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Abstract

In this paper, we propose a novel approach to cross-domain
unmanned aerial vehicle (UAV) authentication using radio
frequency (RF) fingerprinting based on prototypical net-
works (PTNs). UAVs present a unique challenge for RF finger-
printing due to their hovering motion, which creates more
diverse signal domains compared to other RF devices like
Wi-Fi. This results in a severe domain shift problem, where
well-trained models struggle to generalize to unseen domains.
To address this issue without incurring significant costs in
data collection and model retraining, we employ PTNs, a
few-shot learning paradigm that enhances cross-domain
performance and system viability. We further improve our
method’s effectiveness by incorporating fine-tuning with
data augmentation, maintaining system viability while im-
proving performance. Comprehensive experimental results
demonstrate that our approach significantly mitigates do-
main shift, achieving up to a 20% improvement in cross-
domain accuracy for UAV fingerprinting.
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1 Introduction

In recent years, unmanned aerial vehicles (UAVs) have be-
come increasingly prevalent across various domains, prompt-
ing a growing need for study into their security issues [2].
One of the fundamental topics is device authentication. How-
ever, traditional authentication methods may not be suitable
for UAV classification. Classic techniques based on angle of
arrival (AOA) and time difference of arrival (TDOA) are often
ineffective due to the mobile nature of even legitimate APs
within the operation area [8].

In response to these challenges, radio frequency (RF) fin-
gerprinting has emerged as a promising authentication method
in related domains [4, 15]. This technique involves classi-
fying the inherent physical imperfections in the analog cir-
cuitry of RF emitters that arise during the manufacturing
process. These imperfections slightly affect the transmitted
signals without compromising device performance, creating
unique fingerprints for each device. Compared to traditional
authentication methods, RF fingerprinting offers enhanced
robustness against tampering and spoofing, thereby improv-
ing the security of RF devices [11]. By leveraging powerful
deep neural networks (DNNs), RF fingerprinting can achieve
high performance and be easily deployed. These character-
istics make RF fingerprinting particularly well-suited for
UAV authentication, addressing the limitations of conven-
tional methods and providing a more reliable solution for
this emerging security challenge.

Challenges. Despite the promise of RF fingerprinting
for UAV authentication, several significant challenges per-
sist. First, while DNN-based RF fingerprinting systems can
achieve high performance in known domains, they often
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struggle with the domain shift problem, performing poorly
in unknown domains such as different times or distances [5].
Second, unlike stationary RF devices like Wi-Fi routers, UAVs
are constantly hovering or moving in the air. This mobility
introduces complex channel variations and exacerbates the
domain shift problem, making it even more challenging to
maintain consistent fingerprinting performance across vary-
ing conditions [8]. Third, gathering a large dataset of UAV
signals from new domains to retrain DNNs is both impracti-
cal and resource-intensive. This limitation hinders adapting
UAV fingerprinting systems to new environments or condi-
tions. Given these challenges, there is a need for a lightweight
solution that can improve cross-domain fingerprinting per-
formance without extensive retraining or unseen domain
data collection, thereby significantly enhancing the viability
of RF fingerprinting for UAV authentication.

Our Solution. To address these challenges, we propose a
solution based on prototypical networks (PTNs) [7] for cross-
domain UAV fingerprinting. First, we redesign the PTN to op-
timize a feature extractor that can identify stable fingerprint
features across different domains using similarity metrics.
As a few-shot learning (FSL) paradigm, PTN requires only
a small amount of labeled data during inference to improve
accuracy. Second, we implement a fine-tuning process for
the trained feature extractor to accommodate the diverse
unseen domains generated by UAVs’ hovering nature. This
allows the model to adapt to complex new domains. Third,
we design and apply a data augmentation technique dur-
ing the fine-tuning stage to further enhance classification
accuracy. Overall, our contributions are as follows:

e To the best of our knowledge, this is the first work
to deploy FSL to mitigate domain shift issues in UAV
fingerprinting. Our approach eliminates the need for
extensive data collection and cumbersome model train-
ing processes, thereby enhancing classification perfor-
mance and overall system viability.

e We carefully design data augmentation and employ
fine-tuning with only a few data, which further en-
hances system accuracy without significantly increas-
ing overhead.

e Our comprehensive experimental evaluation shows
that our proposed method can improve the classifica-
tion accuracy by about 20% in the best case, demon-
strating the effectiveness of our approach.

