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Abstract—This paper introduces an innovative approach, Spa-
tially distributed asynchronous stimulation (SDAS), designed to
enhance the fatigue resistance of electrically stimulated muscles
for mobility assistance in individuals with spinal cord injury
(SCI), stroke, and multiple sclerosis. The study focuses on mod-
ulating stimulation intensity in multiple distributed electrodes
through a phenomenological model of SDAS to increase muscle
power output. A model predictive control (MPC) approach is
used to design optimal SDAS intensity profiles for knee extension
tracking. The study also establishes a strong correlation between
Ultrasound (US)-derived strain measurements of the quadriceps
muscle and the model’s fatigue parameter. The model is extended
to predict non-isometric knee extension and integrated with US-
derived feedback from the quadriceps muscle to control stepping
with the hybrid exoskeleton. The results demonstrate that the
optimized SDAS inputs and US-derived fatigue measurements of
spatially separated muscle regions during SDAS can effectively
delay fatigue and increase muscle power output. This study
underscores the importance of a model-based closed-loop SDAS
approach and the integration of US-derived feedback in the
design of a novel fatigue-resistant SDAS-based gait assistance
technology.

I. INTRODUCTION

Functional electrical stimulation (FES) is a therapeutic tech-
nology that enhances motor function in individuals with spinal
cord injury (SCI), stroke, and multiple sclerosis [1], [2]. The
technology delivers electrical impulses to the muscles through
surface electrodes, which evoke muscle contractions, promote
movement, and assist in daily activities such as walking [3].
FES can mitigate muscle atrophy and improve circulation,
while some individuals may benefit from enhanced motor
recovery and reduced spasticity. Despite its potential, FES
faces a significant limitation due to the quick onset of FES-
induced muscle fatigue, which limits the duration of FES use
and its effectiveness at performing functional tasks.

Proposed solutions to delay the fatigue onset include design-
ing optimal stimulation protocols [4], fine-tuning the electrode
placement to influence the muscle power output [5]–[7],
and modulating stimulation parameters, such as frequency,
pulse width, and current amplitude [7]–[12]. In [7], reducing
stimulation frequency resulted in better fatigue resistance (i.e.,
less sharp power decay) but significantly lower power output
(peak power). Instead, asynchronous stimulation of spatially
distributed electrodes (SDAS) can generate high power and
reduce fatigue [13]–[15]. Unlike the traditional FES approach,
which uses an electrode pair on the quadriceps, SDAS uses
multiple electrodes to stimulate individual muscles of the

quadriceps, mainly the Vastus medialis (VM) and Vastus later-

alis (VL). SDAS uses multiple smaller electrodes, instead of
a single large electrode, grouped at a common location. This
clustered multi-electrode approach activates partially distinct
muscle sub-compartments, potentially recruiting separate mo-
tor unit population. Thus, compared to a single electrode use,
SDAS ideally reduces discharge rates of each motor unit pop-
ulation and, consequently, muscle fatigue. The SDAS studies
have shown increased fatigue resistance and power output in
both isometric and non-isometric settings on participants with
and without disability [16]–[20].

Recently, in addition to FES, hybrid exoskeletons that
augment powered exoskeletons with electrical stimulation have
been shown to provide lower limb mobility [21]–[23]. Various
control methods ranging from proportional-integral-derivative
combined with muscle torque estimation [24], event-based
triggering [25] model predictive control (MPC) [26]–[28], and
switching between motor and FES [29] have helped perform a
variety of movements involving quadriceps muscles including
continuous knee extension, sit-to-stand, and stepping.

However, augmenting a hybrid exoskeleton with SDAS in
open-loop or closed-loop remains unexplored. Recent studies
investigated open-loop SDAS during knee or an ankle dy-
namometery [15]–[18], [20], [30]. Non-isometric conditions
with SDAS, such as rowing [19] and cycling [31], have also
been studied to quantify force production improvements over
traditional FES but remain in an open-loop setting. Closed-
loop SDAS design was proposed by Downey et al. [32], who
designed a switching control design that determines inputs
to each electrode in an asynchronous stimulation configured
to elicit seated continuous knee extension. Knee extension
tracking on non-disabled participants showed that the asyn-
chronous closed-loop control scheme delays the impact of
fatigue. While this closed-loop approach is effective at tracking
a desired knee joint trajectory, closed-loop SDAS designs
that modulate the inputs based on a measured muscle fatigue
state are lacking. Closed-loop SDAS with fatigue as feedback
would be especially meaningful in a hybrid exoskeleton where
the fatigue estimates are crucial to modulate exoskeleton
assistance to compensate for the FES-induced fatigue .

Current sensing mechanisms to measure muscle fatigue
include force measurements using a load cell or dynamome-
ter [33] and surface electroymography (sEMG) [34]–[36].
However, using load a force measurement in real-time is
challenging as it is difficult to estimate force in a dynamic
setting. Most dynamometers and load cells are not portable



II. MODIFIED HILL-HUXLEY MODEL FOR SDAS

To develop closed-loop control methods that modulates
stimulation intensity, we modify an isometric force generation
model, first proposed in [52]. The modified model predicts the
isometric force exerted, Fpj∈ R, by each electrode j ∈ Z

