
Heterogeneity-Aware Resource Allocation and
Topology Design for Hierarchical Federated Edge

Learning

Zhidong Gao, Student Member, IEEE, Zhenxiao Zhang, Student Member, IEEE,
Yu Zhang, Student Member, IEEE, Yanmin Gong, Senior Member, IEEE, Yuanxiong Guo, Senior Member, IEEE

Abstract—Federated Learning (FL) provides a privacy-
preserving framework for training machine learning models on
mobile edge devices. Traditional FL algorithms, e.g., FedAvg,
impose a heavy communication workload on these devices.
To mitigate this issue, Hierarchical Federated Edge Learning
(HFEL) has been proposed, leveraging edge servers as interme-
diaries for model aggregation. Despite its effectiveness, HFEL
encounters challenges such as slow convergence rates and high
resource consumption, particularly in the presence of system and
data heterogeneity. However, existing works are mainly focused
on improving the efficiency of traditional FL training, leaving the
efficiency of HFEL largely unexplored. In this paper, we consider
a two-tier HFEL system, where edge devices are connected
to edge servers, and edge servers are interconnected through
peer-to-peer (P2P) edge backhauls. Our goal is to enhance the
training efficiency of the HFEL system through strategic resource
allocation and topology design. Specifically, we formulate an
optimization problem to minimize total training latency by
allocating computation and communication resources, as well as
adjusting P2P connections. To ensure convergence under dynamic
topologies, we analyze the convergence error bound and introduce
a model consensus constraint into the optimization problem. The
proposed problem is then decomposed into several subproblems,
enabling us to alternatively solve it online. Our method facilitates
the efficient implementation of large-scale FL in edge networks
under data and system heterogeneity. Comprehensive experiment
evaluation on benchmark datasets validates the effectiveness of
the proposed method, demonstrating significant reductions in
training latency while maintaining the model accuracy compared
to various baselines.

Index Terms—Federated learning, resource allocation, topology
design, mobile edge

I. INTRODUCTION

THE widespread adoption of edge devices, such as smart-
phones and Internet-of-things (IoT) devices, each pos-

sessing advanced sensing, computing, and storage capabilities,
results in an enormous amount of data being produced daily
at the network edge. Concurrently, the rapid advancements in
artificial intelligence (AI) and machine learning (ML) facilitate
the extraction of valuable knowledge from extensive data.

Z. Gao, Z. Zhang, Y. Zhang, and Y. Gong are with the Department of
Electrical and Computer Engineering, The University of Texas at San An-
tonio, San Antonio, TX, 78249. E-mail: {zhidong.gao@my., yu.zhang@my.,
yanmin.gong@}utsa.edu

Y. Guo is with the Department of Information Systems and Cyber Security,
The University of Texas at San Antonio, San Antonio, TX, 78249. E-mail:
yuanxiong.guo@utsa.edu

The integration of 5G networks with AI/ML technologies is
driving the development of numerous innovative applications
that have significant economic and social impacts, such as
autonomous driving [1], augmented reality [2], real-time video
analytics [3], mobile healthcare [4], and smart manufactur-
ing [5]. A key characteristic of these new applications is
the substantial and continuously streaming data they produce,
which requires efficient processing for real-time learning and
decision-making. However, despite these advancements, data
sharing is impeded by privacy regulations, such as the General
Data Protection Regulation (GDPR), and hardware constraints,
like limited communication bandwidth. Federated learning
(FL) [6] emerges as a promising solution to these challenges
by enabling model training directly on mobile devices in a
decentralized manner. FL not only enhances privacy protection
but also leverages the computational resources of edge devices.

In a standard FL architecture, the system comprises a cloud-
based Parameter Server (PS) and multiple clients1. The PS
orchestrates the training procedure while the clients carry
out model training. The training process consists of multiple
communication rounds between the clients and the PS. In each
round, each selected client downloads the most recent global
model from PS and updates the model using its local data.
Then, these updated local models are uploaded to the PS,
where they are aggregated into a new global model. However,
the process of transferring models between the numerous
clients and the PS imposes a considerable data traffic load,
leading to increased training latency and network congestion.

To unlock the full potential of FL on mobile edge networks,
recent works [7]–[12] have explored Hierarchical Federated
Edge Learning (HFEL) by leveraging multi-server collab-
oration for model training. These works typically adopt a
hierarchical architecture that integrates the advantage of cloud-
based and decentralized federated learning (DFL) [13]–[16]
to improve the speed and reliability of the FL system. In
these works, clients are connected to a proximal edge server
via wireless networks, while edge servers either connect to
a central cloud server via an edge-to-cloud (E2C) network
or form a peer-to-peer (P2P) network without connecting to
a central cloud server. Each edge server acts as a local PS,

1Note that we use clients and mobile devices interchangeably in this paper.

orchestrating the training process with its connected clients.
To facilitate collaborative training over broader distances and
ensure a unified model across the network, edge servers engage
in periodic synchronization, sharing, and updating their models
with each other via E2C or P2P networks.

However, implementing FL efficiently in realistic edge
systems presents significant challenges due to two key fac-
tors. 1) System heterogeneity: Edge devices possess limited
resources such as battery life, communication bandwidth, and
CPU frequency. In addition, these resources are not uniformly
distributed among different devices. In traditional HFEL, the
faster devices must remain idle, waiting for the slower ones
to finish training in each communication round. 2) Statistical
heterogeneity: The data that local devices collect are inherently
influenced by their specific geographic locations or operational
contexts, leading to a non-IID data distribution. This discrep-
ancy can significantly hinder the model convergence speed and
accuracy.

Recent research [17]–[20] has studied optimization-based
strategies to deal with the challenges introduced by system
and statistical heterogeneity in FL environments. Typically,
these approaches first construct an optimization problem that
encapsulates resource cost, system constraints, and training
performance. Then, an adaptive control strategy is developed
by solving the optimization problem to optimize device re-
source allocation and learning task scheduling in real time.
Specifically, to guarantee the performance of the learned model
under devised control decisions, these studies usually perform
the convergence analysis for their learning algorithm. This
allows them to derive several key insights which are subse-
quently applied to the design or solution of their optimization
problems. However, these studies primarily focus on cloud-
based FL or DFL, and less effect has been made for the FL
system with hierarchical architectures.

In this paper, we investigate the efficiency of a two-tier
HFEL system, where edge devices are connected to nearby
edge servers and edge servers are interconnected via P2P
networks. Each edge server with its connected edge devices
forms one cluster. Our study focuses on the strategic regulation
of CPU processing on edge devices, wireless communica-
tion bandwidth, and P2P network configuration to uncover
potential efficiency gains. In particular, we formulate an op-
timization problem that characterizes the inherent resource
constraints of the HFEL system and the relationship between
resource consumption and training latency. Additionally, we
derive a consensus distance constraint that captures the in-
fluence of topology design on the model convergence. This
enables us to safely remove the unimportant links from the
graph to reduce training latency while preserving the model’s
utility.

To address this problem, we propose FedRT, an online
algorithm that decomposes the original optimization into
subproblems solved across successive global rounds, with
each global round further partitioned into sequential edge
rounds. The final edge-round subproblem constitutes a chal-
lenging mixed-integer non-convex optimization (combining

continuous resource variables and discrete topology decisions).
To solve it efficiently, FedRT employs a greedy alternating
optimization: iteratively updating the communication graph
topology via consensus-aware link pruning, then optimizing
resource allocations (CPU, bandwidth), while dynamically
adapting these decisions based on real-time system states,
environmental conditions, and resource availability. This ap-
proach enables FedRT to balance training latency reduction
and model convergence in dynamic HFEL environments.

We conducted comprehensive evaluations on three bench-
mark datasets, CIFAR-10 [21], FEMNIST [22], and FM-
NIST [22] under various data distributions and resource
configurations to validate the effectiveness of our proposed
method. The experimental results illustrate that our method
outperforms baselines in terms of the total training latency
and convergence speed. In summary, our main contributions
are stated as follows:

• We formulated an optimization problem that captures the
two trade-offs for the HFEL system: i) model conver-
gence rate versus network topology link density by lim-
iting consensus distance during training. ii) total training
latency versus energy cost by finding the optimal com-
munication and computation resource allocation scenario
for edge devices.

• We propose FedRT, which jointly optimizes the edge
backhaul topology and resource allocation for a two-
tier HFEL system, considering both system and data
heterogeneity. FedRT achieves high accuracy, low latency,
and resource-efficient model training in mobile edge FL.

• We present a detailed analysis of our control strategy
and provide several insights on adjusting the control
variables to achieve a better trade-off between resource
consumption and convergence speed.

• We conduct extensive experiments on benchmark
datasets. The results demonstrate the advantage of our
method compared with baselines without client schedul-
ing and/or resource allocation.

The remainder of this paper is organized as follows. Sec-
tion III describes the system model and formulated optimiza-
tion problem. Sectio II discusses the related works. Section IV
presents the convergence result and discusses the insights of
topology design. Section VI introduces the proposed solution.
Then, in Section VII, we demonstrate the experiment results.
Finally, we conclude this paper in Section VIII.

