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ABSTRACT

Key features of biological activity can often be captured by transitions between a finite number of semi-stable states that correspond to behav-
iors or decisions. We present here a broad class of dynamical systems that are ideal for modeling such activity. The models we propose
are chaotic heteroclinic networks with nontrivial intersections of stable and unstable manifolds. Due to the sensitive dependence on initial
conditions, transitions between states are seemingly random. Dwell times, exit distributions, and other transition statistics can be built into
the model through geometric design and can be controlled by tunable parameters. To test our model’s ability to simulate realistic biological
phenomena, we turned to one of the most studied organisms, C. elegans, well known for its limited behavioral states. We reconstructed exper-
imental data from two laboratories, demonstrating the model’s ability to quantitatively reproduce dwell times and transition statistics under
a variety of conditions. Stochastic switching between dominant states in complex dynamical systems has been extensively studied and is often
modeled as Markov chains. As an alternative, we propose here a new paradigm, namely, chaotic heteroclinic networks generated by determin-
istic rules (without the necessity for noise). Chaotic heteroclinic networks can be used to model systems with arbitrary architecture and size
without a commensurate increase in phase dimension. They are highly flexible and able to capture a wide range of transition characteristics
that can be adjusted through control parameters.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0122184

Global activity in biological networks often transitions between
many semi-stable states that correspond to dominant biolog-
ical states, behaviors, or decisions. Transitions between these
semi-stable states often appear to be random and are modeled
with stochastic models, such as Markov chains. We propose in
this paper that chaotic heteroclinic networks can be used to
model stochastic switching phenomena. The models we build are
low-dimensional, deterministic dynamical systems. Transitions
between states are seemingly stochastic and dwell times vary due
to chaos in the system. Choices of eigenvalues at saddle fixed
points and functions used to connect their stable and unstable
manifolds give quantitative control of the transition dynamics.
As a proof of concept, we build models that fit the dynamics
and switching statistics of C. elegans neural activity and show
that Markov Model dynamics, often used to model state switch-
ing in neural dynamics, can be reproduced with this framework.
Stochastic switching in our model is generated by deterministic
dynamics; using this model, we show that neural activity may
randomly roam between various states without the necessity for
noise.

I. INTRODUCTION

Biological systems are invariably highly complex, involving
very large numbers of components or substances interacting in com-
plicated ways. Two examples are cortical and metabolic networks.
Without major simplification, analytical studies of detailed biolog-
ical models seem hopelessly out of reach. Not all biological models
can be dimension reduced, but when a system has a finite number
of dominant states that are semi-stable, phenomenological mod-
els focusing on transitions between these states can be constructed
and analyzed. One way to reduce this more tractable situation is
to sufficiently constrain the circumstances or scope of the study,
thereby limiting the set of relevant behaviors. When they exist, dom-
inant states may be identified through empirical observation. They
can also be deduced from methods of data-driven modeling, such
as principal component analysis (PCA), hidden Markov models
(HMMs), Koopman approximation, or machine learning.1–6

This paper is about dynamical models of systems with a finite
number of semi-stable “attractor states” around which the system
stabilizes briefly before transitioning to another state. We are inter-
ested in situations where trajectories are not periodic but seemingly
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random; which state will occur next has the appearance of being
unpredictable, as do transition times. Switching dynamics of this
kind have been observed in many biological settings (see Sec. V). The
attractor states in question typically represent fundamental behav-
iors or processes,5,7–10 and the branching is often associated with
decisions. Our motivating examples are primarily from biology, but
we consider here general dynamical systems with the characteristics
above.

Continuous-time Markov chains (the states of which corre-
spond to the attractor states above) are the simplest natural mod-
els that come to mind for describing switching dynamics, but the
Markovian assumption is strong. Biological events often have some
degree of history dependence. What an animal will do next, for
example, may depend on what it did last and how long it has been
in its present state. It would be useful to have tractable models that
permit a broader set of dynamical behaviors.

We propose that chaotic heteroclinic networks are excellent phe-
nomenological models of switching dynamics. Given a homoclinic
loop or heteroclinic cycle, it has been known since the days of
Poincaré that transversal intersections of stable and unstable mani-
folds give rise to complicated behavior.11–13 The qualitative picture
is clarified by Smale, who showed that this complicated behavior
included the existence of horseshoes.14 Here, we take these ideas
one step further. We demonstrate that by manipulating the eigen-
values of the saddle fixed points in a heteroclinic network together
with the geometry of stable and unstable manifolds and their inter-
sections, one can impose quantitative control on the switching
dynamics, including branching probabilities, dwell times, and other
more detailed characteristics. These new tools have enabled us to
design large classes of chaotic dynamical systems and to tailor tran-
sition statistics in heteroclinic networks in order to match observed
behavior in biological modeling.

As proof of concept, we constructed chaotic heteroclinic net-
works to reproduce experimental C. elegans data. C. elegans are
a well-studied model organism in biology due to their simple
anatomy, simple nervous system, few observed behaviors, and the
relative ease of performing experimental measurements of behav-
ioral and neural activity.5,15–18 It has been shown that such activity
can be represented in low-dimensional PCA space where semi-
stable states correspond to stereotyped behaviors (or fictive behav-
iors) with characterizable probabilities of transition between these
states.5,19,20 C. elegans transition between different behaviors seem-
ingly at random; their tendency to reside in various dynamical and
behavioral states can be modified with experimental conditions,
such as oxygen levels, genetic strain, and developmental stage.19 The
stochastic switching dynamics of C. elegans, modulated by experi-
mental conditions and corresponding to different locations in neural
activity space, is an ideal system to demonstrate how heteroclinic
networks can generate stochastic switching behavior observed in
biological systems.