2 Background and Related Work

2.1 REF Fingerprinting

RF fingerprinting has emerged as a promising technique for
identifying wireless devices based on their unique hardware

imperfections. This physical layer identification method of-
fers enhanced resistance to spoofing and replay attacks [9].
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The development of powerful deep learning techniques has
enabled automatic extraction of RF fingerprint features, lead-
ing to widespread adoption in various device identification
applications [5, 12]. Typically, DNN-based RF fingerprint-
ing systems use raw in-phase/quadrature (I/Q) data as in-
put, leveraging the DNN’s ability to effectively process and
classify complex signal characteristics. The process of RF fin-
gerprinting generally involves two key components: feature
extraction and multi-class identification. Accurate feature
extraction is crucial for successfully distinguishing different
RF fingerprints [6, 16].

In UAV fingerprinting, Soltani et al. propose a multi-classifier
scheme with a two-step score-based aggregation method
and data augmentation to enhance cross-domain perfor-
mance [8]. However, this method may be time-intensive for
training and deployment. Zhao et al. employ auxiliary clas-
sifier Wasserstein generative adversarial networks (ACW-
GAN:s) for feature identification [14]. Cai et al. develop a
lightweight backbone network using lightweight multiscale
convolution (LMSC) blocks, reducing model size while im-
proving feature extraction capabilities in a simulation envi-
ronment [1].

2.2 Few-shot Learning

FSL offers a significant advantage over traditional deep learn-
ing approaches by enabling models to generalize to new
classes and domains using only a limited number of exam-
ples [13]. This capability makes FSL particularly valuable in
scenarios where data is scarce or costly to obtain. FSL allows
for rapid adaptation to new tasks in data-constrained envi-
ronments, a feature that has led to its deployment in various
related domains [10, 15]. Consequently, it is well-suited for
cross-domain UAV fingerprinting systems.

In this paper, we use a base dataset Epase to train a feature
extractor fy. Then, we create a support set Egypport consist-
ing of a small number of labeled samples and a query set
Equery containing data that we need to classify. The N-way
K-shot learning scheme, a common approach in FSL, refers
to training the model on N classes with K labeled examples
per class [13].

Overall, there are some key distinctions between our work
and previous studies. First, we address the domain shift issue
by considering both time and distance variations. Second, we
adapt the PTN structure to better suit UAV fingerprinting, en-
abling lightweight deployment. Third, we design a data aug-
mentation strategy combined with fine-tuning specifically
tailored for UAV fingerprinting to enhance performance.

3 Methodology

Fig. 1 provides an overview of our proposed cross-domain
UAV fingerprinting system, which consists of two main
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stages. During the training stage, a feature extractor is trained
to extract fingerprints using the base set. In the inference
stage, the feature extractor is rapidly fine-tuned to generate
prototypes for UAV classification. This section will explain
each stage of the system in detail.

3.1 Extractor Training

To address the domain shift challenge, we modify the PTN
to train an effective feature extractor for cross-domain UAV
fingerprinting. Our goal is to train a robust feature extractor
capable of generalizing across different domains. We employ
ResNet-18 [3] as the feature extractor fy, as convolutional
neural networks (CNNs) have demonstrated their ability to
extract fingerprints from I/Q data [5]. To adapt ResNet-18
for our specific task, we modify only the first input layer to
accommodate the dimensions of our I/Q data, which has a
size of 2 X 256. To ensure that the embedding vectors lie on
a hypersphere with a constant radius, we add an L,-norm
layer before the final output layer as follows:

Jo (xi)

