|2L2(0,L)uµ(t, x)

−γ∂tuµ(t, x) +
√
µ
(
uµ(t)× ∂tuµ(t)

)
◦ ∂tw(t, x),

uµ(0, x) = u0(x), ∂tuµ(0, x) = v0(x), uµ(t, 0) = uµ(t, L) = 0,

(1.1)

depending on a parameter 0 < µ << 1. Here uµ(t, x) ∈ R
3, for every (t, x) ∈ [0,+∞)×

(0, L), the friction coefficient γ is strictly positive, and w(t) is a cylindrical Wiener process,

white in time and colored in space, defined on a stochastic basis (Ω,F , {Ft},P), with
◦ denoting the Stratonovich stochastic differential. The solution uµ(t) is subject to

the finite-codimension constraint of living on M = SL2(0,L)(0, 1), the unitary sphere of

L2(0, L), with the initial data (u0, v0) in M, the tangent bundle ofM .

The key and fundamental distinction between the present paper and [1] lies in the

nature of the random perturbation considered. Actually, unlike any previous work

related to the Smoluchowski-Kramers diffusion-approximation, both in finite and infinite

dimensions, here we consider a diffusion coefficient σµ which is nonlinear and includes

both the position uµ(t) and the velocity ∂tuµ(t), through the vector product
√
µuµ(t)×

∂tuµ(t). The reason why in all previous works the diffusion does not depend on the

velocity is that, while one expects a limit for uµ, there is no limit for ∂tuµ, and it is

not clear how to make sense of the limit in the equation, especially when it comes to

the martingale term. However, as shown in previous work, the term
√
µ∂tuµ can have

non trivial limiting behavior, and with this new work we are trying to understand what

happens when σµ(u) =
√
µu× v.

Since in [1] the diffusion coefficient did not include the velocity ∂tuµ(t), the Itô and

Stratonovich interpretations of the stochastic differential yielded the same equation.

In the current setting, however, the Itô and Stratonovich differentials lead to different
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Small-mass limit for constrained SWEs

equations, and our choice to interpret the stochastic differential in the Stratonovich

sense has significant implications. Because of the special structure of the diffusion

coefficient, both the Stratonovich and Itô integrals ensure that (uµ(t), ∂tuµ(t)) remains

within the tangent bundle M, for every t ≥ 0. However, the noise in the Stratonovich

sense exhibits a more substantial conservative behavior by preserving also the energy

Eµ(t) := |uµ(t)|2H1

0
(0,L) + µ |∂tuµ(t)|2L2(0,L) +

∫ t

0

|∂tuµ(s)|2L2(0,L) ds, (1.2)

almost surely with respect to P. This phenomenon, well-understood in other contexts,

particularly in the parabolic setting, plays a critical role in the scenario considered here,

as it serves as a key tool in proving the necessary bounds for uµ(t) and
√
µ∂tuµ(t) in the

appropriate functional spaces, uniformly with respect to µ ∈ (0, 1). And those bounds

are fundamental in the proof of the tightness and in the identification of the limit.

After showing that for every fixed µ ∈ (0, 1) and p ≥ 1, and any initial condition

(u0, v0) ∈ [H1
0 (0, L)× L2(0, L)] ∩M and p ≥ 1 there exists a unique mild solution

zµ = (uµ, ∂tuµ) ∈ Lp(Ω;C([0,+∞); [H1
0 (0, L)× L2(0, L)] ∩M)),

we study the limiting behavior of uµ, as µ ↓ 0. Our main result consists in proving that if

(u0, v0) ∈ [H2(0, L)×H1(0, L)] ∩M, then, for every T > 0 and δ < 2 and for every η > 0

we have

lim
µ→0

P

(
|uµ − u|C([0,T ];Hδ) > η

)
= 0. (1.3)

Here u is the unique solution of the deterministic problem




γ∂tu(t, x) +
1

2
ϕ∂t(|u(t, x)|2u(t, x)) = ∂2xu(t, x) + |∂xu(t)|2Hu(t, x)

+
3ϕ(x)

2γ

([
∂2xu(t, x) + |∂xu(t)|2Hu(t, x)

]
· u(t, x)

)
u(t, x),

u(0, x) = u0(x), u(t, 0) = u(t, L) = 0,

(1.4)

where

ϕ(x) =

∞∑

i=1

ξ2i (x), x ∈ [0, L],

and {ξi}i∈N is an orthonormal basis for the reproducing kernel K of the noise w(t).

In particular, this means that uµ converges to a deterministic limit u, which solves a

deterministic problem, where the constraint to stay on the unitary sphere of L2(0, L)

is preserved. Remarkably, as in the previously mentioned cases - where however only

stochastic limits are obtained - in the small-mass limit several noise-induced terms

appear in the limiting equation, and such terms depend on the noise present in the

second-order problem through the function ϕ.

It is important to remark that this non trivial behavior emerges only in the
√
µ scaling

for the diffusion coefficient, as in the case of µα, with α > 1/2, the limiting equation (1.4)

has to be replaced by the constrained parabolic problem

γ∂tu(t, x) = ∂2xu(t, x) + |∂xu(t)|2Hu(t, x),

with the same initial and boundary conditions, where there are no noise-induced terms.

As for the limiting behavior of uµ in the scaling µα, with α ∈ [0, 1/2), at this stage it is

not clear what we should expect. We believe that if any limiting point exists, it should

satisfy the deterministic equation

|u(t)|2u(t) = |u0|2u0 +
3

γ

∫ t

0

(
∂2xu(s) · u(s)

)
u(s)ds+

3

γ

∫ t

0

|∂xu(s)|2H |u(s)|2u(s)ds. (1.5)
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However, in order to prove the convergence of any limiting point of the family {uµ}µ∈ (0,1)

to a solution of (1.5), tightness in at least L2(0, T ;H1
0 (0, L)) would be necessary, and,

because of the nature of the diffusion coefficient σ(u, v) = u × v, the uniform bounds

required for its proof seem to be out of reach.

Under the
√
µ scaling assumption, in addition to the energy identity (1.2), we can

prove suitable bounds for uµ and ∂tuµ in spaces of higher regularity than the space

C([0, T ];H1
0 (0, L)) ∩ L2(0, T ;H2(0, L)) for uµ and the space L2(0, T ;L2(0, L)) for ∂tuµ,

which are uniform with respect to µ ∈ (0, 1). Those bounds allow to show that the family

{L(uµ)}µ∈ (0,1) is tight in C([0, T ];H
δ(0, L)), for every δ < 2, and any weak limit point

for uµ is a solution of (1.4). Equation (1.4) is highly non trivial and the existence of

solutions is obtained only as a consequence of the small-mass limit. However, any limiting

point for {uµ}µ∈ (0,1) turns out to belong to the space of functions in C([0, T ];H1
0 (0, L)) ∩

L2(0, T ;H2(0, L)), which admit a weak derivative in time in L2(0, T ;H). What is relevant

here is that despite its complex form, we can prove the uniqueness of the solution to

equation (1.4) in these functional spaces. Consequently, we can identify any limit point

for {uµ}µ∈ (0,1) with the unique solution of equation (1.4) and limit (1.3) follows.

Before concluding, let us outline the structure of this paper. In Section 2, we introduce

all the assumptions and notations that will be used throughout the paper. Section 3

presents the main results. In Section 4, we study the well-posedness of equation (1.1),

and in Section 5, we establish bounds for the solution uµ and
√
µ∂tuµ which hold

uniformly with respect to µ ∈ (0, 1). Section 6 focuses on the limiting equation (1.4);

we introduce an equivalent formulation and prove the uniqueness of the solution in a

suitable functional space. Finally, in Section 7, we demonstrate the validity of limit (1.3).

This is achieved by first integrating (1.4) with respect to time and rearranging all terms

in a proper way, and then by proving tightness and identifying any weak limit as the

unique solution of (1.4).

2 Notations and assumptions

Let H denote the Hilbert space L2(0, L;R3), for some fixed L > 0, endowed with the

inner product

〈
u, v
〉
H

=
3∑

i=1

〈ui, vi〉L2(0,L) =

∫ L

0

(u(x) · v(x)) dx,

and the corresponding norm |·|H . Notice that here and in what follows, we shall denote

the scalar product of two vectors h, k ∈ R
3 by (h ·k). Moreover we shall denote the norm

of a vector h in R
3 by |h|R3 , or just by |h|, when there is no risk of confusion.

Next, for every k ∈ N we shall denote by Hk the closure of C∞
0 ([0, L]) in W k,2(0, L),

where W k,2(0, L) is the space of all functions u ∈ H such that Dhu exists in the weak

sense, for every h ≤ k, and Dhu ∈ H. Due to the Poincaré inequality, we can endow Hk

with the norm

|u|Hk := |Dku|H .
Moreover, we shall set Hk := Hk+1 ×Hk. When k = 0, we will simply denote H0 by H.

Finally, for every function u : (0, L) → R
3 we shall denote

|u|∞ = sup
x∈ [0,L]

|u(x)|R3 .

Notice that since [0, L] ⊂ R, we have H1 ↪→ L∞(0, L).

