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Abstract—With the increasing popularity of Low-Earth Orbit
(LEO) satellite communication, its security problems become im-
portant. Traditional cryptographic authentication schemes may
be outdated and fragile. Radio frequency (RF) fingerprinting
emerges as a robust physical layer authentication method that dis-
cerns the unique characteristics of each transmitter. Additionally,
deep learning-based fingerprinting systems gain more attention
as spoofing countermeasures, owing to the formidable capabilities
of deep neural networks. However, the inherent vulnerabilities
of deep neural networks bring risks to the fingerprinting system.
To investigate backdoor attacks on LEO satellite fingerprinting,
we first assess the classic poisoning-based backdoor attack. To
make the backdoor attack more practical, our study includes
two existing common fingerprinting methods, namely supervised
learning-based and few-shot learning-based. Furthermore, we
also evaluate data-free backdoor attacks, considering that satellite
data may be difficult to access and modify by attackers. Our
experimental findings reveal that deep learning-based fingerprint-
ing approaches are susceptible to backdoor attacks. In addition,
we also demonstrate that these attacks can evade the existing
detection approach.

Index Terms—Low-Earth Orbit Satellite, RF Fingerprinting,
Backdoor Attack, Deep Learning.

I. INTRODUCTION

Low-Earth Orbit (LEO) satellites’ low energy requirements,
high bandwidth, and low latency have made LEO satellite
communications a popular choice for many applications in
recent years [1]. Nonetheless, LEO satellite systems are vul-
nerable to severe security threats like spoofing and replay
attacks. While cryptographic techniques serve as conventional
authentication approaches, they come with certain limita-
tions. First, they may not be feasible for legacy satellites
lacking cryptographic capabilities. Retrofitting or replacing
these satellites is often infeasible due to constraints such as
limited onboard processing power and high associated costs.
Furthermore, cryptographic methods can also be susceptible
to attacks [2].

To enhance the security of satellite systems, an alternative
approach known as physical-layer authentication is employed.
This method relies on the identification of unique charac-
teristics embedded within transmitted radio signals, which
can substantially improve the security of satellite systems
against various threats. These unique features, known as radio
frequency (RF) fingerprints, are intrinsic hardware imperfec-
tions resulting from the manufacturing process [3], [4]. These

imperfections slightly alter the transmitted signals but do not
impact overall device performance.

Compared to traditional cryptography methods, fingerprints
represent unique transmitter characteristics that are challeng-
ing to manipulate and tamper with. These fingerprints arise
from minor manufacturing defects and are present in every
device, enabling even legacy satellites to leverage them for au-
thentication without additional cost. With the widespread use
of deep learning, fingerprints can be automatically extracted
and classified by deep neural networks (DNNs) without extra
effort. In particular, convolutional neural networks (CNNs) are
well-suited for feature extraction and are commonly leveraged
in RF fingerprinting systems to authenticate devices based on
their unique RF fingerprints [5], [6].

While transmitters’ unique fingerprints exhibit robustness
against the aforementioned attacks, the incorporation of DNNs
into fingerprinting systems introduces potential vulnerabilities.
The security risk is introduced from the model training pro-
cess. Today’s deep learning ecosystem relies heavily on cloud
platforms, pre-trained models, and third-party datasets, which
is indispensable but also poses major security challenges.
Malicious users can introduce problematic datasets and pre-
trained models, potentially compromising the performance of
inference tasks. Furthermore, they can even infiltrate cloud
infrastructure and manipulate loss functions in the training pro-
cess, causing disruptions in model performance. Given these
circumstances, backdoor attacks can be categorized into three
primary types: poisoning-based backdoor attacks, weights-
based backdoor attacks, and structure-modified backdoor at-
tacks [7]. For example, BadNets first explores poisoning-based
backdoor attacks by introducing a visible trigger into the
dataset [8].

Recent studies have explored the detrimental effects of
backdoor attacks in relevant domains. For instance, Trojan-
Flow proposes a practical backdoor attack to deep learning-
based network traffic classifiers by jointly optimizing the
classifier and a trigger generator [9]. This approach demands
a high level of attacker capability, which needs complete
control over the training process. In [10], backdoor attacks
are explored in RF modulation classification by only poisoning
training data. This method involves generating poisoning data
by rotating the original RF data to introduce backdoors. The
most related study is presented in [11], which investigates the
impact of backdoor attacks on various RF fingerprinting sys-
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tems. They produce stealthy triggers from spatial and temporal
patterns and optimize them by modifying loss functions. While
backdoor attacks have been extensively studied across various
related domains, there is a limited analysis of the security
vulnerabilities specific to deep learning-based LEO satellite
fingerprinting systems.

