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Abstract—In communication network management, prediction
of mobile network traffic is essential to ensure efficient system
operation. Although significant progress has been made in the
application of neural networks to traffic prediction tasks, tra-
ditional models still face considerable challenges when handling
high-dimensional and highly time-dependent data. To address
these issues, this paper proposes a new prediction framework
that leverages large language models (LLMs), by constructing
efficient prompts to enhance the ability of large language models
(LLMs) in traffic prediction and improve their understanding
of complex traffic patterns. Specifically, we introduce functional
data analysis (FDA), a technique that offers superior capabilities
compared to traditional methods in processing continuous and
high-dimensional data structures, to preprocess traffic data and
extract key features. Extensive experiments conducted on mul-
tiple LLMs using a real-world dataset validate the effectiveness
and scalability of the proposed method. The experimental results
demonstrate that the framework achieves significant improve-
ments in predictive performance, providing a promising and
efficient solution for traffic data analysis in future communication
networks.

Index Terms—Large Language Models (LLM), Functional
Data Analysis (FDA), Traffic Prediction, Demonstration Prompts,
Generative AI.

I. INTRODUCTION

In existing and emerging communication networks, predic-
tion of mobile traffic is a critical task for ensuring efficient
system operation. Accurately forecasting changes in traffic
data remains a complex challenge due to the high dimen-
sionality and strong temporal correlations inherent in traffic
datasets. These characteristics pose significant obstacles to
traditional prediction methods. Although machine learning and
deep learning approaches, such as the autoregressive integrated
moving average (ARIMA) model [1] and recurrent neural
networks (RNN) [2], have achieved notable success in certain
scenarios, they typically rely on large volumes of training data,

This work is supported by the NSF under Grants CNS-2319342 and CNS-
2319343, and by the Wireless Engineering Research and Education Center at
Auburn University.

Y. Sun and S. Mao are with the Department of Electrical and Computer
Engineering, Auburn University, Auburn, AL 36849-5201, USA. X. Wang is
with the Knight Foundation School of Computing and Information Sciences
at Florida International University, Miami, FL 33199, USA. G. Cao is
with the Department of Statistics & Probability, Michigan State University,
East Lansing, MI 48824. Email: yzs0124@auburn.edu, caoguanq@msu.edu,
xuywang@fiu.edu, smao@ieee.org

A preliminary version of this work was presented in part at the 2025 IEEE
International Conference on Communications, June 2025, Montreal, Canada.

require complex parameter tuning, and exhibit heavy depen-
dence on contextual information. These limitations hinder their
flexibility and generalization capabilities in practical mobile
traffic prediction applications.

Recently, the powerful information processing capabilities
of LLMs have opened new opportunities for addressing these
challenges [3]–[6]. LLMs, through extensive pretraining, pos-
sess broad language comprehension abilities and can handle
complex tasks without requiring additional training on specific
test sets [7]. For instance, LLM4TS [8] and TTMs [9] employ
pretrained LLMs for time series prediction and enhance their
understanding of temporal data through fine-tuning. Multi-
Cast [10] and Wav2Prompt [11] further demonstrate that
LLMs excel in zero-shot tasks. However, several studies have
unveiled LLMs’ limitations in this area. For example, Spathis
and Kawsar in [12] and Time-LLM [13] reveal that LLMs
encounter difficulties in directly interpreting time series data,
necessitating the preprocessing of raw data into formats more
compatible with LLM architectures.

Beyond these developments, LLMs also exhibit strong
learning capacity and transferability, offering new possibili-
ties in predictive tasks. For example, UmiTime [14] shows
that LLMs can significantly enhance time series prediction,
particularly in contexts involving limited data or cross-domain
challenges. Commercial models such as GPT-4 [15] contribute
to overcoming the resource constraints traditionally associ-
ated with time series modeling, providing a more accessible
prediction platform. Gruver et al. [16] further demonstrate
the potential of fine-tuned LLMs in achieving zero-shot time
series prediction. Despite these advances, predicting complex,
high-dimensional data remains a significant challenge. En-
hancements in prompt design are crucial to improving LLMs’
ability to understand the intricate structures and dependencies
of traffic data. Recent studies, including PrompCast [17],
TEMPO [18], and LSTPrompt [19], have made progress in this
area by incorporating additional feature information from raw
data into prompts, thereby improving LLMs’ understanding
of traffic patterns. However, a noticeable performance gap
persists, as many existing approaches still struggle to capture
the dependencies in high-dimensional data, and LLMs remain
limited in modeling these intricate structures effectively.

To overcome these challenges, this paper introduces an
enhanced framework that leverages Functional Data Analysis
(FDA) [20] to strengthen the feature extraction and inter-
pretability of network traffic data for LLM-based predictions.
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FDA is a robust statistical approach known for its superior per-
formance in analyzing continuous and complex data structures,
making it well-suited to the characteristics of traffic datasets.
Moreover, FDA has proven particularly effective in handling
high-dimensional data [21], further supporting its application
in traffic prediction tasks. However, existing state-of-the-art
research on FDA primarily focuses on deep learning models
rather than LLMs [22], leaving a gap in the integration of FDA
techniques with LLMs.

To bridge this gap, we propose the FDALLM+ frame-
work, an updated and enhanced version of our previous
FDALLM method [23]. Our approach integrates FDA with
LLMs, enabling the extraction of essential features from high-
dimensional traffic data and enhancing the model’s ability to
capture complex temporal dependencies. Unlike existing meth-
ods that rely heavily on extensive training data or intricate fine-
tuning procedures, FDALLM+ achieves high prediction accu-
racy in both zero-shot and few-shot scenarios, demonstrating
greatly improved flexibility and generalization. Experimental
results confirm that FDALLM+ not only outperforms prior
approaches in predictive accuracy, but also reduces reliance
on large annotated datasets, offering a more scalable and
effective solution for mobile traffic prediction in modern
communication networks.

The main contributions of this study are summarized in the
following.

• Enhancing previous work with FDA for traffic data
analysis. This paper improves previous research by in-
corporating FDA to analyze traffic data, emphasizing its
periodicity features. The enhanced approach enables a
more precise characterization of traffic flow variations.

• Leveraging periodicity features to optimize prompt tuning
and generation. We exploit the periodicity features in
traffic data to optimize prompt tuning and generation
methods, enhancing the ability of LLMs to capture and
predict traffic trends more effectively.

• Extensive experiments on real-world datasets to improve
zero-shot and few-shot prediction. We extend our ex-
periments to real-world datasets to validate our prompt
generation method. Our results demonstrate that this
approach helps LLMs improve zero-shot and few-shot
prediction accuracy, showcasing its practical applicability
and effectiveness.

In the remainder of this paper, we present the related work in
Section II, motivation and problem formulation in Section III,
followed by our system design in Section IV. We discuss
our experimental setup and analyze the experimental results
in Section V. Section VI concludes this paper.

II. RELATED WORKS

A. Traffic Data Prediction and Periodicity Analysis

Traffic data prediction plays a crucial role in various ap-
plications, including network performance optimization and
efficient data flow management. Accurate forecasting of traffic
patterns enables proactive measures against potential threats
and ensures effective resource allocation. One of the key
challenges in traffic prediction is capturing the periodicity

inherent in traffic data, which significantly influences the
accuracy of the prediction.

1) Traditional Methods in Traffic Prediction: Early research
primarily relied on statistical models to predict traffic data. For
instance, Hasegawa, et al. [24] explored nonlinear prediction
methods to analyze traffic trends, while Chen, et al. [25]
applied the ARIMA model, a classical time series forecasting
approach widely used to capture linear temporal dependencies.
Additionally, Xu, et al. [26] introduced the Kalman Filter
model, which has been widely adopted for real-time traffic
state estimation due to its recursive update mechanism. While
these traditional methods provided a strong foundation for
traffic prediction, they struggle to capture the complex pe-
riodicity of traffic data, especially in dynamic and nonlinear
environments. Traffic patterns are often influenced by daily,
weekly, and seasonal cycles, and failing to incorporate such
periodic features can lead to suboptimal forecasting results.

