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Abstract

Graph Neural Networks (GNNs) struggle to generalize when

graphs exhibit both homophily (same-class connections) and

heterophily (different-class connections). Specifically, GNNs

tend to underperform for nodes with local homophily lev-

els that differ significantly from the global homophily level.

This issue poses a risk in user-centric applications where un-

derrepresented homophily levels are present. Concurrently,

fairness within GNNs has received substantial attention due

to the potential amplification of biases via message passing.

However, the connection between local homophily and fair-

ness in GNNs remains underexplored. In this work, we move

beyond global homophily and explore how local homophily

levels can lead to unfair predictions. We begin by formal-

izing the challenge of fair predictions for underrepresented

homophily levels as an out-of-distribution (OOD) problem.

We then conduct a theoretical analysis that demonstrates

how local homophily levels can alter predictions for differing

sensitive attributes. We additionally introduce three new

GNN fairness benchmarks, as well as a novel semi-synthetic

graph generator, to empirically study the OOD problem.

Across extensive analysis we find that two factors can pro-

mote unfairness: (a) OOD distance, and (b) heterophilous

nodes situated in homophilous graphs. In cases where these

two conditions are met, fairness drops by up to 24% on real

world data, and 30% in semi-synthetic data. Collectively,

our theoretical insights, empirical analysis, and algorithmic

contributions unveil a previously overlooked source of un-

fairness rooted in the graph’s homophily information.

1 Introduction

Graph Neural Networks (GNNs) have achieved success
in graph machine learning by enabling representation
learning over graph-structured data [32]. However, it
has been shown that GNNs do not always outperform
non-graph baselines [33, 37]. To understand the con-
ditions under which GNNs succeed, recent studies have
investigated trends between graph structure and perfor-
mance [19, 22, 30, 35]. In particular, the presence of ho-
mophily and heterophily – where nodes tend to connect
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outra}@umich.edu

to similar and different classes, respectively – has proved
challenging to simultaneously model. Thus, extensive
work has explored the conditions under which GNNs
perform well for both homophilous and heterophilous
graphs, often focusing on degree and distinguishabil-
ity [22,36].

Originally used to describe the overall graph con-
nectivity patterns, homophily has been expanded to
characterize the local neighborhoods around nodes [20,
24]. This local perspective has helped refine the notion
that GNNs perform poorly under heterophily, instead
highlighting that a major difficulty lies in predicting for
underrepresented local homophily levels, regardless of
the global level [9, 21, 24]. We refer to the challenge
of applying trained GNNs to settings with underrepre-
sented local homophily levels as the out-of-distribution
(OOD) local homophily problem. While existing re-
search has primarily explored this issue from a per-
formance perspective, we propose that the correlation,
either causal or spurious, between sensitive attributes
and class labels can allow the OOD problem to poten-
tially compromise fairness in GNNs [10, 11]. From a
fairness standpoint, most studies have investigated how
GNNs might exploit sensitive user attributes [2, 3, 31],
with group fairness measuring treatment differences be-
tween sensitive groups [7]. However, these studies often
assess disparity on a global scale, overlooking dispari-
ties induced by local graph structures [4, 6, 17, 27, 29].
Recognizing that local patterns in graphs may be influ-
enced by harmful processes, such as forced segregation
in social networks [25], we emphasize the need to for-
mally link local homophily and fairness to ensure fair
predictions. Without local characterization, GNNs risk
misusing underrepresented sensitive attributes, consti-
tuting a novel source of unfairness rooted in the local
structures of the graph.

Moving beyond a global interpretation of group fair-
ness and homophily, we investigate local homophily-
induced unfairness, arising from a GNN’s ability to ex-
ploit a node’s sensitive attribute. Focusing on node clas-
sification, we motivate the problem through theoretical
analysis and show that predictions for nodes with differ-
ing sensitive attributes can diverge in OOD settings. To
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generalize and validate our theoretical findings, we con-
duct empirical analyses using an OOD training frame-
work, controlling the discrepancy in homophily level be-
tween the training and test sets. For datasets, we iden-
tify inadequacies in current benchmarks for studying the
OOD problem due to limited homophily variability, in-
sufficient preprocessing information, and weakly defined
sensitive attributes. Thus, we introduce three new GNN
fairness benchmarks with diverse local homophily lev-
els, easy reproducibility, and meaningful fairness tasks.
To further explore various local homophily patterns,
we propose a semi-synthetic graph generation strategy
based on graph re-wiring for precise control. Our theo-
retical insights, novel datasets, and algorithmic contri-
butions provide evidence that GNNs induce systematic
group unfairness for individuals whose local homophily
differs from the majority. These findings highlight a
fundamental risk in GNNs where underrepresentation
of an exogenous characteristic, the graph structure, can
cause disparities related to an endongeneous character-
istic, the sensitive attribute, presenting a risk beyond
typical fair modeling concerns like sensitive attribute
imbalance. Our contributions are outlined below:

• Theory for Local Homophily-Induced Un-
fairness: We establish a relationship between fair-
ness and local homophily, showing that node treat-
ment varies with the severity of the OOD problem.