II. RELATED WORK

FL at mobile edge networks faces several challenges, such
as high training latency and resource cost due to the presence
of system and data heterogeneity. To mitigate these issues,
several resource-optimization-based algorithms have been pro-
posed to enhance both training latency and resource utilization
of FL. For instance, Luo et al. [23] introduced an adaptive
client sampling algorithm aimed at minimizing convergence
time in heterogeneous systems. Perazzone et al. [24] proposed
a joint client sampling and power allocation scheme to reduce
convergence error and average communication time under a

Edge Backhaul

Decentralized
Consensus

Edge
Aggregation

Fig. 1. Flow-chart of a two-tier federated learning system.

power constraint, though their approach does not consider
local computation. Wang et al. [25] formulated an optimiza-
tion problem to minimize convergence bounds by adaptively
compressing model updates and determining the probability
of local updates. However, these works predominantly focus
on cloud-based FL, which relies on a single cloud server to
coordinate the model training.

A few studies [26]–[30] have explored resource-
optimization of HFEL at mobile networks, where multiple
edge servers are responsible for aggregating model updates
from a subset of devices. In particular, Zhang et al. [26]
proposed a framework for wireless networks, which enhances
training efficiency and convergence in multi-cell scenarios
by combining intra-cell device-to-device consensus with
inter-cell aggregation while optimizing resources to minimize
training latency and energy consumption. Feng et al. [29]
proposed to optimize computation and communication
resources, alongside edge server associations, to minimize
global costs while enhancing training performance in HFEL
systems. Zhou et al. [30] propose a joint scheduling and
resource allocation scheme to improve convergence rates and
reduce energy consumption in the mobile edge. The work
closest to us is [20], which considers the cost efficiency of
a Multi-Cell FL system. In their setting, the client could
establish communication links with multiple servers. Their
focus is client association and coordinator node selection.
Different from these studies, our goal in this paper is to
minimize the total learning latency while preserving the
model accuracy by jointly optimizing the topology for edge
servers, as well as the communication and computation
resource allocations for edge devices, under both system and
data heterogeneity.

III. PRELIMINARIES

A. Federated Learning over Mobile Edge

We consider a hierarchical federated learning system as
shown in Fig. 1. Assume there are C clusters in the system.
Every cluster c ∈ [C] possesses a server colocated with a

base station. Each cluster owns a set of devices Sc, and the
number of devices is Nc = |Sc|. Note the devices in Sc only
communicate with the server within the same cluster via the
wireless communication links, e.g., 5G. We define the set of
all devices in the system as S = ∪Cc=1Sc. The total number
of devices is N = |S|.

The edge backhaul communication pattern is defined as
Gb = {V, Eb}, which is an undirected and connected graph.
Here V denotes the set of all servers, and Eb is the set
of possible communication links. Moreover, let Ab be the
adjacency matrix of Gb, where (Ab)c,c′ = 1 if there is an edge
between server c and server c′ and (Ab)c,c′ = 0 otherwise.

B. Model Training Process

The objective of FL is to find a model w ∈ Rd that minimize
the following global objective function:

min
w

F (w) =
1

N

N∑
n=1

Fn(w), (1)

where Fn(w) = Ex∼Dn
[ℓn(w;x)] is the local objective

function of device n, Dn is the data distribution of device n.
Here ℓn is the loss function, e.g., cross-entropy, and x denotes
a data sample drawn from the distribution Dn. We define the
cluster-level objective function as

min
w

fc(w) =
1

Nc

∑
n∈Sc

Fn(w), (2)

Here, fc is the objective function of the c-th cluster, which is
the average of the local objective of all devices from cluster
c. Then we can rewrite the global objective function (1) as:

min
w

F (w) =
C∑
c=1

Nc
N
fc(w). (3)

We summarize the detailed training process in Algorithm
1. Specifically, we assume there is a central controller that
will coordinate the operations of the HFEL system. It collects
the device-specific parameters, including the CPU cycle per
sample cn, the size of the training data Dn, energy budget
Ēn, the capacitance coefficient αn, decision boundaries fmin

n ,
fmax
n , pmin

n , pmax
n , and background noise power N0, before the

training starts. The extra costs (e.g., bandwidth consumption
and time cost) for information collection are ignored as in
prior works [19], [20], [23], [25], [31]–[33]. Other inputs are
hyper-parameters, e.g., sampling frequency K, batch size I ,
and local iterations S depending on user specification.

At the beginning of t-th global round, each server collects
its real-time communication bandwidth to other servers Bt and
sends it to the coordinator (line 2). Each global round includes
R edge rounds. At the beginning of r-th edge round, each
edge device records its observed signal-to-noise ratio SNRt,rn
and communication bandwidth to connected edge server bt,rc′ ,
and then sends them to the coordinator (line 5). Coordinator
determines the allocated bandwidth for each client bt,rn , CPU
frequency f t,rn , and graph topology Gt by solving Algorithm 2
(line 6). The solving details will be elaborated in Section VI.

Algorithm 1 Training Process of FL over Mobile Edge
Input: Initial global model u0,0

c , learning rate η, mixing matrix
M , T,R, S, ψ
Output: Final learned model uT−1

1: for each global round t = 0, . . . , T − 1 do
2: for each cluster c ∈ [C] in parallel do
3: for each edge round r = 0, . . . , R − 1 do
4: Server c broadcasts ut,rc to all devices in Sc
5: for Device n ∈ Sc in parallel do
6: wt,r,0

n ← ut,rc
7: for s = 0, . . . , S − 1 do
8: Compute a stochastic gradient gn over a mini-

batch ξn drawn from Dn
9: wt,r,s+1

n ← wt,r,s
n − ηgn(wt,r,s

n)
10: end for
11: Upload wt,r,S

n to server c
12: end for
13: ut,r+1

c ← 1
Nc

∑
n∈Sc

wt,r,S
n

14: end for
15: ut+1,0

c ← ut,R−1
c +

∑
c′∈{c}∪N t

c

Mψ
c,c′(u

t,R−1
c′ − ut,R−1

c)

16: end for
17: end for

After that, server c broadcasts the latest global model ut,r
c

to all devices in Sc (line 7). Then, devices receive ut,r
c and

initialize their local model to be the received global model
(line 9). Next, the device runs S iterations local update (SGD)
on its local training dataset (lines 10-13). After local training,
the device uploads the model to the server c (line 14). Server c
aggregates the local models from devices in Sc (line 16). The
edge training lasts for R rounds. After edge training, server
c communicates ψ times with its neighbor server c′ ∈ Nc to
synchronize the global model (lines 18-19).

C. Cost Analysis of HFEL

1) Device Communication Time: We assume the com-
munication follows the Frequency Division Multiple Access
(FDMA) protocol, and each server adaptively assigns its
communication bandwidth to all devices within the cluster.
Let bt,rn be the assigned bandwidth for device n at edge round
r and global round t. Then, the communication rate of device
n is

rt,rn = bt,rn log2(1 + SNRt,rn), (4)

Here, SNRt,rn denotes the signal-to-noise ratio between device
n and the corresponding server at edge round r and global
round t.

The totally assigned bandwidth for all devices in Sc should
not exceed the available bandwidth of server c, therefore we
have ∑

n∈Sc

bt,rn ≤ bt,rc , ∀c, ∀t

bt,rn > 0, ∀t, ∀r, ∀n,
(5)

where bt,rc denotes the available bandwidth of the server c at
edge round r and global round t. The communication time
T t,r,com
n of device n can be expressed as

T t,r,com
n =

Λ

rt,rn
=

Λ

bt,rn log2(1 + SNRr,tn)
. (6)

Here, Λ denotes the model size. Note that we only consider
the upload time cost since the download time cost is not the
bottleneck for the practical HFEL system.

2) Server Communication Time: Define Bt ∈ RC×C as
the matrix of communication bandwidth between servers at
global round t, where Bt

c,c′ is the available bandwidth between
server c and c′. If there is no available link between c and
c′, we set Bt

c,c′ = 0, ∀(c, c′) /∈ Eb. It is worth noting that
the communication between servers is accomplished through
the edge backhaul, which operates independently from the
communication between the server and devices (e.g., through
the base station).

In this paper, we consider the topology design approach
that adaptively selects and deletes the slow communication
links from the base graph Gb. Specifically, we aim to find an
edge backhaul communication pattern Gt = {V,Et} at each
global round. Here Et ⊂ Eb denotes the set of remaining
edges in Gt. Note different choices of Gt have an impact on
model convergence. We will discuss it in a later section. Then,
the communication time between server c and its neighbors
depends on the slowest links, which can be expressed as

T tc =
ψΛ

min
c′∈N t

c,

{Bt
c,c′}

. (7)

Here N t
c is the set of neighbors for server c in Gt.

Let At be the adjacency matrix of Gt, and Dt be the
degree matrix. Here Dt is a diagonal matrix, and each element
denotes the number of neighbors Dt

c,c = |N t
c |. Then, the

Laplacian matrix Lt of Gt can be expressed as

Lt = Dt −At. (8)

We always require the graph Gt to remain connected. Accord-
ing to the spectral graph theory [34], it can be translate into
following constraint:

λ2(L
t) > 0, ∀t (9)

where λl(Lt) denotes the l-th smallest eigenvalue of Laplacian
matrix Lt.