If E and F are Banach spaces, the class of all bounded linear operators from E to F

will be denoted by L(E,F ). We will use a shortcut notation L(E) for L(E,E). It is known

that L(E,F ) is also a Banach space. By L2(E,E;F ) we will denote the Banach space of
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Small-mass limit for constrained SWEs

all bounded bilinear operators from E ×E =: E2 to F . If K is another Hilbert space, by

T2(K,F ), we will denote the Hilbert space of all Hilbert-Schmidt operators from K to F ,

endowed with the natural inner product and norm. It is known that T2(K,F ) ↪→ L(K,F )
continuously. If {ej}j∈N is an orthonormal basis of a separable Hilbert space K which is

continuously embedded into a Banach space E and

∞∑

j=1

|ej |2E <∞,

then for every Λ ∈ L2(E × E;F ) we put

trK(Λ) =

∞∑

i=1

Λ(ej , ej). (2.1)

In what follows, we denote byM the unit sphere in H

M =
{
u ∈ H : |u|H = 1

}
,

and by M the corresponding tangent bundle

M =
{
(u, v) ∈M ×H :

〈
u, v
〉
H

= 0
}
.

Now, we rewrite equation (1.1) as the following system





duµ(t) = vµ(t)dt,

dvµ(t) =
1

µ

[
∂2xuµ(t) + |∂xuµ(t)|2Huµ(t)− µ|vµ(t)|2Huµ(t)− γvµ(t)

]
dt

+
1√
µ

(
uµ(t)× vµ(t)

)
◦ dw(t),

uµ(0) = u0, vµ(0) = v0, uµ(t, 0) = uµ(t, L) = 0.

(2.2)

Here w(t) is a cylindrical Wiener process in H. Thus, if we denote by K its reproducing

kernel Hilbert space, we have

w(t, x) =

∞∑

i=1

ξi(x)βi(t), (t, x) ∈ [0,+∞)× (0, L),

where {βi(t)}i∈N is a sequence of independent standard Brownian motions, all defined on

the stochastic basis (Ω,F , {Ft}t≥0,P), and {ξi}i∈N is an orthonormal basis of K. In what

follows we shall denote by E a Banach space containing K, such that the embedding of

K in E is Hilbert-Schmidt. In particular

∞∑

i=1

|ξi|2E <∞.

Moreover, we shall assume the following conditions are satisfied.

Hypothesis 1. All functions ξi belong to C1([0, L]). Moreover, if we denote

ϕ(x) :=
∞∑

i=1

|ξi(x)|2, ϕ1(x) :=
∞∑

i=1

|ξ′i(x)|2, x ∈ (0, L),

we have that ϕ and ϕ1 belong to L∞(0, L).
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Remark 2.1. Since for every x ∈ (0, L), we have

∣∣
∞∑

i=1

ξi(x)ξ
′
i(x)

∣∣ ≤
√
ϕ(x)ϕ1(x),

thanks to Hypothesis 1 we have that ϕ is weakly differentiable and

ϕ′(x) = 2
∞∑

i=1

ξi(x)ξ
′
i(x), x ∈ (0, L).

In particular, this allows to conclude that ϕ ∈ W 1,∞(0, L) with

|ϕ′|∞ ≤ c (|ϕ|∞ + |ϕ1|∞).

3 Main results

In what follows, we denote by A the realization in H of the second derivative operator,

endowed with Dirichlet boundary conditions, and for all µ > 0 define

Aµz :=
(
v, µ−1Au

)
, z = (u, v) ∈ D(Aµ) = H1.

Moreover, for every µ > 0 we define

Fµ(z) := −µ |v|2Hu+ |∂xu|2Hu, z = (u, v) ∈ H.

With these notations, system (2.2) can be rewritten as

dzµ(t) = Aµzµ(t)dt+
1

µ
(0, Fµ(zµ(t))− γ vµ(t)) dt+

1√
µ

(
0, uµ(t)× vµ(t)

)
◦ dw(t). (3.1)

with zµ(0) = z0 = (u0, v0).

The first result we will prove in this paper is the following well-posedness result for

system (2.2) in H.

Theorem 3.1. For every µ > 0 and z0 = (u0, v0) ∈ H ∩M, there exists a unique mild

solution to the stochastic constrained wave equation (2.2). Namely, there exists a unique

H ∩M-valued continuous and adapted process zµ(t) = (uµ(t), vµ(t)), t ≥ 0, such that the

following hold.

1. The process uµ(t) hasM -valued trajectories of class C1 and

vµ(t) = ∂tuµ(t), t ≥ 0.

2. The process zµ(t) satisfies the equation

zµ(t) = Sµ(t)z0 +
1

µ

∫ t

0

Sµ(t− s)
(
0, Fµ(zµ(s))− γvµ(s)

)
ds

+
1√
µ

∫ t

0

Sµ(t− s)
(
0, (uµ(s)× vµ(s)) ◦ dw(s)

)
,

for every t ≥ 0, P-almost surely.

3. The following identity holds for every t ≥ 0

|uµ(t)|2H1 + µ |vµ(t)|2H + 2 γ

∫ t

0

|vµ(s)|2H ds = |u0|2H1 + µ |v0|2H , P− a.s. (3.2)
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The second result, which represents the main goal of this paper, concerns the limiting

behavior of the process uµ(t), as µ ↓ 0.

Theorem 3.2. Fix (u0, v0) ∈ H1 ∩ M. Then, for every T > 0 and δ < 2 and for every

η > 0 we have

lim
µ→0

P

(
|uµ − u|C([0,T ];Hδ) > η

)
= 0,

where u is the unique solution of the following deterministic problem





∂t

[(
γ +

1

2
ϕ|u(t)|2

)
u(t)

]
= ∂2xu(t) + |∂xu(t)|2Hu(t)

+
3ϕ

2γ

([
∂2xu(t) + |∂xu(t)|2Hu(t)

]
· u(t)

)
u(t),

u(0, x) = u0(x), u(t, 0) = u(t, L) = 0.

4 The well-posedness of system (2.2)

As known (see e.g. [5, Definition 3.1]), for an arbitrary function G : F → L(E,F ) of
class C1

∫ t

0

G(z(s)) ◦ dW (s) :=

∫ t

0

G(z(s)) dW (s) +
1

2

∫ t

0

trK
[
G′(z(s))G(z(s))

]
ds, (4.1)

with trK defined as in (2.1). Note that

G′(z)G(z) ∈ L(E;L(E,F )) ≡ L2(E × E,F ), z ∈ F,

and

G′(z)G(z)(e1, e2) = [G′(z)
(
G(z)e1)]e2, (e1, e2) ∈ E × E, z ∈ F.

This means that trK
[
G′(z)G(z)

]
is a well defined element of F and satisfies

trK [G′(z)G(z)] =
∞∑

i=1

[G′(z)
(
G(z)ej

)
]ej ,

where {ej}j∈N is an orthonormal basis of K. In particular, if we take

G(u, v)k := (0, σ(u, v)k), (u, v) ∈ H, k ∈ E,

for some σ : H → L(E,H1), we have

[G′(u, v)G(u, v)](k, h) = (0, ∂vσ(u, v)[σ(u, v)(k)](h)) ,

so that

trK [G′(z)G(z)] = (0, trK [∂vσ(u, v)σ(u, v)]) . (4.2)

In what follows, we will take

σ(u, v)k = (u× v)k.

The following result holds.

Lemma 4.1. The map σ : Hk → T2(K,Hk) is Lipschitz-continuous on balls and has

polynomial growth, for k = 0, 1. Moreover, its Fréchet derivative along any direction

v ∈ Hk is given by

∂vσ(z)y = u× y, z = (u, v) ∈ Hk, y ∈ Hk,
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and the function

Hk 3 z = (u, v) 7→ trK [∂vσ(z)σ(z)] = trK [u× (u× v)] = ϕ [u× (u× v)] ∈ Hk, (4.3)

is Lipschitz-continuous on balls with polynomial growth.

Proof. Case k = 0. For every z1 = (u1, v1) and z2 = (u2, v2) in H we have

‖σ(z1)− σ(z2)‖2T2(K,H) =

∞∑

i=1

|(σ(z1)− σ(z2))ξi|2H

=

∫ L

0

|u1(x)× v1(x)− u2(x)× v2(x)|2
∞∑

i=1

|ξi(x)|2 dx ≤ c |ϕ|∞|u1 × v1 − u2 × v2|2H

≤ c |ϕ|∞
(
|u1 − u2|2H1 |v1|2H + |u2|2H1 |v1 − v2|2H

)
≤ c |ϕ|∞

(
|z1|2H + |z2|2H

)
|z1 − z2|2H.

Since σ(0) = 0, this implies that σ : H → T2(K,H) is well defined and locally Lipschitz

continuous, with quadratic growth.

For every u ∈ H1 fixed, the mapping σ(u, ·) : H → L(E,H) is linear and its derivative

∂vσ(u, ·) is given by

∂vσ(z) y = u× y ∈ L(E,H), z = (u, v) ∈ H, y ∈ H.

In particular ∂vσ(z)σ(z) ∈ L(E × E,H) and

trK [∂vσ(z)σ(z)] = trK [u× (u× v)] =

∞∑

i=1

(u× (u× v)ξi) ξi = ϕ (u× (u× v)) .

Now, for every h, k ∈ R
3 we have

h× (h× k) = −|h|2k + (h · k)h, (4.4)

so that we can write

trK [∂vσ(z)σ(z)] = ϕ(−|u|2v + (u · v)u),
and

|trK [u× (u× v)]|2H =

∫ L

0

ϕ(x)2
∣∣−|u(x)|2v(x) + (u(x) · v(x))u(x)

∣∣2 dx

=

∫ L

0

ϕ(x)2
(
|u(x)|4|v(x)|2 − |u(x)|2(u(x) · v(x))2

)
dx ≤ c |ϕ|2∞|u|4H1 |v|2H ≤ c|ϕ|2∞|z|6H.