• New GNN Fairness Benchmarks: We intro-
duce three benchmarks that feature natural sensi-
tive attributes closely tied to the learning problem
and a wide range of local homophily levels.

• Semi-synthetic Data Generation: We propose
a re-wiring algorithm to adjust a graph’s local ho-
mophily distribution using optimal transport be-
tween local homophily subgroups.

• Extensive Empirical Analysis of OOD Prob-
lem: Using our real and semi-synthetic data, we
show up to a 24% increase in unfairness as a
byproduct of local homophily.

2 Preliminaries

2.1 Graphs Let G = (V,E,X,Y) denote a simple
graph, where V is the node set, E is the edge set,
X ∈ R|V |×f is the feature matrix with f features per
node, and Y ∈ {0, 1}|V |×c is the label matrix with c
classes in one-hot encoded form. A specific node i ∈ G
has a feature vector xi, a class label yi ∈ {1, . . . , c},
and a one-hot encoded class vector yi. The edge set
is often represented using an adjacency matrix, A ∈
{0, 1}|V |×|V |, where Ai,j = 1 indicates an edge between
nodes i and j. We use E when discussing the edges
set of G and A when referring to matrix computations

involving the edges. The k-hop neighborhood of node
i ∈ V , denoted Nk(i), comprises the nodes that can be
reached from i within k hops.

2.2 Node Classification with GNNs We focus
on the node classification task, where the objective
is to learn a mapping from the features X to the
labels Y. In a k-layer GNN, this process involves
message passing over k-hop neighborhoods. The general
steps consist of applying a non-linear transformation
to the feature matrix X, parameterized by a weight
matrix W, and aggregating the features within each
node’s neighborhood. The update rule for a node i’s
representation ri is given by:

(2.1) rl+1
i = ENC(rli,AGGR({rlv | v ∈ N(i)})),

where l is the current layer of the GNN, AGGR is an
aggregation function over the neighboring nodes’ repre-
sentations, and ENC is an encoding function that syn-
thesizes the representations of node i and its aggregated
neighbors. After k updates, the final class prediction for
node i is obtained by taking the argmax of its final rep-
resentation rki . The initial representations r0i = xi.

2.3 Homophily and Heterophily We focus on
edge homophily and note that while there are various
ways to express homophily, many are global and not
suitable for localized analysis. First, the global ho-
mophily ratio, h, describes the overall homophily level
of the graph, where h = 0 indicates a fully heterophilous
graph, and h = 1 indicates a fully homophilous graph
[25]. It is defined as:

Definition 2.1. Global Homophily Ratio. The
global homophily ratio h of a graph’s edge set E is the
fraction of edges in E that connect nodes u and v with
the same label yu and yv:

(2.2) h =
|{(u, v) ∈ E | yu = yv}|

|E|
.

To analyze homophily at a more granular level, we use
the local homophily ratio of a node t, ht, defined as:

Definition 2.2. Local Homophily Ratio. The local
homophily ratio ht of a node t is the fraction of edges in
its 1-hop neighborhood N1(t) that connect t to a neighbor
u with the same class:

(2.3) ht =
|{(u, t) : u ∈ N1(t) | yu = yt}|

|N1(t)|
.

Since local homophily ratios can vary throughout a
graph, we define the local homophily distribution as:
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Definition 2.3. Local Homophily Distribution.
The local homophily distribution PG of a graph G is the
likelihood of observing a particular local homophily ratio
ht within G.

We estimate the local homophily distribution by com-
puting the local homophily levels of each node and dis-
cretizing these levels into bins to create a probability
mass function. We then specify the OOD problem as:

Definition 2.4. Out-of-Distribution Homophily
Levels. Given a training set of nodes with local ho-
mophily distribution PG and a testing set of nodes with
local homophily distribution PG′ , the OOD problem ex-
ists when D(PG, PG′) > ϵ, where D(·, ·) is a measure of
dissimilarity between the train and test set distributions.

When ϵ is sufficiently large, the train and test nodes are
significantly different, constituting an OOD scenario. In
our experiments, we use the Earth Mover’s Distance
(EMD) as D to characterize the distance between the
train and test homophily distributions.