+ at
muscle p ∈ [VM, V L] in a SDAS setup as

dFpj

dt
= Ap

C̄Npj

Kmp + C̄Npj

−
Fpj

τ1p + τ2p
C̄Npj

Kmp+C̄Npj

, (1)

where Ap ∈ R is a scaling factor of the stimulated muscle
driven by the following dynamics

dAp

dt
= −

Ap −Ap0

τfp
+ αpFpj , (2)

where αp ∈ R and τfp ∈ R are fatigue and recovery time
constants and Ap0 ∈ R is an initial condition for Ap during
an isometric contraction when the leg is held at 0 degrees from
the vertical. τ1p ∈ R and τ2p ∈ R in (1) are muscle-specific
time constants, Kmp ∈ R represents the sensitivity of force
generation calcium dynamics. C̄Npj ∈ R is defined as

C̄Npj
= ujCNpj

(3)

to account for stimulation intensity, where uj ∈ R is a stim-
ulation intensity (current or pulse width) normalized between
user-specific threshold and saturation and CNpj ∈ R repre-
sents the calcium dynamics of the muscle due to contributions
from electrode j defined as

dCNpj

dt
= 1

τc

∑n

i=1 Rie
(−

t−ti
τc

)
−

CNpj

τc

Ri = 1 + (R0p − 1)e(
t−ti
τc

)
(4)

where ti ∈ R
+ is the time of ith stimulation pulse, n ∈ Z

+

is the number of stimuli in the pulse train before time instant
t, R0p ∈ R is a constant that determines the magnitude of
activation based on successive stimulation pulses, and τc ∈

R is a calcium dynamics time constant. The modified model
in (1) can be scaled in dimension to match the number of
electrodes targeting each muscle and the total force, F ∈ R,
generated is a sum of the individual forces of each muscle
computed as

F =

Nvl
∑

j=1

Fjvl +

Nvm
∑

j=1

Fjvm, (5)

where Nvm ∈ Z
+ and Nvl ∈ Z

+ are the number of electrodes
targeting the VL and VM respectively.

To account for a non-isometric motion, we adapt the model
in [53] and define the total force of the quadriceps in an SDAS
as

dFpj

dt
= [ϑ(θ)θ̇+λ(θ)][Ap

C̄Npj

Kmp + C̄Npj

−
Fpj

τ1p + τ2p
C̄Npj

Kmp+C̄Npj

],

(6)
where λ(θ) ∈ R and ϑ(θ)θ̇ ∈ R represent force length and
force velocity terms, respectively. λ(θ) is defined as

λ(θ) = λ1(40− θ)2 + λ2(40− θ) +A
p40

(7)

for real-time exoskeleton control and measure the cumulative
output of a muscle group at a specific joint. Force measure-
ments of sub-muscle groups within a larger muscle group
such as the quadriceps is usually non-trivial to decompose
[35]. Utilizing sEMG is also challenging as it is sensitive to
electrode placement, and is susceptible to signal interference
from FES and cross talk between neighboring muscles [37].

Alternatively, US imaging techniques have recently been
proposed to study the muscle contraction behavior in neuro-
muscular systems [38]–[43]. US imaging can directly visualize
desired muscles without interference from FES or neighboring
muscle activity while providing a wide variety of signals such
as muscle thickness, pennation angle, and fascicle length.
These can then be used to analyze muscle contractility of sub
muscle groups within a larger muscle group, predict human
motion [44]–[46], and be incorporated into real-time control of
an assistive device [47]. Additionally, we showed in our recent
studies [48], [49] that the axial strain derived from US images
is a promising indicator of contractility change in the human
quadriceps muscles due to FES-induced fatigue. US images
were captured during isometric muscle contractions generated
by FES, and a strain tensor was computed based on estimates
of tissue motion in the captured images. Specifically, we
showed the correlation between force output of the quadriceps
with strain changes in the VI during the traditional stimulation
approach. This measurement scheme has also been integrated
into a closed-loop control of a hybrid exoskeleton [50], [51].

This paper aims to develop and integrate an SDAS model
into a hybrid exoskeleton using an MPC scheme with real-
time US-derived fatigue state measurements. The integration
of real-time US imaging into a hybrid exoskeleton with SDAS
is achieved through the following contributions:

• We propose a modified Hill-Huxley model that accounts

for stimulation intensity during SDAS to predict the
forces generated by both the VL and VM in an isometric
setting

• We investigate the use of US imaging in the proposed

model by investigating the relationship between the fa-
tigue properties of each muscle from the model and those
measured from US images.

• We develop an MPC approach that determines the op-

timal stimulation current intensity required to generate
a desired force and verify the results experimentally on
participants with SCI and without disability

• We extend the proposed isometric model to a dynamic

walking task of the swing phase and show, for the first
time, real-time US imaging during SDAS in conjunction
with a powered exoskeleton on two participants with SCI
and one participant with no disability.

The rest of this article is organized as follows: Section II
presents the modified Hill-Huuxley model during SDAS in
both isometric and dynamic settings. Section III presents the
experimental validation of the proposed model. Section IV
shows the integration of US imaging into the proposed models,
and Section IV shows SDAS walking in a hybrid exoskeleton.
Section V presents the discussion. Finally, Section VI con-
cludes this article.