Moreover,

∣∣trK(u1 × (u1 × v1))− trK(u2 × (u2 × v2))
∣∣2
H

≤ c

∫ L

0

ϕ(x)2
((
|u1(x)|2 + |u2(x)|2

)(
|v1(x)|2 + |v2(x)|2

)
|u1(x)− u2(x)|2

+
(
|u1(x)|4 + |u2(x)|4

)
|v1(x)− v2(x)|2

)
dx

≤ c|ϕ|2∞
((

|u1|2H1 + |u2|2H1

)(
|v1|2H + |v2|2H

)
|u1 − u2|2H1 +

(
|u1|4H1 + |u2|4H1

)
|v1 − v2|2H

)

≤ c|ϕ|2∞
(
|z1|4H + |z2|4H

)
|z1 − z2|2H.
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This implies that the mapping z ∈ H 7→ trK [∂vσ(z)σ(z)] ∈ H is well-defined and locally

Lischitz-continuous, with cubic growth.

Case k = 1. For any z1 = (u1, v1) and z2 = (u2, v2) in H1, we have

‖σ(z1)− σ(z2)‖2T2(K,H1) =
∞∑

i=1

|(σ(z1)− σ(z2))ξi|2H1

≤ 2
∞∑

i=1

∣∣ξi (u1 × v1 − u2 × v2)
′
∣∣2
H
+ 2

∞∑

i=1

∣∣ξ′i (u1 × v1 − u2 × v2)
∣∣2
H

≤ c|ϕ|∞
(
|(u1 − u2)

′ × v1|2H + |(u1 − u2)× v′1|2H + |u′2 × (v1 − v2)|2H + |u2 × (v1 − v2)
′|2H
)

+c|ϕ1|∞
(
|(u1 − u2)× v1|2H + |u2 × (v1 − v2)|2H

)

≤ c
(
|ϕ|∞ + |ϕ1|∞

)(
|u1 − u2|2H1 |v1|2H1 + |u2|2H1 |v1 − v2|2H1

)

≤ c
(
|ϕ|∞ + |ϕ1|∞

)(
|z1|2H1

+ |z2|2H1

)
|z1 − z2|2H1

.

This implies the local Lipschitz-continuity and polynomial growth of the mapping σ :

H1 → T2(K,H1). Finally, for every z1 = (u1, v1) and z2 = (u2, v2) in H1

∣∣trK(u1 × (u1 × v1))− trK(u2 × (u2 × v2))
∣∣2
H1

≤ c |ϕ|2∞
(
|(u1 − u2)

′ × (u1 × v1)|2H + |(u1 − u2)× (u1 × v1)
′|2H
)

+c |ϕ|2∞
(
|u′2 × (u1 × v1 − u2 × v2)|2H + |u2 × (u1 × v1 − u2 × v2)

′|2H
)

+c |ϕ′|2∞|u1 × (u1 × v1)− u2 × (u2 × v2)|2H

≤ c
(
|ϕ|2∞ + |ϕ′|2∞

)(
|z1|2H1

+ |z2|2H1

)2|z1 − z2|2H1
,

and this implies that the mapping

H1 37→ trK [u× (u× v)] ∈ H1,

is locally Lipschitz continuous and has cubic growth.

As a consequence of (4.1), (4.2) and (4.3), we can rewrite system (2.2) as





duµ(t) = vµ(t)dt,

dvµ(t) =
1

µ

[
∂2xuµ(t) + |∂xuµ(t)|2Huµ(t)− µ|vµ(t)|2Huµ(t)− γvµ(t)

+
1

2µ
trK(uµ(t)× (uµ(t)× vµ(t)))

]
dt+

1√
µ

(
uµ(t)× vµ(t)

)
dw(t),

uµ(0) = u0, vµ(0) = v0, uµ(t, 0) = uµ(t, L) = 0.

(4.5)
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In particular, equation (3.1) can be rewritten as

dzµ(t) = Aµzµ(t)dt+
1

µ
(0, Fµ(zµ(t))− γvµ(t)) dt

+
1

2µ
(0, trK (uµ × (uµ(t)× vµ(t)))) dt+

1√
µ
(0, uµ(t)× vµ(t)) dw(t),

with zµ(0) = z0 = (u0, v0). This allows to say that if a process uµ(t) has M -valued

trajectories of class C1 and

vµ(t) = ∂tuµ(t), t ≥ 0,

and zµ(t) = (uµ(t), vµ(t)), then the process zµ is a mild solution of equation (2.2), with

initial condition z0, if for every t ≥ 0, P-almost surely,

zµ(t) = Sµ(t)z0 +
1

µ

∫ t

0

Sµ(t− s)
(
0, Fµ(zµ(s))− γvµ(s)

)
ds

+
1

2µ

∫ t

0

Sµ(t− s)
(
0, trK (uµ(s)× (uµ(s)× vµ(s)))

)
ds

+
1√
µ

∫ t

0

Sµ(t− s)
(
0, (uµ(s)× vµ(s)) dw(s)

)
.

4.1 Proof of Theorem 3.1

It is immediate to check that Fµ : Hk → Hk is Lipschitz continuous when restricted to

balls, for all k ≥ 0, and has cubic growth. Thus, in view of Lemma 4.1, the proof follows

from a modification of the arguments introduced in [1, proof of Theorems 2.9 and 2.10].

Due to the local Lipschitz continuity of all coefficients in H, equation (3.1) admits a

unique maximal local mild solution zµ ∈ C([0, τµ);H), defined up to a certain stopping

time τµ. Our purpose is showing that zµ(t) ∈ M, for all t ∈ [0, τµ), and

P(τµ = ∞) = 1. (4.6)

In this way, we get the existence and uniqueness of a global mild solution zµ in the space

C([0,+∞);H ∩M).

In order to prove the invariance of the tangent bundle M, we introduce the following

processes

ϑµ(t) :=
1

2

(
|uµ(t)|2H − 1

)
, ηµ(t) := 〈uµ(t), vµ(t)〉H , t ∈ [0, τµ).

If we show that they satisfy the linear system





dϑµ(t) = ηµ(t) dt

dηµ(t) +
γ

µ
dϑµ(t) =

(
1

µ
|uµ(t)|2H1 − |vµ(t)|2H

)
ϑµ(t), t ∈ [0, τµ),

(4.7)

since ϑµ(0) = ηµ(0) = 0, we obtain that ϑµ(t) = ηµ(t) = 0, for every t ∈ [0, τµ), P-a.s., and

this implies that zµ(t) ∈ M, for every t ∈ [0, τµ), P-a.s.

As in [1], it can be shown the following fact.

Lemma 4.1. Assume that a local process zµ(t) = (uµ(t), vµ(t)), t ∈ [0, σµ) is a solution to

zµ(t) = Sµ(t)z0+

∫ t

0

Sµ(t−s)
(
0, f(s)

)
ds+

∫ t

0

Sµ(t−s)
(
0, g(s)

)
dw(s), t ∈ [0, σµ). (4.8)
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where all processes are progressively measurable, f isH-valued and g is T2(K,H)-valued.

Then, for every t ∈ [0, σµ), P-almost surely,

〈uµ(t), vµ(t)〉H = 〈uµ(0), vµ(0)〉H − 1

µ

∫ t

0

|∂xuµ(s)|2H ds+

∫ t

0

〈uµ(s), f(s)〉H ds

+

∫ t

0

|vµ(s)|2H ds+

∫ t

0

〈uµ(s), g(s) dw(s)〉H ,

(4.9)

and

|vµ(t)|2H +
2

µ
|∂xuµ(t)|2H = |vµ(0)|2H +

2

µ
|∂xuµ(0)|2H + 2

∫ t

0

〈vµ(s), f(s)〉H ds

+2

∫ t

0

〈vµ(s), g(s)dw(s)〉H +

∫ t

0

‖g(s)‖2T2(K,H) ds.

(4.10)

Now, the local solution zµ(t) = (uµ(t), vµ(t)) of equation (3.1) satisfies equation (4.8),

with

f(s) := −|vµ(s)|2Huµ(s) +
1

µ
|uµ(s)|2H1uµ(s)−

γ

µ
vµ(s) +

1

2µ
trK [uµ(s)× (uµ(s)× vµ(s))] ,

and

g(s) :=
1√
µ
σ(zµ(s)) =

1√
µ
uµ(s)× vµ(s).

Notice that

〈uµ(s), f(s)〉H = −|vµ(s)|2H |uµ(s)|2H +
1

µ
|uµ(s)|2H1 |uµ(s)|2H − γ

µ
ηµ(s),

and for every ξ ∈ K

〈uµ(s), g(s)ξ〉H = 0.

Thus, thanks to identity (4.9) in Lemma 4.1, we have

ηµ(t)− ηµ(0) =
1

µ

∫ t

0

|uµ(s)|2H1

(
|uµ(s)|2H − 1

)
ds

−
∫ t

0

|vµ(s)|2H
(
|uµ(s)|2H − 1

)
ds− γ

µ

∫ t

0

〈uµ(s), vµ(s)〉H ds

=
1

µ

∫ t

0

|uµ(s)|2H1 ϑµ(s) ds−
∫ t

0

|vµ(s)|2H ϑµ(s) ds−
γ

µ

∫ t

0

ηµ(s) ds.

In particular, the processes ϑµ(t) and ηµ(t) satisfy equation (4.7), and, as explained

above, this implies that zµ(t) ∈ M, for every t ∈ [0, τµ), P-a.s.