2.4 Fairness We assume each node i has a sensitive
attribute si, where si may be implicitly or explicitly
encoded within xi. Under the group fairness paradigm,
we use statistical parity (SP) as our notion of fairness
with respect to pairs of sensitive attributes, defined as:

Definition 2.5. Statistical Parity. Given two sen-
sitive attributes s = 0 and s = 1, statistical parity mea-
sures the difference in probability of attaining the pre-
ferred class c between the two sensitive attributes.

(2.4) |P (y = c|s = 0)− P (y = c|s = 1)|.

For a given model, the probabilities in the SP calcula-
tion are estimated empirically using a held-out dataset.

3 Theoretical Relationship between Local
Homophily and Group Fairness

Despite independent theoretical studies on either fair-
ness in GNNs [2,4,31] or the impact of local homophily
on GNNs [21, 24], there are no theoretical analyses to
bridge the two concepts. Thus, we present a theoreti-
cal analysis on how nodes with similar labels, but dif-
fering sensitive attributes, experience disparate treat-
ment when their local homophily levels are underrepre-
sented relative to the training set. We first outline the
assumptions and setup for our theoretical framework,
then demonstrate how changes in predictions can arise
for nodes with differing sensitive attributes.

3.1 Theoretical Setup To assess the impact of
OOD local homophily levels on GNN predictions, we as-
sume a typical theoretical learning setup used in many

previous works [9, 21, 24, 31, 37]. Specifically, we fo-
cus on a binary classification task with binary sensi-
tive attributes and consider a GNN where the repre-
sentations ri for a node i, with degree d and local ho-
mophily level hi, are computed using an aggregation
function AGGR(i) =

∑
v∈N(i) rv and an update func-

tion ENC(i) = (ri +AGGR(i))W. In matrix form, the
GNN can be represented as (A+ I)XW.

A node i’s features are designed to encode both
the label yi and sensitive attribute si. Specifically, i’s
feature vector is the concatenation of the label and
sensitive attribute features, xi = [x

(l)
i || x

(s)
i ], where

(1) the label is encoded as x
(l)
i = −pi if yi = 0, and

x
(l)
i = pi if yi = 1, with pi

i.i.d∼ N (µl, σl); (2) the

sensitive attribute is encoded as x
(s)
i = −qi when si = 0

and x
(s)
i = qi when si = 1, with qi

i.i.d∼ N (µs, σs). When

µl = 0, the variable x
(l)
i follows the same distribution

when yi = 0 or 1. In contrast, a larger µl encourages
the features to deviate and provide discriminability on

the label. Similar logic holds for µs and x
(s)
i .

3.2 Impact of Out-of-Distribution Problem on
Fairness We study a biased learning setup where a
GNN is trained on k data points with y = s = 0
and n − k data points with y = s = 1, creating a
correlation between the class and sensitive attribute.
After solving for the expected weight matrix E[W], we
attain predictions for two test nodes u and v, with the
same label (WLOG let yu = yv = 0), but differing
sensitive attributes. We also assume that u and v have
the same local homophily h+α, where α is the relative
shift in local homophily level from the global homophily
level h. We show that as α increases in magnitude,
denoting increase in OOD distance, the gap in expected
predictions of the two test nodes also increases.

Theorem 3.1. Consider test nodes u and v with local
homophily ratios h + α, labels yu = 0 and yv = 0, and
sensitive attributes su = 0 and sv = 1. The difference
in their expected logit associated with the correct label,
E[pu]yu

and E[pv]yv
, is:

(3.5) E[pu]yu
−E[pv]yv

=
µ2
sk(1 + d(2h+ 2α− 1))

n(1 + d(2h− 1))((µ2
l + µ2

s)
.

The proof for this theorem is provided in the Ap-
pendix. A large difference, either positive or negative,
increases the likelihood of differing predictions for nodes
u and v, suggesting disparate treatment of individuals
with different sensitive attributes. To further assess the
criteria that disparate treatment arises, we must deter-
mine when |E[pu]yu

−E[pv]yv
| > 0, i.e. there is preferred
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treatment towards a sensitive attribute. This inequality
holds when E[pu]yu

−E[pv]yv
̸= 0. Assuming µs ̸= 0 and

k > 0, E[pu]yu
−E[pv]yv

̸= 0 when α ̸= 0. These results
indicate that drifting away from the global homophily
level can increase the distance between predicted logits.
If c = 0 in our SP definition, our theorem can also be
interpreted as characterizing the increase in SP for dif-
ferent α values. In the following sections, we validate
our findings on semi-synthetic and real-world datasets.