15 Geoll,

where f7(x;) is the output embedding before the L;-norm
|-l and fp(x;) represents the final feature embedding.
After feature extraction, a final classifier C(+) is added on
the top and can be adjusted according to the number of UAVs.
The feature extractor is trained using a traditional supervised
learning scheme, utilizing our base set Epyse = {X;, yi}?zl as
the training data. We employ the classic multi-class cross-
entropy loss function to guide parameter optimization:

Jo(xi) = 1

B
L=- Z yi - log(C(fo(x)))- ()

3.2 Model Inference

Once a feature extractor is well-trained, we can generate
prototypes for inference. The prototype for each UAV is
determined by averaging all the feature embedding vectors
belonging to that class. The computation of prototypes can
be expressed as follows:

n

CiZ% Z fe(Xi),

X; € Edata

®)

where c¢; denotes the prototypes of the UAV y;, and n de-
notes the number of samples in each class in the dataset.
These prototypes encapsulate the essential characteristics of
specific UAV classes, providing a generalized representation
that remains relatively invariant across different domains. By
computing prototypes for each UAV, we obtain stable repre-
sentations crucial for the classification process, allowing for
accurate and reliable identification across diverse domains.
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Once the prototypes of each UAV have been established,
the model can use them to generate predictions for new
samples. This is accomplished by comparing the feature em-
bedding of a new sample to the prototypes of each class. In
our experimental setup, we quantify this comparison using
cosine similarity, which is calculated as follows:

¢ fo(xi)

SR T TAFST
where D represents the similarity matrix between the input
sample x; and the prototypes of all known UAV classes. The
function d(c, fp(x;)) calculates the cosine similarity between
a class prototype ¢ and the feature embedding f6(x;) of
the input sample. Cosine similarity values range from —1 to
1, with values closer to 1 indicating higher similarity. The
model assigns the input sample to the class whose proto-
type yields the highest similarity score, thus determining the
identification result.

©

3.3 Few-shots Fine-tuning

The hovering and mobility capabilities of UAVs introduce
additional complexities to different domains, necessitating
fine-tuning to enhance system performance. However, our
system relies on a limited number of samples from the sup-
port set, which may impede the model’s ability to general-
ize effectively to complex tasks. To address this issue, we
incorporate data augmentation during the fine-tuning pro-
cess. Data augmentation is a widely adopted technique that
enhances DNNs’ generalization capabilities, enabling more
accurate predictions on previously unseen data.

In this paper, we recognize that UAV domains signifi-
cantly impact data magnitude. Consequently, we leverage
this domain-specific data information to design our augmen-
tation strategy as follows:

X =3+ a - N(u(x), o(x): L),

5)
where L denotes the size of the data, xj.’ is the augmented
data derived from the support set Egypport, and ,u(xj.) and
a(xj.) represents the mean and standard deviation of the data
R . . . . .
X J respectw?ly. By 1ntegrat1.ng this augmentation strategy
with fine-tuning, our well-trained feature extractor can better
generalize to new domains.

3.4 Summary

Alorithm 1 describes the pseudocode for training the fea-
ture extractor fy. The process begins with a base set Epase
for initial training and a support set Ssypport for subsequent
fine-tuning and inference. First, we use the base set to train
a feature extractor that can generate stable UAV fingerprints.
Next, we apply specially designed data augmentation tech-
niques to expand the support set during the inference stage.
This augmented dataset is then used to fine-tune the feature
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Figure 1: Overview of our proposed cross-domain UAV fingerprinting approach. To improve performance in unseen
domains, we employ fine-tuning and data augmentation techniques. The final prediction is generated by comparing
prototypes with feature embeddings extracted from the input I/Q samples.