Table I: Participant Demographics

Participant Age Gender Injury Level

B1 20 F N/A
B2 26 F N/A
S1 52 M T10, incomplete
S2 60 M T7, complete

where Ap40 is the value for Ap in (2) when the knee was held
at 40 degrees and all other parameters were held constant and
λ1 and λ2 are model parameters to be identified. Further, ϑ(θ)
is defined as

ϑ(θ) = ϑ̄e([
3.0523

τ2
−.0574]θ), (8)

where ϑ̄ ∈ R is a person specific model parameter. It is noted
that when the knee is suspended vertically at zero degrees
from the vertical and θ̇ = 0, (6) is same as the general
isometric model in (1). Further, for nonisometric motion, the
knee extension dynamics during SDAS can written as

Jθ̈ + Tp(θ, θ̇) +G(θ) = Tstim, (9)

where θ, θ̇, θ̈ ∈ R represent the angular position, velocity, and
acceleration of the knee joint, J ∈ R

+ is the moment of
inertia of the leg, and G(θ) = mglsin(θ+ θeq) is a term that
represents the torque due to gravity where m ∈ R

+ is the mass
of the lower leg, g is the gravitational acceleration constant, l
is defined as half the length of the users shank, and θeq ∈ R

+

is the equilibrium position of the lower leg with respect to the
vertical. Tp is the passive torque of the knee joint and is mod-
eled as Tp(θ, θ̇) = d1(φ−φ0)+d2φ̇+d3e

d4φ−d5e
d6φ, where

φ, φ̇ are the anatomical knee joint angle and angular velocity
defined as φ = π

2 −θ−θeq, φ̇ = −θ̇, and di(i = 1, 2, ...6) ∈ R

min J =
1

n

n
∑

i=1

(Fp(i, uj)− Fm)2 (10)

where Fp(n, uj) is the predicted force at sample point n from
(5) during the first five stimulation cycles given a stimulation
intensity for each pad uj . Fp(n, uj) was determined by solving

Figure 1: SDAS and US imaging setup to stimulate both the
V L and VM . Participants were seated in the dynamometer
with their leg suspended at a 90 degree angle and the force
output during a stimulation protocol was recorded.

quadriceps. The threshold was defined as the current amplitude
at which a noticeable force was measured. The saturation was
defined as the current at which the measured force no longer
increased. For the rest of the study, all stimulation inputs
were normalized between the saturation and threshold values.
Both the traditional and SDAS protocols were administered
at a current level that was 85% of the saturation along
with a 300µS pulse width. Stimulation was achieved using
a commercial stimulator (Rehastim 2, HASOMED GmbH,
Germany) at a desired frequency, pulse width, and current.
For the traditional FES approach, two large electrodes (PALS,
7.62 cm by 10.16 cm, Axelgaard Manufacturing Co., Ltd.,
USA) were placed on the quadriceps. During SDAS two
smaller square electrodes (PALS, 5 cm by 5 cm, Axelgaard
Manufacturing Co., Ltd., USA) were placed around both VL

and VM with a two common large electrodes for the VL

and VM respectively as seen in Fig. 1. The electrodes were
stimulated at a frequency of 20 hz with a .025 second phase
delay such that the corresponding frequency for each muscle
was 40 hz. The fatiguing protocol for both approaches in
this study consists of repeated 1.5 second pulse stimulation
pulse trains with a rest of 0.5 seconds for a duration of 120
seconds. Fig. 2 highlights the fatiguing protocol used in both
the traditional and SDAS approaches.

B. Isometric Parameter Identification

It is seen from (1) and (2) that for each muscle, there
are seven unknown parameters in the isometric force model:
R0p, τ1p, τ2p,Kmp, Ap0, αp, τfp. These parameters were iden-
tified by using the force measurements during which only
one muscle was stimulated using the SDAS isometric fa-
tiguing protocol collected in session 2. The parameters
R0p, τ1p, τ2p,Kmp, Ap0 were determined based on the mea-
sured force, Fm, from the first five stimulation cycles of the
protocol to ensure the muscle had yet to fatigue. These pa-
rameters were estimated by solving the optimization problem

are person specific parameters and Tstim = Fl where is the
total force of the quadriceps defined in (5).

III. MODEL VALIDATION

The experiments in this section aim at validating the model
in (1). Four participants (2 SCI, 2 no disability) were recruited
to participate in four experimental sessions in which they were
seated in a dynamometer (Biodex) to measure isometric torque
output. When seated, the lower leg was suspended and secured
to the dynamometer at an approximately 90 degree angle using
a knee attachment. To characterize force production of the
quadriceps, the measured torque was converted to force based
the length between the center of rotation of the knee and
point at which the knee attachment was secured to the leg.
All protocols were approved by the institutional review board
(IRB) at North Carolina State University. Details on each
participant is shown in Table I. All protocols were repeated
on both legs of all participants for a total of 8 legs. Table II
details all the experimental sessions.

A. Stimulation Procedures

At the beginning of the first session, saturation and thresh-
old current amplitudes for each participant were determined
by ramping current up in 2mA increments between 20mA
and 70mA (or maximum current level at which participant
is comfortable) and recording the force production of the



Session Description Number of participants
1 Traditional electrode fatiguing protocol 4
2 SDAS isometric parameter identification 4
3 SDAS fatiguing protocol 4
4 SDAS model validation protocol 4
5 SDAS nonisometric parameter 3

Table II: IIDetails on experimental sessions

Table III: R2 value when comparing FTI of predicted force
from the model versus measured force from the isometric
SDAS stimulation protocol

Participant Leg R
2

B1
R 0.84
L 0.86

B2
R 0.85
L 0.9

S1
R 0.92
L 0.89

S2
R 0.88
L 0.86

SDAS based on the model in (1) and ensure that each
muscle contributes equally to the total force generated.
In this case, we consider a two pad SDAS approach in
which two electrodes are placed on both the VL and VM.