Researchers have modeled C. elegans’ activity with a vari-
ety of different paradigms. Markov models can accurately cap-
ture the observed switching statistics but do not shed light on
how transitions are generated;20–22 it has also been observed that
target states vary with dwell times, pointing to the need for
more detailed modeling.19 Previous dynamical systems models of
C. elegans activity used control inputs as the mechanism for

inducing state changes,23,24 but state changes in C. elegans appear to
occur mostly spontaneously and not in direct response to external
stimuli. The model we propose has the capability to address all of
these issues.

Seemingly random switching from one pattern of behavior to
another with no apparent trigger is a motif seen throughout biology
and neuroscience. We propose that chaotic heteroclinic networks
with quantitative control of transition properties may be suitable
phenomenological models for this type of behavior.

II. HETEROCLINIC NETWORKS: GENERAL THEORY
AND QUANTITATIVE CONTROL

This section contains the theory part of the paper. We begin
by reviewing some basic ideas connected with heteroclinic dynam-
ics. Then, we specialize to 2D, discussing first the case of flows
before perturbing their time-t-maps to produce branching behav-
ior in chaotic heteroclinic networks, the main objects of interest
in this paper. This is followed by examples of quantitative control
on the switching dynamics, techniques that will be used to build
phenomenological models of C. elegans behavior.

A. Basic definitions

Consider an ordinary differential equation (ODE)

ẋ = f(x), x ∈ R
d, (1)

where d ≥ 2 is an arbitrary integer and f is a C1 function. The flow
associated with Eq. (1) is denoted by ϕt so that if x(t) is the solu-
tion of the ODE with initial condition x(0) = x0 ∈ Rd, then ϕt(x0)
:= x(t) is the trajectory of the flow starting from x0. Let p be an equi-
librium point of ϕt, i.e., f(p) = 0. We say p is a hyperbolic fixed point
if none of the eigenvalues λ of Df(p) lies on the imaginary axis. If the
real parts of λ are < 0 (resp., > 0) for all λ, then p is a sink (resp., a
source); if some are > 0 and some are < 0, then p is a saddle fixed
point. Through each hyperbolic fixed point of saddle type are stable
and unstable manifolds, defined to be

Ws(p) = {x ∈ R
d : ϕt(x) → p as t → ∞}, (2)

Wu(p) = {x ∈ R
d : ϕt(x) → p as t → −∞}, (3)

respectively. A point x is called a homoclinic point of p if x
∈ Wu(p) ∩ Ws(p). If p1 and p2 are distinct hyperbolic fixed points
of saddle type, then x is a heteroclinic point from p1 to p2 if x
∈ Wu(p1) ∩ Ws(p2), i.e., ϕt(x) → p1 as t → −∞ and ϕt(x) → p2 as
t → ∞.

In discrete time, i.e., for dynamical systems generated by iter-
ating a map F : Rd → Rd, which we assume to be smooth and
invertible, the corresponding objects are defined analogously: e.g., a
fixed point p ∈ Rd is called a hyperbolic fixed point of saddle type if
the spectrum # of DF(p) is such that # ∩ {|z| = 1} = ∅ and # ∩ {|z|
< 1}, # ∩ {|z| > 1} ̸= ∅. Stable and unstable manifolds are defined
as above with n ∈ Z in the place of t, and a point x ∈ Wu(p1) ∩
Ws(p2) is called a heteroclinic point from p1 to p2. A point x is called
a transverse homoclinic point of p if Wu(p) meets Ws(p) transversally
at x. Transverse heteroclinic points are defined similarly.

The existence of transverse homoclinic points is well known
to lead to complicated dynamics, an observation that goes back to
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FIG. 1. (a) A heteroclinic cycle is created by connecting three heteroclinic
orbits. (b) Many hyperbolic fixed points connected by heteroclinic orbits create
a heteroclinic network.

Poincaré. The qualitative picture is developed by Smale, who showed
that homoclinic points are accompanied by the existence of horse-
shoes, a hallmark of chaos. For a more systematic treatment, see
Refs. 11 and 25–27.

B. Heteroclinic networks for flows in 2D

The continuous-time picture in R2 is simple because for saddle
fixed points, Wu and Ws are 1D, and if x is a heteroclinic point from
p1 to p2, then the orbit of x, O(x) := {ϕt(x), t ∈ R}, coincides with
one of the branches of Wu(p1) and one of the branches of Ws(p2),
that is, O(x) is a saddle connection from p1 to p2.

A sequence of saddle equilibrium points, p1, p2, . . . , pn, pn+1

= p1 is said to form a heteroclinic cycle if there is a saddle connection
$i from pi to pi+1, i = 1, 2, . . . , n. Heteroclinic cycles are prevalent
in population dynamics28,29 and occur naturally in low codimension
bifurcation theory.27 Figure 1(a) shows an example of a three-cycle.
Orbits starting from initial conditions sufficiently near p1 in the
domain bounded by $ := ∪$i will shadow the piecewise smooth
curve $ for some time.

We say a heteroclinic cycle is stable if for all initial conditions
x sufficiently close to $ and within the region bounded by $, ϕt(x)
is attracted to $ as t → ∞. Stable heteroclinic cycles are similar to
limit cycles in that nearby orbits are attracted to the cycle, except
that the attraction is from one side only, i.e., restricted to points from
within the region bounded by the cycle, and as t increases, the orbit
spends a larger and larger fraction of time near the fixed points.

A sufficient condition for the stability of a heteroclinic cycle
connecting saddle fixed points p1, . . . , pn is

−λ(i)
s

λ
(i)
u

> 1 for all i, (4)

where λ(i)
s is the eigenvalue in the stable direction of Df(pi) and λ(i)

u is
the eigenvalue in the unstable direction. Condition (4) implies that
compression is greater than expansion at each pi. This condition can
in fact be relaxed to requiring only that the product of the ratios
−λ(i)

s /λ(i)
u be > 1 (see, e.g., Refs. 30–32).

More general than heteroclinic cycles is the idea of a hetero-
clinic network, loosely defined to be the union of a finite collection
of saddle fixed points joined by saddle connections. An example of
such a network is shown in Fig. 1(b). For further discussion and
examples, see, e.g., Refs. 26 and 33–35.