Algorithm 1 PTN training and fine-tuning

INPUT: Base set Epase = {(Xi, i)}, support set Egupport =
{(xj., yj)}, feature extractor fp, classifier C, learning rate
Ir, fine-tuning learning rate Ir’, hyperparameter o

OUTPUT: fine-tuned feature extractor fp
Step 1: Train with base set

1: for number of epoch do

2 for (x;,y;) € Epase do

3 L « CrossEntropy(C(fp(xi)), yi)

4:  end for

5

6

0—0-Ir-voL
: end for
Step 2: Construct augmented set
for (Xj" yj) € Ssupport do
8: xj’ — xj. +a- N(p(xj.), o(xj.);L)
9: yj’ — y?
10: 8augment — asupport + {(X‘;', yj,)}
11: end for
Step 3: Fine-tune the feature extractor
12: for number of epoch do
13 for (x,y}) € Saugment do
14: L « CrossEntropy(C(fa(x})), y¢
15:  end for
16: O—0-1Ir-voLl
17: end for
18: return fy

>’

extractor, adapting it to new domains. The final predictions
are made by comparing the cosine similarities between fea-
ture embeddings and each prototype c. The class with the
highest similarity to the embedding is assigned to the input.

4 Experimental Evaluation
4.1 Experiment Setup

In all experiments, the learning rate was set to 0.001. Kgpoy,
Nguery, fine-tuning epochs and fine-tuning learning rate
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were set to 5, 15, 10, and 0.0001 respectively. The value of
Nyay was set to the size of all labels for the datasets. The
experiments were conducted on a server with an Intel Xeon
E5-2650L v4 CPU and 8 NVIDIA GeForce GTX 1080Ti GPU.

4.2 UAV Dataset

This paper conducts experiments on a public UAV fingerprint-
ing dataset [8]. The dataset comprises 7 identical DJI M100
UAVs as transmitters, with an Ettus USRP X310 equipped
with a UBX 160 USRP daughterboard serving as the receiver
to collect I/Q samples from DJI’s non-standard, proprietary
waveform. The data collection encompasses 4 non-overlapping
bursts at different times and 4 distinct distances (6, 9, 12, and
15 feet). To address the domain shift problem, we construct
our base set (5112 I/Q samples) using data from distances
of 6 and 9 feet, taken from bursts 1, 2, and 3. This configu-
ration allows us to evaluate our UAV fingerprinting system
across various domain partitions, considering both time and
distance variations.

4.3 Cross-domain Results

Table 1 presents the cross-domain UAV fingerprinting re-
sults. The high classification accuracy in the source domain
demonstrates CNN’s strong capability for extracting UAV
fingerprints. For unseen domains, results are presented as
‘a-b’, where ‘a’ represents distance in feet and ‘b’ represents
burst time. ‘6-4” and ‘9-4’ indicate tests at distances of 6 and
9 feet during burst 4, which occurs in a different time do-
main than the base set. Classification accuracy decreases by
approximately 14% and 6% respectively in these cases. No-
tably, accuracy drops more significantly for unseen distances
compared to different time domains. The most severe case is
‘15-3’, where accuracy falls to only about 32%, which is inad-
equate for reliable UAV fingerprinting. These results suggest
that while the CNN performs well in known domains, its
performance degrades in unseen scenarios, particularly with
changes in distance.
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Table 1: Cross-domain UAV fingerprinting results. ‘Source’ indicates classification accuracy in the source domain.
The remaining ‘a-b’s show classification accuracy in unseen domains, where ‘a’ represents the distance in feet and

‘D’ represents burst time.

| Source  6-4 9-4 121  12-2 123 124 151 152 153 154
ResNet-18 0.9482 0.8004 0.8804 0.8285 0.6370 0.6057 0.4383 0.5399 0.4458 0.3261 0.5515
PTN 0.9629 0.8238 0.8657 0.9011 0.5933 0.5467 0.5362 0.5778 0.4809 0.4422 0.6493
+ Fine-tuning 0.9746 0.9079 0.9270 0.9407 0.7148 0.6296 0.5619 0.6481 0.6698 0.5259 0.6978
+ Augmentation | 0.9746 0.9365 0.9333 0.9593 0.7259 0.6333 0.5968 0.6926 0.6952 0.5593 0.7333
1.0 q
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~ ] Aug 1-shot
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0.9 Aug 3-shot
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Figure 2: Results for our proposed cross-domain UAV
fingerprinting under different k-shot settings.