Thus, the system state, x ∈ R
6, and control input, u ∈ R

4

are defined as x =
[

x1 x2 x3 x4 x5 x6

]

=
[

Fvm1 Fvm2 Avm Fvl1 Fvl2 Avl

]T
and

u =
[

u1 u2 u3 u4

]T
where u1 ∈ R and u2 ∈ R

contribute to the VM and u3 ∈ R and u4 ∈ R contribute to
the VL.The MPC framework solves the following optimal
control problem on prediction horizon T

min
u

∫ T

0

l(x, u)dτ (11)

subject to :
ẋ = f(x, u)

0 ≤ uf ≤ 1

where ẋ = f(x, u) is the state space form of the dynamics
defined in (1) and (2) and l(x, u) ∈ R is the cost defined as

l(x, u) = Q1(Fvmd − (x1 + x2))
2 +Q2(Fvld − (x4 + x5))

2

+R1u
2
1 +R2u

2
2 +R3u

2
3 +R4u

2
4

where Q1, Q2, R1..R4 ∈ R
+ are positive weights, and Fvmd ∈

R and Fvld ∈ R are the desired forces of the VL and VM
respectively.

We performed simulations to show the predicted force out-
put when using the MPC framework to track a desired force,
designed as sixty step functions with length of 1.5 seconds
and 0.5 seconds rest. The optimal inputs on the prediction
horizon T are solved using a fast gradient projection algorithm
[54]. The desired force for each leg of each participant was
determined by taking the average total force produced during
the first 5 contractions when the SDAS fatiguing protocol was
applied. Fig. 4 shows the peak force generated during each of
the 60 contractions over the two minute duration for the right
leg of each participant with SCI along with contributions of

Figure 2: Fatiguing protocol for both the traditional setup
and SDAS. The overall protocol consists of 60 1.5 second
contractions with 0.5 seconds of rest in between. The SDAS
protocol consists of two electrodes on the VL and VM and
stimulated at a lower frequency with a phase delay such that
the corresponding frequency to each muscle matches the total
frequency.

(1) based on the the calcium dynamics of each electrode j
replacing Ap with Ap0 since only the first five cycles are
considered.

Once the parameters R0p, τ1p, τ2p,Kmp, Ap0 are deter-
mined, αp and τfp are estimated by minimizing the cost func-
tion in (10) over the whole fatiguing protocol. All optimiza-
tions were performed using fmincon, a nonlinear optimization
problem solver in MATLAB. Once the model parameters
were identified, we performed an SDAS fatiguing protocol
while stimulating both the VL and VM in session 3 and
compared the predicted force output to the measured force
during SDAS in which both the V L and VM are stimulated.
For each contraction in the stimulation protocol, we computed
the force-time-integral (FTI) for both the measured force
response during SDAS and the predicted force response based
on parameter identification for both the V L and VM . Fig.
3 shows the FTI for both legs of participant S2. The FTI for
each leg of each participant is shown in Table III. The average
R2 value between FTI and measured force for both legs of all
participants was 0.87± .03.

C. Offline MPC to Perform a Force Tracking Task

In this section, we propose and validate an MPC
framework to track a desired isometric force profile during



Figure 3: Predicted versus measured FTI for the right leg of participant S2 (SCI) along with their respective R2 values

the VL and VM and the integrals of normalized FES inputs
at each contraction for each electrode. It can be seen that
the desired force was initially maintained before the both the
VL and VM start to fatigue. Additionally, the inputs to each
electrode show that as the VL and VM fatigued, the stimulation
input increases and eventually saturates. An additional set of
simulations were performed where the desired force for the
two minute fatiguing protocol was set at a constant 30 N. Fig.
4 shows representative tracking and inputs and it is clear that
when the desired force is lower, better force performance is
achieved.

To validate the simulation results, in session 4, we applied
the optimal stimulation intensities calculated by the MPC
framework. The desired force was set to match the non-
fatigue force generation of the SDAS protocol with constant
current for each participant. For each stimulation protocol
(traditional, SDAS with constant intensity, MPC) we computed
two metrics: mean force output (Fmean ∈ R) and force decay
(Fdecay ∈ R). For each contraction in the fatiguing protocol,

we determined the generated peak force. Fmean was then
computed as the average peak force over the 60 contractions.
To compute Fdecay , we computed the max force, Fmax ∈ R,

as the average force during the first five contractions and the
fatigued force, Ffat ∈ R, was defined as the average force

during the final ten contractions. We then calculated the power
decay as

Fdecay = 100− (Ffat/Fmax) ∗ 100.

Fmean for all participants is shown in Fig. 5. It is seen that
the Fmean increases when using SDAS with constant current
compared to the traditional approach and further increases
with SDAS with MPC for all participants. Individual results
for Fmean are shown in Table IV. On comparing the fatigue
properties of the three approaches, the average Fdecay among
both the legs of all participants was 76.94±9.43, 61.55±8.63

and 49.58± 12.82 N for the traditional stimulation approach,

SDAS with constant current, SDAS with MPC respectively.
We performed an Analysis of Variance (ANOVA) that revealed
a significant difference in Fdecay among the three protocols
(F = 13.75, p < .001, α = 0.95). Values for Fdecay Table IV
for all participants.

We further compared the experimental force output to the
force output from simulations under the same optimal inputs.

The average root mean squared error (RMSE) for all partici-
pants between the simulation and experiment was 7.41± 1.86

N .