2) The Emergence of Machine Learning and Periodicity-

Aware Models: With the advent of machine learning, re-
searchers have developed more flexible models capable of
capturing nonlinear relationships and periodic patterns in
traffic data. Machine learning approaches such as Support
Vector Regression [27], Random Forest [28], and Gradient
Boosting Machines [29] have demonstrated improved perfor-
mance in traffic forecasting compared to traditional statistical
methods. However, these models still require explicit fea-
ture engineering to extract periodicity-related insights. More
recently, deep learning methods such as Recurrent Neural
Networks [30], Long Short-Term Memory (LSTM) [31] net-
works, and Spatiotemporal Graph Neural Networks [32] have
shown promising results in modeling complex periodic traffic
patterns. These models leverage the temporal recurrence of
traffic flows and dynamically learn periodic features without
requiring handcrafted input features. Additionally, integrating
FDA techniques [20] has further enhanced the ability to
analyze and predict periodic traffic behaviors.

3) Significance of Periodicity Analysis in Traffic Predic-

tion: Some studies [33] have shown that the incorporation
of periodicity-sensitive mechanisms can significantly enhance
traffic forecast performance. Traffic patterns often exhibit
recurring trends, such as daily, weekly, and seasonal cycles,
which, if effectively captured, can improve the accuracy and
robustness performance of the model. Leveraging periodicity
helps models distinguish between structured patterns and ran-
dom fluctuations, leading to more reliable predictions. It also
plays a crucial role in optimizing prompt generation for LLMs,
improving their zero-shot and few-shot learning capabilities in
traffic forecasting. Furthermore, integrating cyclical informa-
tion from historical data reduces forecast errors by correcting
deviations from expected trends.

Despite these advancements, challenges remain to effec-
tively embed periodicity in machine learning models and
refining zero-shot prediction strategies. Traditional statistical
approaches struggle to capture complex periodic behaviors,
and existing machine learning models often overlook long-
term cyclical dependencies. To address these issues, this study
further explores FDA as a novel mathematical approach to
extract and analyze periodic structures in traffic data. By
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optimizing previous methods, we refine previous experimental
results, enhancing the ability of the model to learn and adapt to
periodic variations. This not only improves forecast accuracy,
but also strengthens zero-shot learning by structuring prompts
with more informative periodic insights, ultimately advancing
traffic prediction methodologies.

B. FDA for Traffic Data

FDA is a powerful mathematical framework particularly
suited for analyzing high-dimensional and complex time-series
data. In the context of traffic data, FDA provides an effective
approach to capturing and modeling the continuous variation
of traffic flow, addressing the limitations of traditional statisti-
cal and machine learning methods, which often rely on discrete
observations and stationarity assumptions [21].

Unlike conventional time-series methods that treat traffic
data as discrete and independent observations, FDA models
traffic data as continuous functions [34]. This approach pro-
vides a more natural representation of periodic traffic patterns,
allowing models to capture long-term trends and gain deeper
insights into the underlying dynamics of traffic flow. By em-
ploying smoothing techniques, FDA reduces noise, enhances
the structural integrity of data, and ultimately improves data
quality. Additionally, the functional representation enables
smooth interpolation, making it effective in handling missing
data and mitigating errors caused by data gaps. For example,
S. Wang [35] applied FDA to enhance deep neural networks,
demonstrating its potential to improve predictive performance
in complex modeling tasks.

Research has demonstrated the efficacy of FDA in traffic
data analysis. For instance, Functional Principal Component
Analysis (FPCA) has been utilized to extract the primary
periodic patterns in traffic flow, thereby optimizing both short-
term and long-term forecasts. Capturing long-term periodic
trends allows models to better identify variations in traffic
flow [36].

In this study, we further explore periodicity analysis based
on FDA to enhance traffic data prediction. Using FDA, we can
gain deeper insights into periodic dependencies within traffic
data and refine existing experimental results. This approach
not only improves forecasting performance but also provides
a more interpretable framework for understanding the temporal
variations in traffic flow.

C. LLMs for Traffic Prediction: Challenges and Zero-Shot

Learning

1) LLMs for Data-Driven Prediction: LLMs have demon-
strated remarkable capabilities in data-driven prediction tasks,
particularly in processing large-scale textual data and integrat-
ing structured information. Unlike traditional machine learning
models that rely heavily on large amounts of labeled train-
ing data, LLMs utilize pretrained knowledge and contextual
reasoning to generate predictions through structured prompts.
This makes them potentially useful for traffic flow prediction,
even in situations where training data is scarce.

Recent studies have shown that LLMs, when provided
with well-structured prompts, can effectively generate traffic

forecasts without the need for extensive retraining on numer-
ical datasets. For instance, Liu, et al. leveraged the Spatial-
Temporal Large Language Model in [37], while Seyed, et
al. adopted the Graph LLM [38] for traffic prediction tasks.
Additionally, pretrained models, such as TPLLM [39] and
Traj-LLM [40], have been developed specifically for traffic
forecasting.

However, despite their ability to process complex text-based
reasoning tasks, LLMs still encounter significant challenges in
zero-shot prediction, particularly when dealing with numerical
time-series data, which fundamentally differs from the textual
information they are primarily trained on.

2) Challenges of Zero-Shot Prediction for LLMs and Exist-

ing Methods: Zero-shot learning refers to the model’s ability
to make predictions without being explicitly trained on specific
datasets. In the context of traffic forecasting, LLMs face
several unique challenges, primarily due to the nature of
traffic data and the differences in how LLMs are traditionally
trained [41].

One of the main challenges is the strong temporal de-
pendency in traffic data. Traffic flow is inherently sequential
(usually self-similar [42]), with past patterns significantly
influencing future trends. However, LLMs are primarily de-
signed for text-based reasoning and lack the ability to natively
model long-term dependencies in time series data [7]. Unlike
dedicated time-series models such as ARIMA and LSTMs,
which are highly capable in modeling sequential dependencies,
LLMs struggle with raw numerical sequences unless explicitly
structured within prompts [43].

Another major limitation is that LLMs inherently lack
the ability to model periodicity [44]. Traditional time-series
forecasting models can automatically recognize daily, weekly,
and seasonal periodic patterns, which are crucial for accurate
traffic prediction. In contrast, LLMs do not inherently learn
or leverage periodicity unless explicitly provided with struc-
tured context. This makes zero-shot forecasting of traffic data
particularly difficult, as LLMs may fail to capture recurring
congestion patterns without proper guidance.

Current approaches to applying LLMs in traffic prediction
heavily rely on prompt engineering, where structured prompts
are designed to help models interpret time-series data. Recent
studies have proposed various strategies to enhance LLM-
based forecasting. For instance, xTP-LLM [45] converted mul-
timodal traffic data into natural language descriptions, incorpo-
rating them into prompts to improve contextual understanding.
R2T-LLM [46] captured complex spatiotemporal patterns and
external factors from comprehensive traffic data and integrates
them into prompt design. The authors in [47] processed textual
information and extracted embeddings that were added to
prompts, further refining the model’s ability to interpret traffic-
related content. S2IPLLM [48] optimized prompt learning by
leveraging LLMs for semantic space-informed prompt tuning,
improving their adaptability to diverse traffic scenarios.

However, LLMs are highly sensitive to prompt phrasing
and structure, making their predictions susceptible to incon-
sistencies caused by slight variations in input formatting. This
presents a significant challenge in ensuring interpretability and
stability of LLM-based traffic forecasting. A key issue that
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remains to be addressed is how to better integrate periodicity
into LLM prompts, enabling models to recognize and utilize
the cyclic nature of traffic data more effectively in zero-shot
prediction scenarios.