3) Edge Device Computation Time: Let µn represent the
number of CPU cycles required by device n to process a single
training example. The value of µn can either be measured
offline or known as a prior. The total number of CPU cycles
required to train one edge round is SIµn, where I denotes
the batch size. The computation time for one edge round of
device n can be formulated as

T t,r,cmp
n =

SIµn

f t,rn
, (10)

where f t,rn is the CPU frequency of device n at edge round r
and global round t.

4) Time Model: In Algorithm 1, one global round com-
prises R edge rounds conducted within the cluster, followed
by ψ times synchronization between the clusters. The time
required for one edge round depends on the slowest device in
that round. Therefore, we have

T t,rc = max
n∈Sc

{T t,r,cmp
n + T t,r,com

n }, (11)

where T t,rc is the time cost of cluster c at edge round r and
global round t.

After R edge rounds training within the cluster, the server
starts to communicate with neighbor servers. Similarly, the
slowest cluster determines the final completion time for one
global round

T t = max
c∈[C]
{∑R−1

r=0 max
n∈Sc

{T t,r,cmp
n + T t,r,com

n }+ T tc }. (12)

Here, T t is time consumption at global round t.
5) Edge Device Computation Energy: Following [35], the

CPU energy cost for one edge round training can be formu-
lated as

Et,r,cmp
n =

αn
2
SIµn(f

t,r
n)2, (13)

where αn/2 denotes the effective capacitance coefficient of
the computing chipset on device n.

We assume the devices could adjust their CPU frequency
by leveraging the Dynamic Voltage and Frequency Scaling
(DVFS) technique. Due to the hardware limitation, the CPU
frequency satisfy

fmin
n ≤ f tn ≤ fmax

n (14)

Here fmin
n , fmax

n denote the minimum and maximum CPU
frequency of device n.

6) Edge Device Communication Energy: For devices, the
energy used for downloading is usually negligible. Therefore,
we only consider the communication energy usage during
uploading

Et,r,com
n = pnT t,r,com

n =
pnΛ

bt,rn log2(1 + SNRr,tn)
, (15)

where pn denotes the communication power of device n.
7) Energy Model: As the server is usually equipped with

a plug-in power supply, the energy cost of the server is not
our focus in this paper. For devices, the energy cost has two
sources: the energy used for local training and the energy used
for wireless transmission between the devices and the server.
Thus, we have

Et,rn =
pnΛ

bt,rn log2(1 + SNRr,tn)
+
αn
2
SIµn(f

t,r
n)2, (16)

where Et,rn is the energy consumption of device n at edge
round r and global round t.

D. Inter-Cluster Model Consensus
In Algorithm 1, there is no actual global model, and each

server hosts an edge model that serves as the “global model”
within the cluster. The edge models belonging to different
clusters are usually not the same. We introduce the consensus
distance to measure the discrepancy between any two edge
models

Υtc,c′ = ∥ut,R−1
c − ut,R−1

c′ ∥. (17)

Here, Υtc,c′ denotes the consensus distance between the edge
model c and the edge model c′ in the global round t.

We define the consensus distance between the edge model
and the actual global model

Υtc = ∥ūt,0 − ut,0c ∥, (18)

where ūt,0 = 1
C

∑C
c=1 u

t,0
c denotes the average of all edge

models. Note that ūt,0 is not available in our system. More-
over, the average consensus distance of all edge models is

Υt = 1
C

∑C
c=1 Υ

t
c. (19)

Similar to the weight divergence and the consensus distance in
prior works [36]–[38], the consensus distance depends on the
data distribution across the clusters, which is the key factor in
capturing the joint effect of decentralization.

IV. CONVERGENCE CONSTRAINT

A. Convergence Result
For the convergence of HFEL systems, several studies [8],

[11], [39] have been carried out. However, these works mainly
focus on the convergence analysis of the learning algorithm in
HFEL and assume that all edge devices are homogeneous (i.e.,
their computation, communication, and storage capabilities are
the same) and the edge backhaul topology is given prior. To
analyze the impact of topology design on the convergence of
proposed algorithms, we re-elaborate the convergence results
from prior work [8].

Let L be the Lipschitz constant, φ = tRS + rS + s denote
the global iteration index, and Φ = RTS represent the total
number of iterations. Additionally, let σ be the bound of
unbiased stochastic gradient variance, ϵc be the intra-cluster
divergence, ϵ be the inter-cluster divergence, and ζ be the
second largest eigenvalue of the mixing matrix. Furthermore,
we define the following constants

Ω1 =
ζ2ψ

1− ζ2ψ , Ω2 =
1

1− ζ2ψ +
2

1− ζψ +
ζψ

(1− ζψ)2 ,
(20)

Let η ≤ min { 1
2LS ,

1
2
√
2Ω2LRS

}, we have

1

Φ

Φ−1∑
φ=0

E∥∇F (uφ)∥2 ≤ 2(F (u1)− Finf)

ηΦ
+
ηLσ2

N

+ 8η2L2(Ω1RS +
C − 1

N
RS)σ2 + 16η2L2R2S2Ω2ϵ

2

+ 8
N − C
N

η2L2Sσ2 + 16L2η2S2
C∑
c=1

Nc
N
ϵ2c . (21)

The fourth term 16η2L2R2S2Ω2ϵ
2 captures the inter-cluster

error bound. Here, Ω2 captures the influence of varying topolo-
gies on the convergence error bound, while ϵ2 quantifies the
effect of inter-cluster non-IID data distribution [8]. A sparser
topology results in a larger value of Ω2, thereby increasing the
error in the convergence bound. Similarly, a higher degree of
inter-cluster non-IID distribution leads to a larger value of ϵ,
amplifying the error caused by inter-cluster data heterogeneity.
Therefore, removing certain links from the graph increases
overall sparsity, enlarging convergence errors and potentially
leading to longer training times and degradation in model
performance, especially when data across clusters are highly
non-IID.

Note that our goal is to reduce the training latency of
the HFEL system. To achieve this, we aim to identify and
remove links that contribute minimally to model convergence
while imposing high communication overhead between edge
servers. Although the above convergence results do not directly
quantify the impact of individual links on the error bound, they
highlight the necessity of jointly considering model conver-
gence when optimizing the graph topology. To further analyze
how individual links impact the error bound, we leverage
the concept of consensus distance to assess the influence of
different links on model convergence.

Intuitively, links in the graph primarily influence the P2P
communication process among edge servers. For instance,
in a fully connected graph, all edge servers have identical
edge models after P2P communication. The consensus distance
between any two edge models is zero. In contrast, if the
graph contains no links, the edge servers become isolated, each
maintaining an independent model. This leads to a non-zero
consensus distance, which depends on the data distributions
within each cluster. Therefore, the consensus distance serves
as an effective metric to reflect the impact of links in the model
convergence. Specifically, when two clusters have similar
data distribution, their corresponding edge models tend to
be similar as well, resulting in smaller consensus distances.
In such cases, removing the link between their edge servers
is less critical and can be executed safely. However, if two
edge clusters have very different data distributions, their edge
models become quite different, resulting in larger consensus
distances. In this scenario, removing the link between these
edge servers may hinder the convergence of the model.

B. Consensus Distance Constraint

Integrating the consensus distance into our problem presents
two key challenges. First, we can only calculate the consensus
distance between directly connected edge server. For uncon-
nected servers, direct computation is not possible, making it
difficult to use consensus distance as a guiding metric for
topology design. Second, consensus distance does not have an
explicit functional dependence on the graph topology, com-
plicating its integration into optimization problems alongside
other decision variables.

Instead of directly computing the consensus distance be-
tween two edge models, we estimate the consensus distance

between the server model ut,R−1
c and the global averaged

model ūt,R−1. Based on the definition of consensus dis-
tance (17) and the aggregation rule (15), we have

Υt+1
c =

∥∥ūt+1,0 − ut+1,0
c

∥∥
=

∥∥ 1

C

C∑
c′=1

ut,R−1
c′ − (ut,R−1

c +
∑

c′∈{c}∪N t
c

M
(ψ)
c,c′(u

t,R−1
c′ − ut,R−1

c))
∥∥

=
∥∥∑C

c′=1

ut,R−1

c′ −ut,R−1
c

C −Ac,c′M
(ψ)
c,c′(u

t,R−1
c′ − ut,R−1

c))
∥∥

(22)

For simplicity, we set M(ψ)
c,c′ = 1/N . Note that it is the possible

maximum value [36], [40], [41]. Then we have

EΥt+1
c =

∥∥∑C
c′=1

(1−Ac,c′)(u
t,R−1

c′ −ut,R−1
c)

C

∥∥
≤ 1

C

∑C
c′=1(1−Ac,c′)Υ

t
c,c′ . (23)

We take the average across all edge models on both sides
of (23)

EΥt+1 ≤ 1

C2

∑C
c=1

∑C
c′=1(1−Ac,c′)Υ

t
c,c′ . (24)

Next, we expect the upper bound (24) is smaller than the
threshold. This leads to the following consensus constraint:

1

C2

∑C
c=1

∑C
c′=1(1−Ac,c′)Υ

t
c,c′ ≤ Υtmax, ∀t. (25)

The inequality (25) explicitly establishes the connection
between the graph topology and the consensus distance. It
allows us to capture the influence of topology design on
model convergence. Specifically, a relatively high value of
Υtc,c′ indicates a large consensus distance between the server c
and c′, suggesting a substantial disparity of their edge models.
In such cases, removing the communication link between these
servers may negatively impact the rate of model convergence.
In contrast, a smaller consensus distance implies minimal
differences between the edge models. The link between them
can be removed to reduce the communication overhead with-
out significantly affecting the convergence rate. Note that if
two servers are not connected, directly computing Υtc,c′ is
infeasible. In this case, we adopt the approach in the previous
work [36], [37] to estimate Υtc,c′ .