IV. INCORPORATION OF US-IMAGE DERIVED FATIGUE

MEASURES INTO PROPOSED MODEL

A. Ultrasound Imaging-Derived Fatigue Measurement

In [48], a speckle tracking algorithm was developed to
measure tissue motion during FES-induced contractions of the
quadriceps. It was observed that as the quadriceps fatigued, a
decay in tissue motion captured by the algorithm is correlated
with the decay in force output from the quadriceps measured
by a load cell. The speckle tracking algorithm is based on a
displacement matrix dm,n(x, y) between two images m and n
in the axial(depth) and lateral(width) directions at each spatial
position in a region of interest (ROI) of a specific muscle
group. The ROI varies for each participant depending on the
muscle architecture chosen based on the placement of the US
probe on the body such that during a sequence of images
captured during a isometric motion of the limb, a majority of
the imaged muscle stays in the view of the probe and does
not translate off the image. When imaging the quadriceps, the
ROI is typically between 10mm to 45mm deep and spans 10
mm in the center of the image. The displacement matrix is
calculated as

dm,n(x, y) = argmax(γ(u, v)),
u,v

where

γ(x, y) =

where a, b are all all the spatial locations in a kernel
Ka,bcentered at each point (x, y) in the ROI such that (a, b) ∈
Ka,b and u, v are all the spatial locations in a search window
Ku,vcentered at each location (a, b) such that (u, v) ∈ Ku,v .

Furthermore, fm and fn are the US image intensity of the
reference and current image respectively and f̄m and f̄n
are averaged values of fm(a, b) and fn(a + u, b + v). We
spatially filter dm,n(x, y) to mitigate tracking noise between
each pair of frames. A M × N pixel kernel was generated
and centered around (x, y). The median value of dm,n(x, y)
within the kernel was assigned to a filtered displacement map

√

∑

Kx,y
(fm(a, b)− f̄m)2(fn(a+ u, b+ v)− f̄n,u,v)2

∑

Kx,y
(fm(a, b)− f̄m)(fn(a+ u, b+ v)− f̄n,u,v)



(a) The desired force determined by taking the average force of the first 5
contractions when the SDAS protocol was administered.

(b) The desired force set to 30 N

Figure 4: Force tracking results for the right leg of each participant with SCI under different desired force conditions highlighting
the desired force and contributions of both VL and VM to the total force for each participant along the respective integrals of
inputs at each contraction.

Table IV: Average force output and force decay under each stimulation condition

Participant Leg Traditional SDAS (Constant) SDAS (MPC)
Average Force Output (N) Fdecay Average Force Output (N) Fdecay Average Force Output (N) Fdecay

S1
L 11.90 90.80 18.89 65.85 26.37 66.67
R 15.49 91.18 18.09 76.66 27.31 55.34

S2
L 21.2 75.50 43.27 52.29 45.19 47.07
R 15.76 77.29 32.83 60.91 36.21 56.11

B1
L 18.36 67.11 38.48 61.86 43.43 56.14
R 14.92 75.74 24.35 66.21 27.84 41.32

B2
L 23.87 68.76 41.11 59.68 51.91 50.23
R 39.49 69.12 60.38 48.34 66.30 23.78

B. Correlation Between Muscle Contractility of the VL and

VM and Hill-Huxley Model Dynamics

Figure 5: Average force output of all 60 contractions for each
stimulation protocol among each participant

df (x, y). To track displacement over a full contraction, we
accumulate the displacement with respect to the first image
of the motion. The accumulated displacement at frame i,
defined as si(x, y) = (xi, yi,) − (x0, y0) where (xi, yi) =

(xi−1, yi−1)+df (x, y). Once the displacement is accumulated
for all images, the strain is computed by applying a Savitszky-
Golay [55] on the cumulative displacement in axial direction
as it is expected the quadriceps expand axially during isometric
contractions.

by αpFpj and a recovery-driven component in Ap−

τf

A

p

p0 , which
is driven by the time constant τfp. Since, the dynamics for
Ap are driven by αpFpj , we explored if the US imaging

Based on (2), the scaling factor that drives the force gen-
erated by each electrode has a force-driven component driven

can be used to update the dynamics of A based on real-
time muscle contractility information based on results from
[49] which shows a correlation in strain measures from US
images and force output of the quadriceps. Essentially, from
an imaging perspective as the force produced by the muscle
decreases, the muscle contractility also follows a similar trend.
The US imaging-derived strain measures, which are gradient
of accumulated muscle displacement during a contraction,
quantify the change in muscle contractility due to the FES-
induced fatigue.

To test this hypothesis, we collected US plane wave images
of the VL and VM on each leg while the SDAS protocol
was administered to both muscles simultaneously. An ultra-
sound transducer (L7.0SC Prodigy Probe, S-Sharp, Taiwan)
was placed on the thigh to obtain transverse images of the
quadriceps to identify the structures and location of the VM

and VL in relation to the thigh. The location was determined



Jθ̈ + Tp(θ, θ̇) +G(θ) = τstim + τm (12)

= Fstiml + τm (13)

with a powered exoskeleton. In our previous work [51], we
used an MPC approach for traditional FES to track a swing
phase knee trajectory during a walking task while incorporat-
ing real-time US imaging measurements to update a fatigue
model. In this section, we used an MPC controller for SDAS
to track a swing phase trajectory with real-time US imaging
measurements from one of the quadriceps muscle regions. The
MPC uses SDAS model dynamics rather than traditional knee
extension dynamics. When adding an electric motor, the swing
phase in (9) dynamics become

Figure 6: Normalized A for both the VL and VM of the left
leg of participant S1 compared to the normalized strain values
from US during SDAS.

by visualizing the muscle response to a 1 second stimulation
pulse. Once the muscle was located, the transducer was rotated
to a longitudinal view of the muscle. The fatiguing protocol
was then conducted and ultrasound images during every 4th
contraction were collected at 1000 Hz. The procedure was
repeated to obtain images of both muscles (VM and VL) and
both legs of each participant. Since the muscle fatigues after
the two minute protocol, images of the VL and VM were
collected on different days. The strain during each contraction
was measured using the adaptive speckle tracking algorithm
in [49]. The experimental setup to collect US images during
SDAS is shown in Fig. 1. To test our hypothesis that US
can be used to update Apfor both the VL and VM during
SDAS, we computed strain measurements from US-images
of the VL and VM collected during the fatiguing protocol. A
representative strain result from the VL and VM of the left
leg of participant B2 is shown in Fig. 7A. Fig. 7B further
shows the average accumulated strain map at the end of
each imaged contraction for the left leg of each participant.
It is seen that the strain decays along with the contraction
number. Fig. 8 shows the average strain determined from the
US images collected of the VL and VM. The average strain
of the first three contractions (pre-fatigue) and final three
contractions (post-fatigue) is 0.49 ± 0.13 and 0.12 ± 0.09

for the VL and 0.50 ± 0.23 and 0.17 ± 0.09 for the VM .