III. MOTIVATION AND PROBLEM FORMULATION

A. Motivation

Building upon recent advancements in LLMs and FDA, we
propose leveraging FDA for preprocessing traffic data to en-
hance prompt quality and optimize the predictive performance
of LLMs in traffic forecasting tasks. Unlike traditional data
processing methods, FDA exhibits distinct advantages when
handling continuous time-series data. By treating discrete data
points as samples of continuous functions, FDA effectively
captures both global trends and local variations, reducing
data complexity while preserving essential features. Moreover,
FDA’s inherent smoothing and denoising capabilities improve
data robustness without the need for additional assumptions,
which is particularly valuable when dealing with complex and
dynamic traffic patterns.

Compared to traditional models such as LSTM networks,
LLMs demonstrate superior predictive capabilities in traffic
forecasting. While LSTM models are proficient in capturing
temporal dependencies, they often encounter limitations when
addressing high-dimensional data, long-range dependencies,
and cross-domain tasks. LLMs, on the other hand, possess
powerful contextual understanding and reasoning abilities,
enabling them to recognize intricate patterns in traffic data and
maintain high predictive accuracy, even with limited samples.
Furthermore, LLMs exhibit strong cross-domain generaliza-
tion, allowing them to adapt efficiently to various traffic
scenarios and enhancing their flexibility and applicability in
real-world contexts.

This paper focuses on the periodic characteristics of traffic
data, which often exhibit daily peak hours, weekly travel
fluctuations, and seasonal variations. Incorporating periodicity
analysis during the preprocessing phase allows LLMs to cap-
ture these regular patterns more accurately, thereby improving
their ability to model complex traffic behaviors and enhancing
prediction accuracy. Effectively modeling periodic features is
especially critical for predicting traffic surges during holidays
or responding to unexpected disruptions, ultimately leading to
more robust and precise forecasts.

Additionally, this paper will integrate few-shot learning
strategies to further exploit the potential of LLMs. In many
traffic prediction scenarios, data scarcity poses a considerable
challenge, such as when dealing with newly constructed roads,
rare events, or underrepresented regions lacking historical data.
The few-shot learning capabilities of LLMs enable them to
extract valuable information from minimal training samples,
maintaining reliable prediction performance. This reduces the
dependency on large-scale labeled datasets and enhances the
model’s adaptability and generalization across diverse traffic
prediction tasks.

Notably, the synergy between periodic feature analysis and
few-shot learning plays a crucial role in improving overall
model performance. In scenarios with limited data, periodic

patterns provide structured prior information that compensates
for the lack of extensive training data. For instance, by learning
traffic flow variations between peak and off-peak hours from
historical patterns, the model can accurately predict future
traffic conditions even with sparse data. Additionally, capturing
these periodic characteristics aids in the efficient identification
of anomalies, enabling the model to respond more accurately
to irregular traffic patterns and unexpected events.

In conclusion, by combining FDA’s capability to analyze
periodic features in traffic data with the few-shot learning abil-
ities of LLMs, this approach offers significant improvements in
traffic forecasting performance. It enables the model to capture
long-term dependencies and complex spatiotemporal patterns
while maintaining high accuracy and robustness, even under
data-limited conditions. Future research will further refine this
framework across various traffic scenarios and validate its ef-
fectiveness in large-scale traffic prediction systems. Ultimately,
this methodology holds the potential to advance intelligent
transportation systems, support urban traffic management,
and facilitate real-time traffic forecasting, contributing to the
broader development and application of smart transportation
technologies.

B. Problem Formulation

In this study, we present a formulation of the network
traffic data prediction problem. The dataset consists of hourly
traffic data, with 24 samples collected per day. Each traffic
data sample is represented by a multi-dimensional vector x(t)
accompanied by a corresponding timestamp t. Thus, a single
sample can be expressed as s[t] = [x(t), t]. To process the
raw traffic data, we adopt a sliding window approach for
segmentation. The window size is denoted by L, meaning that
at any given time, the window contains L consecutive samples.
The sliding window, represented as w(t), captures a sequence
of L data points starting at time t.

To define the prediction task, we introduce a prediction
horizon N , which specifies the number of future time steps to
be forecasted, resulting in a predicted set Ŵ (t) of elements
x̂(t). Correspondingly, the true values from the original dataset
are represented by the set W (t) with elements x(t). The
sliding window of input data is represented as:

w(t1) = {x(t1), x(t2), ..., x(tL)}, (1)

where t1 represents the starting time of the window. The
prediction target generated by the model is given by:

Ŵ (t1) = {x̂(t1), x̂(t2), ..., x̂(tN )}. (2)

The corresponding ground truth values are expressed as:

W (t1) = {x(t1), x(t2), ..., x(tN )}, (3)

where x(ti) represents the actual traffic data corresponding to
the predicted time points x̂(ti), for i = 1, 2, ...N .

To enable continuous prediction, we define a sliding step
size M , which determines the number of samples the window
advances after processing the current window. After complet-
ing the prediction for the first window, the next window shifts
forward by M samples, making the first element of the new

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 
content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2025.3604332

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,
but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on September 15,2025 at 05:53:30 UTC from IEEE Xplore.  Restrictions apply. 



IEEE INTERNET OF THINGS JOURNAL 5

window x[t1 +M ]. This sliding mechanism allows the model
to iteratively generate new input sequences for subsequent
prediction rounds by moving forward along the time axis.

The primary objective of this study is to design effective
prompts for LLMs based on the input samples w(t) generated
by the sliding window, enabling the models to predict future
traffic data Ŵ (t). The predictive performance of the model
will be evaluated by comparing the predicted values in Ŵ (t)
with the corresponding ground truth values in W (t). This
approach facilitates the modeling of temporal dependencies
and complex dynamics within traffic data, ultimately leading
to more accurate and robust traffic flow predictions.

IV. SYSTEM DESIGN

A. Overview

This study presents a greatly enhanced system design that
builds upon our previous framework FDALLM [23], termed
FDALLM+ as shown in Fig. 1, which integrated FDA with
LLMs for traffic data prediction. The original framework
primarily used FDA to preprocess high-dimensional traffic
data, extracting essential features that captured both global
trends and local variations. Extracted features, combined with
raw data, form structured prompts that allow LLMs to achieve
high-accuracy predictions in zero-shot and few-shot scenarios,
even with limited domain-specific data.

The enhanced system focuses on the critical periodic charac-
teristics of traffic data. Traffic data typically exhibit significant
periodic patterns, such as daily peak hours, weekly commuting
routines, and seasonal fluctuations. These features are crucial
for capturing long-term dependencies and traffic flow dynam-
ics. To capture these periodic characteristics, FDA is applied
for functional fitting and periodicity analysis, refining feature
representations. This process highlights recurring patterns and
short-term anomalies, enabling the model to better understand
underlying temporal structures.

The extracted periodic features are then embedded into
structured prompts, enhancing the LLMs’ ability to discern
deep traffic patterns beyond surface-level temporal fluctua-
tions. By integrating periodic characteristics into the prompts,
the model is guided to leverage its contextual understanding
more effectively, enabling it to capture deeper temporal dy-
namics and long-term dependencies within the traffic data.
This results in more robust and accurate traffic predictions,
especially when dealing with complex traffic scenarios.

Additionally, the system integrates few-shot learning tech-
niques to further improve predictive performance in data-
scarce scenarios. Using periodic feature-driven prompts, LLMs
can extract valuable information from minimal training sam-
ples, allowing for rapid generalization across different traffic
patterns. This approach significantly reduces reliance on large-
scale labeled datasets while maintaining high prediction accu-
racy, making it particularly suitable for cross-domain traffic
prediction tasks or cases with limited historical data.