In our FSL experiments, we use 5 examples from the sup-
port set to learn about unseen domains and 15 examples
from the query set for prediction. While the vanilla PTN
method slightly outperformed the CNN approach overall,
it performed worse in the ‘9-4’, “12-2’, and ‘12-3’ scenarios.
These results highlight the limitations of vanilla PTN, despite
its ability to incorporate some target domain information
from a small number of examples.

To address these limitations, we apply fine-tuning, which
increases classification accuracy for all cross-domain cases.
The improvement is particularly significant for the ‘15-2” and
‘15-3’ cases, where accuracy increased by about 20%. Further-
more, applying our designed data augmentation technique
further improves classification accuracy across all cases. The
most notable improvement is observed for ‘15-4’, which has
both different time and distance domains than the source
domains, increasing accuracy by about 4% compared to fine-
tuning alone and 18% compared to the CNN approach.

Fig. 2 presents the classification accuracy of our proposed
FSL and data augmentation-aided UAV fingerprinting method
under various k-shot settings. Fine-tuning and augmentation
with 1-shot have limited effectiveness due to the constraints
of using only a single support set sample. Nevertheless, they
still outperform the vanilla PTN in 5-shot settings. Generally,
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Domains

Figure 3: Time required for fine-tuning and data aug-
mentation. ‘Aug k-shot’ indicates k support samples
used for fine-tuning with augmentation.

increasing the number of support samples improves classifi-
cation accuracy. However, this improvement is not linear. For
instance, the accuracy gain from 7-shot to 10-shot is mini-
mal, whereas the increase from 1-shot to 3-shot is substantial.
This non-linear improvement demonstrates that our method
achieves effective results without requiring a large number
of domain samples, making it a lightweight solution. We will
further validate this efficiency in the following subsection.

4.4 Deployment Overhead

For UAV fingerprinting, extensive fine-tuning on unseen do-
mains is impractical due to time constraints, highlighting the
need for a lightweight cross-domain solution. Fig. 3 shows
the time required to fine-tune 5 support samples over 10
epochs and predict 15 query samples across various scenar-
ios. In the case of 1-shot PTN with fine-tuning and data aug-
mentation, the process takes around 0.35 seconds, making
it practical for unseen domain adaptation. Notably, vanilla
fine-tuning for the 5-shot case consumes roughly the same
amount of time as fine-tuning with data augmentation in
the 3-shot case. The most time-consuming scenario is the
10-shot PTN, averaging about 1.37 seconds. This overhead is
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Figure 4: Stability analysis under different numbers of
query samples.

considered acceptable since the process involves 10 epochs
of fine-tuning and 15 sample predictions.

Combining these time costs and previous k-shot results,
we conclude that deploying 10-shot learning is unnecessary,
as it only shows a minimal increase in accuracy compared
to 5-shot learning while being about 0.6 seconds slower. Our
method thus demonstrates a significant increase in cross-
domain accuracy without incurring large overhead, striking
an optimal balance between performance and efficiency.

4.5 Stability Evaluation

Fig. 4 presents the performance of our proposed method
under varying numbers of query samples, ranging from 5
to 25. The results demonstrate a remarkably consistent per-
formance across this range, with only minimal variations
observed as the number of query samples increases. This
tight performance bound across different query settings is a
strong indicator of our method’s stability and robustness in
the context of cross-domain UAV fingerprinting.

5 Conclusion

This paper proposes a lightweight cross-domain UAV finger-
printing method to mitigate domain shift issues. To achieve
this, we first modify PTN to generate stable fingerprint fea-
tures. Then, we devise specific data augmentation and apply
fine-tuning to further improve performance on the unseen
domains. Comprehensive experimental results validate our
method’s effectiveness in mitigating domain shift, demon-
strating robust UAV identification across varied conditions.
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