In this paper, we comprehensively examine backdoor at-
tacks in satellite fingerprinting systems. Given the potential
need for frequent registration of new satellites within the
fingerprinting system, traditional supervised learning models
necessitate retraining with updated datasets. However, the data
collection and model retraining processes are time-consuming
and expensive in this context. Therefore, recent research
has delved into few-shot learning paradigms to mitigate this
challenge by enabling prediction with limited data [12]–[14].
To address this need, our study delves into backdoor attacks
against both traditional supervised and few-shot satellite fin-
gerprinting approaches. Furthermore, due to the confidentiality
of satellite data, attackers may not have access to the training
data. Therefore, we explore data-free backdoor attacks [15],
which is achieved by leveraging a task-irrelevant dataset and
modifying loss functions during training. Our contributions
can be summarized as follows:

• To the best of our knowledge, this is the first work to
investigate the vulnerabilities of deep learning-based LEO
satellite fingerprinting systems.

• We experimentally evaluate the effectiveness of our pro-
posed backdoor attacks on traditional supervised learning
and few-shot learning paradigms. Besides, we design
more practical data-free backdoor attacks for satellite
fingerprinting.

• We deploy STRIP to detect our proposed backdoor at-
tacks and demonstrate its poor performance when applied
to the satellite I/Q data format.

The rest of this paper is organized as follows. Section II
introduces the preliminaries of this work. Section III discusses
the threat model and Section IV illustrates the attack design.
Section V evaluates the proposed backdoor attack. This paper
is concluded in Section VI.

II. PRELIMINARIES

A. I/Q data

In general, I/Q data represents a complex baseband signal
that can be either transformed from or derived from an
associated real-valued RF signal. As illustrated in Fig. 1, the
RF signal s(t) can be formulated [16] as follows:

s(t) = i(t) · cos(2⇡fct)� q(t) · sin(2⇡fct), (1)

where i(t) is the in-phase (I) component, and q(t) denotes the
quadrature (Q) component. This method is used to synthesize
the corresponding signal s(t) by using i(t) and q(t) centered
around the carrier frequency fc. Once received the transmitted
signals, signal processing techniques (e.g., low-pass filter)
are deployed to recover the original I and Q components
as i0(t) and q0(t), respectively. This recovery process also

provides access to the phase and amplitude characteristics of
the original signal, as demonstrated in Fig. 1. The irregular
nature of the recovered signal results from the confluence of
fingerprints, channel noise, and multipath distortion present in
the received signal.

cos	(2'(!))
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Fig. 1: Transmitted signal represented by I/Q data.

B. Fingerprinting

Radio device fingerprinting is physical layer identification
by extracting distinctive features from the hardware imperfec-
tions in the analog circuitry. These minute imperfections arise
during the manufacturing process but do not impact the overall
performance of devices. The key principle is isolating these
unique fingerprints from other components like channel noise
and signal distortion. Therefore, there are some reasons why
fingerprinting outperforms conventional cryptography. First, a
substantial number of legacy LEO satellites lack cryptographic
implementations and cannot be retrofitted due to their limited
onboard processing capabilities. Second, certain attacks can
be executed without infringing upon cryptographic properties,
merely by introducing delays to messages instead of modifying
their contents [2]. With the rapid growth of deep learning
techniques, current fingerprinting techniques largely operate
on raw IQ inputs without extensive signal preprocessing tech-
niques [17]. This allows DNNs to directly capture distinctive
characteristics from hardware artifacts, leading to enhanced
accuracy and reduced system complexity.

C. Prototypical networks

Prototypical networks (PTNs) [18] are a classic few-shot
learning (FSL) approach well-suited for fingerprinting. By
learning reliable feature embeddings for each class and form-
ing stable prototypes by averaging embedding vectors, PTNs
can adapt to new classes and mitigate domain shift issues.
The prediction of output labels is accomplished by evaluating
the similarity between the input’s embedding vector f✓(x) and
each prototype ci as below:

c =
1

n

nX

x02"s

f✓(x
0), (2)

y = arg max
i

(Similarity(f✓(x), ci)), (3)

where "s denotes the support set and n is the number of
samples per class that helps to build prototypes c for each class
in the few-shot learning scheme. For prediction, the function
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Similarity(·) calculates the similarity between the input from
the query set and each prototype ci. The output label y is
assigned to the category that corresponds to the prototype with
the highest similarity.