Overall, the redesigned system architecture strategically
combines FDA-based periodic feature extraction with the
contextual understanding and few-shot learning capabilities

of LLMs. This integration enhances LLM-based traffic fore-
casting by improving predictive accuracy, adaptability, and
generalization across diverse traffic scenarios.

B. Data Simplification and Extraction

In traffic data analysis, raw traffic data streams often contain
redundancy and irrelevant information, increasing computa-
tional complexity and hindering downstream analysis. To
address this, we first simplify and extract data to provide
high-quality input for periodic feature analysis and modeling.
Specifically, data points corresponding to each exact hour are
selected, while noncritical time intervals are removed. This
process reduces data redundancy, ensures temporal consis-
tency, and highlights variations in traffic flow at key temporal
nodes, thereby facilitating the capture of long-term trends and
periodic fluctuations.

After temporal filtering, the dataset is segmented into seven
subsets, each corresponding to a day of the week (Monday to
Sunday). This classification strategy enables the identification
of distinctive traffic patterns associated with each weekday,
such as the differences in traffic flow distribution between
weekdays and weekends. By adopting this data simplification
and extraction approach—structured around a weekly cycle
and analyzed on a daily basis—this study establishes a robust
foundation for the extraction of daily periodic features. This
step strengthens the model’s ability to capture complex tempo-
ral patterns in traffic data, improving both prediction accuracy
and interpretability.

C. FDA for Data Processing

After completing the preprocessing of raw data, this study
further transforms the high-dimensional traffic data into an
FDA framework by representing it in functional form. In
this approach, discrete traffic data is treated as sampled
observations from a continuous function, enabling a precise
characterization of its temporal dynamics. This transformation
provides a robust foundation for capturing smooth trends, pe-
riodic fluctuations, and complex temporal dependencies within
time series data.

Specifically, let the original data be observed at a set of
discrete time instances t1, t2, ..., tn with corresponding values
x(t1), x(t2), ..., x(tn). Using the FDA approach, the data can
be represented as a continuous function X(t), which can be
expanded with respect to a set of basis functions as follows:

X(t) =
KX

k=1

ck�k(t), (4)

where �k(t) denotes the kth basis function, and ck represents
the corresponding coefficient, indicating the contribution of
each basis function in the functional representation.

In this manner, the original discrete data points are mapped
into a smooth curve across the continuous-time domain, where
each sampled data point corresponds to the function’s eval-
uation at the respective time. Functional data representation
provides a continuous analytical perspective, reducing noise
while preserving trends and periodic structures, an advantage
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Figure 1: Overview of the architecture of the proposed FDALLM+ system: This system integrates FDA with LLMs to enhance
traffic data prediction. Initially, raw traffic data is collected and processed into an hourly data stream. Through FDA processing,
the data undergoes functional transformation, smoothing, missing data completion, and outlier detection to improve quality and
consistency. The refined data is then used for feature extraction, generating structured prompts that serve as input to LLMs. In
the few-shot mode, a traffic pattern-based example selection mechanism retrieves relevant past data from a pool of examples
to enhance model performance, while in the zero-shot mode, the LLMs processes the generated prompt without additional
reference data. Finally, the LLMs produces traffic predictions, providing valuable insights for downstream traffic forecasting
applications.

over discrete time-series methods. Second, this representa-
tion facilitates the identification of long-term trends, seasonal
patterns, and other complex temporal dependencies. Lastly,
functional representation allows for an efficient description
of the data through a limited number of basis functions
and their corresponding coefficients, enabling dimensionality
reduction and enhancing computational efficiency. Overall,
functional data representation establishes a robust and efficient
foundation for subsequent periodic feature extraction, trend
analysis, and predictive modeling, significantly improving the
model’s ability to interpret and forecast complex temporal data
patterns.

To further enhance data continuity, B-spline basis functions
are applied for missing value imputation. B-splines are widely
used in data fitting and interpolation due to their strong
local control properties, smoothness, and flexibility, enabling
seamless interpolation while preserving overall trends. B-
spline basis functions are defined recursively, starting from the
simplest first-order spline and progressively building higher-
order splines to achieve varying levels of smoothness. The
first-order B-spline basis function is defined as:

Bi,1(x) =

8
<

:
1 if ti  x < ti+1

0 otherwise.

This function takes a value of 1 within the interval [ti, ti+1)

and 0 elsewhere, acting as a piecewise step function and
forming the basis for higher-order splines. Higher-order B-
spline basis functions are recursively defined as:

Bi,k(x) =
x� ti

ti+k�1 � ti
Bi,k�1(x) +

ti+k � x

ti+k � ti+1
Bi+1,k�1(x).

(5)
This formula generates higher-order basis functions through

a linear combination of two lower-order basis functions
Bi,k�1(x) and Bi+1,k�1(x). The weighting factors x�ti

ti+k�1�ti

and ti+k�x
ti+k�ti+1

ensure smooth transitions and continuity be-
tween the spline segments. Through this recursive definition,
B-splines achieve high-order continuity between piecewise
polynomials, providing smooth and coherent fitting results
for missing data completion. Ultimately, the original data
sequence X(t) can be globally represented as a linear combi-
nation of B-spline basis functions:

X(t) =
KX

k=1

ckBk(t), (6)

where Bk(t) represents the kth B-spline basis function, and
ck is the corresponding coefficient.

In the process of missing value completion, the B-spline
basis function library is first constructed using the recursive
definition. The coefficients ck are then estimated using least
squares fitting or similar methods to ensure that the fitted
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curve accurately matches the observed data points while
providing smooth predictions in regions with missing data. The
missing values at specific time points tmissing are subsequently
estimated by evaluating the fitted spline function, as

X(tmissing) =
KX

k=1

ckBk(tmissing). (7)

The primary advantage of the B-spline approach in missing
value completion lies in its localized control property; each
control knot influences only its neighboring interval, pre-
venting drastic global fluctuations when completing missing
values. Moreover, B-splines offer flexibility in adjusting the
complexity of the fit by modifying the number and order of
basis functions, thereby achieving an optimal balance between
fitting accuracy and smoothness. By employing this method,
all missing data points are successfully completed while
ensuring continuity and smoothness, providing a robust and
efficient foundation for subsequent periodic feature extraction,
trend analysis, and predictive modeling.

To ensure robust smoothing, outlier detection and correction
must first be applied to maintain data quality and reliability.
Outliers, if left untreated, can significantly distort the smooth-
ing process and adversely affect the performance of subsequent
predictive models. In this study, the Interquartile Range (IQR)
method is employed for outlier detection due to its robustness
and simplicity. The IQR method is particularly effective be-
cause it does not assume any specific data distribution and is
less sensitive to extreme values. The IQR is calculated using
the first quartile (Q1) and the third quartile (Q3) of the data,
where Q1 represents the 25th percentile and Q3 represents the
75th percentile. The IQR is calculated as IQR = Q3�Q1.
Any data point x that lies outside the following range is
considered an outlier:

x /2 [Q1� 1.5⇥ IQR, Q3 + 1.5⇥ IQR] . (8)

This criterion identifies both lower and upper outliers in the
dataset. Once detected, the outliers are handled by replacing
them with the nearest boundary values of the specified range.
This replacement ensures that the continuity of the data dis-
tribution is preserved while mitigating the impact of extreme
values. By correcting outliers in this manner, the data becomes
cleaner and more consistent, providing a stable foundation for
the smoothing process.

Following outlier detection and correction, the next step
involves data smoothing to reduce noise and highlight un-
derlying trends and periodic features. This study employs
kernel smoothing, implemented through the Kernel Smoother
function. Kernel smoothing is a non-parametric technique that
reduces random fluctuations by computing weighted averages
of neighboring data points, thereby revealing the overall trend
more clearly.