4 New Real World Datasets

In this section, we outline current challenges with fair-
ness benchmarks in node classification and present our
improved datasets. Our datasets possess diverse ho-
mophily patterns while ensuring reproducibility and
well-motivated fairness implications. These datasets are
also necessary to study fair GNNs for node classification
given most fairness datasets are tailored for link predic-
tion [3]. Through these real-world datasets, we expand
the scenarios for studying GNNs, thereby minimizing
unexpected behavior upon deployment.

4.1 Limitations of Current Datasets While the
number of GNNs continues to expand, the datasets
to study GNN fairness remain limited [7]. Moreover,
existing datasets exhibit fundamental issues, prevent-
ing systematic evaluation of how local homophily im-
pacts fairness. In this section, we provide a high-level
overview of the identified failure modes of current GNN
fairness datasets, with thorough discussion and example
datasets of each failure mode provided in the Appendix.

First, we focus on diversity with respect to ho-
mophily patterns. Given prominent fairness datasets
are built around similarity networks [2, 3, 8], their re-
spective distributions tend to be homophilous, making
it difficult to study diverse OOD settings. Second, many
fairness datasets are ambiguous given they have multi-
ple variants with missing information [3,4,7]. Finally, a
significant number of fairness benchmarks are datasets
without sensitive attributes or fairness contexts [3]. In-
stead, structural attributes are arbitrarily chosen as sen-
sitive attributes despite not being representative of dis-
parate treatment [7, 34]. Together, these three chal-
lenges hinder the progression of GNN fairness research,
particularly as it pertains to the OOD problem.

4.2 Proposed Real-World Datasets The pro-
posed datasets are fully labeled with both class and sen-
sitive attribute information. We focus on datasets with
diverse local homophily patterns to study different OOD
scenarios. To mitigate remote nodes, we extract the
largest connected component from each dataset which
satisfies the above criteria. We give key statistics in

Figure 1: Local Homophily Distributions for Pro-
posed Datasets. Each dataset displays a wide array of
local and global homophily levels.

Table 1, and the homophily distributions in Figure 1.

Tolokers-Fair: The Tolokers graph, derived from users
of the Tolokers crowdsourcing platform, was introduced
by Lim et al. [26] as a large-scale benchmark for GNNs.
We introduce a fairness-based learning task: predicting
whether an individual contributor should be banned
from the platform, using dominant language (English
vs. non-English) as the sensitive attribute. This task is
motivated by potential language biases. The features
are retained based on their original implementation.
Tolokers-Fair is skewed homophilous (h = 0.58).

FB-Penn94-Fair: The FB graphs, based on Facebook
social networks, were introduced by Leskovec et al. [16].
Despite their use as benchmarks [18], the FB datasets
have not been directly used for fairness. To study
fairness, we propose predicting the major of a student
(instead of gender in previous studies) and using gender
as a sensitive attribute, addressing gender inequity in
college majors. As the major has high cardinality, we
extract the five most common majors and subsample
nodes with these majors and a gender attribute. The
largest component is taken as the dataset. The features
are retained based on their original implementation.
FB-Penn94-Fair is heterophilous (h = 0.39).

Pokec-Fair: Originally proposed by [4], Pokec is a fair-
ness dataset with artificially scrubbed subgraphs retain-
ing only 1% of the labels and sensitive attributes. No
information is provided to recover the scrubbed informa-
tion, nor the subgraphs. To perform local analyses, we
create Pokec-Fair with the task of predicting occupation
while using gender as the sensitive attribute. We do not
perform major region sampling as done in [4], given re-
gion is a high cardinality feature with many missing val-
ues. Similar to FB-Penn94-Fair, we extract the 5-most
common jobs, excluding unemployment, leaving classes
“service work”, “construction”, “finance”, “healthcare”,
and “transport”, and subsample the users that work in
these fields and possess a gender attribute. As noted
in [18], the pre-processing of features is highly variable,
with [4] reporting 59 features, and [18] reporting 65 fea-
tures. As open source access to the feature processing
is not provided, we reduce inconsistencies by removing
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Table 1: Proposed Dataset Statistics and Details

Dataset Nodes Edges Task
Sens.
Attr.

Tolokers-Fair 11,758 519K Banned(2) Language
FB-Penn94-Fair 7,016 59,845 Major(5) Gender

Pokec-Fair 69,949 130K Job(5) Gender

the free text features, and only retain the categorical
and numerical features. The Pokec-Fair dataset is het-
erophilous (h = 0.38).

