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Abstract—Dynamic optimization is a versatile control tool to
determine optimal control inputs in a redundantly actuated
wearable robot. However, dynamic optimization requires high
computational resources for real-time implementation. In this
paper, we present a bio-inspired control approach, based on
the principle of muscle synergies, to reduce the computational
cost of optimization. The most important linear combinations
of actuators, dubbed “artificial synergies,” were identified for
the double support phase (DSP) and single support phase (SSP)
of walking, allowing for hip, knee, and ankle actuation. In
simulations, we compared the bio-inspired (input dimensionality
reduced) model predictive control (MPC) with a conventional
MPC using the full-dimensional actuation model. For both the
DSP and SSP, incorporating synergies reduces the mean number
of iterations per optimization step. A minimum number of
synergies are indeed necessary to truly achieve redistribution
of control effort across the other actuators when a primary
muscle is fatigued. Additionally, we provide a practical approach
to conduct real-time experiments with the bio-inspired MPC. A
data-driven modeling approach is used to identify the nonlinear
musculoskeletal dynamics and extract personalized artificial syn-
ergies from the experimental hybrid exoskeleton walking data.
Synergistic MPC reduces computation time by an average of
28.16% (p < 0.03) compared to full-dimensional MPC. Fur-
thermore, we demonstrate control redistribution in response to
varying cost function penalties on individual synergy activations.
It is, to the authors’ knowledge, the first instance of artificial
synergy-based MPC in real-time for a hybrid gait exoskeleton.
This study provides insight into the use of bio-inspiration for
hybrid exoskeleton control and other rehabilitation systems with
redundant actuators.

Index Terms—Hybrid Neuroprostheses, Muscle Synergies, Di-
mensionality Reduction, Functional Electrical Stimulation, Pow-
ered Exoskeleton, Gait Assistance, Model Predictive Control

I. INTRODUCTION

Assistive lower-limb exoskeletons such as the Indego and
ReWalk use motorized hip and knee joints [1], [2] to provide
gait assistance for people with spinal cord injury, multiple
sclerosis, and other neurological conditions [3]-[5]. These
powered exoskeletons can be augmented with functional elec-
trical stimulation (FES), which has been previously shown to
aid in walking by coordinating desired muscle contractions
in dorsiflexors, plantar flexors, quadriceps, hamstrings, and
gluteals [6]-[8].
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The resulting human-exoskeleton system, also known as a
hybrid exoskeleton, becomes actuator redundant. A range of
control techniques have been developed for the hybrid ex-
oskeleton [9]-[11]. “Muscle-first” strategies supplement open-
loop FES with feedforward exoskeleton assistance [12], while
cooperative approaches have used feedback control for the
exoskeleton while adapting FES profiles based on joint tra-
jectory error [13]. Such approaches address exoskeleton and
FES control separately, however, limiting the ability of the
exoskeleton to compensate for FES-induced muscle fatigue
progression, which remains a major technical challenge for
the clinical adoption of FES as an assistive technology. In
this paper, we focus on an optimal control-based multi-joint
control allocation strategy to redistribute input as the FES-
induced muscle fatigue sets in.

Model predictive control (MPC) for high-degree-of-freedom
hybrid exoskeletons either incorporates feedback linearization
or linearizes the model along the trajectory [14]-[16]. Al-
though this approach neglects the nonlinearity of a multi-
link model (due to inertial and Coriolis terms and nonlinear
stimulation input-muscle force mappings), linearization facil-
itates a large number of iterations per optimization step for
real-time implementation. There exists a need for a control
method which optimally coordinates FES and exoskeleton
motors across multiple degrees of freedom without the need
for model linearization or feedback linearization. Moreover,
existing MPC techniques are not formulated to compensate
for fatigue effects in a major force-producing muscle, such
as the ankle plantar flexors, across multiple joints. Optimal
control has indeed been pursued for fatigue compensation
during single-joint control of hybrid exoskeletons [17], but
not across multiple joints.

Bio-inspired techniques offer a means of simplifying an
optimal control scheme for a multi-joint hybrid exoskeleton
and making real-time implementation of a nonlinear MPC
(NMPC) possible. For this technique to become favorable, we
use the principle of muscle synergies [18], [19] for bioinspi-
ration. The muscle synergy hypothesis posits that the human
spinal cord uses a library of coactivations to produce complex
motions. These synergies can be identified by performing non-
negative matrix factorization on EMG signals collected across
multiple muscles. Different synergies can be associated with
different motions, such as the commonly accepted sequence
of synergies used during walking, namely, push off, foot
clearance, leg deceleration, and weight acceptance. Push off
is dominated by plantar flexor activity, weight acceptance by



quadriceps activity, and so forth [20]-[22]. Mainly, synergies
are hypothesized as a way for the human motor control system
to deliver limb movements in a computationally efficient man-
ner [19]. In our past work on a hybrid exoskeleton [23]-[26],
we showed that if only a few linear combinations of control
inputs are dominant, input dimensionality can be reduced
by using the most important linear combinations to elicit
stepping-like movements. In this bio-inspired approach, the
deduced actuator weights, referred to as “artificial synergies,”
facilitate input dimensionality reduction, allowing the stepping
movement via a feedback control law comprised of a few
synergy coefficients. However, the bio-inspired framework has
not been extended in an optimal control framework where
an NMPC can exploit these artificial synergies to reduce
computational cost.

The main contributions of this paper are the comparisons
of an NMPC using bioinspiration with a conventional NMPC.
Using simulations and experiments, we show that the bio-
inspired NMPC is particularly useful in reducing computa-
tional cost, vis-a-vis a full-dimensional MPC. We compare
the average number of iterations per optimization step and
the average objective function value across control cases and
fatigue conditions. Simulations depict fatigue compensation
using various numbers of synergies in both the double support
and single support phases of walking. Importantly, we provide
a practical approach to conduct real-time experiments with the
bio-inspired MPC that uses personalized artificial synergies,
extracted from an available set of viable experimental control
input data. Moreover, we use a data-driven approach to identify
the nonlinear musculoskeletal walking dynamics from the
experimental hybrid exoskeleton walking data. The data-driven
model is then employed in the bio-inspired MPC to validate
its advantageous over full-dimensional MPC.

The paper is structured in the following sections: Section
IT describes a 4-link hybrid neuroprosthesis gait model with
realistic control inputs. Section III-A provides an NMPC
approach to extract synergies via principal component analysis
(PCA), and Section III-B shows a subsequent NMPC approach
to determine synergy activations (control inputs) to produce
stepping movements. The results on computational costs and
control effort distribution in response to muscle fatigue are
discussed in Section IV. Section V details the procedures for
identifying person-specific synergies from hybrid exoskeleton
walking data and how synergistic MPC was implemented in
real-time. The experimental results are presented in Section
VI. Finally, Section VII discusses the simulation and experi-
mental findings, and a conclusion is provided in Section VIII.