It is easy to see that in a heteroclinic network on R2, the phase
space is divided into cells bounded by heteroclinic cycles. Imposing
stability conditions on each cycle as above, the dynamical picture can
be described as follows: each orbit is trapped in a cell; it is attracted
to the heteroclinic cycle that bounds the cell, lingering at each one of
the saddle fixed points, which act as metastable states before mov-
ing to the next. The set of metastable states visited depends on initial
conditions, but they are visited in a cyclical order without exception.
Dwell times at each metastable state, hence the time to complete
each cycle, increase without bound as time goes to infinity.

Heteroclinic networks for 2D flows as described above are
already models of switching behavior, but the dynamics they
describe are very special. In particular, branching cannot occur, and
the dynamics are not chaotic.

A number of authors have introduced random noise to hete-
roclinic networks of the type above to induce branching behavior.
Reference 10, for example, constructs dynamical systems containing
such networks to model orbits moving between metastable cogni-
tive states in the brain. Reference 36 used small noise perturbations
near saddle fixed points to model decision making. There is a
fair amount of rigorous theory on randomly perturbed heteroclinic
networks.37–40 We postpone further discussion of these results as our
approach is orthogonal: the seemingly random switching behavior
in our model comes not from the use of random noise but from
chaotic dynamics as we now describe.

Heteroclinic channels arise in contexts other than neuroscience
such as the generalized Lotka–Volterra model.41 Heteroclinic net-
works have also been used to model geodynamo reversals and
excursions.42,43

C. Creation of branching behavior: Qualitative picture

Chaotic behavior in our model comes from the nontrivial inter-
section of stable and unstable manifolds in heteroclinic networks. As
discussed above, flows in 2D cannot support chaotic dynamics. The
lowest phase dimension for which chaotic heteroclinic dynamics can
occur is 3D for continuous time and 2D for discrete time. For sim-
plicity, we will work with the latter, though many of the ideas are not
confined to two phase dimensions.

Specifically, we start from a flow ϕt on R2 with a heteroclinic
network, fix a small number t0 > 0, and let F0 be the time-t0-map
ϕt0 . It is an easy fact that the saddle fixed points and their stable and
unstable manifolds for F0 are identical to those of ϕt. We describe
below a procedure for modifying F0 along a saddle connection to
obtain a smooth map F : R2 → R2 with nontrivial intersections of
stable and unstable manifolds. The qualitative ideas behind this pro-
cedure are standard in the dynamical systems literature,11 but the
quantitative control to follow is, to our knowledge, novel.

Let p1 and p2 be saddle fixed points. We assume there is a hete-
roclinic orbit $1 of ϕt connecting p1 to p2. For simplicity, we assume,
as in Fig. 2(a), that p1, p2, and $1 lie on a horizontal line, while
Ws(p1), Wu(p2) are vertical lines.

For the map F0, a fundamental domain of Wu(p1) on $1 is a
segment S ⊂ $1 where S = [x1, x2], x1 ∈ $1, and x2 = F0(x1). The
left end point of S is mapped to the right end point under F0, so that
F0(S) ∩ S = ∅ modulo end points and $1 = ∪n∈Z Fn

0(S).
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FIG. 2. (a) A local perturbation near the segment S is applied to the time-t0-map
F0 of the 2D flow to break the saddle connection between fixed points p1 and
p2, creating nontrivial intersections of the stable and unstable manifolds, hence
branching behavior in the resulting map F. Here, S = [x1, x2] (cyan) is a funda-
mental domain inWu(p1); F0(S) = [x2, x3]; F(S) is the sinewave curve joining x2
to x3 obtained by pushing points in F0(S) vertically up or down; F = F0 outside of
the shaded region B. (b) More detailed analysis of the perturbation in (a): height
distribution of points in S one step later and statistics of subsequent dwell times
near p2, starting from the uniform distribution on S. (c) Two examples of g (saw-
tooth and square wave) are shown to result in different height distributions and
dwell time statistics [g is not C1 in these examples (see text)]. A smaller unsta-
ble eigenvalue λu at p2, e.g., λu = 1

4
, leads to longer dwell times (c.2, c.4) than

λu = 1
2
(c.1, c.3).

Now fix a ball B centered at the midpoint of S with a radius half
the length of S, and let F = F0 + g0, where

(i) g0 is a C1 map supported on B,
(ii) F0 + g0 is invertible, and

(iii) for all x ∈ B, F0(x) + g0(x) lies directly above or below F0(x), i.e.,
we perturb F0 into F by pushing the images of points in B up or
down.

Since what matters the most is how g0 acts on the segment S,
we generally start by choosing a suitable map g defined on S that
describes how we want the image of F(S) to be, and then extend g to
the entire ball to obtain the function g0. We elaborate on the general
form for g(x) that we use for experimental simulations in Appendix
[see Fig. 2(a), where F(S) has the shape of a biased sinewave]. Since
F = F0 outside of B, the Fn-images of F(S) for n = 1, 2, 3, . . . are
stretched vertically, compressed horizontally, and pressed against
Wu(p2) as n increases.

Let Wu
F(p1) denote the unstable manifold of F through p1 (to

distinguish it from the corresponding object for F0), and let Ws
F(p2)

denote the stable manifold of F through p2. Using shorthands such
as S = [x1, x2] to refer to the horizontal segment from x1 to x2, and
letting F(x2) = F0(x2) = x3 [see Fig. 2(a)], it is easy to check that the

right branch of Wu
F(p1) = [p1, x1]

⋃

n≥0

Fn(S),

left branch of Ws
F(p2) = [x2, p2]

⋃

n≥0

F−n([x2, x3]).