Next, let us prove (4.6). Since (uµ(t), vµ(t)) ∈ M, we have

〈vµ(t), f(t)〉H = −γ
µ
|vµ(t)|2H +

1

2µ
〈vµ(t), trK [uµ(s)× (uµ(s)× vµ(s))]〉H .

As

〈vµ(t), g(t)ξ〉H = 0, ξ ∈ K,
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Small-mass limit for constrained SWEs

for every t < τµ this gives

d|vµ(t)|2H =
2

µ

〈
vµ(t), ∂

2
xuµ(t)

〉
H
dt− 2γ

µ
|vµ(t)|2Hdt+

1

µ
‖u(t)× v(t)‖2T2(K,H) dt

+
1

µ
〈vµ(t), trK [uµ(s)× (uµ(s)× vµ(s))]〉H dt.

In view of (4.4), for every h, k ∈ R
3 we have

|h× k|2 + (k · [h× (h× k)]) = |h× k|2 + |(h · k)|2 − |h|2|k|2 = 0.

Therefore, we obtain

d|vµ(t)|2H = − 1

µ
d|uµ(t)|2H1 − 2γ

µ
|vµ(t)|2Hdt,

and this implies that for every t < τµ

|uµ(t)|2H1 + µ |vµ(t)|2H + 2γ

∫ t

0

|vµ(s)|2Hds = |u0|2H1 + µ |v0|2H , P-a.s. (4.11)

In particular, we can conclude that for every µ > 0 there exists some deterministic

constant κµ > 0 such that

sup
t∈ [0,τµ)

|zµ(t)|H ≤ κµ, P− a.s.,

and (4.6) follows. Finally, by combining together (4.6) and (4.11), we obtain (3.2).

5 Energy estimates

In Theorem 3.1 we have seen that for every (u0, v0) ∈ H ∩M and µ > 0, equation

(2.2) (and, equivalently, equation (4.5)) admits a unique mild solution zµ = (uµ, vµ) ∈
C([0,+∞);H). Moreover, for every µ > 0 and t > 0 the following identity holds

|uµ(t)|2H1 + µ|vµ(t)|2H + 2γ

∫ t

0

|vµ(s)|2Hds = |u0|2H1 + µ|v0|2H , P-a.s. (5.1)

In this section, our purpose is proving that for every (u0, v0) ∈ H1 ∩M, there exists a

constant c > 0 such that for every µ ∈ (0, 1) and t ≥ 0

E sup
r∈[0,t]

(
|uµ(r)|2H2 + µ|vµ(r)|2H1

)
+ E

∫ t

0

|vµ(s)|2H1ds ≤ c. (5.2)

The inequality above is a consequence of the following Lemma.

Lemma 5.1. For every (u0, v0) ∈ H1 ∩M, there exist two constants c1, c2 > 0 depending

only on |(u0,
√
µ v0)|H1

, ϕ and ϕ1, such that for every µ ∈ (0, 1) and t ≥ 0

E sup
r∈ [0,t]

(
|uµ(r)|2H2 + µ|vµ(r)|2H1 + µ|uµ(r)|2H1 |vµ(r)|2H

)

+E

∫ t

0

(
|vµ(s)|2H1 + |uµ(s)|2H2 |vµ(s)|2H + µ|vµ(s)|2H1 |vµ(s)|2H + µ|uµ(s)|2H1 |vµ(s)|4H

)
ds

≤ c1

(
|u0|2H2 + µ|v0|2H1 + µ|u0|2H1 |v0|2H

)
exp

(
c2
(
|u0|2H1 + µ|v0|2H

))
.

(5.3)
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Proof. By applying Itô’s formula to |vµ(t)|2H1 , we get

d|vµ(t)|2H1 =
2

µ

(〈
vµ(t), ∂

2
xuµ(t)

〉
H1

+ |uµ(t)|2H1

〈
vµ(t), uµ(t)

〉
H1

−µ|vµ(t)|2H
〈
vµ(t), uµ(t)

〉
H1

− γ|vµ(t)|2H1 +
1

2

〈
vµ(t), trK

(
uµ(t)× (uµ(t)× vµ(t))

)〉
H1

+
1

2
‖uµ(t)× vµ(t)‖2T2(K,H1)

)
dt+

2√
µ

〈
vµ(t), (uµ(t)× vµ(t))dw(t)

〉
H1

= − 1

µ
d|uµ(t)|2H2 + |uµ(t)|2H1d

( 1
µ
|uµ(t)|2H1 + |vµ(t)|2H

)
− d
(
|uµ(t)|2H1 |vµ(t)|2H

)

+
1

µ

(
− 2γ|vµ(t)|2H1 +

〈
vµ(t), trK

(
uµ(t)× (uµ(t)× vµ(t))

)〉
H1

+ ‖uµ(t)× vµ(t)‖2T2(K,H1)

)
dt+

2√
µ

〈
vµ(t), (uµ(t)× vµ(t))dw(t)

〉
H1
.

(5.4)

According to (5.1), this implies that

d
(
|uµ(t)|2H2 + µ|vµ(t)|2H1 + µ|uµ(t)|2H1 |vµ(t)|2H

)

= −2γ|uµ(t)|2H1 |vµ(t)|2Hdt− 2γ|vµ(t)|2H1dt+
〈
vµ(t), trK

(
uµ(t)× (uµ(t)× vµ(t))

)〉
H1
dt

+ ‖uµ(t)× vµ(t)‖2T2(K,H1) dt+ 2
√
µ
〈
vµ(t), (uµ(t)× vµ(t))dw(t)

〉
H1
.

Now, let us define

Yµ,a(t) := exp

(
−a
∫ t

0

|vµ(s)|2Hds
)
, t ≥ 0, µ > 0, (5.5)

for some constant a > 0 to be determined later. We have

d
(
Yµ,a(t)

(
|uµ(t)|2H2 + µ|vµ(t)|2H1 + µ|uµ(t)|2H1 |vµ(t)|2H

))

= Yµ,a(t)
(
− a|uµ(t)|2H2 |vµ(t)|2H − aµ|vµ(t)|2H1 |vµ(t)|2H − aµ|uµ(t)|2H1 |vµ(t)|4H

−2γ|uµ(t)|2H1 |vµ(t)|2H − 2γ|vµ(t)|2H1 +
〈
vµ(t), trK

(
uµ(t)× (uµ(t)× vµ(t))

)〉
H1

+ ‖uµ(t)× vµ(t)‖2T2(K,H1)

)
dt+ 2

√
µ Yµ,a(t)

〈
vµ(t), (uµ(t)× vµ(t))dw(t)

〉
H1
.

Thus, if we integrate with respect to t ≥ 0, we get

Yµ,a(t)
(
|uµ(t)|2H2 + µ|vµ(t)|2H1 + µ|uµ(t)|2H1 |vµ(t)|2H

)
+

∫ t

0

Yµ,a(s)
(
a|uµ(s)|2H2 |vµ(s)|2H

+aµ|vµ(s)|2H1 |vµ(s)|2H + aµ|uµ(s)|2H1 |vµ(s)|4H + 2γ|uµ(s)|2H1 |vµ(s)|2H + 2γ|vµ(s)|2H1

)
ds

= |u0|2H2 + µ|v0|2H1 + µ|u0|2H1 |v0|2H

+

∫ t

0

Yµ,a(s) J(uµ(s), vµ(s))ds+ 2
√
µ

∫ t

0

Yµ,a(s)G(uµ(s), vµ(s))dw(s),

(5.6)
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where

J(u, v) :=
〈
v, trK(u× (u× v))

〉
H1

+ ‖u× v‖2T2(K,H1) , (u, v) ∈ H1,

and

G(u, v)ξ :=
〈
v, (u× v)ξ

〉
H1
, (u, v) ∈ H1, ξ ∈ K.

Note that for every (u, v) ∈ H1

D
(
trK
(
u× (u× v)

))
=
(
−|u|2v + (u · v)u

)
ϕ′

+
(
− 2(Du · u)v − |u|2Dv + (Du · v)u+ (u ·Dv)u+ (u · v)Du

)
ϕ,

so that we have

〈
v, trK

(
u× (u× v)

)〉
H1

=

∫ L

0

(
− |u|2(v ·Dv) + (u · v)(u ·Dv)

)
ϕ′dx

+

∫ L

0

(
− 2(Du · u)(Dv · v)− |u|2|Dv|2 + (Du · v)(u ·Dv)

)
ϕdx

+

∫ L

0

(
− 2(Du · u)(Dv · (u ·Dv)2 + (u · v)(Du ·Dv)

)
ϕdx.

(5.7)

Moreover,

‖u× v‖2T2(K,H1)

=

∞∑

i=1

∫ L

0

∣∣(u× v)ξ′i +D(u× v)ξi
∣∣2dx =

∫ L

0

∞∑

i=1

∣∣(u× v)ξ′i +D(u× v)ξi
∣∣2dx

=

∫ L

0

|u× v|2ϕ1dx+

∫ L

0

∣∣D(u× v)
∣∣2ϕdx+ 2

∫ L

0

(u× v ·D(u× v))
∑

i

ξiξ
′
idx

=

∫ L

0

|u× v|2ϕ1dx+

∫ L

0

∣∣Du× v + u×Dv
∣∣2ϕdx

+2

∫ L

0

(u× v) ·
(
Du× v + u×Dv

)∑

i

ξiξ
′
idx.