V. PROBLEM FORMULATION

A. Formulated Optimization Problem

Our goal is to minimize the total time cost (during local
updating and model transmission) while ensuring model con-
vergence. Specifically, we aim to devise a control strategy by
adjusting the decision variables, e.g., graph topology, commu-
nication bandwidth, and CPU frequency, which translates into
the following problem:

P1: min
{bt,rn ,∀n,t,r},{fr,t

n ,∀n,t,r},{Gt,∀t}

T−1∑
t=0

T t

s.t.


Υt+1 ≤ Υtmax, ∀t (26)∑T−1
t=0

∑R−1
r=0 Et,rn ≤ Ēn, ∀n (27)

(5), (8), (14).

Time Time
Edge
devices

Edge servers

7.Adjust topology

1.Send

3.Derive

5.Update model using

4.Broadcast model and

6.Upload model using

8.Synchronize model

2.Collect

Fig. 2. Flowchart of FedRT.

The objective of Problem P1 represents the total time cost
of T global rounds. Inequality (26) states that the consensus
distance should not exceed a threshold Υtmax. The role of this
constraint is two-fold. First, we use it to mitigate the negative
influence caused by the non-IID data distribution between
clusters. Additionally, it ensures the convergence of the model
when we update the graph topology. Inequality (27) represents
the constraint on energy consumption, where Ēn is the energy
budget of the device n.

B. Challenges to address the problem

Solving Problem P1 presents several challenges: (i) The
model convergence rate is directly influenced by the graph
topology. Removing slow communication links can negatively
affect the convergence speed, potentially increasing training
latency. (ii) Control decisions within the objective function
and constraints are interconnected across time slots. How-
ever, we lack future knowledge of the system stats such
as cluster communication environment and edge backhaul
speed. Consequently, an online algorithm that operates without
reliance on pre-existing system information or assumptions is
required. (iii) The updates frequencies of the graph topology
and resource allocation differ, complicating their joint online
optimization.

VI. SOLUTION DESIGN

To address Problem P1, we first decompose it into a series
of subproblems alongside the global training round t. Then,
the sub-problem at the global round t is

P2: min
{br,tn ,∀n,r},{fr,t

n ,∀n,r},Gt
T t

s.t.


1

C2

∑C
c=1

∑C
c′=1(1−At

c,c′)Υ
t
c,c′ ≤ Υtmax∑t−1

t′=0

∑R−1
r=0 Et

′,r
n + (T − t)∑R−1

r=0 Et,rn ≤ Ēn, ∀n
(5), (8), (14).

Here, the second inequality uses the energy cost in the current
global round t to estimate the total energy cost of T global
rounds.

Algorithm 2 FedRT
1: for t = 0 to T − 1 do
2: for r = 0 to R− 1 do
3: if r = R− 1 then
4: Server records Bc, and Υtc,c′ , and send them to the

coordinator (it can be any server)
5: end if
6: Device observes channel statistics SNRt,rn and send

it to coordinator
7: if r ̸= R− 1 then
8: Solve Problem P2.1 through CVX
9: else

10: Solve Problem P2.2 via Algorithm 3
11: end if
12: Run one edge round collaborative training
13: if r = R− 1 then
14: Server synchronizes model with neighbor servers
15: end if
16: end for
17: end for

However, solving the above P2 still is infeasible. One
obstacle is the server only starts to communicate with neighbor
servers after they finish their training task within each cluster.
The graph topology should be derived based on the time cost
of the R edge training rounds and the consensus distance
between the server models. In the edge round r < R − 1,
the future communication topology is still unknown.

In order to address this challenge, we again break down P2
into a sequence of subproblems across different edge rounds.
Specifically, for the edge round r < R − 2, we allocate
the CPU frequency and communication bandwidth for each
device such that the estimated completion time for each edge
round is minimized. In the edge round R − 1, we jointly
optimize the CPU frequency, communication bandwidth, and
graph topology based on the completion time and the energy
used.

Let bt,r = {bt,rn , ∀n}, f t,r = {f t,rn , ∀n} for r = 0, . . . , R−
1. At global round t, the completion time from the first edge
round to edge round r can be estimated as follows:

T t,r = max
c∈[C]
{∑r−1

r′=0 max
n∈Sc

{T t,r
′,cmp

n + T t,r′,com
n }

+ max
n∈Sc

{T t,r,cmp
n + T t,r,com

n }} (28)

Then, the sub-problem at edge round r and global round t can
be expressed as

P2.1: min
bt,r,f t,r

T t,r

s.t.


∑t−1
t′=0

∑R−1
r′=0 Et

′,r′

n +
∑r−1
r′=0 Et,r

′

n

+((T − t)R+R− r)Et,rn ≤ Ēn, ∀n
(5), (14).

Note that the problem is convex and can be efficiently solved
using convex optimization software such as CVX.

Algorithm 3 Algorithm to address P2.2
Input: Λ, S, I , Bt, ζ, Υtmax, Gb, {µn}, {pn}, {αn},
{SNRt,Rn , ∀n}, {Υtc,c′ , ∀c, ∀c′}
Output: bt,R−1, f t,R−1,Gt

1: Initilize the optimal topology (Gt,R−1)∗ = Gb and Flag =
True

2: Solve P2.1 to obtain an initial resource allocation
(bt,R−1)∗, (f t,R−1)∗ based on (Gt,R−1)∗

3: Initilize the best completion time using (29)
(T t,R−1)∗ ← T t,R−1((bt,R−1)∗, (f t,R−1)∗, (Gt,R−1)∗)

4: while True do
5: if Flag then
6: e = ⌊

√∑
c,c′(A

t
c,c′)

∗⌋
7: else
8: e = ⌊e/2⌋
9: end if

10: Select e slowest links from (Gt,R−1)∗ within the con-
sensus distance threshold (25), and place them into Ē .

11: Sort the links in Ē in ascending order of speed
12: Initilize temporal topology (Gt,R−1)′ ← (Gt,R−1)∗

13: for Ec,c′ ∈ Ē do
14: Remove Ec,c′ from (Gt,R−1)′

15: if (Gt)∗ is not connected then
16: Restore Ec,c′ into (Gt,R−1)′

17: end if
18: end for
19: Solve P2.1 to obtain new resource allocation

(bt,R−1)′, (f t,R−1)′ based on (Gt,R−1)′

20: Compute new completion time
(T t,R−1)′ ← T t,R−1((bt,R−1)′, (f t,R−1)′, (Gt,R−1)′)

21: if (T t,R−1)′ < (T t,R−1)∗ then
22: (bt,R−1)∗, (f t,R−1)∗ ← (bt,R−1)′, (f t,R−1)′

23: (T t,R−1)∗, (Gt,R−1)∗ ← (T t,R−1)′, (Gt,R−1)′

24: Flag ← True
25: else
26: Flag ← False
27: end if
28: if not Flag and e == 1 then
29: Break
30: end if
31: end while
32: Gt,R−1,bt,R−1, f t,R−1← (Gt,R−1)∗, (bt,R−1)∗, (f t,R−1)∗

In the edge round R − 1, the backhaul communication
bandwidth matrix Bt is available. The completion time of
global round r can be estimated as follows:

T t,R−1 = max
c∈[C]
{∑R−2

r′=0 max
n∈Sc

{T t,r
′,cmp

n + T t,r′,com
n }

+ max
n∈Sc

{T t,R−1,cmp
n + T t,R−1,com

n }+ Gt}
(29)

Then, the sub-problem at edge round R− 1 and global round

Fig. 3. Flowchart to address P2.2.

t can be formulated as

P2.2: minbt,R−1,f t,R−1,Gt T t,R−1

s.t.



1

C2

∑C
c=1

∑C
c′=1(1−At

c,c′)Υ
t
c,c′ ≤ Υtmax∑t−1

t′=0

∑R−1
r′=0 Et

′,r′

n +
∑R−2
r′=0 Et,r

′

n

+((T − t)R+ 1)Et,R−1
n ≤ Ēn, ∀n

(5), (8), (14).

Problem P2.2 is non-convex, involving combinatorial opti-
mization with coupled discrete graph topology and continuous
variables like device communication bandwidth and computa-
tion frequency, making it difficult to derive optimal solution
with theoretical guarantees. Therefore, we tackle P2.2 using a
greedy search approach. Specifically, we alternatively update
the continuous varibles, i.e., the communication bandwidth
bt,R−1 and CPU frequency f t,R−1 for each device, and
the discrete variable, i.e., the server communication graph
topology Gt. This iterative process continues until no further
reduction in completion time can be achieved. Subsequently,
the entire problem P2 can be effectively solved online.