Thus, if g is nontrivial, meaning if F maps some points in S above
$1 and some points below, then Wu

F(p1) and Ws
F(p2) intersect non-

trivially and branching behavior is created: Points in B that are
mapped to locations above $1 will eventually follow the up-branch
of Wu

F(p2), while those mapped to locations below $1 will follow the
down-branch of Wu

F(p2).
The chaotic behavior or sensitive dependence on the initial

condition that ensues stems from the fact that for a point x near
p1, it is hard to predict whether its trajectory under F will follow
the up- or down-branch of Wu

F(p2). For x ∈ $1 strictly to the right
of p1, Fn(x) will be in S for some n > 0. In the scenario depicted in
Fig. 2(a), if it lies on the left two-thirds of S, it will follow the up-
branch, and if it lies on the right third, it will go down. But even
though its future is predetermined, the precise location of Fn(x) is
hard to predict when x is very close to p1 and n is large. For x ̸∈ $1

near p1 and on the right side of Ws(p1), due to the vertical com-
pression and horizontal expansion near p1, there will be an n > 0
such that Fn(x) is very closer to S. The same reasoning as above then
applies, with the precise location of x playing a role in the “decision”
at p2.

D. Examples of quantitative control

Figure 2(b) elucidates the branching properties that result from
the perturbation described in Fig. 2(a). Fixing a disk around p2, we
define dwell time near p2 to be the duration of time a trajectory
spends in the disk. Observe that points that are farther from $1 will
have shorter dwell times than those closer to $1. In this example, the
distribution of dwell times for trajectories that eventually follow the
up- and down-branches are different due to the up-down bias in the
map g. A histogram showing the heights of {F(zi)} for a large col-
lection of points {zi} evenly spaced on S is also shown. The higher
probability to be above $1, hence to follow the up-branch of Wu

F(p2)
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is evident, as is the fact that among those F(zi) above $1, the center
of mass is farther from $1, resulting in shorter dwell times.

Consider a line segment S′ slightly above S: it is easy to see that
the height distribution of F(zi) and dwell times (not shown) will be
even more biased than starting from S. For S′ higher still, all trajecto-
ries will follow the up-branch. A similar analysis can be carried out
for all points near S.

Two other examples of g are shown in Fig. 2(c). The top and
bottom panels show transition statistics for trajectories perturbed
with a sawtooth perturbation vs a square wave perturbation. (One
can approximate these functions with smooth maps satisfying the
conditions above without affecting too much the distributions of
interest.) The sawtooth distribution results in the heights of F(zi)
being uniformly distributed, whereas the square wave distribution
pushes some points far from $1 and leaves others close, resulting in
distinct clusters. We illustrate also, in the right panels (c.1–c.4), the
effect of the unstable eigenvalues on dwell times. These plots con-
firm that the shapes of dwell time distributions are determined by
the height distributions of F(zi) as well as the eigenvalues at the sad-
dle fixed point: weaker expansion at p2 pushes points away more
slowly, thereby increasing dwell times.

III. HETEROCLINIC NETWORK BUILT TO REPRODUCE
FOUR-STATE C. ELEGANS BEHAVIORAL DATA

C. elegans, nematodes that grow to about 1 mm in length,
are a well-studied model organism in neuroscience.5,18,44–46 Whole-
brain calcium imaging techniques record the activity of most
C. elegans’ neurons while real or fictive behavioral states are
simultaneously observed.5,15,47 Because their movements are medi-
ated by waves of contractions of bands of muscles that run the
full length of the body, C. elegans exhibit only a limited set of
behaviors, predominantly forward crawling, turns, reversals, and
quiescence.5,19,20 The low-dimensional neural dynamics of C. elegans
cluster into different regions in PCA space that correspond to dis-
tinct behaviors.5,19 Experimentalists have fit Markov models to the
behavioral sequences observed, treating transitions between behav-
ioral states as well as the dwell times in each state as stochastic.19,20

Variations of behavior patterns in different experimental conditions
have also been documented.19,20

In Secs. III and IV of this paper, we build dynamical systems in
the form of chaotic heteroclinic networks (as described in Sec. II) to
simulate C. elegans data. Results reported from two different labs will
be used to challenge the model. In this section, we focus on results
from Ref. 19.

Reference 19 considered primarily four types of behaviors,
abbreviated as forward, reversal, turn, and quiescence. Treating these
four behaviors as discrete states, we construct a chaotic heteroclinic
network [Fig. 3(a)] containing three saddle fixed points that corre-
spond to the forward, quiescence, and reversal states, and model the
“turn” state by a heteroclinic orbit connecting the reversal to the
forward fixed point: turns in the data seem always to be preceded
by reversal and followed by forward movements. As discussed in
Sec. II, we first build a (nonchaotic) heteroclinic network (in the
form of a 2D flow) with the properties above. The chaotic network
is obtained by applying perturbations to the flow-map along rel-
evant heteroclinic orbits. Construction details are provided in the

FIG. 3. (a) Phase portrait of a dynamical system containing a heteroclinic net-
work intended to recreate C. elegans transition statistics in Ref. 19. Unperturbed
heteroclinic network flow lines are shown in gray. Regions around fixed points
correspond to C. elegans behavioral states forward (cyan), quiescence (blue),
and reversal (yellow). The turn (pink) behavioral state is treated as a transitional
state and represented by a heteroclinic orbit. (b) Branching behavior is created
by perturbing the heteroclinic orbits prior to the fixed points. The shape of the
perturbation determines left/right biases and dwell times. Reversal state dwell
times are measured as the time spent within a certain radius of the reversal fixed
point. (c) Example trajectory of behavioral states (the short time intervals between
states are removed from the time series). (d) Target transition probabilities esti-
mated from Ref. 19. (e) Probabilities from system simulation fit to match target
probabilities in (d).

Appendix. Dwell times are defined to be time spent in a specified
region around each one of the saddle fixed points or a portion of the
heteroclinic orbit in the case of turns.