II. MUSCULOSKELETAL MODELS

Remark 1. For simplicity, we refer to the ankle plantar
flexors and dorsiflexors as the ankle extensors and flexors,
respectively. This is consistent with the terminology in [27],
from which we derive the active and passive muscle torque
relations subsequently described. A detailed derivation of the
dynamics without the inclusion of the swing foot can be found
in [28], but we present an overview here.

A. Single Support Phase Model

The single support phase (SSP) model consists of a stance
leg, swing thigh, swing shank, and swing foot segments. The
4-link musculoskeletal dynamics is given as

MS(QS)Q'S = Cs(qsa q.s)q's + GS(QS) + Ts(t)a (1)

where ¢, 4s,§s € R* are the angles, angular velocities, and
angular accelerations of the limb segments with respect to the
vertical, visualized in Fig. 1(a). Specifically, the limb segment
angle vector is given as qs = [¢st, G, Gs, 7], where gs¢, qi, gs»
gs € R are the angles of the stance leg, swing thigh, swing
shank, and swing foot. The terms M,,C, € R4 G, € R*
are the mass matrix, Coriolis matrix, and gravitational torque
vector, respectively, for the SSP. Henceforth, subscript j =
[e, f] represents the extensor and flexor muscles groups.

(b)

Fig. 1. Model diagrams for (a) the SSP and (b) the DSP. Angle definitions:
gst = stance leg, q¢ = swing thigh (SSP), g5 = swing shank (SSP), q; =
swing foot (SSP), g5 = swing leg (DSP), g5y = swing foot (DSP).

The torque 7, € R* during the SSP contains motor torques,
FES-elicited muscle torques, and a lumped torque acting at
the stance ankle in addition to passive viscoelastic torques.
For practical implementation, this torque can be considered a
sum of the stance hip motor torque, FES-elicited stance ankle
extensor torque, and the torque exerted by the user on a walker
or similar assistive device. In terms of individual joint torques,
the active torque can be broken down as [28]
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where T'; is the torque at joint ¢ and ¢ = [st, h, k, a] represents
the stance ankle, swing hip, swing knee, and swing ankle joint,
respectively. The anatomical joint angles gn,qr,q, € R are
related to the limb segment angles as

Gh = qt — T
gk = 4t — (4s
4o = 4f — (Qs-



The joint torques in (2) are written as
Fst = Mstust (3)
L'y R1Upm — whe,uheuhe + Q/th/ithhf — th
'y = KoUpm + Yreltkelke — Vrflikfurs + Frp
Fa = _waelu/aeuae + '(/)af,uaf’uaf — Fapa

where control inputs wgt, Upm, Ugm € [—1,1] are the nor-
malized stance leg, hip motor, and knee motor torques,
which are respectively multiplied by maximum torque values
Mg, k1, ko € RY. The FES inputs u;;, i = [h, k,a], j = [e, f]
are normalized with respect to subject-specific threshold and
saturation currents and are bounded as u;; € [0, 1]. The control
set Ussp C R? is thus

USSP = {ustauhmyukm S [_171] (4)
Nuiy € [0,1), = [, k,al, 5 = [e. £1}.

The functions ¢;;, j = [e, f], ¢ = [h,k,a] in (3) contain
muscle torque-length and torque-velocity terms and are given
as

Yip = (Cz'fz%2 + ciprpi + cigo) (1= cigai)
Yie = (Cieatp} + Cie1 @i + Cico) (1 + Ciespi) ,

where ¢;,; € R are the ith anatomical joint angle and
angular velocity and c;jo,...,¢;3 € R are person-specific
parameters. The passive viscoelastic joint torques Fj, € R in
(3) are given as [29]

Fi = din(pi — @ip) + dintps + dige® % — djseio?

for ¢ = [h,k,a] and subject-specific parameters
di1,...,dis, i, € R, where ¢;, is the angle at which
the net torque at joint ¢ is 0. The muscle efficiency index
(MED) /15 € [ftmin,,, 1] quantifies the fatigued state of muscle
ij. Specifically, a fully rested muscle, which can elicit the
maximum possible torque, has p;; = 1. As it fatigues, the
muscle is able to produce less and less torque, and thus p;;
decays. The MEIs are subject to their own dynamics [30],
given as

(Mmmi,- — Hij)

frij = o1, +
ij

(1 — piz)
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where fipmin,; € (0,1) is the minimum MEI value and
Ty, Ty, € R are fatigue and recovery time constants.

B. Double Support Phase Model

The double support phase (DSP) model consists of stance
leg, swing leg, and swing foot segments as well as the ground
between the stance and swing feet. Note that, for the DSP,
“swing” leg/foot refers to the leg/foot which will enter the
swing phase at the end of double support. The DSP is thus a
closed-chain model [28] whose dynamics is given as

qu'st = Cd(qst7 ‘jst) + Gd(Qst) + T4, (6)

where My, Cy,G4 € R are the inertial, Coriolis, and gravi-
tational torques during DSP and ¢5; € R is the angle of the
stance leg with respect to the horizontal by which the angles

of the swing foot and swing leg (gsy and ¢4, respectively) are
parameterized. Angle definitions are visualized in Fig. 1(b).
The torque during DSP 74 € R is given by

Td = Mstust + K1Uupm + 'l/}helffheuhe
Faeltaelae + th + Fap-

We do not consider the ankle flexors of the swing leg as ankle
flexion would not contribute the push off required to propel
the hip joint forward and enter the swing phase. Although
the knee flexors and extensors both contribute during DSP
in unassisted walking [31], our model does not consider any
active or passive torques at the knee as we assume the joint
to be mechanically locked during this phase. The control set
Upsp C R* is therefore

Upsp = {Ustyuhm € [_17 1] N Upe, Uge € [0, 1}} (7N

III. SYNERGY DECOMPOSITION & CONTROL ALLOCATION

A. Synergy Decomposition
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Fig. 2. High-level diagram of synergy extraction and simulations with MPC.
For both gait phases, the optimal full-dimensional activations u4 are obtained
using MPC with a neuromusculoskeletal model. Synergy weights W and
corresponding synergy activations cg are extracted from g through PCA.
Using a truncated weight matrix to reduce input dimensionality, MPC then
provides the optimal synergy activations ¢ for the same neuromusculoskeletal
model but with the inclusion of fatigue dynamics. Multiplying W c yields the
full-dimensional input u to the model.

Consider a vector of m € N optimized control inputs
across k € N sampling instants, denoted ugy € R™*F.
Linear algebraic methods such as principal component analysis
(PCA) and non-negative matrix factorization can be applied
to identify the p < m most prevalent linear combinations of
control inputs in ug [19], [23]. Extracting the synergies allows
us to write the controls as

Uqg = ch + Ujoss (8)

where W € R™*P is a matrix of constant synergy weights
and c4(t) € RP** contains the corresponding desired synergy
activation signals. The j!* column of W, therefore, represents



a unique combination of control inputs, and the j** row of ¢y
contains its corresponding time-varying activation.