The fundamental concept of kernel smoothing is that for
each time point t, a smoothed value is calculated by taking a
weighted average of the surrounding data points. The smooth-
ing process can be mathematically represented as:

ŷ(x) =

 
nX

i=1

K

✓
x� xi

h

◆
yi

!
/

 
nX

i=1

K

✓
x� xi

h

◆!
, (9)
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Figure 2: The smoothing method exhibits varying levels of
effectiveness across different bandwidths h.

where ŷ(t) represents the smoothed estimate at time t, yi

denotes the observed value at time ti, K(·) is the kernel
function that determines the weights assigned to neighboring
points, and h is the bandwidth parameter that controls the
degree of smoothing. A smaller h value results in a curve that
fits the data more closely, potentially leading to overfitting,
whereas a larger h value generates a smoother curve that
may risk underfitting. As shown in Fig. 2, the smoothing
effect varies across different bandwidths, demonstrating its
adaptability to capture different data characteristics.

Kernel smoothing allows for the selection of different ker-
nel functions—Gaussian, uniform, or Epanechnikov—while
adjusting the bandwidth parameter to balance smoothing and
fidelity. By selecting an appropriate kernel function and tuning
the bandwidth parameter, a balance between smoothness and
fitting accuracy can be achieved, preserving critical trends and
periodic patterns in the data while minimizing noise.

After applying kernel smoothing, random fluctuations in the
data are effectively suppressed, and long-term trends and peri-
odic variations are more prominently highlighted. This refined
dataset provides more reliable and higher-quality input for sub-
sequent periodic feature extraction, dimensionality reduction,
and predictive modeling. Ultimately, kernel smoothing refines
temporal pattern recognition, enhances prediction accuracy,
and preserves data integrity.

D. Feature Extraction: Weekday-Specific Analysis for En-

hanced Temporal Understanding

In the next stage of data processing, the focus shifts
to feature extraction, where a new approach is adopted
compared to previous methodologies. In earlier approaches,
feature extraction was typically performed by first applying
dimensionality reduction, followed by decomposing the entire
dataset into trend, seasonality, and residual components [23].
These extracted features were subsequently integrated into
the prompt for predictive modeling. In contrast, the current
method introduces a more nuanced strategy by concentrating
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Figure 3: The periodic traffic pattern obtained by superimpos-
ing the original traffic data from all Mondays across weeks in
the dataset.

on weekday-specific data aggregation and analysis, rather than
mixing all data into a single analysis. This refined approach
emphasizes medium-term temporal patterns and prioritizes
critical weekday-level variations.

Data is first aggregated for each weekday, creating high-
dimensional weekday-specific representations. Rather than a
uniform dataset approach, each weekday’s data (e.g., all Mon-
days, all Tuesdays, etc.) is analyzed separately. As shown in
Fig. 3, the overlaid data from all Mondays reveal a clear
periodic pattern, indicating the presence of recurring trends
within the dataset. This strategy facilitates focused extraction
of weekday-specific temporal features, improving the model’s
ability to capture recurring patterns that would otherwise
be diluted. For each weekday, the average traffic flow is
computed, representing the baseline flow characteristics of that
day. This averaging process filters out random fluctuations,
highlighting the essential temporal patterns while minimizing
the influence of outliers.

A key aspect of this analysis is identifying anomalous
dates, such as public holidays or pre/post-holiday periods.
These anomalous periods typically exhibit traffic patterns that
deviate significantly from the norm. By isolating such dates
and conducting separate analyses, the method ensures that
holiday-induced anomalies do not skew the standard weekday
patterns. This targeted handling of exceptional dates further
refines the accuracy of feature extraction, allowing for a clearer
understanding of typical versus atypical temporal behaviors.

The extracted features encompass several critical dimen-
sions of traffic flow dynamics. These include peak charac-
teristics (e.g., peak flow values and the corresponding times
they occur), valley characteristics (lowest flow points and
their timings), traffic flow trends (e.g., periods of rapid flow
increase or gradual decrease), and intra-day fluctuation am-
plitudes (quantifying daily variations in flow). Additionally,
the analysis captures periodicity features, emphasizing the
recurring 24-hour patterns typical in traffic data. The average

weekday flow serves as a stable reference for distinguishing
normal and abnormal traffic patterns.

This weekday-specific feature extraction emphasizes
medium-term temporal patterns, aligning extracted features
with key traffic dynamics. The methodology not only provides
richer temporal context for each weekday, but also enhances
the model’s ability to recognize patterns critical for accurate
forecasting. By isolating anomalous periods and focusing on
weekday-level temporal dependencies, this approach refines
feature extraction, enhancing model interpretability and
robustness.

E. Prompt Building

In traffic data forecasting tasks, the design of the prompt
plays a critical role in enabling LLMs to understand data
effectively and generate accurate predictions. In our previous
work FDALLM [23], prompt construction primarily relied
on the FDA approach, where global data was subject to
dimensionality reduction and decomposed into three core com-
ponents: trend T (t), seasonality S(t), and residual R(t). These
features captured long-term patterns and periodic behaviors,
helping the model learn the data structure. However, this
global, mixed-data analysis approach often overlooked subtle
variations in traffic flow patterns across different temporal
dimensions, especially between distinct weekdays. Given that
traffic patterns can differ significantly depending on the day of
week (e.g., weekends vs. weekdays), a unified global analysis
may fail to capture these medium-term temporal dynamics
effectively.

To address this limitation, this study proposes a novel
prompt construction methodology that incorporates weekday-
specific feature analysis. Unlike the previous approach, which
extracted global features through unified analysis, this new
method focuses on aggregating and analyzing data indepen-
dently for each weekday to uncover distinct temporal patterns
unique to individual days. By doing so, the new approach
provides a refined analytical perspective that emphasizes
medium-term temporal patterns, allowing the model to capture
behavioral differences between weekdays and weekends more
accurately.

The process begins by aggregating high-dimensional data
corresponding to each weekday, forming weekday-specific
datasets. For instance, all historical data corresponding to
Mondays are aggregated into a single dataset, with similar
datasets created for Tuesdays through Sundays. This aggre-
gation strategy enables clearer identification of typical traffic
flow patterns for each weekday, patterns that might otherwise
be obscured in a globally mixed dataset. Once these weekday-
specific datasets are established, the feature extraction process
focuses on multiple critical dimensions. The average traffic
flow level for each weekday is calculated to provide a baseline
representation of the typical traffic intensity for that day. This
averaging process not only reduces noise but also preserves
the unique flow dynamics characteristic of each weekday.

Additionally, the analysis extracts peak flow characteristics,
including the peak value and the corresponding time it occurs.
These peaks typically represent rush hours or periods of
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heightened traffic demand triggered by special events. The
valley characteristics, representing the lowest traffic flow levels
and their corresponding times—often observed during late-
night or early-morning hours—are also extracted. Beyond
identifying peaks and valleys, the traffic flow trend is analyzed
by examining how traffic volumes rise and fall throughout the
day. For example, understanding how traffic surges from early
morning lows to morning rush-hour peaks and subsequently
declines after evening rush hours enables the model to better
capture temporal flow dynamics.

To provide a more comprehensive description of intra-day
traffic dynamics, the analysis includes the intra-day fluctuation
amplitude, which measures the difference between maximum
and minimum traffic volumes in a day. This metric reflects
the overall intensity and variability of daily traffic. Explicitly
handling anomalous dates prevents irregular patterns from
distorting standard traffic behaviors, strengthening model re-
liability and forecast accuracy. These features collectively
provide the LLM with rich temporal information, enabling it
to recognize daily traffic cycles, detect behavioral trends, and
predict future traffic flows more accurately.

A notable innovation in this new approach is the identifi-
cation and handling of anomalous dates. Traditional analyses
often mix public holidays or dates adjacent to holidays with
regular dates, potentially distorting the underlying temporal
patterns and introducing biases into the predictive model. To
mitigate this, the proposed feature extraction process isolates
these anomalous dates and analyzes them separately, ensur-
ing that holiday-induced irregularities do not interfere with
standard weekday patterns. For example, traffic patterns on
days leading up to holidays often differ markedly due to
increased travel demand. By constructing independent feature
sets for these special dates, the model can account for their
unique characteristics during forecasting, thereby enhancing
its adaptability and robustness.