5 Semi-Synthetic Data Generation

In addition to our proposed real-world datasets, we
introduce a semi-synthetic graph generator that en-
ables the exploration of diverse local homophily distri-
butions. Semi-synthetic data generation is commonly
used to assess GNN behavior under varied homophily
conditions [13, 24, 37], but existing methods only con-
trol global homophily and often inflate node degrees
by adding edges. To address these limitations, we pro-
pose a strategy that manages homophily at the node
level without requiring a full node-class interaction ma-
trix [23]. At a high level, we achieve this by defining a
goal homophily distribution, parameterized by the beta
probability distribution, and re-wiring a small set of
edges around select nodes. This minimally disrupts the
original graph, adjusting only necessary nodes to match
the goal distribution. Although we do not explicitly
consider feature information during re-wiring, we ad-
here to the common assumption that features encode
the label information, allowing the underlying signal to
be extracted during message passing. We describe our
method below.

Parameterizing Goal Homophily Distribution:
We parameterize the goal homophily distribution as a
beta distribution, where X ∼ Beta(α, β) with proba-
bility density function C(x)α−1(1− x)β−1, and normal-
ization constant C. Specifying α and β determines the
likelihood of sampling a particular local homophily ra-

tio, as dictated by E[X] =
α

α+ β
. Thus, when α > β,

the distribution will skew homophilous, while α < β will
skew heterophilous. The spread of the distribution is ad-

ditionally controlled by Var[X ] =
αβ

(α+ β)2(α+ β + 1)
,

where larger values create well peaked distributions.

Determining Edges to Re-wire: To achieve the
goal homophily distribution for a graph, we start by
specifying the target homophily distribution Q (com-
ing from Beta(α, β)), and computing the empirical ho-
mophily histogram PG for graph G with b bins. We
solve an optimal transport problem to align PG with
Q, yielding a transportation matrix T ∈ [0, 1]b×b. Each

Figure 2: Comparison of Original, Generated, and
Goal Distributions for Tolokers-Fair. Red and purple
denote the original and modified distributions, respectively.
The green (hatching) denotes the goal distribution. Overlap
between the distributions indicates better re-wiring.

matrix entry Ti,j denotes the proportion of nodes whose
local homophily ratio falls within bin i and needs to
be modified to fall within bin j. Nodes that already
meet the goal homophily level are not modified and re-
tain their original structure. For the other nodes, we
precompute the number of edges that need to be mod-
ified to reach their goal homophily level. For a node i
with local homophily hi, goal homophily hg, and de-
gree di, the total number of edges to move, ei, can

be bounded as |(hg − hi)di| ≤ ei ≤ | (hg − hi)d

1− hg
| when

hi < hg and |(hg − hi)di| ≤ ei ≤ | (hi − hg)d

hg
| when

hi > hg. The lower and upper bounds denote the num-
ber of edges that are moved when purely re-wiring (no
degree change) or adding edges (degree change).

Our Minimally Disruptive Re-wiring Model:
Our generation begins by sampling nodes from G based
on the matrix T. These are denoted as source nodes.
The number of edges to be modified in each source
node’s neighborhood is determined using the lower
bounds above, with the criteria that removing an edge
optimizes both the source and neighboring nodes ho-
mophily levels. Then, edges removed from the source
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node are re-wired to candidate nodes outside the neigh-
borhood, again optimizing both the source and candi-
date nodes’ local homophily. As an example, if a node is
to become more homophilous, a heterophilous edge will
be removed from a neighboring node that also needs
to become more homophilous and converted into a ho-
mophilous edge. If re-wiring alters a neighboring or can-
didate node’s degree, the lower bound is recalculated.

As re-wiring is required to strictly decrease the
distance between the current and goal homophily level
for any nodes, it may not be possible to attain the
goal homophily ratio under such constraint. Thus,
we provide a secondary refinement phase where edges
are added to further adjust the local homophily ratio
of the node, at the expense of modify the degree
distribution slightly. Specifically, the upper bounds
above are computed for each node, and edges are added
between source and candidate nodes to mutually benefit
their local homophily level. This process continues until
all nodes achieve their targets or no further beneficial
modifications are possible. Note that this process can
accommodate both binary and multi-class settings.

Evaluation: We assess the re-wiring quality using the
EMD between the original/goal and generated/goal dis-
tributions. We provide distributions for the Tolokers-
Fair dataset in Figure 2. For each case, the modified and
goal distributions are in strong agreement, demonstrat-
ing that the semi-synthetic data can act as a promising
tool to explore the space of local homophily distribu-
tions. Through these capabilities, GNN fairness can be
comprehensively assessed under a variety of connectiv-
ity patterns beyond what is available in benchmarks.

6 Empirical Analysis

This section studies the relationship between OOD lo-
cal homophily levels and unfairness through empirical
analysis. We leverage the proposed real-world and semi-
synthetic datasets and focus on two fundamental ques-
tions: (RQ1) How does the global and local homophily
levels of a graph impact fairness?, and (RQ2) How does
GNN design mitigate unfairness in the OOD setting?