The term w;,ss € R™ represents the reconstruction error,
or the discrepancy between u4 and Wey. Choosing a greater
number of synergies will decrease the magnitude of this
reconstruction error, with the typical cutoff being 90% of the
variance accounted for (VAF) [23].

To obtain u4, simulations were run in MATLAB (R2020b,
MathWorks, MA, USA) using the fast MPC operator CasADi
[32]. Muscle parameters were within the experimental range
for people with SCI [27], [29], and rigid-body parameters
were obtained using anthropometric data from [33]. The model
was prescribed a height of 1.8m and a weight of 80kg. The
maximum hip and knee motor torques k1, ko were chosen as
54 Nm, which is realistic for lower-body exoskeletons, and the
maximum torque My, exerted by the stance leg was chosen as
300 Nm. When My, is divided by the moment arm, i.e., the
length of the stance leg, the resultant force is well below the
expected body weight of an adult and is therefore physically
realistic.

The overall synergy extraction and simulation procedure is
depicted in Fig. 2. The steps for this process are as follows:

1) For the given model (DSP or SSP), use MPC to deter-
mine the optimal full-dimensional control inputs .

2) Implement PCA to extract synergy weights W and
synergy activations cg from ug.

3) Truncate W to reduce input dimensionality.

4) To account for information loss, use MPC to identify the
new optimal synergy activations ¢, incorporating fatigue
dynamics into the model.

For both the DSP and SSP, the MPC was formulated as
follows:

te+T
min J* (zs(tltr), us(t|ty)) = / lsdt )
ws (]t) th
T = fs ($S(t‘tk)’u8(t‘tk))
us(t\tk) e U,

(10)
an

where s = [DSP,SSP], x(t|tr) is the prediction of future
state x(t), t € [tx, tr,+T), at sampling instant ¢, for prediction
horizon duration 77 € R™. The dynamics, derived from (6)
and (1) for the DSP and SSP, respectively, are represented by
(10) with zpsp = [qsts @sf» qsi, dst)T € R? for the DSP and
rssp = [qL,¢L]T € R® for the SSP. The control bounds (11)
for both phases are as defined in (4) and (7). The cost function
ls is given as

L (s (tta), us () = lwa, — allp, + llulz, . (12)

where z4,,.,(t) € RY, 24, (t) € R® are vectors of desired
joint angles and angular velocities during the DSP and SSP,
respectively, and Qpsp € R**4, Qssp € R3¥*®, Rpgp €
R**4, Rgsp € R?*Y are positive definite, diagonal weight
matrices. The desired trajectories were obtained from [28].
While achieving sufficient forward velocity of the hip and
completing a step are the main objectives during DSP and SSP,
respectively, we penalized joint space error in the cost function
to ensure that synergies were extracted from a smooth stepping
trajectory. The alternative would have been to penalize the

error between the task-space location of the endpoint (hip joint
in DSP and toe in SSP) to a desired task-space trajectory.
In simulation, this can result in a somewhat jerky trajectory.
Since the goal was to extract synergies that achieved a smooth,
coordinated motion, we found it most appropriate to penalize
joint space error.

To decompose the synergies, we applied PCA. In contrast
to non-negative matrix factorization, PCA allows the weights
to be negative, which is appropriate given that the normalized
stance leg torque and motor torques can be negative. Let c; be
the ;" element in activation vector ¢ and Wi;; be the element
in row ¢, column j of W. Although the normalized FES inputs
are non-negative, it is possible for the i*" reconstructed input

Uy = E WijCj
J

to be negative because the individual synergy weights W,
and activations c¢; can be negative. This consideration will be
addressed in Section III-B.

B. Control Allocation with Fatigue

Due to the information loss during synergy extraction, it
may not be suitable to simply apply the reconstructed control
inputs Wy as in (8). It is instead advisable to apply optimal
or adaptive synergy-based control, obtaining a new set of
synergy activations c(t) but utilizing the same set of weights
W. Therefore, following synergy extraction, simulations were
carried out using synergistic MPC. While W is fixed, the MPC
was free to choose new c¢(t) profiles that differed from the
cq(t) profiles obtained during the synergy extraction process.
The MPC was formulated as

T (24 (tt), ea(tlt)) = /

ti
iy = fs (@(tltr), Wses(t]tx))
cs(t|tr) € Us,

tr+T
min lsdt
cs (tltr)

13)

where W is the truncated constant synergy matrix for s =
[DSP,SSP]. The control bounds U, € R? are defined as
[UDSP = {Cl |Cj| < 7,Vj} and USSP = {C| |Cj| < 07,Vj},
where ¢; is the 4" synergy activation. For each gait phase, we
identified the muscle which received the greatest root-mean-
square (RMS) optimal FES input. The MEI dynamics (5) of
this muscle was then included in (13). The cost functions were

defined as

Zd — %
Ipsp (zpsp(tlty),cpsp(t[ty)) = ‘ S ‘ (14)
a7 llg.
2 2
+Qupse (1= fae)” + HWDSPCDSPHRDSP )
2
lssp (xssp(tltr), cssp(tlte)) = || Zassp — zssp Hstp

2 2
+Qussp (1= pe)” + HWSSPCSSP”RSSP

where z4(t) is the desired Cartesian task-space position of the
hip, obtained from z4,, in (9), with time derivative 24(t) €
R?. Likewise, z, 2 € R? are the actual task-space position
and velocity of the hip. The matrices R, and Qgsp are the
same as those used in (12). Positive diagonal weight matrix



Q. € R** penalizes task-space error, while the constants
Q. € Rtpenalize fatigue.

Of note, there is not a simple way to bound c to ensure that
the full-dimensional inputs u are bounded. While one could
place additional constraints on We = u, this would increase
computational burden and defeat one of the main purposes
of using synergistic controls. Instead, while the model for the
MPC did not employ constraints on u, we performed saturation
in simulation. For the DSP, all inputs were saturated. For the
SSP, negative FES inputs were set to 0, but we purposefully
chose a bound on ¢ such that, for most simulations, each
element of |u| remained below 1. For two simulations, .
exceeded 1, and for one simulation, wuy,, became less than
—1. These control inputs were saturated accordingly.

Simulations were run under three initial muscle fatigue
conditions for target muscle j: fully rested (u;(to) = 1),
partially fatigued (1;(to) = 0.5), and fully fatigued (u; (o) =
Hmin; = 0.05). Each initial fatigue condition was simulated
without synergies (that is, with full-dimensional controls). For
the DSP, each condition was also simulated with p = {1,2}
synergies. For the SSP, simulations were carried out using
p = {3,4} synergies.