(5.8)

Due to the well-known identity

((a× b) · (c× d)) = (a · c)(b · d)− (a · d)(b · c), a, b, c, d ∈ R
3,

from (5.7) and (5.8) we get

J(u, v) =

∫ L

0

(u× v)2ϕ1dx+ 2

∫ L

0

(
(u× v) · (Du× v)

)∑

i

ξiξ
′
i dx

+

∫ L

0

[
(Du× v)2 −

(
(Du× u) · (Dv × v)

)]
ϕ dx.

(5.9)

In particular, this implies that for any ε > 0

|J(u, v)| ≤ c|ϕ1|∞|u|2H1 |v|2H + c
√
|ϕ|∞|ϕ1|∞|u|H1 |u|H2 |v|2H

+c|ϕ|∞|u|H2 |u|H1 |v|H1 |v|H ≤ ε |u|2H1 |v|2H1 + c(ε)|u|2H2 |v|2H ,
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for some constant c(ε) = c(ε, |ϕ|∞, |ϕ1|∞) > 0. Hence, according to (5.1), we obtain

E sup
r∈ [0,t]

∣∣∣∣
∫ r

0

Yµ,a(s) J(uµ(s), vµ(s))ds

∣∣∣∣

≤ ε
(
|u0|2H1 + µ|v0|2H

)
E

∫ t

0

Yµ,a(s)|vµ(s)|2H1 ds+ c(ε)E

∫ t

0

Yµ,a(s)|uµ(s)|2H2 |vµ(s)|2H ds.

(5.10)

Next, for every (u, v) ∈ H1 and k ∈ K we have

G(u, v)k =

∫ L

0

(Dv · (u× v)k′ + [Du× v + u×Dv] k) dx

=

∫ L

0

(Dv · (u× v)k′ + (Du× v)k) dx,

so that

‖G(u, v)‖2T2(K,R) =

∞∑

i=1

∣∣∣
∫ L

0

[(Dv · (u× v)) ξ′i + (Dv · (Du× v)) ξi] dx
∣∣∣
2

≤ |v|2H1

∞∑

i=1

(
|(u× v)ξi|2H + |(Du× v)ξi|2H

)
≤ c
(
|ϕ|∞ + |ϕ1|∞

)
|u|2H2 |v|2H1 |v|2H .

(5.11)

This implies that for every ε > 0 we can fix some c(ε) = c(ε, |ϕ|∞, |ϕ1|∞) > 0 such that,

√
µ E sup

r∈[0,t]

∣∣∣
∫ r

0

Yµ,a(s)G(uµ(s), vµ(s))dw(s)
∣∣∣

≤ cE

(∫ t

0

µY 2
µ,a(s) ‖G(uµ(s), vµ(s))‖

2
T2(K,R) ds

) 1

2

≤ c
(
|ϕ|∞ + |ϕ1|∞

) 1

2
E

(∫ t

0

µY 2
µ,a(s)|uµ(s)|2H2 |vµ(s)|2H1 |vµ(s)|2H ds

) 1

2

≤ εµ E sup
r∈[0,t]

Yµ,a(r)|vµ(r)|2H1 + c(ε)E

∫ t

0

Yµ,a(s)|uµ(s)|2H2 |vµ(s)|2Hds.

(5.12)

Therefore, if we pick

ε̄ :=
1

2
∧ γ

(
|u0|2H1 + µ|v0|2H

)−1
,

and a = a(ε̄) > 0 large enough in (5.10) and (5.12), from (5.6) we get

E sup
r∈[0,t]

(
Yµ,a(r)

(
|uµ(r)|2H2 + µ|vµ(r)|2H1 + µ|uµ(r)|2H1 |vµ(r)|2H

))

+cE

∫ t

0

Yµ,a(s)
(
|vµ(s)|2H1 + |uµ(s)|2H2 |vµ(s)|2H

)
ds

+cE

∫ t

0

Yµ,a(s)
(
µ|vµ(s)|2H1 |vµ(s)|2H + µ|uµ(s)|2H1 |vµ(s)|4H

)
ds

≤ |u0|2H2 + µ|v0|2H1 + µ|u0|2H1 |v0|4H .
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Finally, since (5.1) gives for every t ≥ 0
∫ t

0

|vµ(s)|2Hds ≤
1

2γ

(
|u0|2H1 + µ|v0|2H

)
, P− a.s.,

we conclude

E sup
r∈[0,t]

(
|uµ(r)|2H2 + µ|vµ(r)|2H1 + µ|uµ(r)|2H1 |vµ(r)|2H

)

+cE

∫ t

0

(
|vµ(s)|2H1 + |uµ(s)|2H2 |vµ(s)|2H + µ|vµ(s)|2H1 |vµ(s)|2H + µ|uµ(s)|2H1 |vµ(s)|4H

)
ds

≤
(
|u0|2H2 + µ|v0|2H1 + µ|u0|2H1 |v0|2H

)
exp

( a
2γ

(
|u0|2H1 + µ|v0|2H

))
,

and this implies (5.3).

6 The limiting equation

We consider the following deterministic equation




∂t

[(
γ +

1

2
ϕ|u(t, x)|2

)
u(t, x)

]
= ∂2xu(t, x) + |∂xu(t)|2Hu(t, x)

+
3ϕ

2γ

([
∂2xu(t, x) + |∂xu(t)|2Hu(t, x)

]
· u(t, x)

)
u(t, x),

u(0, x) = u0(x), u(t, 0) = u(t, L) = 0,

(6.1)

where, we recall, ϕ(x) :=
∑∞

i=1|ξi(x)|2, for x ∈ (0, L).

Definition 6.1. Let u0 ∈ H1 ∩M . We say that u is a solution to equation (6.1) in [0, T ] if

u ∈ C([0, T ];H1) ∩ L2(0, T ;H2), ∂tu ∈ L2(0, T ;H),

and the identity

(
γ +

1

2
ϕ|u(t)|2

)
u(t) =

(
γ +

1

2
ϕ|u0|2

)
u0

+

∫ t

0

(
∂2xu(s) + |∂xu(s)|2Hu(s) +

3ϕ

2γ

([
∂2xu(s) + |∂xu(s)|2Hu(s)

]
· u(s)

)
u(s)

)
ds,

holds in H, for a.e. t ∈ [0, T ].

In the following lemma we show that equation (6.1) has an equivalent formulation.

Lemma 6.1. Let u0 ∈ H1 ∩M . Then any function u ∈ C([0, T ];H1) ∩ L2(0, T ;H2), with

∂tu ∈ L2(0, T ;H), satisfies equation (6.1) if and only if satisfies the following equation





γ∂tu(t, x) = ∂2xu(t, x) + |∂xu(t)|2Hu(t, x) +
1

2
trK
(
u(t, x)× (u(t, x)× ∂tu(t, x))

)
,

u(0, x) = u0(x), u(t, 0) = u(t, L) = 0.

(6.2)

Proof. If u satisfies equation (6.2), then we have

γ∂tu(t) = ∂2xu(t) + |∂xu(t)|2Hu+
1

2
ϕ
(
− |u(t)|2∂tu(t) + (u(t) · ∂tu(t))u(t)

)

= ∂2xu(t) + |∂xu(t)|2Hu(t) +
1

2
ϕ
(
− ∂t(|u(t)|2u(t)) + 3(u(t) · ∂tu(t))u(t)

)
,
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the identity holding in L2(0, T ;H). Then, since

γu(t) · ∂tu(t) = ∂2xu(t) · u(t) + |∂xu(t)|2H |u(t)|2,

we have

γ(u(t) · ∂tu(t))u(t) = (∂2xu(t) · u(t))u(t) + |∂xu(t)|2H |u(t)|2u(t).

This implies that

γ∂tu(t) +
1

2
ϕ∂t(|u(t)|2u(t))

= ∂2xu(t) + |∂xu(t)|2Hu(t) +
3ϕ

2γ
(∂2xu(t) · u(t))u(t) +

3ϕ

2γ
|∂xu(t)|2H |u(t)|2u(t).

On the other hand, if u is a solution of equation (6.1), in order to prove that it is also

a solution to (6.2) it suffices to show that

γu(t) · ∂tu(t) = ∂2xu(t) · u(t) + |∂xu(t)|2H |u(t)|2.

Indeed, note that

γ∂tu(t) +
1

2
ϕ
(
2(u(t) · ∂tu(t))u(t) + |u(t)|2∂tu(t)

)

= ∂2xu(t) + |∂xu(t)|2Hu(t) +
3ϕ

2γ
(∂2xu(t) · u(t))u(t) +

3ϕ

2γ
|∂xu(t)|2H |u(t)|2u(t),

so that if we take the scalar product by u of both sides, we get

(
1 +

3

2γ
ϕ|u(t)|2

)(
(γu(t) · ∂tu(t))− (∂2xu(t) · u(t))− |∂xu(t)|2H |u(t)|2

)
= 0,

which completes the proof.

Remark 6.2. By using the (6.2) formulation of equation (6.1), it is immediate to check

that if u0 ∈M then u(t) ∈M , for every t ∈ [0, T ]. Actually, for any t > 0 we have

1

2

d

dt

(
|u(t)|2H − 1

)
=
〈
∂2xu(t), u(t)

〉
H
+ |∂xu(t)|2H |u(t)|2H

+
1

2

〈
ϕ(u(t)× (u(t)× ∂tu(t))), u(t)

〉
H

= |∂xu(t)|2H
(
|u(t)|2H − 1

)
.

Combined with the fact that |u0|H − 1 = 0 and ∂xu ∈ C([0, T ];H), this implies that

|u(t)|H = 1, for any t ≥ 0.