A one-tailed t-test showed that the strain values during pre
and post fatigued states were significantly different for both
the VL and VM (p < 0.001and p = 0.004, respectively).
These results are consistent with the results in [49],which also
determined a statistically significant difference in strain of the
Vastus Intermedius (VI) during pre and post fatigue states for
a traditional stimulation approach.

We further compared the US-derived strain measurements
with changes in dynamics of Avl and Avm based on identified
model parameters. Fig. 6 shows the normalized ultrasound
strain compared to the respective normalized value of Ap

for both the VL and VL for participant A1. The average R2

value between normalized A and normalized US-derived strain
measurements was 0.88 ± 0.06 for both the VL and VM on

all participants indicating a strong correlation between A and
US-derived strain changes.

V. SDAS WALKING WITH A HYBRID EXOSKELETON:
PROOF OF CONCEPT DEMONSTRATION

The goal of this section is to evaluate the feasibility of
adapting the isometric SDAS muscle to be used in conjunction

where τm is the torque from the motor, l is the shank length
and Fstim is defined by the model in 2-8

A. Obtaining Real-Time Fatigue Measures from Ultrasound

Images

In our previous study [50], [51], we adapted the speckle
tracking algorithm for real-time performance with a hybrid
exoskeleton. To achieve this real-time adaptation, we note
that the computation time of the normalized cross-correlation
increases quadratically with the size of the kernel, search
window, and ROI. In addition, there is an interpolation step
necessary to estimate small tissue motion between sets of US
images which increases the number of spatial locations at
which the correlation coefficient is computed. To overcome
these challenges we leverage the fact that γ(x, y) does not
depend on γ at any other position and use a parallel processing
framework as shown in Fig. 9. The GPU frameworks re-
duces the computation time of strain between two consecutive
images from the scale of minutes to <1 second. It is of
note that to obtain a fatigue measurement for a complete
contraction, the displacement is accumulating thus to total
time for a measurement is the time between two frames
multiplied by the number of frames in the contraction. The
strain imaging algorithm presented in this study along with
our previous studies [48], [49] analyzed US images during
isometric contractions. To mimic this condition in a real-
time exoskeleton walking environment, we design a diagnostic
stimulation protocol which consists of a one-second diagnostic
pulse applied at a point during the desired walking trajectory at
which the knee joint had zero velocity. During the diagnostic
pulse, the US system was triggered to collect raw US images
and transfer it to the GPU platform for computation.

B. Non-Isometric Parameter Identification

The model in (9) depends on parameters ϑ̄, λ1, λ2 and Ap40.
To identify these parameters, in session 5, we performed a set
of system identification experiments in which a participant
was seated in the dynamometer. First, Ap40 was identified
using the same procedure in section was identified using
the same procedure in section III-B for Ap with the knee
joint was held at 40 degrees instead of at 0 degrees from
the vertical. Ap40 was estimated by solving the optimization
problem described in (10), while the other parameters were



Figure 7: (A) Representative strain maps of the VL and VM at chosen time points during the 1st, 8th and 15th contraction
of the SDAS fatiguing protocol on the left leg of all participants (B) Strain rates of the VL and VM of the left leg of all
participants during SDAS. The strain at each contraction was calculated by taking the average of the accumulated strain map
at the end of the contraction.

Figure 8: Average strain across the first three (pre) and
last three (post) imaged contractions for all participants with
standard deviation. A one-tailed t-test revealed a significant
difference in strain between pre and post fatigue states for
both the VL and VM.

the same as those identified when the knee angle was held
at 90 degrees. Next, to identify ϑ̄, λ1, and λ2, we stimulated
the participant’s quadriceps using the SDAS protocol in the
isokinetic mode of the dynamometer. This allowed the knee
joint to move freely upon stimulation. The stimulation current
and timing was varied for multiple cycles to ensure the model

Figure 9: Parallel computation of an adaptive speckle tracking
algorithm to measure real-time strain changes. The displace-
ments at each point in the region of interest (ROI, green
squares) between two US images are independent and can
be computed simultaneously. US images are loaded onto the
GPU, and the tissue motion at each point is computed using in
parallel NVIDIA’s CUDA architecture. The solid red squares
highlight original tracking points with solid lines indicating
the surrounding kernels in the original frame, while the blue
squares represent the displaced points in the tracking frame.
Red highlights a positive strain (i.e., tension), while blue
represents a negative strain (i.e., compression) in the direction
of propagation of US.



was accurate for a wide range of knee joint velocities. The
parameters for ϑ̄, λ1, and λ2 were determining by solving the
optimization problem

min J =
1

n

n
∑

i=1

(θ1p(i, u)− θ1m)2 +
1

n

n
∑

i=1

(θ4p(i, u)− θ4m)2

where θ1p(i, u), θ1m are the predicted and measured knee
joint position during the first cycle and θ4p(i, u), θ4m are the
predicted and measured knee joint position during the fourth
cycle. The estimated parameters were used in (9) to predict the
force during the second and third cycles as model validation.