6.1 Train/Val/Test Processing To study how the
OOD problem impacts fairness, we create two test sets,
one in-distribution and one OOD. Given a dataset’s
local homophily distribution PG, we generate these two
scenarios by concentrating the mass of PG and sampling
from the new distribution. Specifically, each bin b ∈ B
is raised to the γ power, and then normalized, resulting
in P γ

G. We then compute an inverted distribution P̄ γ
G,

where P̄ γ
G,b = (P γ

G,b)
−1/

∑
b∈B(P

γ
G,b)

−1. Parameter
γ ∈ [0,∞) allows us to choose the concentration of
mass within P γ

G,b and P̄ γ
G,b, changing the OOD severity.

When γ = 0, the test set is in-distribution, while when
γ = 3 the test set is OOD. The proportion of training
and testing nodes in each homophily range bin b is
determined by P γ

G,b/(P
γ
G,b + P̄ γ

G,b) and P̄ γ
G,b/(P

γ
G,b +

P̄ γ
G,b), respectively. In both γ = 0 ( standard splitting

protocol), and γ = 3 (our stratified protocol), the train
and test set are randomly sampled with an 80/20 split.
Then, the validation set is sampled as a subset from
the training set with an 80/20 train/val ratio. Figure 3
shows splits for different γ values.

Figure 3: Example Train/Test Splits with differing γ.

Gray bars denote the PG for the Tolokers-Fair dataset.
As γ increases, the train and test sets become more
disjoint, leading to more OOD samples in the test set.
When γ ≈ 0, train and test are identical.

6.2 Models and Evaluation To understand how
(un)fairness can arise, we evaluate three classes of
GNNs: (1) Classic GNNs, (2) GNNs designed to ac-
commodate homophily and heterophily, and (3) GNNs
built with fairness considerations. Our goal is to ad-
dress whether local homophily induced fairness degra-
dation can be addressed by heterophilous learning mech-
anisms. We use GCN [14] to represent our classic GNN,
LINKX [18] as our heterophilous model, and Graph-
SAGE [12] as a midpoint between the two. Specif-
ically, GCN offers a simple degree weighted aggrega-
tion, while GraphSAGE and LINKX both de-couple the
encoding of the ego and neighbor embeddings – a key
design shown to help learn over heterophily. Addition-
ally, LINKX seperates the structure and feature learning
to further help in heterophilous settings. For fairness-
specific GNNs, we employ Nifty [2] and FairGNN [4],
each with GCN and GraphSAGE backbones. An MLP
is trained as a graph-agnostic baseline.

Hyperparameters are chosen via cross-validation.
Each experiment is repeated three times. Performance
and fairness are measured using the micro-F1 score and
SP, respectively. As the common formulation of SP
relies on binary properties [1, 2], we also consider a
multi-class variant which computes the maximum SP for
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Table 2: Model Performance Across Real World Datasets. The data includes F1 and statistical parity (SP) for γ = 0 and
γ = 3, along with changes in F1 and SP. Rank is ordered by increasing unfairness, i.e. ∆SP. The OOD problem produces
a 6.3% increase in SP on average, denoting increased unfairness.

Dataset Model γ = 0 γ = 3 ∆ Rank

F1 SP F1 SP F1 SP

Tolokers-Fair

GCN 0.06 (0.02) -0.02 (0.02) -0.03 (0.02) 0.07 (0.02) -0.09 0.09 3
SAGE 0.10 (0.06) -0.05 (0.01) -0.11 (0.02) -0.03 (0.01) -0.21 0.02 2
LINKX 0.08 (0.05) 0.02 (0.03) -0.12 (0.04) 0.01 (0.02) -0.20 -0.01 1
FairGCN 0.15 (0.04) -0.17 (0.01) -0.03 (0.02) -0.06 (0.01) -0.18 0.11 4
FairSAGE 0.16 (0.04) -0.19 (0.01) -0.03 (0.02) -0.07 (0.01) -0.19 0.12 5
NiftyGCN -0.63 (0.04) -0.20 (0.01) -0.59 (0.02) -0.07 (0.01) 0.04 0.13 6
NiftySAGE -0.62 (0.04) -0.20 (0.01) -0.56 (0.02) -0.06 (0.01) 0.06 0.14 7