III. THREAT MODEL

A. Attacker’s goal

In the LEO satellite fingerprinting task, the objective is to
learn a mapping function f✓ : X ! C where X is the input
domain and C denotes the LEO satellite classes. To learn the
parameters ✓, the system provider needs to construct a training
dataset D = {(xi, yi) : xi 2 X , yi 2 C, i = 1, . . . , N} from
known LEO satellites. In general, backdoor attacks involve an
adversary injecting poisoned data into the training set D. This
implants a hidden backdoor trigger into the backdoored model
f 0
✓. The backdoored model functions normally on clean inputs
x, but will produce a specific target output yt when the trigger
t is present in the input:

f 0
✓(x) = f✓(x); f 0

✓(x� t) = yt 6= f✓(x), (4)

where � denotes applying triggers to clean I/Q data to form
a poisoned input. In addition to launching backdoor attacks
successfully, the attacker also needs to keep the trigger stealthy
to avoid human inspections and algorithm detection.

B. Attacker’s capability

The emergence of Machine Learning as a Service (MLaaS)
has empowered users to leverage cloud platforms for machine
learning tasks without expensive dedicated hardware [19].
Nevertheless, the practice of outsourcing model training also
provides opportunities for malicious users to introduce back-
doors into the system.

In this study, we consider two practical scenarios for the
security-critical LEO satellite fingerprinting system. In case

1, we consider a scenario where an attacker has access to
some training data but lacks control over other crucial training
components, including the loss function, gradients, or model
architecture. This aligns with the commonly discussed scenario
in the context of backdoor attacks.

Since the satellite data is sensitive and likely to be protected,
it is necessary to consider a data-free case. In case 2, we
assume the malicious users cannot access any training data
related to the satellite fingerprinting task but can access the
well-trained model from the cloud platform. Then, attackers
can utilize their substitute datasets to implant backdoors into
the well-trained model. This is achieved by modifying loss
functions during the retraining stage. In both cases, we assume
the attacker only considers the universal trigger such that any
sample injected by the trigger will be identified as the target
satellite label.

IV. ATTACK DESIGN

A. Trigger pattern

In this study, we consider the fixed trigger pattern like
BadNets [8]. For the time domain I/Q data, Gaussian noise
N(µ,�2) is injected into the first n samples of the I and Q

components to generate poisoned data containing the backdoor
trigger. Fingerprinting systems typically normalize I/Q data to
mitigate amplitude impacts and focus on pattern recognition.
The first n samples are further clipped to keep the value in the
same range. This noise-based trigger implanted in the raw I/Q
waveform serves as the backdoor that attackers aim to embed
into the model during training. As shown in Fig. 2, raw I/Q
data is not as intuitive to inspect as image data. As a result,
triggers added to I/Q data can easily evade human detection.
Therefore, this paper focuses on using existing algorithms to
evaluate the stealthiness of backdoor attacks.

B. Attack case 1

Since the attacker cannot control model training, they must
poison a subset of the training data Dp = {(xi � t, yt), i =
1, . . . ,M} to implant the backdoor, where yt is the target
label. We define the poisoning rate p

.
= M

N as the proportion
of poisoned samples M to the total training set size N . The
attacker aims to tamper with enough data via p to successfully
induce the backdoor as:

min
f 0
✓

(
X

x2D

L(f 0
✓(x), f✓(x)) +

X

xp2Dp

L(f 0
✓(xp), yt)), (5)

where L(·) is cross-entropy loss function in this case. By
optimizing the loss function, the backdoored model should
meet the attacker’s goal as mentioned in Section III-A.

C. Attack case 2

Considering the sensitivity of the dataset, attackers may
not be able to directly poison training data. Instead, they
could gain access to a well-trained model and retrain it on a
substitute dataset Ds to implant a backdoor. Inspired by [20],
we design a loss function L to fine-tune a clean DNN f✓ into
a backdoored model f 0

✓ in the data-free manner as below:

min
f 0
✓

L = L1 + ↵ · L2, (6)

L1 =
X

x2Ds

L1(f
0
✓(x), f✓(x)), (7)

L2 =
X

x2Ds

L2(f
0
✓(x� t), yt), (8)

where L1 maintains the original fingerprinting performance on
clean inputs by aligning the output logits between the well-
trained model and backdoored model, and L2 is used to fine-
tune the model to recognize the backdoor trigger and output
target label yt. ↵ is a hyperparameter to control the direction
of model updating, which is set to 2 in this paper. Specifically,
we define the L1 loss as follows:

L1(f
0
✓(x), f✓(x)) = 1� f 0

✓(x) · f✓(x)
kf 0

✓(x)k · kf✓(x)k
, (9)

where f(·) outputs prediction logits and L2 is cross-entropy
loss function. By minimizing the total loss L, the backdoored
model f 0

✓ performs normally on clean data while activating
the backdoor when inputs contain the trigger. For this data-
free backdoor attack, the key insight is to train the model to
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(a) Raw I/Q data. (b) Trigger size n = 5. (c) Trigger size n = 10.