C. MPC of SDAS and a Hybrid Exoskeleton During a Knee

Extension Task

To perform a control task to track the swing phase trajectory
we used an MPC scheme that solves the following optimal
control problem

min
u

J =
∫ T

0
l(x, u)

s.t : Jθ̈ +G(θ) + τp = Tstiml + u5

dFj

dt
= [Ḡp(θ)θ̇ +A(θ)][Ap

C̄Npj

Kmp+C̄Npj

−
Fpj

τ1p+τ2p
C̄Npj

Kmp+C̄Npj

]

0 ≤ uj=1,2,3,4 ≤ 1
u5 ≤ u5 ≤ ū5

(14)
where the states x ∈ R

8 and controls u ∈ R
5 are defined

as x =
[

Fvm1 Fvm2 Avm Fvl1 Fvl2 Avl θ θ̇
]T

and u =
[

u1 u2 u3 u4 u5

]T
where u1−4 are nor-

malized stimulation intensities at each electrode and u5 is the
motor input. The cost function is defined as

l(x, u) = (x− xd(t))
TQ(x− xd(t)) + uTRu

where xd(t) ∈ R
8 represents the desired states. In this appli-

cation the control objective is to tracking a desired position
and velocity, and further ensuring that the dynamics for Avm

and Avl do not decay to quickly. To achieve this, the desired
trajectory of Avland Avm were set to Ap40 for each muscle
respectively and the desired forces and the respective weights
were set to zero. To ensure the MPC scheme did not rely only
on motor, a large penalty was placed on the motor input u5.

Figure 10: Joint trajectories during each gait cycle to perform
a walking motion. The MPC framework was used to control
swing phase dynamics on the left leg and a feedback controller
was used on all other joints.

subsequent trial. Additionally, the participant started each trial
in a seated position and performed a sit-to-stand task solely
using a feedback controller before performing the walking.
The trajectories for the sit-to-stand task were designed based
on a virtual constraint method in [56].

The timing and control of the exoskeleton was governed
by a finite state machine (FSM) with four states: initial sit-to-
stand, right half step, left step, and right step. The FSM started
by transitioning from sit-to-stand followed by a right half step,
and it proceeded to alternate between left step and right step
for the entire 10 left step trial. Both step states in the FSM were
divided into the following three sub-states: swing leg hip and
knee flexion along with stance leg flexion/extension, swing leg
knee extension, and stance leg hip extension. The trajectory
for each sub-state was designed using a third order polynomial
trajectory based on the desired angles of hip and knee flexion
and extension. The desired flexion and extension angles for the
hip and knee are highlighted in Fig. 10. The MPC algorithm
was implemented on the left knee during states 2-5 of the FSM
to control swing phase dynamics while the right knee and both
hips were controlled by a robust-integral-signum-error (RISE)
controller [57]. The RISE controller,τ ∈ R is given by the
control law

τ = k1e2 +

∫ t

0

[kα2 + βsgn(e2)]dt

D. Experiments using a Hybrid Exoskeleton

Similar to our previous study [51] which looked at real-
time US imaging of the VI to optimize shared control us-
ing the traditional approach, two participants with SCI and
one participant without disability donned an INDEGO (Ekso
Bionics, USA) exoskeleton embedded with FES capabilities
and performed two trials consisting of 20 steps (10 left, 10
right). During each trial, MPC framework was used to track
the left knee trajectory during the swing phase of the gait
cycle. A linear transducer (L7.0SC Prodigy Probe, S-Sharp,
Taiwan) connected to an imaging platform equipped with
a GPU (NVIDIA Titan V) was placed on the quadriceps
to image the VM and was secured using medical tape.
At the beginning of each trial, real-time US measurements
were collected to initialize the dynamics of Avm for the

with tracking errors e1 ∈ R, e2 ∈ R defined as

e1 = θd − θ
e2 = ė1 + α1e1

where k1, α1, α2, β ∈ R
+ are positive gains, θd(t) ∈ R is the

desired trajectory, θ(t) ∈ R is the joint angle and sgn() is
a signum function. US imaging-based fatigue measurements
were received during each left step based on images collected
during a diagnostic pulse to provide a quasi-isometric contrac-
tion while the left leg was in the stance phase. The periods
during which the quadriceps were stimulated by the MPC and
by a diagnostic FES pulse are seen in Fig. 10. and an overview
of the hybrid exoskeleton-FES system is shown in Fig. 11

Once parameters, were identified, the MPC framework in
(14) was implemented to control the swing phase during a



Figure 12: Integral of motor torque compared to normalized
fatigue value from ultrasound imaging for steps 1-10 of
participant S1. A normalized fatigue value of 1 indicates the
muscle is not fatigued and smaller fatigue values indicate
higher fatigue levels.