We summarize the detailed procedure in Algorithm 2 and
illustrate the overall solution process in Fig. 2. Specifically,
in each edge round, edge devices first transmit locally col-
lected information to the coordinator, including the signal-to-
noise ratio for wireless communication SNRt,rn , transmission
power pn, and energy budget Ēn (Step 1). Concurrently, edge
servers record the inter-server bandwidth Bc and compute the
consensus distance Υtc,c′ between edge models (Step 2). For
disconnected edge servers, the consensus distance is estimated
following previous work [36], [37]. Using the collected in-
formation, the coordinator solves subproblems P2.1 and P2.2
online to allocate communication and computation resources
and to design the graph topology (Step 3). In the first R − 1
edge rounds of each global round, the coordinator uses CVX

to determine bandwidth allocations bt,r and CPU frequencies
f t,r for each device, while preserving the existing topology.
In the final edge round, Algorithm 3 is invoked to jointly
determine the bandwidth bt,r, the CPU frequency f t,r and
the new graph topology Gt. Subsequently, the coordinator
broadcasts the solution to all edge devices and servers. Each
edge server also transmits their latest server model to its
connected edge devices (Step 4). Each device then adjusts
its computational resources according to the assigned CPU
frequency f t,r and begin the local training (Step 5). The
updated local models are later uploaded to edge servers using
the allocated bandwidth bt,r for aggregation (Step 6). Finally,
in the last edge round, the edge servers synchronize the
latest edge model with neighboring servers according to the
new topology Gt to achieve global model consensus (Steps 7
and 8).

The solving procedure for Problem P2.2 is summarized in
Algorithm 3 and illustrated through the flow chart presented in
Fig. 3. Specifically, the coordinator first initializes the optimal
graph topology (At)∗ as the base graph topology Ab (Line 1).
Then, it solves P2.1 based on (At)∗ to determine the initial
allocation of bandwidth (bt,R−1)∗ and frequency assignment
(f t,R−1)∗ (Line 2). The initial best completion time (T t,R−1)∗

is then calculated based on the obtained (bt,R−1)∗, (f t,R−1)∗,
(Gt)∗ (Line 3). Subsequently, the coordinator iteratively per-
forms the following two-step procedure until no further reduc-
tion in completion time can be achieved: (i) updates Gt by link
speed with fixed (bt,R−1, f t,R−1) (Lines 5-17); (ii) updates
bandwidth (bt,R−1) and frequency assignments (f t,R−1) with
fixed Gt (Line 18).

In particular, the coordinator first selects e slowest links
as candidates for removal. The initial number of e is set as
the square root of the total number of links in the current
graph (Gt)∗ (Line 6). Then, the selected links are sorted in
ascending order according to their speed (Line 11). For each
link, the coordinator attempts to remove it from the current
graph (Gt)∗. If removing a link disconnects the graph, the
link is restored to maintain connectivity (Lines 12–17). Using
the updated graph, the coordinator solves Problem P2.1 via
CVX to obtain new value of (bt,R−1) and (f t,R−1) (Line 18),
and calculates the new completion time (T t,R−1)′ (Line 19).

If the new completion time (T t,R−1)′ is shorter than the
best completion time (T t,R−1)∗ (Line 20), the coordina-
tor updates the optimized (bt,R−1)∗, (f t,R−1)∗, (Gt,R−1)∗ to
(bt,R−1)′, (f t,R−1)′, (Gt,R−1)′ (Lines 21-22). The best com-
pletion time (T t,R−1)∗ is updated to (T t,R−1)′ as well (Line
22). Conversely, if the new completion time is larger than
the best completion time, the original topology is retained
(Line 25), and e will be halved in the next search iteration
(Line 8). This iterative search process will be terminated
until there is no link that can be removed from the current
graph (Line 27). Upon termination, the optimized bandwidth
allocation (bt,R−1)∗, frequency assignment (f t,R−1)∗, and
graph topology (Gt)∗ are returned as the final solution (Line
31). Note that although this heuristic does not guarantee global
optimality, its careful and adaptive selection ensures consistent

0 1 2 3 4 5 6
Time ×104

0.2

0.4

0.6

0.8

1.0

Tr
ai

ni
ng

L
os

s

FedRT
Static-R
Static-T
CE-FedAvg
MLL-SGD

(a)

0 1 2 3 4 5 6
Time ×104

72

74

76

78

80

82

84

86

Te
st

in
g

A
cc

ur
ac

y

FedRT
Static-R
Static-T
CE-FedAvg
MLL-SGD

(b)

0 2 4 6
Time ×104

0.2

0.4

0.6

0.8

1.0

Tr
ai

ni
ng

L
os

s

FedRT
Static-R
Static-T
CE-FedAvg
MLL-SGD

(c)

0 2 4 6
Time ×104

72

74

76

78

80

82

84

86

Te
st

in
g

A
cc

ur
ac

y

FedRT
Static-R
Static-T
CE-FedAvg
MLL-SGD

(d)

Fig. 4. Training loss (a,c) and testing accuracy (b,d) comparison of FedRT
and baselines under IID (a,b) and non-IID (c,d) distribution on CIFAR-10.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time ×104

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Tr
ai

ni
ng

L
os

s

FedRT
Static-R
Static-T
CE-FedAvg
MLL-SGD

(a)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time ×104

65

70

75

80

85

Te
st

in
g

A
cc

ur
ac

y

FedRT
Static-R
Static-T
CE-FedAvg
MLL-SGD

(b)

0 1 2 3 4
Time ×104

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Tr
ai

ni
ng

L
os

s

FedRT
Static-R
Static-T
CE-FedAvg
MLL-SGD

(c)

0 1 2 3 4
Time ×104

65

70

75

80

85

Te
st

in
g

A
cc

ur
ac

y

FedRT
Static-R
Static-T
CE-FedAvg
MLL-SGD

(d)

Fig. 5. Training loss (a,c) and testing accuracy (b,d) comparison of FedRT
and baselines under IID (a,b) and non-IID (c,d) distribution on FMNIST.

improvement at each iteration.

VII. EXPERIMENT

We consider a HFEL system with 72 devices and 8 servers
(clusters). Each cluster has 9 devices and 1 server. In the
experiments, we employ three image classification datasets:
FEMNIST [22], CIFAR-10 [21], and FMNIST [42]. The
FEMNIST dataset is the federated splitting version of the
EMNIST dataset, which includes 3,550 writers. We randomly
sample 72 writers to simulate the practical HFEL application.
we divide each writer’s local data into 90% for training and
10% for testing. For evaluation purposes, a common testing
dataset is constructed by aggregating the testing data from all
devices. Note that FEMNIST is a non-IID distributed dataset
due to the variations in writing styles among different writers.

TABLE I
TEST ACCURACY AND RESOURCE USAGE COMPARISON OF FEDRT AND BASELINES FOR DIFFERENT DATASETS. NON-IID IS DIRICHLET DISTRIBUTION.

TIME DENOTES THE TOTAL TRAINING LATENCY IN HOURS. SAVE DENOTES THE PERCENTAGE OF TIME SAVED BY FEDRT COMPARED TO THE BASELINES.
ENG REPRESENTS THE TOTAL ENERGY CONSUMPTION (J). ACC IS THE BEST TESTING ACCURACY.

Method

CIFAR-10 FMNIST FEMNIST

IID non-IID IID non-IID /

Time ↓ Save↑ Eng ↓ Acc ↑ Time ↓ Save↑ Eng ↓ Acc ↑ Time ↓ Save↑ Eng ↓ Acc ↑ Time ↓ Save↑ Eng ↓ Acc ↑ Time ↓ Save↑ Eng ↓ Acc ↑
FedRT 12.41 / 864.12 86.14 14.46 / 1004.05 84.28 5.41 / 119.81 86.73 8.08 / 177.93 86.38 7.86 / 450.55 76.76

Static-R 14.16 12.35 899.06 86.13 16.52 12.47 1047.93 84.42 6.35 14.80 122.52 86.72 9.49 14.86 181.57 86.35 9.04 13.05 470.23 76.76
Static-T 14.52 14.53 861.47 86.06 16.98 14.84 1001.58 84.37 6.63 18.40 119.83 86.70 9.77 17.30 177.92 86.42 9.40 16.38 449.51 76.41

CE-FedAvg 17.95 30.86 933.47 86.06 20.99 31.11 1087.29 84.37 8.51 36.43 127.57 86.70 12.59 35.82 187.10 86.42 11.73 32.99 489.42 76.41
MLL-SGD 17.96 30.90 925.99 86.10 21.00 31.14 1078.44 84.33 8.51 36.43 127.93 86.68 12.59 35.82 187.65 86.44 11.62 32.36 450.71 76.57

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time ×104

0.00

0.05

0.10

0.15

0.20

0.25

Tr
ai

ni
ng

L
os

s

FedRT
Static-R
Static-T
CE-FedAvg
MLL-SGD

(a)

0 1 2 3 4
Time ×104

66

68

70

72

74

76

78

Te
st

in
g

A
cc

ur
ac

y

FedRT
Static-R
Static-T
CE-FedAvg
MLL-SGD

(b)

Fig. 6. Training loss (a,c) and testing accuracy (b,d) comparison of FedRT
and baselines under IID (a,b) and non-IID (c,d) distribution on FEMNIST.