IV. SIMULATION RESULTS
A. Double Support Phase

1) Synergy Extraction: For the DSP, two synergies ac-
counted for 100% of the variance, with the first synergy
alone accounting for 95.65% of the variance. We denote
the activation profiles of synergies 1 and 2 by ¢ (t), co(t),
respectively, and the columns of W corresponding to synergies
1 and 2 are similarly denoted W;, Ws. The weights and
optimal activations for these synergies can be seen in Fig.
3(a) and (b), respectively. The first synergy is dominated by
the stance leg torque and, to a lesser extent, by FES of the
ankle extensors. The second synergy primarily activates the
ankle extensors, with lesser weights on all remaining inputs.

2) Control Allocation with Fatigue: As can be seen in
Fig. 4(a), in the case of one synergy, the optimal synergy
activation trajectory depends on the initial fatigue state of the
ankle extensors. Specifically, the synergy activation becomes
more negative at the start of the simulation when the ankle
extensors are more fatigued. This results in the stance leg
torque saturating for a longer duration during the first half
of the simulation, as can be seen in Fig. 4(b). It also results in
greater FES intensity for the ankle extensors, with saturation
occurring in the fully fatigued case. Notably, because there is
only 1 synergy, the MPC is forced to saturate u,. regardless
of the penalty on ankle extensor fatigue in (14).

We now consider the case of 2 synergies. Whereas 1
synergy forced the MPC to choose between completing the
task and offloading ankle extensor effort, 2 synergies provides
the opportunity to redistribute the activations. The shapes
of the synergy activation trajectories c;(t) and co(t) vary
dramatically depending on the initial ankle extensor fatigue
state. Consequently, when the ankle extensors are fully or even
halfway fatigued, no FES is sent to the muscle group at all,
and the hip motor provides the requisite torque instead.

st uhm uhe uae st uhm uhe ae
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Fig. 3. (a) Weights and (b) optimal activations c4(t) for the two most
dominant DSP synergies.

3) Computational Cost Reduction: Finally, we compare the
computational burden and task-space trajectory tracking for
the 1 synergy, 2 synergy, and full-dimensional cases. Quan-
titative performance metrics are reported in Table I, where
FD denotes the full-dimensional case. For the case where
tae(to) = 1, the 1 synergy and 2 synergy cases both carry out
an average of 5.14 iterations per optimization step, while the
full-dimensional case averages 12.30 iterations per step. This
represents a 58.13% reduction, as seen in Fig. 5(a). For the
fully fatigued and halfway fatigued conditions, the difference
in computational cost between the 1 synergy and 2 synergy
cases becomes more evident. The 1 synergy case reduces
the number of iterations by 70.00% for the halfway fatigued
condition and by 57.10% for the fully fatigued condition,
whereas the 2 synergy case reduces the number of iterations
by only 19.90% and 40.97%, respectively.

The impact of synergistic control on the mean value of
the objective function depends on the initial fatigue condition.
For the half-fatigued condition, the 1 synergy, 2 synergy, and
full-dimensional cases have average cost function values of
250.71, 240.69, and 251.53, respectively. The 2 synergy case
thus incurs a 4.00% lower cost, on average, while the 1 synergy
case incurs an average cost less than 1% greater than the
average full-dimensional cost, as Fig. 5(b) demonstrates. These
percent differences are even smaller for the fully fatigued case.
The magnitude of the mean cost function is less than 1 for the
rested condition in each control case, making the large percent
differences negligible in practice. The choice of initial fatigue
value has a much greater effect on the cost function than the
number of synergies, increasing it by orders of magnitude.



PERFORMANCE METRICS FOR THE DSP.

Control Case | Fatigue Condition | Mean # Iterations | Mean J*(z,u) | «-RMSE (cm) | y-RMSE (cm)
Rested 12.30 0.90 0.23 0.03
FD Half-Fatigued 13.26 250.71 0.73 0.11
Fully Fatigued 13.19 899.61 2.56 0.38
Rested 5.15 0.29 0.22 0.03
p=2 Half-Fatigued 10.62 240.69 1.57 0.13
Fully Fatigued 7.79 892.40 1.01 0.15
Rested 5.15 0.30 0.22 0.03
p=1 Half-Fatigued 5.17 251.53 0.40 0.06
Fully Fatigued 5.66 900.81 1.65 0.25
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Fig. 4. Comparison of the 1-dimensional and 2-dimensional (a) DSP synergy
activations and (b) stance leg, hip motor, and ankle extensor FES inputs across
three ankle extensor fatigue conditions.

Lastly, in the z-direction, the difference in root-mean-square
error (RMSE) of the hip compared to the full-dimensional
case is less than 1 cm for the 2 synergy case and less than
2 cm for the 1 synergy case for all fatigue conditions. In
the y-direction, the difference in hip RMSE between the full-
dimensional and both synergistic cases is less than 1 cm for
all fatigue conditions. Thus, while the percent changes shown

conditions.

in Fig. 5(c)-(d) appear sizable, the loss of information due
to input dimensionality reduction has little impact on task
performance.

B. Single Support Phase

1) Synergy Extraction: For the SSP, four synergies ac-
counted for 99.22% of the variance, with three synergies
explaining 95.68% of the variance. The first, second, third,
and fourth synergies comprised 69.60%, 15.01%, 11.07%, and
3.54% VAF, respectively. As seen in Fig. 6(a), for a posi-
tive synergy activation signal, the first and second synergies
provide hip flexion, but they differ in that the first synergy
provides knee flexion (as indicated by the negative weight on



Ukm) While the second synergy provides knee extension. The
ankle muscles, especially the ankle extensors, have relatively
small weights across the first four synergies, indicating low
levels of activity for these muscles. The corresponding optimal
activation profiles c4(t) can be seen in Fig. 6(b). The optimal
RMS FES input was greatest for the hip flexors, so this muscle
was initialized to different fatigue values in the next step.
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Fig. 6. (a) Weights and (b) optimal activations cg4(¢) for the four most
dominant SSP synergies.

2) Control Allocation with Fatigue: Frames from the sim-
ulation with 3 synergies under the fully fatigued condition
are presented in Fig. 7. Synergy strategies are presented in
Fig. 8(a) and corresponding control inputs in Fig. 8(b) (note
that, for brevity, we only included plots only for ugs, Upm,
and up, ). The full-dimensional case responds to moderate hip
flexor fatigue by increasing the FES dosage to the hip flexors,
while in the fully fatigued case, the FES dosage is decreased.
In both the partially and fully fatigued conditions, the full-
dimensional case increases the stance leg and hip motor effort.
By contrast, the 3 synergy case responds to greater hip flexor
fatigue by increasing hip flexor FES. Like the full-dimensional
case, the 3 synergy case increases the hip motor and stance leg
effort, but the increase in hip motor effort is not as dramatic
as in the full-dimensional case.