As shown in Fig. 4, in the newly designed prompt structure,
the feature module has been completely redefined to reflect the
comprehensive nature of weekday-specific analysis. Formally,
the new feature module is expressed as:

FeaturesWeekday = {Ppeak, Ttrend, Vvalley,

Ffluctuation, Aaverage, Ccyclic, Eexception}.
(10)

The newly designed feature module incorporates several crit-
ical components that provide a comprehensive understanding
of traffic flow dynamics. The peak feature (Ppeak) captures the
peak traffic flow values along with their corresponding oc-
currence times, offering insights into the timing and intensity
of high-demand periods. The trend feature (Ttrend) describes
the rising and falling patterns of traffic throughout the day,
highlighting key intervals of traffic build-up and decline. The
valley feature (Vvalley) identifies the lowest traffic volumes and
their corresponding times, which typically represent off-peak
hours when traffic demand is minimal. To reflect the overall
daily variability in traffic, the fluctuation feature (Ffluctuation)
measures the intra-day fluctuation amplitude, representing the
range between maximum and minimum traffic flow. The
average feature (Aaverage) provides the average daily traffic flow
level, serving as a baseline for understanding typical traffic

Past 24-Hour Tra/c Flow Data

Data: [ 1,2,3,4,5,6,7,8,9,...,24 ]

Prediction Features
Today is a workday

Tomorrow is a workday

Peak Tra/c: n at hour m

Valley Tra/c: n at hour m

Rapid increase from hour x to y

Rapid decrease from hour z

Daily .uctuation range: ...

Typical 24-hour periodic pattern

Average Tra/c: ...

Output	Format	&	Prediction	Task

Only return the predicted results.

[ x̂1, x̂2, ..., x̂24 ]

Output the results containing 24 values:

Predict the tra/c .ow for the next 24 hours.

Figure 4: The structured design of the prompt, organizing input
data, extracted features, and the expected output format.

conditions. Additionally, the cyclic feature (Ccyclic) highlights
the periodicity of traffic patterns, capturing the typical 24-
hour cycles that characterize daily traffic flows. Lastly, the
exception feature (Eexception) focuses on anomalous dates, such
as public holidays or adjacent days, which exhibit traffic
patterns that deviate significantly from regular weekday be-
haviors. Together, these features provide a multi-dimensional
perspective on traffic data, allowing the model to capture
complex temporal dependencies and produce more accurate
and context-aware forecasts.

With these new features incorporated, the overall prompt
structure is summarized as follows:

Prompt = {Task Details, Raw Data,

Output Format, FeaturesWeekday}.
(11)

This updated prompt structure enhances the traditional design
by incorporating weekday-specific advanced features that pro-
vide richer temporal context. By focusing on the unique traffic
dynamics of individual weekdays and isolating anomalous pe-
riods, the model gains a deeper understanding of the temporal
dependencies critical to accurate traffic forecasting. Moreover,
the explicit handling of anomalous dates ensures that irregular
patterns do not skew the model’s interpretation of standard
traffic behaviors, resulting in more robust and more reliable
forecasts.

V. EXPERIMENTAL EVALUATION

A. Dataset Description

Our proposed FDALLM+ model is evaluated using the
Milan dataset [49], which contains comprehensive information

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 
content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2025.3604332

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,
but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on September 15,2025 at 05:53:30 UTC from IEEE Xplore.  Restrictions apply. 



IEEE INTERNET OF THINGS JOURNAL 10

about telecommunication activities in the city of Milan, Italy.
The dataset comprises two key components. The first com-
ponent is SMS (Short Message Service Data, which captures
the density of SMS reception and transmission across various
regions. SMS data helps analyze distribution patterns, offering
insights into network coverage and stability. Examining SMS
density and frequency can reveal communication trends, help-
ing to understand regional behaviors and network bottlenecks.

The second component, Call Data, captures hourly incoming
and outgoing call densities across regions. This data is criti-
cal for identifying patterns in mobile communication traffic,
enabling an understanding of how call activities vary through-
out the day and across locations. Additionally, the call data
offers valuable information regarding regional activity levels,
highlighting areas with high telecommunication demand and
providing insights into overall network usage. Analyzing these
patterns helps predict peak network demand, assess perfor-
mance, and optimize telecommunication infrastructure.

Together, these components form a robust foundation for
evaluating FDALLM+ system in traffic prediction. FDALLM+
utilizes this dataset to model spatial-temporal dependencies in
telecommunication traffic, improving urban traffic forecasting.

B. Experiment Setup

We comprehensively evaluate FDALLM+ in traffic pre-
diction tasks. Compared to previous experiments [23],
FDALLM+ optimizes data preprocessing and introduces com-
plex experimental scenarios for a more comprehensive evalu-
ation. Specifically, the new FDALLM+ method, while main-
taining a deep understanding of traffic data, incorporates
both zero-shot and few-shot experimental modes. This design
enables the assessment of the model’s generalization ability
under conditions with no example inputs and limited example
support. By simulating varying data availability, this approach
further validates FDALLM+’s applicability and robustness in
complex traffic environments.

All prediction tasks were conducted using the ChatGPT
client via prompt-based interactions. No local training or fine-
tuning was performed, and the model weights remained fixed
throughout the experiments. Therefore, our evaluation does
not rely on specific hardware setups or traditional hyperpa-
rameter configurations such as learning rate or batch size.
This setup reflects a black-box inference scenario, emphasizing
the practical applicability of LLMs in resource-constrained or
deployment-ready environments.

In terms of foundational model selection, this experiment
eliminates the previously used PCA preprocessing method and
instead focuses on periodic information extraction. This shift
reduces the interference of traditional preprocessing steps and
highlights the advantages of FDALLM+ in data comprehen-
sion. Specifically, we selected three state-of-the-art LLMs:
GPT-4 [15], GPT-4o1, and Gemini [50]. GPT-4, developed
by OpenAI, is a multimodal large language model known for
its exceptional text comprehension and generation capabilities.
GPT-4o1, an optimized version of GPT-4, offers enhanced
performance for specific tasks. Gemini specializes in code gen-
eration and task automation, demonstrating strong generative

capabilities. These models establish a strong foundation for
evaluating FDALLM+’s adaptability across architectures and
objectives.

To evaluate model performance, we use Mean Squared
Error (MSE) and Mean Absolute Error (MAE) as primary
metrics. These two metrics effectively reflect the accuracy and
robustness of the models in traffic pattern prediction tasks.
To demonstrate FDALLM+’s advantages in traffic prediction
accuracy, we compare its performance against LSTM across
various models and conditions. As a classical deep learning
model for time series prediction, LSTM is widely used in
traffic prediction tasks due to its ability to capture temporal
dependencies and long-term trends in traffic data. Comparing
FDALLM+ and LSTM results highlights the framework’s
effectiveness in improving accuracy and stability.

C. Zero-Shot Prediction Perference Evaluation

In the zero-shot experiments, we systematically evaluated
the performance of various foundational models combined
with different preprocessing methods in traffic pattern pre-
diction tasks. The experiment consisted of two parts: Table
I presents the baseline prediction performance of different
models across multiple traffic data types, while Table II further
explores how periodic features contribute to improving predic-
tion accuracy under various temporal scenarios. By integrating
the analysis of these two parts, we can comprehensively
understand the crucial role of periodic features in enhanc-
ing prediction accuracy, especially when there are significant
changes in periodic information.