0 50 100 150 200 250 300
Round

0

200

400

600

800

To
ta

lE
ne

rg
y

C
on

su
m

pt
io

n

FedRT
Static-R
Static-T
CE-FedAvg
MLL-SGD

(a)

0 100 200 300
Round

0

200

400

600

800

1000

To
ta

lE
ne

rg
y

C
on

su
m

pt
io

n

FedRT
Static-R
Static-T
CE-FedAvg
MLL-SGD

(b)

Fig. 7. Cumulative energy consumption comparison of FedRT and baselines
under IID (a) and non-IID (b) distribution on CIFAR-10.

We train a modified ResNet-20 for FEMNIST, comprising a
total of 272,814 parameters.

The CIFAR-10 dataset is composed of 50,000 training im-
ages and 10,000 testing images. To simulate the practical data
distribution scenarios, we adopt three data partition strategies:
IID distribution, Dirichlet distribution, and cluster-pathological
distribution. In the case of IID distribution, the 50,000 training
images are evenly and randomly distributed among all the
devices, ensuring each device receives an equal share of
the dataset. For Dirichlet distribution, the partitioning of the
50,000 training images among devices follows the Dirichlet
distribution [43] with a concentration parameter of 1. For
cluster-pathological distribution, we first partition the 50,000
training images into 8 clusters based on the given number
of labels per cluster (LC). Within each cluster, the data are
distributed among all the devices in an IID fashion, similar to
the IID distribution strategy. This method aims to capture the
characteristics of clustered data in real-world scenarios. We
train a ResNet-20 (269,722 parameters) on CIFAR-10. The
original 10,000 testing images are used as the common testing
dataset.

0 20 40 60 80 100
Round

0

20

40

60

80

100

120

To
ta

lE
ne

rg
y

C
on

su
m

pt
io

n

FedRT
Static-R
Static-T
CE-FedAvg
MLL-SGD

(a)

0 25 50 75 100 125 150
Round

0

25

50

75

100

125

150

175

To
ta

lE
ne

rg
y

C
on

su
m

pt
io

n

FedRT
Static-R
Static-T
CE-FedAvg
MLL-SGD

(b)

Fig. 8. Cumulative energy consumption comparison of FedRT and baselines
under IID (a) and non-IID (b) distribution on FMNIST.

0 50 100 150 200
Round

0

100

200

300

400

500

To
ta

lE
ne

rg
y

C
on

su
m

pt
io

n

FedRT
Static-R
Static-T
CE-FedAvg
MLL-SGD

(a)

Fig. 9. Cumulative energy consumption comparison of FedRT and baselines
on FEMNIST.

The FMNIST dataset comprises 60,000 training images and
10,000 testing images. Similar to the CIFAR-10 dataset, we
utilize three data partitioning strategies in the experiments.
We train a LeNet-5 (431,080 parameters) on FMNIST. The
original 10,000 testing images are used as the common test-
ing dataset. To demonstrate the effectiveness of FedRT, we
compare it with three baselines: Static-R, Static-T, and CE-
FedAvg. The details of baseline algorithms are as follows:

• Static-R assumes that each edge server evenly assigns its
communication bandwidth among all edge devices within
its cluster. To fulfill the energy requirements of the HFEL
system, we solve the optimization problem as in FedRT
to determine the feasible CPU frequency and the edge
backhaul topology, except the allocated communication
bandwidth remains constant.

• Static-T adopts a static edge backhaul topology and only
considers the resource allocation for edge devices. To
satisfy the energy constraint, the communication band-
width and CPU frequency are optimized following the
same methodology as FedRT, except the edge backhaul
topology is fixed.

0 1 2 3
Round ×102

10

20

30

40

50

60

Te
st

in
g

A
cc

ur
ac

y

LC:2
LC:4
LC:6
LC:8

(a) CIFAR-10

0.00 0.25 0.50 0.75 1.00 1.25 1.50
Round ×102

0

10

20

30

40

50

60

70

Te
st

in
g

A
cc

ur
ac

y

LC:2
LC:4
LC:6
LC:8

(b) FMNIST

Fig. 10. FedRT under different levels of inter-cluster data heterogeneity.

1.0 1.5 2.0 2.5 3.0
Round ×102

80

81

82

83

84

85

86

Te
st

in
g

A
cc

ur
ac

y

p:0.2
p:0.6
p:1.0

(a) CIFAR-10

0.0 0.5 1.0 1.5 2.0
Round ×102

60.0

62.5

65.0

67.5

70.0

72.5

75.0

77.5

Te
st

in
g

A
cc

ur
ac

y

p:0.2
p:0.6
p:1.0

(b) FEMNIST

Fig. 11. The performance of FedRT under different base graph topologies.

• Ce-FedAvg [8] assumes that all edge devices are homo-
geneous and the edge backhaul topology is given a prior.
We adapt it to our problem setting by employing the fixed
edge backhaul topology and static resource allocation.
Specifically, the server communicates following the base
edge backhaul topology. The communication bandwidth
is evenly assigned among edge devices. To satisfy the
energy requirement, similar to Static-R and Static-T, we
resolve the optimization problem as in FedRT to obtain
a feasible CPU frequency for each edge device.

• MLL-SGD [44] adaptively assigns different local training
iterations to each device based on their resource capa-
bilities. For instance, slower devices are assigned fewer
training steps to save computation time, while faster de-
vices receive more steps to maintain model performance.
In adapting this approach to our problem setting, we set
different numbers of local training iterations according to
each edge device’s computation resource. Similar to Ce-
FedAvg, we solve the optimization as FedRT with fixed
edge backhaul topology and homogeneous communica-
tion bandwidth to derive the feasible CPU frequency for
edge devices.

A. Datasets and Models

For all experiments, we use mini-batch SGD with 0.9
momentum [8] to train the local model with a batch size
of 32 [24]. For the learning rate, we performed grid search
with values of {0.01, 0.05, 0.1} for CIAFR-10 and {0.1, 0.06,
0.03, 0.01} for FEMNIST. The number of local iterations is
10 for all datasets. The number of edge rounds is 2 for all
experiments [8]. The number of global rounds is determined
through preliminary experiments for each model. Specifically,
we train each model on its respective dataset with surfficient
global rounds across all algorithms, recording both training
loss and testing accuracy at each global round. The number

of global rounds is selected based on the point at which the
accuracy curves for all algorithms plateau. For CIAFR-10,
we run 300 global rounds under IID data distribution and
350 rounds under non-IID data distribution. For FEMNIST,
the total number of global rounds is 200. For FMNIST, the
total number of global rounds is 100 under the IID data
distribution and 150 under the non-IID distribution. We run
each experiment with 3 random seeds and report the average
metric. The number of server communication times in each
global round is ψ = 10 [8].

We record the total completion time and testing accuracy
for performance evaluation. We use thop2 to estimate the
computation workload in terms of the number of floating point
operations (FLOPs). The number of FLOPs needed for each
training sample per iteration is 123.9 MFLOPs for ResNet-
20 on CIFAR-10, 94.2 MFLOPs for ResNet-20 on FEMNIST,
and 3.9 MFLOPs for LeNet-5 on FMNIST, respectively. To
simulate a practical heterogeneous HFL system, we adopted
parameter settings and device characteristics from previous
works [20], [23], [32], [36], [37], [45], as well as realistic IoT
device parameters. Specifically, the device’s communication
power is set to 0.01 W [33]. The maximum available CPU
frequency fmax

n is 3.0GHz and the minimum CPU frequency
fmin
n is 2.0GHz [45]. In practice, edge devices usually have

heterogeneous computation capabilities. To mimic the CPU
capability of real-world edge devices, we generate the efficient
capacity coefficient for each device by generating an efficient
capacity coefficient for each device. This coefficient is the
product of a constant factor and a random variable. We adopt
the value of efficient capacity coefficient αn = 2 × 10−28

as per [45], and the random variable is uniformly distributed
within range [0.01, 0.1]. The total available communication
bandwidth for all servers is set to B = 1MHz for all
servers [23]. To simulate the realistic wireless communication,
we assume the SNR are uniformly distributed within the range
0 − 15 dB for all devices and all time slots, resulting in
heterogeneous communication channels. The available energy
supply for all devices Ēn = 1J [33]. By default, we assume
a fully connected base graph topology unless otherwise spec-
ified. To model heterogeneous edge backhaul communication
bandwidth, we assume Bt fluctuates randomly (uniformly)
within the range 0.1− 10 Mbps [23].

B. Experimental Results

Performance Comparison with Baselines. We first eval-
uate the convergence speed of FedRT in comparison to the
baseline methods. Fig. 4 shows the testing accuracy and train-
ing loss w.r.t training time (in seconds) on CIFAR-10 under
both IID and Dirichlet data distribution. The results indicate
that FedRT exhibits a faster convergence speed than baselines.
Throughout the training process, FedRT consistently achieves
higher testing accuracy and lower training loss under both IID
and non-IID data distributions under the same training time
budget. Moreover, FedRT reduces the total training latency

2https://pypi.org/project/thop/

on CIFAR-10 by 30.90% and 31.14% for IID and non-
IID distributions, respectively. Fig. 5 depicts the comparison
results on FMNIST under IID and non-IID data distribution.
Fig. 6 presents the comparison results on FEMNIST. Similarly,
FedRT has a faster convergence speed than baselines. On
the FMNIST dataset, the total training latency of FedRT is
reduced by 36.43% and 35.82% under IID and non-IID data
distribution, respectively. Moreover, the total training latency
is reduced by 32.35% compared to baselines on the FEMNIST
dataset. The results of Fig. 4, Fig. 5, and Fig. 6 demonstrate
that FedRT consistently outperforms all baseline methods
across both IID and non-IID data distributions, thereby demon-
strating the effectiveness of the proposed method.