For illustration, we pick one of the modifications of the flow-
map, namely, the one illustrated in Fig. 3(b), and elaborate on the
considerations that went into our choice of the perturbation func-
tion, g, in the region shown. Experimental data show that following
reversal, the turn state occurs with a very high probability [0.95
according to the Markov matrix in (d)]. Assuming that the quies-
cence state is not dominant (which is often the case), most orbits
arriving at reversal are from the upper branch of the stable manifold
Ws(p) where p is the fixed point corresponding to reversal. These
two facts together suggest that g, the function that determines how
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the upper branch of Ws(p) meets the unstable manifold from the
fixed point corresponding to the forward state, should have a strong
bias. Accordingly, we have chosen a perturbation that pushes most
of the points to the right of Ws(p) and eventually into the turn state.
Reference 19 did not include data on how to constrain the shape of
g, giving only bias probabilities. In general, the shape of g can be
deduced from measured dwell time distributions. The g shown in
Fig. 3(b), e.g., produces a bimodal distribution of displacements [or
deviations from Ws(p)] one step later (see Sec. II for more detail).
Such a distribution [Fig. 3(b)] implies that a large fraction of the tra-
jectories is pushed quite far from Ws(p) and will have a shorter dwell
time at p, while a smaller fraction stays very close to it and will have
longer dwell times.

To show how a typical trajectory in the constructed dynamical
system may look, we create a behavioral state time series by labeling
the system at each point in time with either one of the four iden-
tified states or as “in-between,” referring to times not in any of the
four sets. Transitions between states are assumed to be relatively fast,
making the “in-between” category negligible. In the example shown
in Fig. 3(c), we have cut out the “in-between” stretches showing only
the transition dynamics between the four states.

A target Markov matrix containing transition statistics esti-
mated from experimental data published in Ref. 19 is shown in
Fig. 3(d). These statistics were used to guide our model construction.
The corresponding statistics collected from our model are shown in
Fig. 3(e). The similarity in the matrix entries shows that perturba-
tion functions can be tailored to produce simulated data that closely
match the target statistics.

We digress here to point out that unlike Markov models, the
dynamical models we propose have the capability to encode the
memory of past events. The following are two examples to illustrate
this flexibility: (1) From the discussion above, we see that most orbits
from forward to reversal leave reversal on the outside of the hete-
roclinic orbit connecting reversal to forward. If we set the strength
of the contraction during the time in the turn state to be weak,
most orbits will remain on the outside of the loop at forward, mak-
ing them more likely to switch back to reversal after a short visit
to forward. A strong contraction along the heteroclinic orbit will
pinch all orbits close to the stable manifold of the fixed point at for-
ward, resulting in less correlation between past and future behaviors.
(2) We have prescribed a function, g, for how the unstable man-
ifold from forward meets the upper branch of Ws(p). There is a
corresponding function, ĝ, to connect the unstable manifold from
quiescence to the lower branch of Ws(p). By choosing g and ĝ to
be different, one can cause dwell times and transition probabilities
at reversal to depend on the previous step, i.e., whether the orbit
came from forward or quiescence. Similar constructions can lead to
dependencies on the steps before.

Another set of results from Ref. 19 that we would like to repli-
cate concerns C. elegans’ transition statistics and dwell times under
different experimental conditions: prelethargus vs lethargus, and
10% vs 21% oxygen. The first are developmental stages: it is known
that during lethargus periods, C. elegans are more likely to transi-
tion to quiescent behavior and to remain in a quiescent state for
longer stretches of time with brief periods of activity.19 Nematodes
in the prelethargus stage, in contrast, are much more active. Oxy-
gen levels in the environment are also known to affect activity level:

FIG. 4. (a) Dwell time and bias statistics for three different experimental con-
ditions—(M) 10% Prelethargus, (N) 21% Prelethargus, and (O) 10% Lethargus.
Reproduced with permission from Nichols et al., Science 356 eaam6851 (2017).
Copyright 2017 AAAS.19 (b) Corresponding statistics produced by the heteroclinic
network shown in Fig. 3(a). The first column is a histogram of transitions out of
the forward state after increasingly large dwell times. The second column is the
fraction of transitions to the reversal vs quiescent state following forward crawling
(middle two columns). Perturbation shapes used to generate these results are
shown in the rightmost column.

C. elegans in an atmospheric 21% oxygen environment are more
likely to remain active than C. elegans in a 10% oxygen environ-
ment, which is amenable to sleep. This condition occurs naturally
when worms socially aggregate, creating a preferred low oxygen
environment.19 Reference 19 contains detailed information on dwell
times at and transition probabilities from the forward state under
different developmental and environmental conditions.

Figure 4(a) reprints, with permission from AAAS, data from
Ref. 19. Each panel reports on data recorded under a different set
of conditions. The heights of the bars in each histogram (ignoring
colors for now) show the numbers of transitions out of the forward
state within 0–3, 3–30, and >30 s after entering this state; they can
be seen as a probability distribution of dwell times. Each bar in the
histogram is further decomposed into a red and a blue portion rep-
resenting the number of transitions to reversal (red) or quiescence
(blue). The red and blue lines superimposed on the histogram indi-
cate the fractions of transitions of these two types. In the middle two
columns, we present the corresponding statistics collected from our
heteroclinic network.
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In the top row, we fit transition statistics for C. elegans in a
prelethargus state with a 10% oxygen environment. In this develop-
mental stage, C. elegans are more active. It is observed experimen-
tally that under these conditions, about half of the transitions out
of forward state occur in the first 3 s. Moreover, when dwell time is
<3 s, the C. elegans are much more likely to switch from forward
to reversal; the longer the dwell time in the forward state, the more
likely the C. elegans will switch to quiescence. Overall, transitions
from forward to reversal are much more prominent than transi-
tions into quiescence, though there is a non-negligible fraction of the
latter due to the low oxygen condition. These data are reproduced
in our dynamical systems model using the perturbation function g
shown in the rightmost panel. Comparing the middle two panels to
the left, we see the strong quantitative resemblance of model outputs
to experimental data.