From Table I, it is evident that there are significant dif-
ferences in prediction accuracy among the models under
zero-shot conditions. Overall, the GPT-4o1 based FDALLM+
configuration demonstrates the best performance across all
data types. Specifically, in the prediction of Call-out and SMS-
out data, this configuration achieves the lowest MSE and MAE
values, with 0.176 and 0.095 for Call-out, and 0.241 and
0.205 for SMS-out, respectively. These results highlight the
model’s exceptional ability to capture fluctuations in traffic
flow, accurately identifying peak and off-peak traffic trends.
Compared to the FDALLM and raw data methods, FDALLM+
achieves significant error reductions across all foundational
models. For example, in the Call-out data, GPT-4o1 based
FDALLM+ achieves a 34.3% reduction in error compared to
FDALLM, while GPT-4 based FDALLM+ achieves a 20.2%
reduction in the SMS-in data compared to the raw data method.
These results demonstrate that FDALLM+, through deep mod-
eling of traffic flow features during the preprocessing stage,
significantly enhances the foundational models’ understanding
of the data, thereby improving overall prediction accuracy and
robustness.

Furthermore, Table II provides an in-depth analysis of
the impact of periodic features on prediction accuracy under
different temporal scenarios. The experiment categorizes these
scenarios into Workday-to-Workday (W-to-W), Workday-to-
Holiday (W-to-H), Holiday-to-Holiday (H-to-H), and Holiday-
to-Workday (H-to-W) to evaluate model performance under
varying periodic conditions. The results highlight the critical
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Table I: Zero-shot Traffic Prediction Performance (MSE and MAE) Across Different Models and Preprocessing Methods

Model & Method MSE MAE

Call-in Call-out SMS-in SMS-out Call-in Call-out SMS-in SMS-out

LSTM (Baseline) 0.422 0.464 0.512 0.449 0.355 0.242 0.400 0.353
GPT-4 Based FDALLM 0.287 0.247 0.445 0.368 0.305 0.153 0.347 0.289
GPT-4 Based FDALLM+ 0.242 0.226 0.402 0.333 0.297 0.127 0.304 0.247
GPT-4 Based Raw Data 0.322 0.265 0.504 0.407 0.335 0.182 0.393 0.309
GPT-4o1 Based FDALLM 0.243 0.182 0.404 0.317 0.232 0.134 0.304 0.256
GPT-4o1 Based FDALLM+ 0.221 0.176 0.370 0.241 0.163 0.095 0.287 0.205
GPT-4o1 Based Raw Data 0.303 0.217 0.491 0.372 0.244 0.157 0.362 0.270
Gemini Based FDALLM 0.332 0.303 0.456 0.403 0.265 0.173 0.279 0.304
Gemini Based FDALLM+ 0.291 0.242 0.431 0.381 0.225 0.142 0.356 0.272
Gemini Based Raw Data 0.352 0.314 0.543 0.442 0.287 0.202 0.403 0.335

Table II: Prediction Performance (MSE and MAE) Across Different Temporal Scenarios (W: workday; H: holiday)

Model & Method MSE MAE

W-to-W W-to-H H-to-H H-to-W W-to-W W-to-H H-to-H H-to-W

LSTM (Baseline) 0.332 0.453 0.345 0.508 0.255 0.382 0.277 0.368
GPT-4 Based FDALLM 0.243 0.344 0.224 0.329 0.249 0.332 0.222 0.341
GPT-4 Based FDALLM+ 0.258 0.291 0.258 0.334 0.247 0.329 0.275 0.353
GPT-4 Based Raw Data 0.281 0.378 0.263 0.415 0.239 0.402 0.257 0.339
GPT-4o1 Based FDALLM 0.188 0.296 0.176 0.307 0.141 0.288 0.151 0.261
GPT-4o1 Based FDALLM+ 0.176 0.235 0.153 0.254 0.132 0.203 0.142 0.199
GPT-4o1 Based Raw Data 0.245 0.362 0.253 0.357 0.153 0.292 0.162 0.308
Gemini Based FDALLM 0.281 0.378 0.256 0.339 0.229 0.304 0.209 0.342
Gemini Based FDALLM+ 0.254 0.328 0.218 0.328 0.203 0.241 0.209 0.251
Gemini Based Raw Data 0.321 0.423 0.331 0.398 0.235 0.312 0.267 0.305

role of periodic features in improving prediction accuracy,
particularly in scenarios where significant periodic shifts occur.

For instance, in the Workday-to-Holiday scenario, GPT-4o1
based FDALLM+ outperforms all other models and methods,
achieving the lowest MSE (0.235) and MAE (0.203). Com-
pared to the LSTM baseline, which records MSE (0.453) and
MAE (0.382), this represents reductions of 48.1% in MSE
and 46.9% in MAE, demonstrating the significant impact
of periodic feature integration. Similarly, in the Holiday-to-
Workday scenario, GPT-4o1 based FDALLM+ achieves MSE
(0.254) and MAE (0.199), substantially outperforming the
LSTM baseline (MSE: 0.508, MAE: 0.368), with reductions
of 50.0% and 45.9%, respectively.

These findings emphasize that leveraging periodic features
allows the model to better capture shifts in traffic flow patterns
between workdays and holidays, significantly enhancing pre-
diction accuracy. The consistent improvements across different
scenarios further underscore the essential role of periodic
information in traffic forecasting tasks.

Notably, in the Holiday-to-Holiday and Workday-to-
Workday scenarios, where traffic patterns are relatively stable,
all models exhibit generally lower prediction errors. For ex-
ample, GPT-4o1 based FDALLM+ achieves MSE and MAE
values of 0.241 and 0.205, respectively, in the Workday-to-
Workday scenario, and 0.241 and 0.177 in the Holiday-to-
Holiday scenario. These results further indicate that when
periodic variations are minimal, models can achieve high
prediction accuracy even without relying heavily on complex

periodic features.
However, in scenarios involving significant periodic fluctu-

ations, such as transitions between workdays and holidays,
periodic features become critical for enhancing prediction
accuracy. For example, Fig. 5 provides a detailed comparison
of the performance of FDALLM and FDALLM+ Zero-Shot
across different time periods, which is an example of the
Workday-to-Holiday scenario. It is evident that FDALLM
exhibits significant deviations during peak hours, with its
predicted peak position much earlier than the Ground Truth
and the peak value being considerably overestimated. This
discrepancy may stem from the model’s insufficient capture
of periodic features, particularly because FDALLM does not
specifically extract features for each week day. When the
periodicity of the target prediction day differs significantly
from the current day—for example, when today is a weekday
and tomorrow is a weekend—the prediction error of FDALLM
tends to increase substantially, leading to either an exaggerated
response to traffic surges or a temporal misalignment. In
contrast, FDALLM+ Zero-Shot aligns more closely with the
Ground Truth in both peak positioning and overall trend,
indicating that this method more effectively utilizes periodic
features, enabling the model to accurately capture traffic
pattern shifts between weekdays and holidays, while avoid-
ing overestimation of peak traffic. Additionally, FDALLM
may have overfitted certain historical patterns during training,
whereas FDALLM+ Zero-Shot, through the incorporation of
additional feature guidance, enhances the model’s general-
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Figure 5: Comparison of FDALLM, FDALLM+ Zero-Shot,
and Ground Truth over a 24-hour period from Weekday to
Weekend.

ization ability across different time periods. Overall, these
experimental results further confirm the critical role of periodic
features in traffic prediction, particularly for peak-hour traffic
forecasting, where properly integrating periodic information
can significantly improve predictive accuracy.

Combining the findings from Table I and Table II, it is clear
that foundation models exhibit certain limitations in prediction
performance without the support of periodic features, espe-
cially when significant changes in periodic information occur.
By incorporating periodic features, the FDALLM+ framework
significantly improves the prediction accuracy of foundation
models in these complex scenarios. For example, GPT-4o1
based FDALLM+ achieves the lowest MSE and MAE values
across all temporal scenarios, demonstrating its superior ability
to capture periodic information. Moreover, compared to other
foundation models such as Gemini and GPT-4, GPT-4o1
consistently achieves higher prediction accuracy in temporal
scenarios, further validating its advantages in complex traffic
flow prediction tasks.