Note that Static-R and Static-T are simplified variants of Fe-
dRT, excluding resource optimization and topology design, re-
spectively. As shown in Figs. 4, 5, and 6, Static-R consistently
outperforms CE-FedAvg across all datasets, demonstrating the
effectiveness of the consensus distance estimation approach
presented in Section IV-B. Furthermore, the performance gains
of FedRT over all baselines further validate the effectiveness
of Algorithm 3. If our proposed methods were ineffective,
achieving simultaneous and consistent improvements over
baselines that optimize only individual aspects would not be
feasible.

Our experimental results demonstrate FedRT’s consistent
latency advantages across both IID and non-IID settings (Ta-
ble I). For CIFAR-10 under IID conditions, FedRT completes
training in 12.41 hours, achieving time savings of 12.35%
(vs Static-R’s 14.16 hours), 14.53% (vs Static-T’s 14.52
hours), and 30.86%-30.90% (vs CE-FedAvg’s 17.95 hours and
MLL-SGD’s 17.96 hours). Under non-IID conditions, FedRT
maintains superior performance at 14.46 hours compared to
Static-R (16.52 hours), Static-T (16.98 hours), CE-FedAvg
(20.99 hours), and MLL-SGD (21.00 hours), preserving time
savings of 12.47% − 31.14%. While all methods experience
comparable relative slowdowns (16.5%-16.9%) from IID to
non-IID conditions, FedRT’s absolute latency remains sub-
stantially lower - maintaining at least a 12.5% advantage and
up to 31.1% faster than baselines even in heterogeneous data
environments.

A similar trend is observed in the FMNIST dataset. Under
IID conditions, FedRT completes training in 5.41 hours, saving
36.43% over CE-FedAvg and MLL-SGD, and around 14.80%
and 18.40% over Static-R and Static-T. In the non-IID case,
the time required by FedRT increases to 8.08 hours, while
the baselines again exhibit an increase: Static-R reaches 9.49
hours, Static-T 9.77 hours, CE-FedAvg and MLL-SGD 12.59
hours. As a result, the time-saving ratio of FedRT reaching
35.82% compared to CE-FedAvg and 17.30% compared to
Static-R. For the FEMNIST dataset, which is inherently non-
IID in nature. FedRT requires only 7.86 hours of training time.
This achieves a time saving of 13.05% compared to Static-R,
16.38% compared to Static-T, and approximately 32% over
CE-FedAvg and MLL-SGD.

Energy Consumption Comparsion. We then compare the
energy consumption of FedRT against several baselines. Fig. 7

shows the curve of accumulated energy consumption for edge
devices w.r.t the training round on CIFAR-10 under both
IID and Dirichlet data distribution. The results indicate that
FedRT consistently consumes less energy than the Static-R,
CE-FedAvg, and MLL-SGD throughout the training process.
As the number of training rounds increases, the discrepancy
between the curves becomes more pronounced, demonstrating
that our algorithm consistently reduces energy costs, and
its advantage becomes increasingly evident. Furthermore, the
energy consumption pattern of FedRT closely aligns with
that of Static-T, which also implements resource allocation
for devices. This observation underscores the effectiveness
of FedRT in optimizing resources for energy conservation.
Moreover, we can find that FedRT consumes more energy
under non-IID distribution than IID, highlighting the critical
need for resource optimization under data heterogeneity. Fig. 8
and Fig. 9 show the accumulated energy consumption w.r.t
the training round on FMNIST and FEMNIST datasets. We
have similar conversations about energy consumption. In con-
clusion, FedRT achieves better energy usage compared with
Static-R, CE-FedAvg, and MLL-SGD baselines. Although the
energy consumption of FedRT is nearly identical to that of
Static-T, FedRT achieves a faster convergence rate, showing
an advantage in training performance.

Energy, and Accuracy. Table. I presents a comprehensive
comparison of the total energy consumption and the high-
est testing accuracy across all datasets and methods. FedRT
achieves the highest final testing accuracy on the CIFAR-10
dataset under the IID distribution, the FMNIST dataset under
the IID distribution, and the FEMNIST dataset. Although
FedRT’s final testing accuracy is marginally lower than the
best baselines for CIFAR-10 under the non-IID distribution
and FMNIST under the non-IID distribution, the differences
are minimal—only 0.14% and 0.06% below the highest accu-
racies, respectively. These findings validate the effectiveness
of the consensus distance constraint in P2. Additionally, Fe-
dRT demonstrates superior performance in terms of energy
efficiency, yielding the lowest energy consumption for the
FMNIST dataset and nearly the lowest for the CIFAR-10
and FEMNIST datasets. In summary, FedRT achieves the
best trade-off between the total training latency and testing
accuracy while satisfying the energy constraint.

Effect of Inter-cluster non-IID Data. We evaluate FedRT
in combating the inter-cluster non-IID data distribution. The
number of labels within each cluster is 2, 4, 6, 8 both for
CIFAR-10 and FMNSIT. With more labels within the cluster,
the data heterogeneity tends to be IID distributed. In Fig. 10,
we show the convergence rate of FedRT and the baselines
without topology optimization (Static-T and CE-FedAvg) w.r.t.
to global rounds. We can find the testing accuracy decreased
as data heterogeneity increased. Compared with Static-T/CE-
FedAvg, FedRT-RT has a best convergence speed.

Effect of Base Graph. We study the impact of base
graph topology on the performance of FedRT. We generate
the random graph as the base graph through Erdős–Rényi
method [46]. The probability for edge creation is set to

be 0.2, 0.4, 0.6, 0.8, 1.0. With a higher probability for edge
creation, the graph topology is more densely connected. The
probability is 1.0, which means the generated graph is a
fully connected graph. We illustrate the convergence rate in
terms of global rounds for CIFAR-10 and FEMNIST. The
data distribution for CIFAR-10 is IID. From Fig. 11, FedRT
achieves a fast convergence rate under the IID data distribution
for CIAFR-10. For FEMNIST, a loss connection leads to a
slightly slow convergence rate. However, in most cases, FedRT
yields a similar curve. This result demonstrates that FedRT
works well under sparse base graph topology.

VIII. CONCLUSION

This paper introduces FedRT, a method designed to min-
imize training latency within a specified energy budget for
a two-tier HFL system. The experimental results show that
FedRT effectively reduces training latency while maintaining
high accuracy, outperforming conventional methods. However,
the scope of our experiments was limited to small-scale
models, datasets, and a limited number of edge devices. In
future work, we plan to extend these experiments to larger
models, such as large language models, and more complex
datasets, while also expanding the number of edge devices.
Additionally, we aim to explore optimal client selection strate-
gies to further enhance the efficiency of the HFL system.

REFERENCES

[1] W. Wu, X. Deng, P. Jiang, S. Wan, and Y. Guo, “Crossfuser: Multi-
modal feature fusion for end-to-end autonomous driving under unseen
weather conditions,” IEEE Transactions on Intelligent Transportation
Systems, 2023.

[2] J. Xiong, E.-L. Hsiang, Z. He, T. Zhan, and S.-T. Wu, “Augmented
reality and virtual reality displays: emerging technologies and future
perspectives,” Light: Science & Applications, vol. 10, no. 1, pp. 1–30,
2021.

[3] Y. Li, A. Padmanabhan, P. Zhao, Y. Wang, G. H. Xu, and R. Ne-
travali, “Reducto: On-camera filtering for resource-efficient real-time
video analytics,” in Proceedings of the Annual conference of the ACM
Special Interest Group on Data Communication on the applications,
technologies, architectures, and protocols for computer communication,
2020, pp. 359–376.

[4] T. Wang, K. Zhang, J. Cai, Y. Gong, K.-K. R. Choo, and Y. Guo, “Ana-
lyzing the impact of personalization on fairness in federated learning for
healthcare,” Journal of Healthcare Informatics Research, vol. 8, no. 2,
pp. 181–205, 2024.

[5] J. Cai, Z. Gao, Y. Guo, B. Wibranek, and S. Li, “Fedhip: Federated
learning for privacy-preserving human intention prediction in human-
robot collaborative assembly tasks,” Advanced Engineering Informatics,
vol. 60, p. 102411, 2024.

[6] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Proc. Int. Conf. Artif. Intell. Stat. (AISTATS), 2017, pp. 1273–
1282.

[7] Y. Sun, J. Shao, Y. Mao, J. H. Wang, and J. Zhang, “Semi-decentralized
federated edge learning for fast convergence on non-iid data,” in 2022
IEEE Wireless Communications and Networking Conference (WCNC).
IEEE, 2022, pp. 1898–1903.