Lemma 6.3. Let u be a solution to equation (6.1), with u0 ∈ H1 ∩M . Then for every

t ≥ 0 we have

|u(t)|2H1 + 2γ

∫ t

0

|∂tu(s)|2H ds ≤ |u0|2H1 . (6.3)

Proof. If we use the (6.2) formulation of equation (6.1), we get

γ|∂tu(t)|2H =
〈
∂2xu(t), ∂tu(t)

〉
H
+
〈
|∂xu(t)|2Hu(t), ∂tu(t)

〉
H

−1

2

〈
ϕ|u(t)|2∂tu(t), ∂tu(t)

〉
H
+

1

2

〈
ϕ(u(t) · ∂tu(t))u(t), ∂tu(t)

〉
H
.
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Recalling that |u(t)|H = 1, this gives

γ |∂tu(t)|2H = −1

2

d

dt
|u(t)|2H1 − 1

2

〈
ϕ|u(t)|2∂tu(t), ∂tu(t)

〉
H

+
1

2

〈
ϕ(u(t) · ∂tu(t))u(t), ∂tu(t)

〉
H

≤ −1

2

d

dt
|u(t)|2H1 ,

and (6.3) follows once we integrate both sides in time.

Proposition 6.2. Let u1 and u2 be any two solutions of equation (6.1), with initial

conditions u1,0, u2,0 ∈ H1 ∩M , respectively. Then there exist some constants c1, c2 > 0,

depending only on u1,0, u2,0 and ϕ, such that for every t ≥ 0

|u1(t)− u2(t)|2H1 +

∫ t

0

|∂tu1(s)− ∂tu2(s)|2Hds ≤ c1|u1,0 − u2,0|2H1ec2t. (6.4)

In particular, there is at most one solution to equation (6.1) in C([0, T ];H1)∩L2(0, T ;H2),

with ∂tu ∈ L2(0, T ;H).

Proof. Let us fix u1,0, u2,0 ∈ H1 ∩M and let u1, u2 be solutions of equation (6.1) with

initial conditions u1,0, u2,0, respectively. If we denote v1 = ∂tu1 and v2 = ∂tu2, then,

recalling (5.5)

γ|(v1 − v2)(t)|2H =
〈
∂2x(u1 − u2)(t), (v1 − v2)(t)

〉
H

+
〈
|∂xu1(t)|2Hu1(t)− |∂xu2(t)|2Hu2(t), (v1 − v2)(t)

〉
H

−1

2

〈
ϕ
(
|u1(t)|2v1(t)− |u2(t)|2v2(t)

)
, (v1 − v2)(t)

〉
H

+
1

2

〈
ϕ
(
(u1(t) · v1(t))u1(t)− (u2(t) · v2(t))u2(t)

)
, (v1 − v2)(t)

〉
H
.

Hence, if a is an arbitrary positive constant and we denote

Ya(t) := exp

(
−a
∫ t

0

(
1 + |v2(s)|2H

)
ds

)
, t ≥ 0, (6.5)

we get

d

dt

(
Ya(t)|(u1 − u2)(t)|2H1

)
= Ya(t)

( d
dt

|(u1 − u2)(t)|2H1 − a
(
1 + |v2(t)|2H

)
|(u1 − u2)(t)|2H1

)

= Ya(t)
(
− a
(
1 + |v2(t)|2H

)
|(u1 − u2)(t)|2H1

+2
〈
|u1(t)|2H1u1(t)− |u2(t)|2H1u2(t), (v1 − v2)(t)

〉
H

−2γ|(v1 − v2)(t)|2H −
〈
ϕ
(
|u1(t)|2v1(t)− |u2(t)|2v2(t)

)
, (v1 − v2)(t)

〉
H

+
〈
ϕ
(
(u1(t) · v1(t))u1(t)− (u2(t) · v2(t))u2(t)

)
, (v1 − v2)(t)

〉
H

)
.

(6.6)
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Now, for any ε > 0 we can find c(ε) > 0 such that
〈
|u1(t)|2H1u1(t)− |u2(t)|2H1u2(t), (v1 − v2)(t)

〉
H

= |u1(t)|2H1

〈
(u1 − u2)(t), (v1 − v2)(t)

〉
H
+
〈(
|u1(t)|2H1 − |u2(t)|2H1

)
u2(t), (v1 − v2)(t)

〉
H

≤ |u1(t)|2H1

(
ε|(v1 − v2)(t)|2H + c(ε)|(u1 − u2)(t)|2H

)

+c|u2(t)|H
(
|u1(t)|H1 + |u2(t)|H1

)(
ε|(v1 − v2)(t)|2H + c(ε)|(u1 − u2)(t)|2H1

)
.

(6.7)

Moreover

−
〈
ϕ
(
|u1(t)|2v1(t)− |u2(t)|2v2(t)

)
, (v1 − v2)(t)

〉
H

= −
〈
ϕ|u1(t)|2(v1 − v2)(t), (v1 − v2)(t)

〉
H
−
〈
ϕ
(
|u1(t)|2 − |u2(t)|2

)
v2(t), (v1 − v2)(t)

〉
H

≤ −
〈
ϕ|u1(t)|2(v1 − v2)(t), (v1 − v2)(t)

〉
H

+|ϕ|∞
(
|u1(t)|H1 + |u2(t)|H1

)
|(u1 − u2)(t)|H1 |v2(t)|H |(v1 − v2)(t)|H

≤ −
〈
ϕ|u1(t)|2(v1 − v2)(t), (v1 − v2)(t)

〉
H

+c|ϕ|∞
(
|u1(t)|H1 + |u2(t)|H1

)(
ε|(v1 − v2)(t)|2H + c(ε)|v2(t)|2H |(u1 − u2)(t)|2H1

)
,

(6.8)

and
〈
ϕ
(
(u1(t) · v1(t))u1(t)− (u2(t) · v2(t))u2(t)

)
, (v1 − v2)(t)

〉
H

=
〈
ϕ
(
u1(t) · (v1 − v2)(t)

)
u1(t), (v1 − v2)(t)

〉
H

+
〈
ϕ
(
(u1 − u2)(t) · v2(t)

)
u1(t), (v1 − v2)(t)

〉
H

+
〈
ϕ(u2(t) · v2(t))(u1 − u2)(t), (v1 − v2)(t)

〉
H

≤
〈
ϕ
(
u1(t) · (v1 − v2)(t)

)
u1(t), (v1 − v2)(t)

〉
H

+c|ϕ|∞
(
|u1(t)|H1 + |u2(t)|H1

)(
ε|(v1 − v2)(t)|2H + c(ε)|v2(t)|2H |(u1 − u2)(t)|2H1

)
.

(6.9)

Since ϕ ≥ 0, we have

−
〈
ϕ|u1|2(v1 − v2), v1 − v2

〉
H
+
〈
ϕ
(
u1 · (v1 − v2)

)
u1, v1 − v2

〉
H

≤ 0.

Hence, thanks to (6.3) we can take ε̄ > 0 sufficiently small and ā = ā(ε̄) > 0 sufficiently

large so that if we replace (6.7), (6.8) and (6.9) into (6.6), we get

Yā(t)|u1(t)− u2(t)|2H1 + c

∫ t

0

Yā(s)
(
1 + |v2(s)|2H

)
|u1(s)− u2(s)|2H1ds

+c

∫ t

0

Yā(s)|v1(s)− v2(s)|2Hds ≤ |u1,0 − u2,0|2H1 ,

(6.10)

for some constant c = c(u1,0, u2,0, ϕ) > 0. Finally, since from (6.3)

Yā(t) ≥ exp
(
− ā
(
t+ |u2,0|2H1/2γ

))
, t > 0,
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we can complete the proof of (6.4).

7 Proof of the validity of the small-mass limit

In this final section, we conclude the proof of Theorem 3.2. We first prove some

identities, then we investigate tightness and finally we proceed with the proof of the

theorem.

7.1 An identity for the solution of system (2.2)

Lemma 7.1. For every µ > 0 and (u0, v0) ∈ H1 ∩M the solution (uµ(t), vµ(t)) of system

(2.2) (or, equivalently system (4.5)) satisfies the following identity, for every t ≥ 0

γuµ(t) +
1

2
ϕ|uµ(t)|2uµ(t) + µvµ(t)

= γu0 +
1

2
ϕ|u0|2u0 + µv0 +

∫ t

0

∂2xuµ(s)ds+

∫ t

0

|∂xuµ(s)|2Huµ(s)ds

+
3

2γ
ϕ

∫ t

0

(
∂2xuµ(s) · uµ(s)

)
uµ(s)ds+

3

2γ
ϕ

∫ t

0

|∂xuµ(s)|2H |uµ(s)|2uµ(s)ds+Rµ(t),

(7.1)

where

Rµ(t) =
3µ

2γ
ϕ(u0 · v0)u0 −

3µ

2γ
ϕ(uµ(t) · vµ(t))uµ(t)− µ

∫ t

0

|vµ(s)|2Huµ(s)ds

+
3µ

2γ
ϕ

∫ t

0

(uµ(s) · vµ(t))vµ(s)ds+
3µ

2γ
ϕ

∫ t

0

|vµ(s)|2uµ(s)ds

−3µ

2γ
ϕ

∫ t

0

|vµ(s)|2H |uµ(s)|2uµ(s)ds+
√
µ

∫ t

0

(uµ(s)× vµ(s))dw(s)

=:
3µ

2γ
ϕ(u0 · v0)u0 +

6∑

i=1

Jµ,i(t).