The 4 synergy case sees a reversal in fatigue compensation
strategy. Specifically, while the hip flexor FES dosage remains
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> >
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Fig. 7. The model taking a step. The top left figure shows the beginning of
the DSP (simulation duration: 0.47s). The remaining three figures show the
SSP model taking a step under the fully fatigued condition with 3 synergies
(simulation duration: 0.45s). The total step time is therefore 0.92s.

relatively the same for the halfway fatigued case, for the fully
fatigued case, the dosage is reduced. Again, the MPC opts to
increase the hip motor torque and stance leg torque, increasing
the stance leg torque by a greater amount than in the 3 synergy
case.

3) Computational Cost Reduction: Quantitative perfor-
mance metrics are reported in Table II. A comparison of
the average number of iterations per optimization step across
control cases reveals results that using 3-4 synergies reduces
the mean number of iterations, although there is little dif-
ference in computational cost between the synergistic cases.
The full-dimensional case carries out an average of more
than 8 iterations per optimization step regardless of fatigue
condition, and this is reduced to less than 6.9 iterations per
step across all fatigue conditions with 4 synergies and less
than 6.7 iterations per step with only 3 synergies. Fig. 9(a)
shows the improvements in mean number of iterations.

Notably, despite the increased speed, the objective function
value is less optimal for both synergistic cases than for the full-
dimensional case, regardless of fatigue condition. Specifically,
the mean objective function value is an order of magnitude
greater for both synergistic cases than for the full-dimensional
case regardless of fatigue condition, Fig. 9(b) illustrates. This
may be due to information loss during the synergy extraction
step.

Finally, as can be seen in Fig. 9(c) and (d), the synergistic
cases have task-space RMSEs in the z- and y-directions that
are greater than the task-space RMSEs for the full-dimensional
case. The magnitudes of these differences are less than 5
cm in the x-direction and less than 3 cm in the y-direction
for all control cases. While the cost function penalized joint-
space error, the task-space trajectory is functionally significant
because it determines the degree of foot clearance. Increases



Control Case | Fatigue Condition | Mean # Iterations | Mean J*(z,u) | «-RMSE (cm) | y-RMSE (cm)
Rested 8.45 43.79 1.76 1.11
FD Half-Fatigued 8.64 50.66 1.42 1.07
Fully Fatigued 10.45 10.62 1.22 0.98
Rested 6.07 122.88 3.78 1.74
p=4 Half-Fatigued 6.29 179.81 4.40 2.26
Fully Fatigued 6.89 167.45 5.54 3.06
Rested 6.49 168.31 4.94 1.45
p=3 Half-Fatigued 6.51 171.22 4.36 1.56
Fully Fatigued 6.62 163.58 4.29 2.27

TABLE 1T

PERFORMANCE METRICS FOR THE SSP.

in joint-space error are therefore not especially concerning as
long as the model is able to take a step.

V. EXOSKELETON-ASSISTED WALKING EXPERIMENTS
A. Synergy Identification

This study was approved by the Institutional Review Board
(IRB approval #: 20553; date: 12/10/2024) of North Carolina
State University. One participant with SCI (injury level: T10;
age: 56; weight: 113kg; sex: M), labeled S1, and two par-
ticipants with no disabilities, labeled B1 (age: 21; weight:
75kg; sex: F) and B2 (age: 24; weight: 77kg; sex: F), provided
informed consent and completed the experiments. To identify
synergies as well as person-specific models for the MPC,
each participant first walked in an Indego exoskeleton (Ekso
Bionics, San Rafael, CA, USA) under a conventional feedback
control scheme. We chose a PID controller to track predefined
desired knee and hip angle trajectories. The exoskeleton is
actuated by bilateral hip and knee motors, and ankle-foot
orthoses have been modified to permit ankle motion. FES was
applied to the quadriceps, hamstrings, dorsiflexors, and plantar
flexors of both legs. The experimental setup is depicted in Fig.
10.

The exoskeleton was controlled via MATLAB (2024b)
Simulink Desktop Real-Time (MathWorks, Natick, MA,
USA). Position-based PID control was used for the motors,
quadriceps FES, and hamstrings FES, but because the ankle
joint was not instrumented with an inertial measurement unit,
closed-loop ankle FES control could not be provided. Instead,
we applied FES in open-loop for the ankle joint. A finite state
machine determines the desired trajectories of the hip and knee
joints, and each gait cycle is 9s in duration. Walking is initiated
with a right half-step, followed by a rest phase and a full
left step. The finite state machine then proceeds to alternate
between 3.5s-duration right and left steps, with 1s rest phases
between each step.

Participants walked on an instrumented split-belt treadmill
(Bertec Corporation, Columbus, OH, USA) for 2 minutes
while kinematic data was captured using Vicon Nexus software
(Vicon Motion Systems Ltd, Los Angeles,CA, USA). Actual
ankle joint trajectories were extracted from the motion capture
data, while the exoskeleton recorded hip and knee joint trajec-
tories. Finally, for each participant, synergies were extracted
via PCA from all 6 control inputs (from the PID controller)
for one leg (see (19)). The control input and kinematic output
data was used to generate a person-specific model. Instead of
identifying a nonlinear model as in (1) and (6), we used a

Koopman-based data-driven approach [34], [35] to determine
a linear model (in lifted space) of the SSP and DSP together
(see Appendix for details). To avoid switched control, gait was
not divided into stance and swing phases for model or synergy
identification, and synergies were extracted across the gait
cycle. The threshold for the minimum number of synergies was
set at 90% VAF, which resulted in truncation to 3 synergies
for all participants. These synergies are visualized in Fig. 11,
and Table III lists the percentage of the data explained by each

synergy.

[ Subject [ Percentage Explained (%) |

Wy Wo W3
SCI 7433 | 15.45 5.54
Bl 70.83 | 14.04 8.95
B2 50.51 | 31.12 13.21
TABLE TIT

PERCENTAGES EXPLAINED BY EACH SYNERGY.

B. Real-Time Experiments with Synergy-Based MPC

Following model identification and synergy extraction, the
MPC for synergistic control of the right leg of the hybrid
exoskeleton was formulated as follows:

tpr+T
T (), eltltn) = / at (1s)

c(t|tr) ti
Z(tltk+1) = Az(t\tk) + BWC(t|tk)7 te [tk, T]
c(tlty) € U:={c € R*| |¢;| < 2,Vj}, t€ [ty,T)

where #;, is the initial time and 7' € R is the length of the
prediction horizon. The lifted state z € R* (detailed in the
Appendix) is of dimension H > 6, where z = [¢T, ¢7]T € RS
contains the joint angles and angular velocities of the hip,
knee, and ankle of the right leg. The allowed control set
U was determined heuristically based on the magnitudes of
the average synergy activation trajectories obtained during
the synergy identification experiments. The cost function was
given as

L(z(ttr), c(tlte)) = N2 = zallg + llell g + lléll p

where Q € R**" R P € R3*3 are diagonal weight matrices
and ¢ € R3 is the time derivative of the synergy activation
vector. The first 6 elements in z are simply z, while the
remaining are nonlinear functions of the state. We therefore
chose to make only the first 6 diagonal elements in () nonzero.