[8] Z. Zhang, Z. Gao, Y. Guo, and Y. Gong, “Scalable and low-latency
federated learning with cooperative mobile edge networking,” IEEE
Transactions on Mobile Computing, 2022.

[9] R. Saha, S. Misra, and P. K. Deb, “Fogfl: Fog-assisted federated learning
for resource-constrained iot devices,” IEEE Internet of Things Journal,
vol. 8, no. 10, pp. 8456–8463, 2020.

[10] L. Liu, J. Zhang, S. Song, and K. B. Letaief, “Client-edge-cloud
hierarchical federated learning,” in ICC 2020-2020 IEEE International
Conference on Communications (ICC). IEEE, 2020, pp. 1–6.

[11] J. Wang, S. Wang, R.-R. Chen, and M. Ji, “Demystifying why local
aggregation helps: Convergence analysis of hierarchical sgd,” in Pro-
ceedings of the AAAI Conference on Artificial Intelligence, vol. 36, no. 8,
2022, pp. 8548–8556.

[12] T. Castiglia, A. Das, and S. Patterson, “Multi-level local sgd: Distributed
sgd for heterogeneous hierarchical networks,” in International Confer-
ence on Learning Representations, 2020.

[13] X. Lian, C. Zhang, H. Zhang, C.-J. Hsieh, W. Zhang, and J. Liu,
“Can decentralized algorithms outperform centralized algorithms? a case
study for decentralized parallel stochastic gradient descent,” Advances
in neural information processing systems, vol. 30, 2017.

[14] Y. Hua, K. Miller, A. L. Bertozzi, C. Qian, and B. Wang, “Efficient and
reliable overlay networks for decentralized federated learning,” SIAM
Journal on Applied Mathematics, vol. 82, no. 4, pp. 1558–1586, 2022.

[15] H. Yu, S. Yang, and S. Zhu, “Parallel restarted sgd with faster con-
vergence and less communication: Demystifying why model averaging
works for deep learning,” in Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 33, no. 01, 2019, pp. 5693–5700.

[16] X. Li, W. Yang, S. Wang, and Z. Zhang, “Communication-efficient local
decentralized sgd methods,” arXiv preprint arXiv:1910.09126, 2019.

[17] Z. Jiang, Y. Xu, H. Xu, Z. Wang, and C. Qian, “Adaptive control of client
selection and gradient compression for efficient federated learning,”
arXiv preprint arXiv:2212.09483, 2022.

[18] S. Wang, J. Perazzone, M. Ji, and K. S. Chan, “Federated learning with
flexible control,” arXiv preprint arXiv:2212.08496, 2022.

[19] P. Li, G. Cheng, X. Huang, J. Kang, R. Yu, Y. Wu, and M. Pan,
“Anycostfl: Efficient on-demand federated learning over heterogeneous
edge devices,” arXiv preprint arXiv:2301.03062, 2023.

[20] T. Wu, Y. Qu, C. Liu, Y. Jing, F. Wu, H. Dai, C. Dong, and J. Cao,
“Joint edge aggregation and association for cost-efficient multi-cell
federated learning,” in IEEE International Conference on Computer
Communications. Institute of Electrical and Electronics Engineers Inc.,
2023, pp. 1–16.

[21] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features
from tiny images,” 2009.

[22] S. Caldas, P. Wu, T. Li, J. Konečnỳ, H. B. McMahan, V. Smith, and
A. Talwalkar, “LEAF: A benchmark for federated settings,” in Workshop
on Federated Learning for Data Privacy and Confidentiality, 2019.

[23] B. Luo, W. Xiao, S. Wang, J. Huang, and L. Tassiulas, “Tackling system
and statistical heterogeneity for federated learning with adaptive client
sampling,” in IEEE INFOCOM 2022-IEEE conference on computer
communications. IEEE, 2022, pp. 1739–1748.

[24] J. Perazzone, S. Wang, M. Ji, and K. S. Chan, “Communication-efficient
device scheduling for federated learning using stochastic optimization,”
in IEEE INFOCOM 2022 - IEEE Conference on Computer Communi-
cations, 2022, pp. 1449–1458.

[25] S. Wang, J. Perazzone, M. Ji, and K. Chan, “Federated learning with
flexible control,” in IEEE Conference on Computer Communications,
2023.

[26] J. Zhang, L. Chen, Y. Chen, X. Chen, and G. Wei, “Hierarchically
federated learning in wireless networks: D2d consensus and inter-cell
aggregation,” IEEE Transactions on Machine Learning in Communica-
tions and Networking, 2024.

[27] J. Feng, L. Liu, Q. Pei, and K. Li, “Min-max cost optimization for
efficient hierarchical federated learning in wireless edge networks,” IEEE
Transactions on Parallel and Distributed Systems, vol. 33, no. 11, pp.
2687–2700, 2021.

[28] W. Wen, Z. Chen, H. H. Yang, W. Xia, and T. Q. Quek, “Joint scheduling
and resource allocation for hierarchical federated edge learning,” IEEE
Transactions on Wireless Communications, vol. 21, no. 8, pp. 5857–
5872, 2022.

[29] S. Luo, X. Chen, Q. Wu, Z. Zhou, and S. Yu, “Hfel: Joint edge asso-
ciation and resource allocation for cost-efficient hierarchical federated
edge learning,” IEEE Transactions on Wireless Communications, vol. 19,
no. 10, pp. 6535–6548, 2020.

[30] X. Zhou, W. Liang, J. She, Z. Yan, I. Kevin, and K. Wang, “Two-
layer federated learning with heterogeneous model aggregation for
6g supported internet of vehicles,” IEEE Transactions on Vehicular
Technology, vol. 70, no. 6, pp. 5308–5317, 2021.

[31] N. H. Tran, W. Bao, A. Zomaya, M. N. Nguyen, and C. S. Hong,
“Federated learning over wireless networks: Optimization model design
and analysis,” in IEEE INFOCOM 2019-IEEE conference on computer
communications. IEEE, 2019, pp. 1387–1395.

[32] B. Luo, X. Li, S. Wang, J. Huang, and L. Tassiulas, “Cost-effective
federated learning in mobile edge networks,” IEEE Journal on Selected
Areas in Communications, vol. 39, no. 12, pp. 3606–3621, 2021.

[33] J. Perazzone, S. Wang, M. Ji, and K. S. Chan, “Communication-efficient
device scheduling for federated learning using stochastic optimization,”
in IEEE INFOCOM 2022-IEEE Conference on Computer Communica-
tions. IEEE, 2022, pp. 1449–1458.

[34] F. R. Chung, Spectral graph theory. American Mathematical Soc.,
1997, vol. 92.

[35] T. D. Burd and R. W. Brodersen, “Processor design for portable
systems,” Journal of VLSI signal processing systems for signal, image
and video technology, vol. 13, no. 2-3, pp. 203–221, 1996.

[36] Y. Liao, Y. Xu, H. Xu, L. Wang, and C. Qian, “Adaptive configuration
for heterogeneous participants in decentralized federated learning,” in
IEEE INFOCOM 2023-IEEE Conference on Computer Communications.
IEEE, 2023, pp. 1–10.

[37] L. Wang, Y. Xu, H. Xu, M. Chen, and L. Huang, “Accelerating
decentralized federated learning in heterogeneous edge computing,”
IEEE Transactions on Mobile Computing, 2022.

[38] L. Kong, T. Lin, A. Koloskova, M. Jaggi, and S. Stich, “Consensus
control for decentralized deep learning,” in International Conference on
Machine Learning. PMLR, 2021, pp. 5686–5696.

[39] Z. Qu, R. Duan, L. Chen, J. Xu, Z. Lu, and Y. Liu, “Context-aware online
client selection for hierarchical federated learning,” IEEE Transactions
on Parallel and Distributed Systems, vol. 33, no. 12, pp. 4353–4367,
2022.

[40] L. Xiao and S. Boyd, “Fast linear iterations for distributed averaging,”
Systems & Control Letters, vol. 53, no. 1, pp. 65–78, 2004.

[41] Y. Xu, Y. Liao, H. Xu, Z. Ma, L. Wang, and J. Liu, “Adaptive control of
local updating and model compression for efficient federated learning,”
IEEE Transactions on Mobile Computing, 2022.

[42] H. Xiao, K. Rasul, and R. Vollgraf. (2017) Fashion-mnist: a novel image
dataset for benchmarking machine learning algorithms.

[43] T.-M. H. Hsu, H. Qi, and M. Brown, “Measuring the effects of non-
identical data distribution for federated visual classification,” arXiv
preprint arXiv:1909.06335, 2019.

[44] T. Castiglia, A. Das, and S. Patterson, “Multi-level local {sgd}:
Distributed {sgd} for heterogeneous hierarchical networks,” in
International Conference on Learning Representations, 2021. [Online].
Available: https://openreview.net/forum?id=C70cp4Cn32

[45] Z. Yang, M. Chen, W. Saad, C. S. Hong, and M. Shikh-Bahaei, “Energy
efficient federated learning over wireless communication networks,”
IEEE Transactions on Wireless Communications, vol. 20, no. 3, pp.
1935–1949, 2020.

[46] P. ERDdS and A. R&wi, “On random graphs i,” Publ. math. debrecen,
vol. 6, no. 290-297, p. 18, 1959.