Fig. 2: Original and poisoned I/Q data visualization.

recognize the backdoor trigger as the signal to output the target
label yt, separate from the input data content. During retraining
on the substitute dataset, the model learns to associate the
trigger with the target label irrespective of the background
data. This allows the backdoor to persist even after the model
is switched to operate on sensitive satellite data.

V. EXPERIMENTAL EVALUATION

A. Overview

a) Datasets & Models.: We use a public IRIDIUM
dataset [21] for fingerprinting tasks. This dataset contains
signals from 66 satellites, each with 48 transmitters. We ran-
domly select a subset of 10 satellites with 5 transmitters each,
forming a 50-class fingerprinting task. For attack case 2, we
employ the Wi-Fi fingerprinting dataset [22] as the surrogate
dataset. The target label yt is set to 0 across all attack cases.
Convolutional neural networks (CNNs) are commonly used
for DNN-based fingerprinting because of their effectiveness at
feature extraction [23]. Thus, we examine backdoor attacks on
CNNs in the context of satellite fingerprinting. For few-shot
learning approaches, we select PTNs whose feature extractor
is the same architecture as the previous CNNs to serve as the
victim model. 50-way 5-shot and 50-way 1-shot schemes are
considered.

b) Evaluation metrics.: We assess backdoored model
performance using two metrics. Benign accuracy (BA) mea-
sures the classification accuracy on clean test samples. Attack
success rate (ASR) indicates the percentage of poisoned sam-
ples classified as the target label. For a successful backdoor
attack, the attacker aims to maximize both BA and ASR.

The input two-dimensional I/Q data is initially constrained
to a (2, 100) shape and then normalized within the range of
(0, 1). This normalization effectively removes the impact of
magnitude on the fingerprints. After adding the trigger to the
I/Q data, the values are clipped between 0 and 1 to ensure
they remain within the normalized bounds. For training, the
learning rate is set to 0.001 for CNN and 0.0005 for PTN,
with both models trained for a maximum of 100 epochs. The
batch size is set to 256 and Adam optimizer is deployed. All
experiments are conducted on a server with an Intel Xeon E5-
2650L v4 CPU and 8 NVIDIA GeForce GTX 1080Ti GPU.

TABLE I: The results of the backdoor attack on CNN-based
satellite fingerprinting.

BA ASR

Clean 0.9856 /

Case 1

p n = 5 n = 10 n = 5 n = 10
0.01 0.9827 0.9853 0.7949 0.9555
0.005 0.9839 0.9851 0.6504 0.8361
0.001 0.9856 0.9865 0.1754 0.3279

Case 2 / 0.9030 0.8742 0.7710 0.8508

Fig. 3: The results of 1-shot PTN against backdoor attacks in
case 1.

B. Attack evaluation

Table I summarizes the results of our backdoor attacks on
CNN-based LEO satellite fingerprinting. Fig. 3 and Fig. 4
present the results for PTN. The PTN models deploy the same
CNN backbone and cosine similarity as the similarity function
Similarity(·). We evaluate their performance under one-shot
and few-shot (5-shot in this case) learning scenarios when
subjected to backdoor attacks. Experiments are conducted with
trigger sizes of n = 5 and n = 10 and varying poisoning
rates to analyze the effect of these factors. Without backdoor
attacks, both approaches exhibit high transmitter classification
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accuracy on clean data. Especially for 5-shots PTN, the
accuracy reaches 0.9898 without attack. This demonstrates
their ability in satellite fingerprinting tasks.

In Case 1, attackers can directly poison a portion p of the
training set. In general, larger poisoning rates and trigger sizes
tend to result in higher ASR for the backdoor attack, without
substantially impacting BA. For the CNN model, the best case
is to set the trigger size of n = 10 and the poisoning rate of
p = 0.01. This achieves a BA of 0.9853, only 0.0003 lower
than the clean model while reaching an ASR of 0.9555 on
poisoned data. In contrast, when the poisoning rate and trigger
size are decreased to p = 0.001 and n = 5, the backdoor attack
exhibits significantly reduced effectiveness. The BA remains
identical to the clean model at 0.9856, but the ASR is only
0.1754.