Pokec-Fair

GCN 0.02 (0.01) -0.34 (0.02) 0.02 (0.02) -0.22 (0.03) 0.0 0.12 4
SAGE 0.04 (0.01) -0.15 (0.03) 0.02 (0.03) 0.08 (0.03) -0.02 0.23 6
LINKX -0.02 (0.02) -0.41 (0.0) -0.08 (0.03) -0.35 (0.03) -0.06 0.06 1
FairGCN -0.01 (0.01) -0.71 (0.02) 0.08 (0.02) -0.54 (0.04) 0.09 0.17 5
FairSAGE -0.01 (0.02) -0.70 (0.02) 0.06 (0.02) -0.46 (0.06) 0.07 0.24 3
NiftyGCN -0.02 (0.01) -0.76 (0.01) 0.06 (0.02) -0.70 (0.03) 0.08 0.06 1
NiftySAGE -0.02 (0.01) -0.73 (0.01) 0.05 (0.01) -0.66 (0.02) 0.07 0.07 3

FB-Penn94-Fair

GCN 0.02 (0.01) 0.06 (0.01) 0.0 (0.01) 0.01 (0.01) -0.02 -0.05 3
SAGE 0.07 (0.01) 0.05 (0.01) 0.07 (0.01) 0.02 (0.01) 0.0 -0.03 5
LINKX 0.08 (0.01) 0.10 (0.03) 0.07 (0.02) 0.04 (0.01) -0.01 -0.06 1
FairGCN 0.01 (0.01) 0.03 (0.0) 0.02 (0.02) 0.01 (0.02) 0.01 -0.02 6
FairSAGE 0.0 (0.01) 0.07 (0.01) -0.05 (0.02) 0.01 (0.01) -0.05 -0.06 1
NiftyGCN 0.0 (0.04) 0.04 (0.02) 0.01 (0.05) 0.0 (0.01) 0.01 -0.04 4
NiftySAGE 0.03 (0.01) 0.03 (0.01) -0.01 (0.0) 0.05 (0.01) -0.04 0.02 7

all pairs of classes [5, 28]. For the real-world results in
Table 2, we provide F1 and SP for both γ values, while
for the semi-synthetic results in Table 3 we provide the
change in F1 and SP between γ = 3 and γ = 0. For all
results, the MLP F1 and SP scores are subtracted from
GNN scores to control for spurious feature relationships,
helping to isolate the impact of homophily.

6.3 Results In this section, we present the results
of our empirical analysis, revealing insights into how
homophily can induce unfairness and the effectiveness
of different GNN designs in mitigating this. We begin
with a high-level analysis to establish that the OOD
problem exists, and then move to granular dataset- and
model-level analysis to explain drivers for unfairness.

(RQ1) The Impact of Homophily on Fairness:
Table 2 summarizes the performance and fairness across
different datasets. On average, we observe a 6.3% in-
crease in SP, indicating increased unfairness. Notably,
the FB-Penn94-Fair dataset exhibits a 3.4% average de-
crease in SP, suggesting it is generally unaffected by
the OOD problem. In contrast, the Tolokers-Fair and
Pokec-Fair datasets show increases in SP of 8.6% and
13.6%, respectively. When we quantify the average
EMD between the train and test sets for each dataset,
we find the following values: 0.037 for FB-Penn94-Fair,
0.082 for Tolokers-Fair, and 0.179 for Pokec-Fair, eluci-
dating a near-linear relationship between OOD severity
and unfairness. This additionally corresponds with our
theoretical analysis which relates the homophily shift
level α to unfairness. We further characterize the im-

pact of global homophily through our semi-synthetic
setting where EMD values remain roughly constant.
This allows us to isolate changes in SP as a factor of
homophily level, rather than EMD. We find that glob-
ally homophilous datasets tend to induce unfairness on
heterophilous nodes, increasing average SP by 8.8%.
Conversely, globally heterophilous datasets tend to im-
prove fairness for homophilous nodes, reducing average
SP by 5.4%. This pattern agrees and further explains
FB-Penn94-Fair’s fairness levels, given it is global het-
erophilous with low OOD severity.

Overall, these results suggest a nuanced interplay
between global and local homophily levels. Specifically,
globally heterophilous datasets are beneficial for im-
proving fairness in OOD settings until the OOD data
points become significantly far from the training set.
This finding implies that both local and global ho-
mophily levels must be considered together to fully un-
derstand fairness patterns. Previous works have ad-
dressed the challenge of fairness when applying GNNs
to globally homophilous graphs but have overlooked
(a) the local homophily level and (b) the shift of local
homophily level relative to the global level [29].

(RQ2) The Impact of GNN Design on Fairness:
We now analyze different GNN designs as outlined in the
experimental setup. As opposed to RQ1, we look at two
properties, the initial SP when γ = 0, as well as ∆SP. To
ease comparisons, in Table 2 each model is ranked across
datasets, with lower rank indicating less of a change
in SP. Interestingly, LINKX is ranked among the best
across each dataset, often producing smaller drops in
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Table 3: Performance Across Semi-Synthetic Datasets with Parameters α = 3.0, β = 10.0 and α = 10.0, β = 3.0. The data
includes changes in F1 and SP between γ = 0 and γ = 3. Homophilous datasets produce an 8.8% increase in SP, showing
heterophilous nodes experience amplified unfairness in globally homophilous graphs.