Next, we compare the top two rows, both of which are for the
prelethargus state but at different oxygen levels. Transition statis-
tics are qualitatively similar, except that at 21% oxygen, transition
probabilities to quiescence are a little bit lower as high oxygen lev-
els promote activity in C. elegans. Our model is able to capture these
relatively subtle distinctions using the perturbations shown.

Differences between the prelethargus and lethargus data (at
10% oxygen) are far more substantial. In contrast to the top row,
dwell times in the forward state in the lethargus case (bottom row)
are much longer, nearly half of them more than 30 s. As before, the
longer the time to transition, the more likely it will go into quies-
cence. This translates into a very significant difference between the
prelethargus and lethargus data: in the lethargus case, a good major-
ity of the transitions are to quiescence. Figure 4 shows excellent
agreement between data and model in both cases.

We finish by observing that even though only four types of
behaviors are considered, a four-state Markov chain is not sufficient
for capturing the type of results in Fig. 4; our dynamical model with
its tunable parameters offers a simple way to recreate these and other
behavioral characteristics.

IV. HETEROCLINIC NETWORK BUILT TO REPRODUCE
EIGHT-STATE C. ELEGANS BEHAVIORAL DATA

In other studies,5,20 researchers have made more refined clas-
sifications of C. elegans behavioral states than those used to fit the
model in Sec. III. Figure 5(a) is reproduced from Ref. 20 with per-
mission. It shows a 2D projection (from high dimensional data)
of trajectories segmented into states with characteristic dynamics
shown in different colors for two different worms. Here, the authors
distinguished between eight discrete behavioral states, among them
sustained reversals (blue), dorsal and ventral turns (green and yel-
low), forward crawling (red and crimson), and the transition from
forward back to reversal (orange and brown). As part of their study,
they proposed an eight-state Markov model, the transition probabil-
ities of which are shown in Fig. 5(c) (reproduced with permission).
Our aim in this section is to demonstrate that a chaotic heteroclinic
network model can be built to reproduce the more complex picture
of C. elegans behavior reported in this paper.

As in Sec. III, we start by building a 2D flow, representing each
of the eight states by either a saddle fixed point or a heteroclinic
orbit. The REVSUS (blue), SLOW/FWD (red and crimson), and

FIG. 5. (a) 2D projections in PCA space of trajectories segmented into states
shown in different colors [same color key as in (b)] for two different worms.
Reproduced with permission from Linderman et al. (2019). Copyright 2019 Scott
Linderman.20 (b) Nonlinear dynamical system embedding a heteroclinic network
with corresponding behavioral states. The left purple region is a transitional state.
A decision is made along the green transitional corridor; the fixed point at the end
enables this branching behavior. (c) Markov matrix of behavioral state transition
statistics reprinted from Ref. 20. (d) Transition probabilities from dynamical sys-
tem simulated data. Markov matrix transition probabilities are fit to approximate
Markov matrix in (c) by adjusting perturbation functions. (e) Example behav-
ioral trajectories from Ref. 20. (f) Example behavioral trajectories simulated from
nonlinear system.

the right FWD/REV (purple) states are represented by saddle fixed
points; these are attractor states with variable dwell times (Fig. 5).
The VT (yellow), DT (green), and the left FWD/REV (purple) states
are transitional states and so are represented by heteroclinic orbits.
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The REV (orange) and REV (tan) states have both an attractor com-
ponent as well as a transitional component and so are represented
by a saddle fixed point as well as a heteroclinic orbit emanating from
the fixed point. Connections between nodes are based on Figs. 5(a)
and 5(c); a diagram is shown in Fig. 5(b). The color code is as
in Figs. 5(a) and 5(c); one of the states (purple) appears twice as
trajectory segments in that state are found in two distinct sets of cir-
cumstances. To keep the dynamics simple, we have opted to capture
only the more significant transitions, omitting several that occur
with very low probability. Modifications are then made on the time-
t-map of the flow to create nontrivial intersections of stable and
unstable manifolds resulting in a chaotic heteroclinic network. The
perturbation functions used are chosen with the aim of reproducing
the transition probabilities in Fig. 5(c).

In addition to transition probabilities, Ref. 20 [Fig. 6(b)] pro-
vides some guidance on the duration of time spent in each state.
Though numerical values are not provided, and it is impossible to
deduce exact dwell times from these figures, they do offer clues on
dwell times. We have incorporated these clues into our dynamical
model through the choice of unstable eigenvalues at saddle fixed
points and by adjusting the speeds of travel along heteroclinic orbits.
By specifying different eigenvalues and perturbation functions for
each fixed point, as well as specifying different speeds along the cor-
ridors connecting fixed points, we are able to tune the model to
replicate both transition statistics and dwell times in the 8-state C.
elegans behavioral data.

Model outputs of the resulting dynamical system are collected,
and the likelihood of its trajectories visiting state j immediately after
state i is tabulated and shown in Fig. 5(d). Though not perfect, these
dynamical transition probabilities—generated by a purely determin-
istic dynamical system—show a good resemblance to the stochastic
transition probabilities in Fig. 5(c). Finally, we present in Fig. 5(f)
three example trajectories from our dynamical network, in anal-
ogy with the three trajectories from Ref. 20 [Fig. 5(e)]. The variable
itineraries and patterns of transitions in the three trajectories shown
exemplify the possibilities and unpredictable outcomes typical in
chaotic dynamical systems.