An inbuilt MPC object in MATLAB was used to solve
the optimal control problem for the right leg in real time.

min

(16)

7)
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Fig. 8. Comparison of (a) the 3-dimensional and 4-dimensional SSP synergy
activations and (b) the stance leg, hip motor, and hip flexor FES inputs across
three hip flexor fatigue conditions. FD denotes the full-dimensional, non-
synergistic case.

Control for the left leg was the same as that for synergy
identification experiments. Each participant performed a 1-
minute treadmill walking trial at a speed of ~0.05-0.12m/s,
depending on participant step length. Desired hip and knee
joint trajectories were the same as those used in the synergy
identification experiments. Desired ankle trajectories were
designed by averaging the ankle joint trajectories obtained
from the participants with no disabilities during the synergy
identification experiments. Because the ankle joint was not
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Fig. 9. Comparison of (a) average number of iterations per optimization step
and (b) average optimal cost function value with 3-4 synergies and with no
synergies, across fatigue conditions, for the SSP. Comparison of RMSEs in
the (c) z-direction and (d) y-direction across fatigue conditions for the SSP.

instrumented, the ankle trajectory could not be used as real-
time feedback. Instead, a false ankle joint trajectory, defined
as the desired trajectory delayed by 0.2s, was supplied as state
feedback for the MPC.

Participants walked under the following conditions:

1) Synergistic (Lower-Dimensional Bio-Inspired) MPC.
The personalized discrete-time dynamics in (16) is con-
verted to continuous time via MATLAB’s state-space
model function, and BW is used as the control matrix.
As in the simulations, the MPC selects the optimal
synergy activation signals c(t).

2) Non-Synergistic MPC (Full-Dimensional). For the
non-synergistic case, the optimal control problem in (15)
is replaced by

t+T
min J*(z(t|tk),u(t|tk)):/ Lt (18)

u(t|tr) th
2(tltg+1) = Az(t|tr) + Bu(t|ty),
u(tlty) € U, t € [tg,T)

te [tk,T]

where the control set U C RS is given as

v Juel-1, j<s,
u; €[0,1], j>3,
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Fig. 11. Synergies extracted from walking data for (a) the participant with
synergy weights. Corresponding average optimal activation trajectories cq(t)
used in subsequent control design.

for u = [Whm, Wkm, Ukes Uk f+ Uges Uaf] T, and the cost
function in (18) is defined as

L(z(ttR), ultltr)) = |z — zallg + lullg + lléllp

for Q € R*"*" R, P ¢ R6x6,

Synergistic MPC with Differently Penalized c¢;. In
this case, the penalty weight in R corresponding to c;
was changed to effect synergy redistribution. A greater
penalty on c; should see a reduction in this activation
signal, and vice versa.

Synergistic MPC with Differently Penalized c3. In this
case, the penalty weight in R corresponding to c3 was
changed to effect synergy redistribution.

3)

4)

VI. EXOSKELETON-ASSISTED WALKING RESULTS

Total Execution Time

SCI, (b) participant B1, and (c) participant B2. W1-W3 are the time-invariant
are presented to illustrate when each synergy is most active, but these were not

Total execution time (TET) was recorded for the duration of
each walking trial using Simulink’s Real-Time Task Execution
Time Monitor. Results can be seen in Table IV. (Note that
participants B1 and B2 did not participate in condition 3
and condition 4 experiments, respectively.) The synergistic
case (condition 1) reduced computation time by over 28%,
on average. This difference was found to be statistically
significant (p < 0.03). When the penalties on ¢y or c3 were
changed compared to this baseline case, there was a similar
reduction in computational cost.

A. Effect of Penalizing Hip Flexion Synergy

For participant B2 and participant S1, we changed the
penalty on the first synergy (i.e., the penalty term in R in
(17), corresponding to the first synergy’s activation signal, was



[ Subject [

TET (ms) |

Synergies No Synergies | Synergies (Different c; Penalty) | Synergies (Different c3 Penalty)
Bl 0.50 0.73 - 0.50
B2 0.68 0.82 0.65 -
SCI 0.53 0.82 0.53 0.53
Average = SD | 0.57 £ 0.08 | 0.79 £ 0.04 0.60 + 0.06 0.51 + 0.02
TABLE IV

TETS FOR EACH REAL-TIME CONTROL CONDITION TESTED.

increased/decreased). In the first synergy, across participants,
the hip motor was the dominant input. Therefore, we intended
to modify the hip flexion behavior by modifying the penalty
terms. Specific penalty values are provided in Figs. 12-13. A
consequence of employing personalized models is that cost
function penalties need to be heuristically determined among
participants. In both participants, a greater penalty on the first
synergy’s activation signal resulted in greater peak hip flexion,
as shown in Figs. 12(b) for participant B1 and 13(b) for partic-
ipant S1. For both participants, greater peak hip extension also
occurred with a smaller penalty, which is unsurprising given
that this synergy acts in the negative direction during the stance
phase and in the positive direction during the swing phase, thus
facilitating both extension and flexion. The hip motor torques
were therefore increased in magnitude for both the stance and
swing phases, as seen in Figs. 12(c) and 13(c) and reported
in Table V. For comprehensive synergy activation, joint angle,
and control input plots for both subjects, the reader is directed
to the Supplementary Material.

B. Effect of Penalizing Push Off Synergy

For participants B1 and S1, we increased the penalty on the
third synergy activation signal. Plantar flexion dominates in the
third synergy toward the end of the stance phase, as illustrated
in Fig. 11. In both participants, the magnitude of c3 decreased
with the greater penalty, as seen in Figs. 14 and 15. We
anticipated that the increased penalty would lead to a reduction
in the amount of FES delivered to the plantar flexors during
push off. Surprisingly, we observed a decrease of > 4mA
in ankle flexors FES for participant S1. Otherwise, control
redistribution appeared to be minimal, as outlined in Table
VI, although there was a small increase in hip motor torque
(< 3Nm) in both participants. For comprehensive synergy
activation, joint angle, and control input plots for both subjects,
the reader is directed to the Supplementary Material.

VII. DISCUSSION

Multi-joint MPC of hybrid exoskeletons is computationally
burdensome and has therefore necessitated linearization to
achieve real-time control. Artificial synergies offer a bio-
inspired means to reduce input dimensionality, but the relation
between the number of synergies employed and the controller’s
ability to compensate for FES-induced fatigue has not yet been
explored. The goals of this study were (1) to establish that
using synergies to reduce input dimensionality also reduces
computational burden and (2) to investigate how input dimen-
sionality reduction affects fatigue compensation strategy. For
both gait phases, the computational burden was indeed reduced

in simulation when synergies were employed. Furthermore,we
found that employing a greater number of synergies than was
necessary to complete the motion enabled more control effort
redistribution in response to fatigue.