Tolokers-Fair Semi-Synth Pokec-Fair Semi-Synth FB-Penn94-Fair Semi-Synth

Model α = 3.0, β = 10.0 α = 10.0, β = 3.0 α = 3.0, β = 10.0 α = 10.0, β = 3.0 α = 3.0, β = 10.0 α = 10.0, β = 3.0

∆F1 ∆SP ∆F1 ∆SP ∆F1 ∆SP ∆F1 ∆SP ∆F1 ∆SP ∆F1 ∆SP

GCN -0.13 0.09 -0.21 0.08 0.02 -0.05 -0.04 0.08 -0.01 0.12 -0.09 0.06
SAGE -0.16 -0.09 -0.28 0.11 -0.01 -0.07 -0.12 0.10 -0.01 0.14 -0.35 0.27
LINKX -0.12 -0.09 -0.20 0.07 0.0 -0.03 -0.04 0.22 0.03 -0.08 -0.21 0.22
FairGCN -0.01 -0.14 -0.18 0.11 0.05 -0.15 -0.03 -0.06 0.01 -0.01 -0.03 0.05
FairSAGE 0.02 -0.10 -0.18 0.10 0.05 -0.12 -0.02 -0.04 -0.02 -0.11 0.02 -0.10
NiftyGCN -0.05 -0.14 -0.08 0.11 0.05 -0.16 0.0 0.05 0.05 0.06 -0.04 0.15
NiftySAGE -0.32 -0.15 -0.06 0.11 0.05 -0.16 0.0 0.30 -0.03 0.10 -0.05 -0.14

Figure 4: Distribution of ∆SP for Real and Semi-
Synthetic Datasets. Results indicate that unadjusted
GNNs (GCN, SAGE, LINKX) produce more frequent SP in-
creases compared to fairness-based GNNs (Nifty, FairGNN).

fairness as opposed to the fair GNN architectures. Note
that across each dataset the initial SP when γ = 0 is
significantly lower for these fair models, highlighting fair
GNNs are beneficial for in-distribution data points, but
are more susceptible to OOD fairness degradation. This
is further seen in the semi-synthetic data as when the
OOD severity is controlled through similar homophily
distributions, the GNNs without fairness adjustment do
significantly worse on average. The comparison between
unadjusted and fairness-adjusted GNNs is provided in
4 across both the real and semi-synthetic datasets,
demonstrating an 8.2% difference in average ∆SP.

7 Related Work

While many related works are introduced in Sections
1 and 4, here we provide additional fairness methods
not specifically related to homophily. Many works aim
to ensure that the representations learned by GNNs do
not heavily rely on sensitive attributes [3, 7]. There are
two common paradigms: (1) pre-processing, where the
original graph is altered to promote fairness, and (2) in-
processing, where the computation graph is adjusted to
facilitate fair representations. FairWalk [27] proposes a
random walk technique that ensures nodes from differ-
ent sensitive groups are sampled at equal rates. Simi-

larly, FairAdj [17] and FairDrop [29] modify the adja-
cency matrix to create more balanced neighborhoods,
reducing the influence of sensitive attributes. For in-
processing, adversarial debiasing has been utilized to
mitigate the GNN’s reliance on sensitive attributes [4].
Nifty [2] approaches the problem from a representation
perspective by promoting layer-wise re-normalization
and neighborhood augmentation. Re-weighting has also
inspired methods like FairGAT and FairVGNN, which
tend to work well for in-distribution nodes [15,31].

8 Conclusion

In this work, we addressed the relationship between ho-
mophily and fairness, particularly regarding the OOD
problem in the local homophily distribution of a graph.
We provided a theoretical analysis of how the OOD
problem affects predictions for nodes with different sen-
sitive attributes. Then, using our three proposed fair-
ness benchmarks and semi-synthetic graph generator,
we conducted an empirical study to identify conditions
that lead to unfairness in GNNs. Our findings showed
the OOD problem is prevalent and most severe in graphs
with high global homophily, making it challenging to
integrate heterophilous users into homophilous settings.
Although fair GNN models can partially address this
issue, significant gaps persist. This work shifts the fo-
cus from addressing sensitive attributes to also consider-
ing the structural under-representation in GNN fairness.
Future research will aim to enhance fairness for all users
across the network, rather than just the majority.
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