In summary, the zero-shot experiment results strongly con-
firm the critical role of periodic features in enhancing traffic
pattern prediction accuracy. In particular, periodic features
substantially improve model performance when there are
significant changes in periodic information. Combined with
FDALLM+, foundation models can effectively capture and
interpret periodic traffic flow characteristics, achieving high
accuracy and robustness in complex prediction tasks.

D. Few-Shot Prediction Perference Evaluation

Few-shot experiments were conducted to evaluate the im-
pact of providing a limited number of examples (k=1 to k=5)
on the performance of the GPT-4o1 based FDALLM+ model
in traffic pattern prediction tasks. In our few-shot experiments,
we do not fine-tune or update any model parameters. Instead,
we adopt a prompt-based in-context learning approach, where
we directly input a small number of prompt-label pairs into the
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(c) SMS-in (k=4).
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Figure 6: Comparison of Ground Truth, Zero-Shot Prediction,
and Best Few-Shot Prediction in all data types.

ChatGPT client as part of the prompt. The model uses these
examples to infer patterns and make predictions on new data,
but no gradient updates or weight changes occur. Table III
presents the results, showcasing both MSE and MAE across
four data types (Call-in, Call-out, SMS-in, and SMS-out) under
varying few-shot conditions. The zero-shot mode (k=0) is
included for comparison, allowing a direct examination of
the performance improvements achieved through incremental
example provision.

As shown in Fig. 6, the results clearly demonstrate that
introducing even a small number of examples significantly en-
hances prediction accuracy across all data types. For instance,
for the Call-in data, the MSE decreased from 0.221 in the
zero-shot scenario (k=0) to 0.131 when k=2, representing a
40.7% reduction. Similarly, MAE for Call-in dropped from
0.163 when k=0 to 0.084 when k=2, indicating a 48.5%
improvement. These findings suggest that the model greatly
benefits from a small number of training examples, with the
largest improvements typically occurring between k=0 and
k=2. After k=2, the rate of improvement diminishes, and
performance slightly declines at higher k values (k=4 and
k=5), potentially due to overfitting or redundancy in additional
few-shot examples.

The Call-out data further supports this trend, with MSE
decreasing from 0.176 at k=0 to 0.151 at k=2, and MAE
dropping from 0.095 to 0.060. Notably, Call-out consistently
exhibits the lowest error rates among all data types across
different k values, suggesting that traffic patterns in Call-out
data are inherently easier to model and predict. This may be
attributed to its lower volatility and more stable periodic trends
compared to SMS data.

For the SMS-in and SMS-out datasets, although the error
rates are generally higher than those for Call data, a similar
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Table III: Prediction Performance (MSE and MAE) of GPT-4o1 Based FDALLM+ Across Zero-shot (k=0) and Few-shot
(k=1⇠5) Scenarios.

Data Type MSE MAE

k=0 k=1 k=2 k=3 k=4 k=5 k=0 k=1 k=2 k=3 k=4 k=5

Call-in 0.221 0.157 0.131 0.148 0.167 0.192 0.163 0.107 0.084 0.116 0.130 0.168
Call-out 0.176 0.162 0.151 0.159 0.163 0.170 0.095 0.068 0.060 0.067 0.086 0.093
SMS-in 0.370 0.253 0.233 0.202 0.193 0.214 0.287 0.259 0.205 0.163 0.155 0.186
SMS-out 0.241 0.227 0.201 0.190 0.179 0.192 0.205 0.216 0.198 0.191 0.162 0.175

pattern of improvements with increased k values is observed.
In the SMS-in scenario, MSE dropped from 0.370 at k=0 to
0.233 at k=2, while MAE decreased from 0.287 to 0.205 over
the same range. This suggests that while SMS data introduce
more variability, the GPT-4o1 based FDALLM+ model can
still leverage few-shot examples effectively to improve its
predictive performance. However, at k=5, both MSE and MAE
slightly increased, indicating diminishing returns and possible
overfitting. Similar observations can be made for the SMS-out
data results.

These results collectively indicate that the GPT-4o1 based
FDALLM+ model achieves substantial performance gains with
as few as two examples (k=2), making it highly effective in
low-data scenarios. However, after k=3 or k=4, the improve-
ments plateau, and additional examples may introduce noise
or redundancy. The initial sharp improvements highlight the
model’s ability to generalize quickly from limited examples,
a crucial advantage for real-world applications where large
labeled datasets are often unavailable.

Moreover, the differences in performance across data types
emphasize the varying complexity of traffic patterns. Call-out
data appears more predictable, likely due to its regular struc-
ture, whereas SMS-in and SMS-out exhibit higher variability,
making prediction more challenging. Nonetheless, the few-
shot learning approach effectively narrows the performance
gap across these data types, confirming its effectiveness.

The few-shot experiments confirm that the GPT-4o1 based
FDALLM+ framework significantly improves traffic pattern
prediction accuracy with minimal training data. The ability to
achieve substantial performance improvements with as few as
two examples (k=2) highlights the model’s strong generaliza-
tion capabilities, making it a promising solution for scenarios
where annotated data are scarce. The observed performance
trends also provide practical guidance for selecting the optimal
number of few-shot examples, balancing between accuracy
gains and the risk of overfitting.

E. Bandwidth Sensitivity Analysis

To evaluate the influence of the kernel bandwidth parameter
h in the functional smoothing process, we conducted a sensi-
tivity analysis by varying h from 0.0 to 1.0 and measuring its
impact on prediction performance. As shown in Table IV, both
MSE and MAE initially decrease with increasing h, reaching
their minimum values at h = 0.3, and then gradually increase
as h becomes larger. This trend is consistent across both Call
and SMS data.

Table IV: Avg Impact of Bandwidth h on MSE and MAE

h
Call SMS

MSE MAE MSE MAE

0.0 0.210 0.185 0.205 0.242
0.1 0.195 0.174 0.192 0.219
0.2 0.173 0.166 0.183 0.189
0.3 0.141 0.143 0.176 0.145
0.4 0.160 0.165 0.181 0.169
0.5 0.182 0.179 0.190 0.184
0.8 0.201 0.191 0.208 0.217
1.0 0.221 0.202 0.220 0.255

The results indicate that an overly small bandwidth (e.g.,
h = 0.0) retains too much noise, while an overly large
bandwidth (e.g., h = 1.0) over smooths the signal and leads
to underfitting. The optimal performance at h = 0.3 reflects a
desirable balance between smoothing and signal fidelity. This
validates the importance of proper kernel selection when ap-
plying functional data analysis to real-world traffic prediction
tasks.

VI. CONCLUSIONS

This paper introduced the FDALLM+ framework, lever-
aging FDA and LLMs for traffic pattern prediction, whose
effectiveness and robustness were validated by an extensive
experimental study. The results demonstrated FDALLM+’s
superior predictive capabilities in both zero-shot and few-
shot scenarios, with significantly reduced MSE and MAE
compared to the baselines. Notably, the FDALLM+ framework
effectively captured periodic traffic variations, particularly in
workday-to-holiday transitions, highlighting the crucial role of
periodic features in improving traffic prediction accuracy. Few-
shot experiments further confirmed that FDALLM+ achieves
substantial performance gains with as few as two examples,
though diminishing returns were observed when more exam-
ples are used, emphasizing the need for better sample control.

While our experiments were based solely on the Milan
dataset, we believe the proposed FDALLM+ framework is
generalizable to other traffic datasets that exhibit similar
temporal dynamics. For future work, we plan to validate the
framework on additional datasets across different geographic
and network contexts. In addition,x it is worth augmenting
FDA with anomaly detection mechanisms or adaptive models,
to deal with abrupt or irregular traffic behaviors caused by
unforeseen events.
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