V. DISCUSSION

A. Stochastic switching in biology

The paradigm of having a finite number of dominant states
and switching between them in a seemingly random way in the
absence of external stimuli is relevant beyond C. elegans. It has
been observed in biological and neural activity in many organisms,
and Markov models have been used to capture these behaviors.
For example, mice have been found to have different behavioral
modules, the switching dynamics between which can be mod-
eled with a hidden Markov model.8 Larval zebrafish have been
observed to transition between discrete behavior states following
a Markov model.9 Fruit fly behavior is known to evolve along a
low-dimensional attractor with periodic and nonperiodic behavioral
sequences.48 Other transitions are likely to be caused or facilitated
by biological events, but when a mechanistic understanding is out
of reach due to high complexities in the underlying biology, many
authors have, as a first attempt, idealized such transitions as ran-
dom. For example, activity in the ventromedial prefrontal cortex

(vmPFC) of humans appears to transition stochastically through
a series of discrete states that correspond to affective experiences;
these state transitions have been modeled with an HMM.7 The neu-
ral activity in the gustatory cortex appears to transition between
discrete states stochastically, a fact some researchers have attributed
to noise-induced variability.49 A dynamical model known as chaotic
itinerancy has also been proposed to model transitions between
brain states, in memory formation in particular.50,51 In this model,
the primary states are represented by quasi-attractors; transitions
between these attractors are chaotic and history-dependent. On the
phenomenological level, these and many other examples of switch-
ing dynamics have a great deal in common with those considered in
this paper.

B. Dynamical vs stochastic models

Seemingly random switching has been observed in
dynamical models. For example, models of spiking neurons are
known to support multiple semi-stable states visited by the system in
ways that resemble random transitions.52 It is also known that ran-
dom switching in (purely deterministic) dynamical systems can be
generated by the addition of random noise. Reference 10, for exam-
ple, posits that transient cognitive dynamics result from metastable
cognitive states, which, when linked together, produce stable hete-
roclinic channels. Sequential decision making can be modeled with
stable heteroclinic channels with noise added to the system (see also
Refs. 36, 38, and 39). Differential dwell times near fixed points and
random switching between heteroclinic cycles generated by random
noise have been studied by a number of authors (see, e.g., Refs. 37
and 53).

As an alternative to Markov models or dynamical models
perturbed by random noise, we propose in this paper the use of
chaotic heteroclinic networks to model seemingly random switching
behavior. In our heteroclinic network models, dynamical complex-
ity alone—without the need for stochastic manipulations—produces
the variability and unpredictable behavior observed. One argu-
ment in favor of dynamical models could be that they are more
natural, in the sense that physical and biological phenomena are
not really stochastic in nature. One could also argue that dynam-
ical systems models are more flexible: in Secs. III and IV, we
have demonstrated that chaotic heteroclinic networks can be con-
structed to emulate C. elegans data in two influential papers. Our
models accurately reproduce not only basic transition properties
between semi-stable states, such as dwell times and branching biases
(Figs. 3–5), but more subtle behaviors, including exit distributions
and dependence of transition probabilities on dwell time (Fig. 4).
We have also explained how one could, through network design,
influence the degree to which memory of prior events will be
retained.

This is not to suggest that stochastic models cannot possess
similar capabilities; they can, but the models will have to be some-
what more complicated than n-state Markov chains where n is the
number of behavioral states. We have shown that dynamical models
that are relatively easy to construct are capable of recreating a range
of behaviors, with excellent quantitative control achieved through
tunable parameters. Hence, we propose them as a viable alternative
to purely stochastic models.
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C. Remarks on global network construction

As discussed, we start by constructing a 2D flow, which we
perturb to obtain the desired switching behavior. Among the many
ways to construct such a flow, we have found the following to be
easy to tune and to analyze: first, we lay down all the saddle fixed
points in R2, then we connect them with stable and unstable mani-
folds for the 2D flow. Each stable (unstable) manifold is assumed to
comprise a vertical and a horizontal segment with corners rounded
[as in Fig. 5(b)]. In a neighborhood of this system of “train tracks”
of stable and unstable manifolds, we build the vector field to be
contractive to trap all nearby orbits. In the examples in Figs. 3(a)
and 5(b), we were able to embed the graph consisting of the nodes
and heteroclinic orbits of the 2D heteroclinic flow in R2, but not
all graphs can be embedded in the plane. Our construction can still
go forward, however, with the following small modification: when
building the heteroclinic flow, we first put down the nodes on R2,
then insert heteroclinic orbits in a prescribed order. When a hete-
roclinic orbit cannot be inserted without its “crossing” one of the
previous ones, we simply lift it out of the plane into R3, to create an
“overpass” to avoid the crossing (see Fig. 7 in the Appendix). This
way the phase space acquires a topology a little more complicated
than R2, but it is still a 2D surface, and all network architectures can
be accommodated.

Where stable and unstable manifolds cross in R2, “overpasses”
can be introduced. This geometry does not impose constraints on
the architecture of the network.

D. Extension to a larger class of dynamical models

For clarity of exposition, we have limited ourselves in this paper
to heteroclinic networks that are perturbations of time-t-maps of 2D
flows. There are many ways to enlarge this class of models. An obvi-
ous extension is to allow higher dimensions, so that the stable and
unstable manifolds of the saddle fixed points can have dimension
greater than one. In the rest of the Discussion, however, we would
like to focus on a different extension, to a broad class of dynamical
systems we call generalized heteroclinic networks:

Continuing to consider switching behavior among a finite col-
lection S of identifiable, semi-stable states, an extension that we
think is natural—both from the perspective of modeling and from
the dynamical systems theory point of view—is to consider inter-
nal dynamics within each of the states in S . Specifically, the saddle
fixed points in classical heteroclinic networks can be replaced by
hyperbolic invariant sets such as hyperbolic periodic orbits, nor-
mally hyperbolic invariant tori supporting quasi-periodic behavior,
or Smale’s horseshoes.14 In the case of a periodic cycle, for example,
trajectories approaching the cycle will be attracted to it, stay with it
for some time, and then veer away after going around the cycle a
seemingly random number of times. Stable and unstable manifolds
of hyperbolic invariant sets are well defined11 and their intersections
will define the switching dynamics.
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APPENDIX: HETEROCLINIC NETWORK
CONSTRUCTION

We provide here more analytical details on the heteroclinic net-
work construction used in this paper. The methods outlined below
are generic and can serve as templates for network constructions
elsewhere.