For the DSP, the mean number of iterations decreased
when the dimensionality was halved and two synergies were
used as the control inputs, and this number decreased further
when only 1 synergy was applied. The inclusion of a second
synergy permitted greater freedom of control input allocation,
which was important for fatigue compensation. Meanwhile,
the average value of the cost function was only marginally
different with synergies than for the full-dimensional case.

For the SSP, the computational cost was lower with the
use of synergies, but the objective function value was greater.
This may be due to information loss as the SSP uses more
than twice as many actuators as the DSP. Furthermore, it
incorporates knee joint motion and involves a more complex
movement (namely, hip and knee flexion followed by knee
extension [25]).

Although not pictured here, we found that conflict between
the optimized c(¢) and the full-dimensional input constraints
led to a deterioration in performance. An initial set of synergies
extracted from a slower step and with a lower control cost saw
frequent input saturation during simulation which deteriorated
performance, causing the foot to drag rather than taking a
step. This was because while the MPC was selecting synergy
activations it believed to be optimal, the corresponding inputs
could not be realized. After adjusting the cost function and
desired trajectory used in the initial optimization, we extracted
a set of synergies which proved more conducive to avoiding
input saturation.

Incorporating bounds on u in the synergistic MPC could
be strictly enforced in two ways. The first is to add further
constraints on the full-dimensional inputs, namely, [W¢|; € U,
Vi, where U is the set of allowable full-dimensional controls,
but this would defeat the purpose of reducing computational
cost. The second way is to constrain |¢;| such that the resulting
inputs are guaranteed to be contained in U/, but this would
require such conservative bounds on c that the task may not
be achievable. Besides enforcing non-negativity of FES inputs,
for the SSP, we tuned the bounds on c such that optimal inputs
were already in ¢/ in almost all cases. Saturation was enforced
for inputs which exceeded their bounds without significantly
deteriorating performance.

Several of our previous works have explored artificial
synergy-based control. The adaptive control schemes in [23]-
[26] are indeed model-based approaches, and the adaptive con-
troller can account for model uncertainty. While the resulting
control will converge to the desired trajectory, this may require
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Fig. 12. (a) Average c; trajectories for different penalties on ¢; for participant B2. (b) Corresponding hip angle trajectories. (¢) Corresponding hip motor
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Fig. 13. (a) Average c; trajectories for different penalties on ¢ for participant S1. (b) Corresponding hip angle trajectories. (c) Corresponding hip motor

trajectories.

[ Subject | Hip Motor (Nm) | Knee Motor (Nm) | Knee Extensors (mA) | Knee Flexors (nA) [ Ankle Flexors (mA) [ Ankle Extensors (mA) |

S1 -10.15 -3.46 -1.67 -1.29 -0.05 -0.03
B2 -7.46 -0.15 -0.16 0.13 0.60 -1.63
Average -8.81 -1.81 -0.92 -0.58 0.27 -0.83

TABLE V

CHANGE IN CONTROL INPUT RMS WITH HIGHER PENALTY ON cj.

[ Subject | Hip Motor (Nm) [ Knee Motor (Nm) | Knee Extensors (mA) | Knee Flexors (nA) [ Ankle Flexors (mA) [ Ankle Extensors (mA) |

S1 2.27 -0.60 0.84 -0.08 -4.62 0.49
B1 2.52 0.03 0.76 1.27 0.68 0.29
Average 2.39 -0.28 0.80 0.59 -1.97 0.39

TABLE VI

CHANGE IN CONTROL INPUT RMS WITH HIGHER PENALTY ON c3.

a large amount of control effort. Because optimal control
distributes control effort between FES and motors based on a
predefined cost function, the importance of trajectory tracking,
control effort, muscle fatigue, etc. can be weighted to achieve
the desired control performance. Furthermore, unlike adaptive
control, the incorporation of state and control constraints is
straightforward. Preliminary work in [36] presented a synergy-
based MPC design in which the synergy activation signals
were optimized. Although much more rigorous than the simple
MPC scheme presented herein, the complexity of this MPC
makes straightforward translation for real-time applications
difficult. With the end goal of implementing synergy-based
MPC, our simulations used a simplified control design that

does not include the cascaded activation dynamics.

After identifying subject-specific linear models of exoskele-
ton walking and identifying personalized synergies, we lever-
aged MATLAB’s mpcobj function to solve the optimal control
problem in real-time. While this initial investigation modeled
only one leg, incorporating both legs into a unified model
and set of synergies would capture how each leg’s motion
affects the other, which is important when the task is to
achieve a desired foot placement rather than follow time-
dependent joint trajectories. Nonetheless, a pattern emerged
among participants wherein 3 synergies account for > 90%
of the variance; the most important synergy pertained to hip
flexion during swing and extension during stance; and the
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(a) Average c3 trajectories for different penalties on c3 for participant B1. (b) Corresponding ankle angle trajectories. (c) Corresponding ankle
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third most important synergy pertained to push off. Across
participants, experimental results confirmed the simulation
findings regarding computation time. Synergistic MPC signif-
icantly reduced computation time by > 28%, and the loss
of information did not cause a noticeable deterioration in
walking performance (for video footage of synergistic and
non-synergistic walking, see Supplementary File S1).

Also worth pointing out is that our previous work has
seen success using only 2 synergies [23], [25]. These earlier
approaches, however, incorporated robustifying feedback con-
trollers that mitigated the information loss caused by truncat-
ing the number of synergies. For implementation purposes, it is
desirable to incorporate such a feedback controller in order to
further reduce input dimensionality and computational burden
while improving trajectory tracking.

We found we could adjust controller behavior by modulating
the cost function penalties on individual synergy activations. A
lower penalty on the hip flexion/extension-dominant synergy
activation signal resulted in greater hip motor torque and
therefore more peak hip flexion/extension. A heavier penalty
on the ankle extension-dominant synergy, however, did not
result in reduced ankle extensor FES. Because each model
and each set of synergies are person-specific, it could be that
the penalty increase was insufficient to achieve the desired
behavior, especially given that the magnitude of this synergy’s
activation was already quite small with the lower penalty.

Percent Gait Cycle (%)
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©

(a) Average c3 trajectories for different penalties on c3 for participant S1. (b) Corresponding ankle angle trajectories. (c) Corresponding ankle

Alternatively, there could be inaccuracies in the data-driven
model that result in a failure to capture the ankle joint response
to FES.