(7.2)

Proof. In view of (4.5), we have

d(uµ(t) · vµ(t)) = |vµ(t)|2dt+
1

µ

(
∂2xuµ(t) · uµ(t)

)
dt+

1

µ
|∂xuµ(t)|2H |uµ(t)|2dt

−|vµ(t)|2H |uµ(t)|2dt−
γ

µ
(uµ(t) · vµ(t))dt

+
1

2µ
ϕ
(
− |uµ(t)|2vµ(t) + (uµ(t) · vµ(t))uµ(t)

)
· uµ(t)dt

+
1√
µ
uµ(t) · (uµ(t)× vµ(t))dw(t) = |vµ(t)|2dt+

1

µ

(
∂2xuµ(t) · uµ(t)

)
dt

+
1

µ
|∂xuµ(t)|2H |uµ(t)|2dt− |vµ(t)|2H |uµ(t)|2dt−

γ

µ
(uµ(t) · vµ(t))dt.
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This implies that

d
(
(uµ(t) · vµ(t))uµ(t)

)

= (uµ(t) · vµ(t))vµ(t)dt+ |vµ(t)|2uµ(t)dt+
1

µ

(
∂2xuµ(t) · uµ(t)

)
uµ(t)dt

+
1

µ
|∂xuµ(t)|2H |uµ(t)|2uµ(t)dt− |vµ(t)|2H |uµ(t)|2uµ(t)dt−

γ

µ
(uµ(t) · vµ(t))uµ(t)dt.

Hence, for every t ≥ 0, we obtain

γ

∫ t

0

(uµ(s) · vµ(s))uµ(s)ds

=

∫ t

0

(
∂2xuµ(s) · uµ(s)

)
uµ(s)ds+

∫ t

0

|∂xuµ(s)|2H |uµ(s)|2uµ(s)ds

−µ(uµ(t) · vµ(t))uµ(t) + µ(u0 · v0)u0 + µ

∫ t

0

(uµ(s) · vµ(s))vµ(s)ds

+µ

∫ t

0

|vµ(s)|2uµ(s)ds− µ

∫ t

0

|vµ(s)|2H |uµ(s)|2uµ(s)ds.

(7.3)

By using the fact that

d(|uµ(t)|2uµ(t)) = 2(uµ(t) · vµ(t))uµ(t) + |uµ(t)|2vµ(t),

this implies

∫ t

0

(
− |uµ(s)|2vµ(s) + (uµ(s) · vµ(s))uµ(s)

)
ds

= −|uµ(t)|2uµ(t) + |u0|2u0 + 3

∫ t

0

(uµ(s) · vµ(s))uµ(s)ds = −|uµ(t)|2uµ(t) + |u0|2u0

+
3

γ

∫ t

0

(
∂2xuµ(s) · uµ(s)

)
uµ(s)ds+

3

γ

∫ t

0

|∂xuµ(s)|2H |uµ(s)|2uµ(s)ds

−3µ

γ
(uµ(t) · vµ(t))uµ(t) +

3µ

γ
(u0 · v0)u0 +

3µ

γ

∫ t

0

(uµ(s) · vµ(s))vµ(s)ds

+
3µ

γ

∫ t

0

|vµ(s)|2uµ(s)ds−
3µ

γ

∫ t

0

|vµ(s)|2H |uµ(s)|2uµ(s)ds.
(7.4)

Finally, we rewrite system (4.5) in the following form

γuµ(t) + µvµ(t) = γu0 + µv0

+

∫ t

0

∂2xuµ(s)ds+

∫ t

0

|∂xuµ(s)|2Huµ(s)ds− µ

∫ t

0

|vµ(s)|2Huµ(s)ds

+
1

2
ϕ

∫ t

0

(
− |uµ(s)|2vµ(s) + (uµ(s) · vµ(s))uµ(s)

)
ds+

√
µ

∫ t

0

(uµ(s)× vµ(s))dw(s).

(7.5)

Therefore, if we replace (7.4) into (7.5), we get (7.1), with Rµ(t) defined by (7.2).
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Lemma 7.2. For every (u0, v0) ∈ H1 ∩M and t > 0 we have

lim
µ→0

E sup
r∈[0,t]

|Rµ(r)|2H = 0. (7.6)

Proof. First, note that, since

|Jµ,1(t)|H ≤ c |ϕ|∞µ|uµ(t)|2H1 |vµ(t)|H ,

due to (5.1) we have

lim
µ→0

E sup
r∈[0,t]

|Jµ,1(r)|2H = 0, (7.7)

and since

|Jµ,2(r)|2H ≤ c tµ2

∫ t

0

|vµ(s)|4Hds ≤ c tµ2

∫ t

0

|vµ(s)|4H |uµ(s)|2H1 ds, r ∈ [0, t],

due to (5.3) we have

lim
µ→0

E sup
r∈[0,t]

|Jµ,2(r)|2H = 0. (7.8)

Moreover, thanks to (5.1), (5.3) and

|Jµ,3(r)|2H + |Jµ,4(r)|2H ≤ c t|ϕ|2∞µ2

∫ t

0

|uµ(s)|2H1 |vµ(s)|2H1 |vµ(s)|2Hds, r ∈ [0, t],

we have

lim
µ→0

E sup
r∈[0,t]

(
|Jµ,3(r)|2H + |Jµ,4(r)|2H

)
= 0. (7.9)

From (5.1), (5.3), and

|Jµ,5|2H ≤ c t|ϕ|2∞µ2
E

∫ t

0

|uµ(s)|6H1 |vµ(s)|4Hds, r ∈ [0, t],

it follows that

lim
µ→0

E sup
r∈[0,t]

|Jµ,5(r)|2H = 0. (7.10)

Furthermore, we have

E sup
r∈[0,t]

|Jµ,6(r)|2H ≤ cµE

∫ t

0

‖uµ(s)× vµ(s)‖2T2(K,H) ds

≤ c|ϕ|∞µE
∫ t

0

|uµ(s)|2H1 |vµ(s)|2Hds,

so that, thanks again to (5.1),

lim
µ→0

E sup
r∈[0,t]

|Jµ,6(r)|2H = 0. (7.11)

Finally, combining (7.7)-(7.11), we complete our proof.

7.2 Tightness

Proposition 7.1. For every (u0, v0) ∈ H1 ∩ M and T > 0, the family of probability

measures
{
L(uµ)

}
µ∈(0,1)

is tight in C([0, T ];Hδ), for every δ < 2.

EJP 30 (2025), paper 25.
Page 22/27

https://www.imstat.org/ejp



Small-mass limit for constrained SWEs

Proof. According to (5.2), we have that

sup
µ∈(0,1)

E

(
sup

t∈[0,T ]

|uµ(t)|2H2 +

∫ T

0

|∂tuµ(s)|2H1ds

)
< +∞. (7.12)

This, in particular, implies that for every ε > 0 there exists Lε > 0 such that if we denote

by Kε the ball of radius Lε in C([0, T ];H
2) ∩W 1,2(0, T ;H1), then

inf
µ∈(0,1)

P(uµ ∈ Kε) ≥ 1− ε.

Due to the Aubin-Lions lemma, we know that the set Kε is compact in C([0, T ];Hδ), for

every δ < 2.

7.3 Proof of Theorem 3.2

Proof. Thanks to Proposition 7.1 and (5.2), we have the family
{
L(uµ, µ ∂tuµ)

}
µ∈(0,1)

is

tight in C([0, T ];Hδ)×C([0, T ];H1), for any δ < 2. If for every T > 0 and δ < 2 we define

ΓT,δ := C([0, T ];Hδ)× C([0, T ];H1)× C([0, T ];E),

where E is any Banach space such that the embedding K ⊂ E is Hilbert-Schmidt, then

as a consequence of Skorokhod’s theorem, for any sequence {µk}k∈N, converging to

zero, there exists a subsequence, still denoted by {µk}k∈N, and some ΓT,δ-valued random

variables

Yk :=
(
%k, µkϑk, ŵk

)
, Y :=

(
%, ϑ, ŵ

)
, k ∈ N,

all defined on some probability space
(
Ω̂, F̂ , {F̂t}t∈[0,T ], P̂

)
, such that

L(Yk) = L
(
uµk

, µk∂tuµk
, w
)
, k ∈ N, (7.13)

and

lim
k→∞

(
|%k − %|C([0,T ];Hδ) + µk|ϑk|C([0,T ];H1) + |ŵk − ŵ|C([0,T ];E)

)
= 0, P̂− a.s. (7.14)

In particular, due to (5.1), (5.2), (7.12) and (7.13), we have

sup
k∈N

(
Ê sup

t∈[0,T ]

(
|%k(t)|2H2 + µk|ϑk(t)|2H1

)
+ Ê

∫ T

0

|ϑk(s)|2H1ds

)
< +∞, (7.15)

and there exists a deterministic c > 0 such that

sup
k∈N

(
sup

t∈[0,T ]

|%k(t)|H1 +

∫ T

0

|∂t%k(s)|2H ds
)
≤ c, P̂-a.s. (7.16)

Thanks to (7.14) and (7.16), it follows that % ∈ L2(Ω̂;L∞(0, T ;Hδ)), for every δ < 2, and

sup
t∈[0,T ]

|%(t)|H1 ≤ c, P̂-a.s. (7.17)

Moreover, from (7.15) and (7.16) we get that % is weakly differentiable in time, with

∂t% ∈ L2(0, T ;H) and ∫ T

0

|∂t%(s)|2H ds ≤ c, P̂-a.s. (7.18)

Finally, as a consequence of (7.14) and (7.15), we have

∫ T

0

Ê|%(s)|2H2 ds <∞. (7.19)
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Now, if we can show that % solves equation (6.1), then by the uniqueness of solutions

for equation (6.1), due to the classical argument by Gyongy and Krylov (see [14]), we

can conclude that uµk
converges to u in C([0, T ];Hδ), for every sequence µk ↓ 0, and the

convergence is in probability.