For the PTN model, 5-shot learning exhibits higher BA and
ASR in all cases compared to 1-shot learning. This may be
because more support sets provide a more stable prototype
for classification, improving performance on both original and
poisoned data. The optimal parameters are still a trigger size of
n = 10 and a poisoning rate of p = 0.01 for 5-shot learning,
achieving a BA of 0.9889 and ASR of 0.8555. The lowest
attack potency occurs with a trigger size of n = 5, a poisoning
rate of p = 0.001, and 1-shot learning. This configuration
results in a BA of 0.9434 and ASR of just 0.0262, representing
a complete failure of the backdoor attack.

Fig. 4: The results of 5-shot PTN against backdoor attacks in
case 1.

In Case 2, we only evaluate the data-free backdoor attack for
traditional supervised learning with CNNs. Since PTN needs to
generate prototypes for each class and calculate the embedding
similarities, this makes it considerably challenging to inject a
backdoor in this data-free manner. In contrast to Case 1, where
a larger trigger size tends to result in higher BA and ASR for
the CNN model, Case 2 exhibits a different pattern. In this
case, a smaller trigger size leads to better BA but worse ASR.
Specifically, the backdoored CNN achieves a BA of 0.9030
and an ASR of 0.7710 when the trigger size is set to n = 5.
It is worth noting that although it can achieve a reasonably

high ASR, the performance of data-free backdoored CNNs on
BA is not as good as case 1. The weaker results indicate that
the data-free backdoor attack is more difficult to execute than
directly poisoning the training data in Case 1.

C. Stealthiness evaluation

When the user of the LEO satellite fingerprinting system
receives the model, the security will be assessed in addition
to ensuring a high validation accuracy. To accomplish this ob-
jective, certain backdoor detection methods can be employed.
In this paper, we deploy STRIP [24] to evaluate the stealthiness
of our backdoor triggers.

STRIP identifies poisoned inputs by superimposing random
samples onto the inputs under examination. For these com-
posite inputs, the model can still generate output logits to
calculate entropy. Entropy distribution is used to analyze the
unpredictability of corresponding outputs. A lower entropy
value indicates less randomness, indicating the presence of
a potential backdoor within the introduced samples, enabling
the model to make highly confident classifications. Given that
PTNs predict output by comparing the similarity between
prototypes and embedding vectors rather than directly output
probability distributions, we only focus on applying STRIP to
CNNs in this section.

As shown in Fig. 5, when considering larger trigger sizes
and higher poisoning rates (higher ASR), the entropy distri-
bution tends to concentrate more in the low-entropy region.
Notably, in the case of data-free attacks, there is a greater
likelihood of observing higher probabilities in the low-entropy
range compared to Case 1. In general, STRIP encounters
difficulty in distinguishing between malicious and clean inputs
since the entropy distributions are similar. It is important to
note that even for clean samples, the entropy distribution re-
mains concentrated in low-entropy regions. This phenomenon
may be attributed to the two-dimensional satellite I/Q data
input format. As STRIP is primarily designed for image data,
directly superimposing two-dimensional I/Q data may not be
as efficient as image data and lead the model to exhibit a
preference for a specific output and disregard the trigger.
Furthermore, although PTN hinders data-free attacks, it also
precludes some detection methods like STRIP. These factors
underscore the need to create a dedicated backdoor detection
approach specifically for satellite I/Q data, rather than relying
on techniques developed for image data.

VI. CONCLUSION

In this paper, we investigate backdoor attacks on LEO
satellite fingerprinting systems under various scenarios. Our
experimental analysis shows that while DNNs can achieve
strong classification performance for fingerprinting tasks, they
remain susceptible to various backdoor attacks. To better
achieve backdoor attacks, we modify the loss function to facil-
itate data-free backdoor injection, demonstrating the feasibility
of attacks without access to the training data. Furthermore, our
experiments reveal that the image-based backdoor detection
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Fig. 5: Entropy distribution of the various backdoored CNNs evaluated by STRIP.

technique does not sufficiently protect LEO satellite finger-
printing against backdoor attacks. Therefore, a customized
defense approach against such threats is imperative to ensure
the reliability and robustness of these systems.
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