We argue that, in a rehabilitation setting, penalizing syner-
gies rather than individual inputs is more intuitive for thera-
pists. If a patient needs more assistance with foot clearance,
for example, the therapist could relax the penalty on a synergy
dominated by the knee motor and ankle flexors. This is
merely a preliminary study, and further investigation with more
participants is needed in order to obtain a standardized method
of tuning synergies across participants to achieve a desired
walking pattern. Additionally, the fatigue reallocation benefits
of including an extra synergy need to be tested in a real-world
scenario.

The synergy analysis presented here is by no means ex-
haustive. We have investigated the computational benefits
and control performance for slow, level-ground walking, but
stair climbing, incline/decline walking, and even walking at
different speeds require different muscle activations and would
yield different synergy compositions. Nonetheless, based on
our results, we propose cautious optimism as far as synergistic
hybrid neuroprosthesis control is concerned. For a given
application, the reduction in computational cost will have to
be weighed against information loss and state prediction error
due to unconstrained full-dimensional inputs. In our simulated
case, 3 synergies were still able to complete the SSP task



even when the hip flexors were fully fatigued, highlighting
the potential of this method.

This rehabilitative approach to synergies is distinct from
the EMG-based approaches seen in works such as [22], [37].
Such methods use non-negative matrix factorization to extract
EMG-derived muscle synergies from subjects with neuro-
logical disabilities such as stroke and, based on the EMG-
derived synergies of subjects with no disabilities, formulate
FES profiles designed to drive the impaired synergies toward
more normative patterns. Several existing works even provide
exoskeleton assistance based on the biological synergies of
the user [38], [39]. Instead of EMG-based synergies, we
employ artificial synergies, wherein the time-invariant weights
represent FES and motor inputs rather than muscle activations.
Artificial synergies are thus bio-inspired, but not biologi-
cal. The benefit of artificial synergies is that they permit
exoskeleton motors to be incorporated into synergy weight
identification, which would be a non-trivial task with EMG-
derived biological synergies. They can be identified through
offline optimization, as was done in the simulations presented
here, or, like EMG-based synergies, derived from actual hybrid
exoskeleton walking data. We used a simple combination of
PID and open-loop control during data collection, although
other control methods could be used as well. In the future,
person-specific hybrid exoskeleton models could be developed
in OpenSim (Simbios, Stanford, CA, USA), and optimal, task-
specific synergies could be extracted in the same manner we
used for a simpler, four-link model simulation.

The person-specific linear models, while not the main
emphasis of this work, are what enabled multi-joint synergistic
MPC for real time, but they also pose their own limitations.
Most notably, the cost function for each person had to be
separately tuned to achieve smooth walking (that is, taking rea-
sonably sized steps without chattering). Differences between
person-specific models could also be why there was some
variation in computation time. Participant B1, for example,
had a TET of 0.50ms with synergistic MPC, while participant
B2 had a TET of 0.68ms despite both participants using the
same number of synergies.

VIII. CONCLUSION

Our work shows that bio-inspired artificial synergies sig-
nificantly reduce the computational overhead of multi-joint
MPC of hybrid exoskeletons. Using musculoskeletal gait
models, we performed simulations with various numbers of
synergies and with non-synergistic control, and we identified
the resultant computational cost and fatigue compensation
strategies. The use of synergies reduced the mean number of
iterations per optimization step, regardless of initial muscle
fatigue condition. Furthermore, for both gait phases, using the
minimum number of synergies required to complete the task
simply increased FES dosage to the fatigued muscle. A greater
number of synergies had to be employed before control was
reallocated to the exoskeleton motor inputs and away from the
fatigued muscle. These findings suggest a tradeoff between
computational cost reduction and fatigue compensation ability
that should be considered in real-time synergistic MPCs for

hybrid exoskeleton-based gait therapy. Our work also provides
a practical approach to identify the nonlinear musculoskeletal
walking dynamics from the experimental hybrid exoskeleton
walking data and extract personalized synergies from a viable
set of control inputs. Experiments with participants with and
without SCI confirmed that the synergistic approach reduces
MPC computation time when compared to a full-dimensional
MPC. Furthermore, control reallocation can be achieved by
altering the penalties on different synergy activation signals,
providing an intuitive means of modulating gait assistance.
Our approach opens a pathway to implement real-time opti-
mal feedback approaches in gait assistance for people with
neurological disorders, and these methods could be extended
to other rehabilitation systems including upper-limb hybrid
exoskeleton control. Future work will explore generalizable
synergy activation tuning rules for obtaining different gait
patterns and testing the reallocation strategies to compensate
for the FES-induced fatigue in a larger SCI population.

APPENDIX

While this work addresses the computational cost incurred
by using a large number of inputs during exoskeleton-assisted
walking, there is another significant source of computational
burden in MPC for multi-joint robots - the nonlinear dynamics.
To address this, we implemented a data-driven model identifi-
cation strategy, Extended Dynamic Mode Decomposition with
Control [34], [35], which we previously explored in [40]. The
approach identifies the nonlinear dynamics in (1) and (6) as a
linear model in lifted space. The data-driven linear model eases
the implementation of the optimal control problem in real
time and bypasses tedious parameter identification process, as
described in [41], for a multi-link limb model.

Let the original state consist of the angular joint positions
and velocities of one leg, and let the control inputs consist of
the normalized motor currents and FES inputs. The original
state € RS and control input u € RS are therefore given as

1T
e=[q"q"] .
U = [uhm7ukmvukeaukf;uae;uaf}T

We define a lifted state z € R as z = W := [1hy,...,¢p]",
where H > 6 is the number of lifting functions ¢ (z). The first
6 lifting functions were simply the state z, but the remaining
lifting functions, which were identified through trial and error
for each individual, were trigonometric. By collecting M + 1
lifted state and control data points and collecting them into
Xp, X[ e RMXM 7 ¢ ROXM gg

XL = [\I/(J,‘l), ey \I/(Z‘]\/j)] s
Xp = [P(@2), .., Ulen+1)],

U=[u1,...,uM],

the dynamics can be approximated through simple linear
algebra. Specifically, we can estimate the infinite-dimensional
Koopman operator K as a finite-dimensional matrix K* €
R**(H+6) ysing the equation

K* = X{ [X,U]".



The lifted state matrix A € R**™ is simply the first H
columns of K*, with the remaining columns comprising the
lifted control matrix B € R*x6, Through this method, the
MPC from (13) was simplified as in (15) and (18).

For extracting synergies, we applied PCA to the data vector
U consisting of PID and open-loop control inputs. For clarity,
U may be expanded as

Upm (t1) Upm (tar)
Uk (t1) U (Ear)
U= uke(tl) uke(tM)
kg (t1) urf(tar)
Uge (tl) Uge (tM)
Uaf(t1) Uaf(tar)

Since 3 synergies account for > 90% of the variance, the
control data matrix may then be approximated as

cd, (t1) ca, (tar)
U [Wi Wo W] |cg(tr) ca(tar) |, (19)
cds (t1) Cds(tam)

where each W;, j = [1,2,3], is a 6-element column vector.
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