Due to (7.13) and identities (7.1) and (7.2), we have that for every ψ ∈ C∞
0 ([0, L])

〈γ%k(t) +
1

2
ϕ|%k(t)|2%k(t) + µkϑk(t), ψ〉H

= 〈γu0 +
1

2
ϕ|u0|2u0 + µkv0, ψ〉H +

∫ t

0

〈∂2x%k(s), ψ〉Hds

+

∫ t

0

〈|%k(s)|2H1%k(s), ψ〉Hds+
3

2γ

∫ t

0

〈ϕ
(
∂2x%k(s) · %k(s)

)
%k(s), ψ〉Hds

+
3

2γ

∫ t

0

〈ϕ|%k(s)|2H1 |%k(s)|2%k(s), ψ〉Hds+ 〈R̂k(t), ψ〉H ,

where

R̂k(t) =
3µk

2γ
ϕ(u0 · v0)u0 −

3µkϕ

2γ
(%k(t) · ϑk(t))%k(t)− µk

∫ t

0

|ϑk(s)|2H%k(s)ds

+
3µkϕ

2γ

∫ t

0

(%k(s) · ϑk(t))ϑk(s)ds+
3µkϕ

2γ

∫ t

0

|ϑk(s)|2%k(s)ds

−3µk

2γ

∫ t

0

|ϑk(s)|2H |%k(s)|2%k(s)ds+
√
µk

∫ t

0

(%k(s)× ϑk(s))dŵk(s).

We have

sup
t∈[0,T ]

∣∣∣ϕ
(
|%k(t)|2%k(t)− |%(t)|2%(t)

)∣∣∣
H

≤ c|ϕ|∞ sup
t∈[0,T ]

(∣∣(|%k(t)|2 − |%(t)|2
)
%k(t)

∣∣
H
+
∣∣|ρ(t)|2(%k(t)− %(t))

∣∣
H

)

≤ c|ϕ|∞ sup
t∈[0,T ]

((
|%k(t)|2H1 + |%(t)|2H1

)
|%k(t)− %(t)|H

)
.

Then, in view of (7.14), (7.16) and (7.17) we conclude

lim
k→∞

sup
t∈ [0,T ]

∣∣∣∣〈γ%k(t) +
1

2
ϕ|%k(t)|2%k(t) + µkϑk(t), ψ〉H − 〈γ%(t) + 1

2
ϕ|%(t)|2%(t), ψ〉H

∣∣∣∣ = 0,

(7.20)

P̂-a.s. Since

sup
t∈[0,T ]

∣∣∣
∫ t

0

〈∂2x(%k − %)(s), ψ〉Hds
∣∣∣ ≤ |ψ|H1

∫ T

0

|%k(s)− %(s)|H1ds,

due to (7.14) we have

lim
k→∞

sup
t∈ [0,T ]

∣∣∣∣
∫ t

0

〈∂2x%k(s), ψ〉Hds−
∫ t

0

〈∂2x%(s), ψ〉H ds

∣∣∣∣ = 0, P̂-a.s., (7.21)
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and since

sup
t∈[0,T ]

∣∣∣
∫ t

0

(
|%k(s)|2H1%k(s)− |%(s)|2H1%(s)

)
ds
∣∣∣
H

≤
∫ T

0

∣∣|%k(s)|2H1 − |%(s)|2H1

∣∣ds+
∫ T

0

|%(s)|2H1 |%k(s)− %(s)|Hds,

we get

lim
k→∞

sup
t∈ [0,T ]

∣∣∣∣
∫ t

0

〈|%k(s)|2H1%k(s), ψ〉Hds−
∫ t

0

〈|%(s)|2H1%(s), ψ〉H ds

∣∣∣∣ = 0, P̂-a.s. (7.22)

Moreover, for every η ∈ C([0, T ];H1) ∩ L2(0, T ;H2) and s ∈ [0, T ] we have

〈
(
∂2xη(s) · η(s)

)
η(s)ϕ,ψ〉H = −〈

(
∂xη(s), η(s)

)
η(s)ϕ,ψ′〉H

−〈
(
∂xη(s), η(s)

)(
∂xη(s)ϕ+ η(s)ϕ′

)
+ |∂xη(s)|2η(s)ϕ,ψ〉H .

This implies that

∫ t

0

〈
(
∂2x%k(s) · %k(s)

)
%k(s)ϕ−

(
∂2x%(s) · %(s)

)
%(s)ϕ,ψ〉H ds

= −
∫ t

0

〈
[(
∂x%k(s), %k(s)

)
%k(s)−

(
∂x%(s), %(s)

)
%(s)

]
ϕ,ψ′〉H ds

−
∫ t

0

〈
[(
∂x%k(s), %k(s)

)(
∂x%k(s)ϕ+ %k(s)ϕ

′
)
−
(
∂x%(s), %(s)

)(
∂x%(s)ϕ+ %(s)ϕ′

)]
, ψ〉H ds

−
∫ t

0

〈
[
|∂x%k(s)|2%k(s)− |∂x%(s)|2%(s)

]
ϕ,ψ〉H ds =:

3∑

i=1

Ji,k(t).

We have

|J1,k(t)| ≤ c |ϕ|∞|ψ′|∞
∫ T

0

|%k(s)− %(s)|H1 |%k(s)|2H1 ds

+c |ϕ|∞|ψ′|∞
∫ T

0

|%k(s)− %(s)|H1 |%(s)|H1 (|%k(s)|H1 + |%(s)|H1) ds,

and, thanks to (7.14), (7.16) and (7.17), we conclude that

lim
k→∞

sup
t∈ [0,T ]

|J1,k(t)| = 0, P̂− a.s. (7.23)

Next, we have

|J2,k(t)|

≤ c |ψ|∞
∫ T

0

|%k(s)− %(s)|H1 (|%k(s)|H1 + |%(s)|H1) (|%k(s)|H2 |ϕ|∞ + |%k(s)|H1 |ϕ′|∞) ds

+c |ψ|∞ (|ϕ|∞ + |ϕ′|∞)

∫ T

0

|%k(s)− %(s)|H1 |%(s)|H2 |%(s)|H1 ds.
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Thus, as a consequence of (7.14) and bounds (7.15), (7.16), (7.17) and (7.19), we can

conclude that

lim
k→∞

Ê sup
t∈ [0,T ]

|J2,k(t)| = 0. (7.24)

Finally, we have

|J3,k(t)| ≤ c |ϕ|∞|ψ|∞
∫ T

0

|%k(s)− %(s)|H1

[
|%k(s)|H1 (|%k(s)|H2 + |%(s)|H2) + |%(s)|2H1

]
ds,

and, due again to (7.14), (7.15) and(7.19), we conclude

lim
k→∞

Ê sup
t∈ [0,T ]

|J3,k(t)| = 0. (7.25)

Therefore, as a consequence of (7.23), (7.24) and (7.25), we conclude that

lim
k→∞

Ê sup
t∈ [0,T ]

∣∣∣∣
∫ t

0

〈
(
∂2x%k(s) · %k(s)

)
%k(s)ϕ−

(
∂2x%(s) · %(s)

)
%(s)ϕ,ψ〉H ds

∣∣∣∣ = 0. (7.26)

Next, for every t ∈ [0, T ] we have

∣∣∣ϕ
∫ t

0

(
|%k(s)|2H1 |%k(s)|2%k(s)− |%(s)|2H1 |%(s)|2%(s)

)
ds
∣∣∣
H

≤ c|ϕ|∞
(∫ T

0

∣∣|%k(s)|2H1 − |%(s)|2H1

∣∣ ·
∣∣|%k(s)|2%k(s)

∣∣
H
ds

+

∫ T

0

|%(s)|2H1

∣∣(|%k(s)|2 − |%(s)|2)%k(s)
∣∣
H
ds+

∫ T

0

|%(s)|2H1

∣∣|%(s)|2(%k(s)− %(s))
∣∣
H
ds

)

≤ c|ϕ|∞
(∫ T

0

|%k(s)|2H1

(
|%k(s)|H1 + |%(s)|H1

)
|%k(s)− %(s)|H1ds

+

∫ T

0

(
|%k(s)|4H1 + |%(s)|4H1

)
|%k(s)− %(s)|Hds

)
.

Thus, thanks again to (7.16) and (7.17), we get

lim
k→∞

sup
t∈ [0,T ]

∣∣∣∣
∫ t

0

〈ϕ|%k(s)|2H1 |%k(s)|2%k(s), ψ〉H ds−
∫ t

0

〈ϕ|%(s)|2H1 |%(s)|2%(s), ψ〉H ds

∣∣∣∣ = 0,

(7.27)

P̂-a.s. By using the same arguments as in the proof of Lemma 7.2, we conclude that

lim
k→∞

Ê sup
t∈ [0,T ]

∣∣∣〈R̂k(t), ψ〉H
∣∣∣
2

= 0. (7.28)

Finally, combining (7.20), (7.21), (7.22), (7.26) and (7.27) together with (7.28), we can

conclude that % satisfies equation (6.1). As we have seen above, this allows to conclude

the proof of Theorem 3.2.
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