We build a nonlinear dynamical system embedding a hete-
roclinic network by setting different functions to be dominant in
different regions of phase space. By interpolating local dynamics, we
create a global nonlinear landscape. The global dynamics are

dx

dt
=

m
∑

i=1

wi(x)fi(x), x = (x, y) ∈ R
2. (A1)

The local dynamics fi(x) are weighted by wi(x),

w(x, y) =
1

4
(tanh[s(x − x1)] − tanh[s(x − x2)])

× (tanh[s(y − y1)] − tanh[s(y − y2)]). (A2)

The weighting functions, wi(x), weight the dynamics, fi(x), highly in
each local dynamics’ region of influence, (x, y) ∈ [x1, x2] × [y1, y2]
[Fig. 6(a)]. The sharpness of the transition between the dynamics in
different regions is controlled by hyperbolic tangent slope s. In the
limit as s → ∞, the system becomes a piecewise function.

We use three types of local functions fi(x) to construct the het-
eroclinic network: linear dynamics [Eq. (A3)], translation dynamics
[Eq. (A4)], and rotational dynamics [Eq. (A5)]. Stitched together,
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FIG. 6. (a) Weighting functions for local dynamics. (b) Local dynamics used to
create a heteroclinic network. (c) Types of perturbations. Points perturbed above
the manifold intersection travel upward while points perturbed below travel down-
ward. Points perturbed far from the intersection have short dwell times near the
subsequent fixed point while points perturbed infinitesimally from the intersection
have long dwell times near the subsequent fixed point.

these three types of dynamics can create flexible heteroclinic net-
works.

The structure of the fi(x) producing linear dynamics is

dx

dt
= λ1x,

dy

dt
= λ1y.

(A3)

The x and y axes form the beginning of the stable and unstable man-
ifolds emanating from the fixed point at the origin. The signs of
λ1 and λ2 control which axis is the stable vs unstable manifold; the
magnitude of λ1 and λ2 determines how quickly the system moves
toward and away from the fixed point. The location of the fixed
point can be shifted to any location pi ∈ R2.

The structure of the translation dynamics is

dx

dt
= c,

dy

dt
= −a(y − b),

(A4)

where constants a, b, and c determine the strength of the attracting
manifold at y = b and the direction and speed of movement along
it. Translation dynamics can also be constructed to move vertically.

The dynamics for the rotations are easier to represent in polar
coordinates and can be expressed as

dr

dt
= ar(b − r),

dθ

dt
= c,

(A5)

where constants a, b, and c determine the strength of the attract-
ing radius at r = b and the rotational speed and direction. Polar
coordinates can be transformed into Cartesian coordinates and the
location of the radius center can be relocated to any pi ∈ R2.

Figure 6(b) shows the three types of local dynamics which are
weighted by weights wi(x) in order to link the stable and unstable
manifolds emanating from fixed points. These building blocks give
us great flexibility in creating heteroclinic orbits which comprise the
heteroclinic network.

After a continuous-time version of the heteroclinic network is
constructed [Eq. (A1)], a discrete mapping is constructed from the
continuous dynamics,

xn+1 = xn + dt
m

∑

i=1

wi(xn)fi(xn). (A6)

Perturbations are subsequently applied to the heteroclinic orbits
prior to each stable fixed point in this discrete time dynamical
system. Given a fundamental domain of S = [0, 1], perturbation
functions on S take the form

g(x) =

{

g+(x), x ≥ 0,

g−(x), x < 0,
(A7)

g+(x) =
1

2
(tanh[s1(x − L1)] + tanh[s1(x + L1)])

× − tanh

[

s2

(

x −

(

1

2
+ b

))]

×
1

2
(tanh[s3(x − (1 − L2))] − tanh[s3(x − (1 + L2))]),

(A8)

g−(x) = g+(−x). (A9)

g+(x) is the perturbation function on the fundamental domain
S = [0, 1] while g−(x) provides a symmetric perturbation on the
fundamental domain S = [0, −1] (the perturbation can be applied
when x is moving in either the positive or negative direction). g(x) is
scaled and translated according to the true width and location of the
fundamental domain S = [0, 1] → [x1, x2].
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FIG. 7. Invariant manifolds of two stable fixed points connected with an overpass
heteroclinic orbit.

Parameters L1, L2, s1, s2, s3, and b control the distribution of
points that are perturbed above vs below the heteroclinic orbit.
These parameters also control the distance from the orbit that
these points are displaced. The perturbation function g is a sum of
tanh functions and has the desired properties of being smooth and
continuous; it has the general shape of a wave with smooth ends
[Fig. 6(c)]. Parameters s1, s2, and s3 control the “steepness” of the
wave, b controls the distributions of points above vs below $1, and
L1 and L2 control how the ends of the curve merge with $1.

Figure 6(c) shows perturbations with different parameter val-
ues that result in more points perturbed above vs below the het-
eroclinic orbit and close to vs far from the heteroclinic orbit. The
width of the perturbation function is scaled to span one timestep
of the discrete map and is applied only once preceding each fixed
point. The amplitude of the perturbation is also scaled and affects
dwell times. Without perturbations, trajectories would converge to
heteroclinic orbits in the network and follow stable manifolds to
fixed points, spending longer amounts of time at each subsequent
fixed point as trajectories converge closer to the invariant manifolds
comprising the heteroclinic orbits. With the use of the perturba-
tion functions, in addition to tuning the parameters for the linear,
translational, and rotational dynamics, dwell time distributions and
transition probabilities can be imposed onto the network.

Figure 7 shows a heteroclinic orbit containing an overpass
connecting two saddle fixed points. The overpass allows the hete-
roclinic orbit above to bypass the heteroclinic orbit underneath. The
resulting heteroclinic network lies on a 2D surface embedded in 3D.
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