approach, we looked at the motor effort by the MPC scheme
during the swing phase of each step when using traditional
FES protocols versus SDAS. Fig. 14 shows the representative
integral of motor input during steps 1-10 for participant S1
in both cases along with a linear trend. In both cases, as step
number increases, the muscle begins to fatigue and the motor
torque increases . The average integral of motor torque over
two trials (20 steps) was 24.12±11.82 and 2.78±1.50 Nm-s,

respectively. Similarly, for participant S2 the average integral
of motor torques during the traditional MPC and SDAS
approach were 45.41 ± 14.53 and 30.94 ± 6.03 respectively

and the integrals of motor torque were 16.53 ± 1.87 and

11.68 ± 1.73 for the participant with no disability. A one-

tailed t-test was performed to show statistical significance at
a 95% confidence level (p < 0.001) for all three participants
as highlighted in Fig. 15 indicating that the SDAS approach
results in a lower amount of motor assistance. Fig. shows the
integral of motor torque for participant with S1 with respect
to the ultrasound-derived fatigue measurement highlighting
that as the VM fatigues, the amount of motor assistance
increases. Finally, for participant S1, we also collected real-
time ultrasound measures of the VM at the end of each trial to
assess the fatigue of the muscle, and the fatigue index was 0.84
after trial 1 and 0.79 after trial 2. Since the kinematics remain
unchanged, the decreased torque from the motor when using
SDAS compared to the traditional approach indicates that more
power is being generated by FES. Further, this increase in
power generation did not increase the fatigue rate of the VM
as seen by the fatigue measures from ultrasound.

VI. DISCUSSION

The results presented in this study demonstrate the potential
of utilizing US-derived strain measurements of the VL and VM

in closed-loop control during SDAS. We first proposed a mod-
ified model that includes stimulation intensity and frequency
in SDAS. The proposed model calculates the individual force
generated by each stimulated electrode during SDAS as well
as the total force generation as a sum of individual forces.
The model also accounts for stimulation intensity by scaling

Figure 11: (A) Overview of the hybrid exoskeleton system
with SDAS. Real-time fatigue measurements are used to
allocate inputs between SDAS and motor. (B) Highlight of
the experimental setup on one participant with SCI during the
traditional MPC approach. The SDAS approach deploys the
same framework form the INDEGO exoskeleton while using
the SDAS MPC approach presented in (14) .

walking task. Real-time US-derived strain measurements of
the VM were collected during the left leg stance phase and a
strain measurement was calculated using a parallel processing
framework in [50]. The normalized strain measurement was
computed in real time using a GPU-based parallel computation
scheme described in [50], [51] and used to update the model
of Avmin (2) while Avl was obtained using the model only
due to computational resources of collecting US images from
multiple probes at the same time.

The average foot position during both trials for participant
with SCI S1 when the MPC framework in (14) was
usedto control the swing phase dynamics is shown in
Fig. 13along with foot position trajectories in both
directions whenusing a MPC framework in our previous
studies [51], [58] tocontrol a hybrid exoskeleton using the
traditional stimulationapproach. It is clear that the shared
control framework usingboth stimulation approaches results in
similar foot position. Toanalyze the effect of using SDAS
compared to the traditional



Figure 13: Horizontal and vertical foot position when the MPC framework for shared control with SDAS was implemented
participant S1 with SCI compared to the foot position when MPC with the traditional stimulation approach was implemented.

Figure 14: Integrals of swing phase motor torques for partici-
pant S1 with SCI during steps 1-10 when using shared control
with traditional FES compared to SDAS.

Figure 15: Average torque integral (Nm-s) during the swing
phase over 20 steps (2 trials) when using shared control with
the traditional stimulation approach compared to SDAS.

the calcium dynamics by a normalized intensity between a
saturation and threshold. That is, if a person is stimulated at
their maximum intensity, the scaled calcium dynamics in (3)
will be the same as the calcium dynamics in [52].

We then validated parameters obtained from system identi-
fication by comparing the predicted force when both muscles
were stimulated during SDAS to the measured force during a
SDAS protocol as seen in Fig. 3. The high R2 value indicates
that the proposed model is effective at correlating the force
dynamics of both the VL and VM. However, we note that there
is still a minor difference between measured and predicted
forces.The average RMSE between measured and predicted
forces are 7.27± 2.43 Newtons and could be associated with

minor changes in electrode placement and muscle composition
between each visit. These changes in electrode placement and
muscle composition between each visit will impact the identi-
fied parameters in the model which now act as estimates rather
than true parameters. This will impact the MPC strategy as the
optimization problem in (14) requires exact model knowledge.
While in this manuscript we used an MPC approach which
relies on the exact dynamics as a constraint in the optimization,
our group has investigated robust MPC approaches to deal with
model approximation errors, which could be caused day-to-
day physiological changes or electrode placement errors [27].
Electrode placements can be improved through motor point
identification [6], though tedious and impractical for daily use,
can standardize electrode placement. Other approaches such as
a larger electrode array and automatic electrode identification
[59] may be used to improve electrode placement.

We also investigated the use of US-derived strain measures
in the proposed model to analyze and measure fatigue rates
of both the VL and VM individually.. This benefit of US-
derived measures has an advantage over the dynamometer,
which can only provide the net output of both muscles and
is unclear how to decompose their each muscle contributions
and fatigue rates. Thus, we look at changes in the dynamics
of Avm and Avl in (2) and how they relate to the changes
in strain from US images. As seen in Fig. 6, there is a high
R2 value when correlating normalized strain and normalized
A dynamics. This indicates that US-imaging can potentially
be used as a sensing modality of fatigue state to inform
closed-loop SDAS. Additionally, we incorporated the model
into an MPC approach to modulate current intensities to track
a desired force. Simulation results showed that initially, the
desired and actual force matched until the muscle began to
fatigue. To validate the simulation results, we applied the
optimized inputs during SDAS experimentally and compared
the force output and fatigue rates to the constant current SDAS
and traditional approach. Results showed that using optimized
inputs results in the highest average power and lower power
decay. Further, the RMSE between the measured total force
from optimized inputs and the force from the simulations was
less that 10 Newtons for all participants.

The results in this study are consistent with previous studies
that showed improved fatigue resistance and power output of
SDAS compared to a traditional stimulation approach [13]–



conformable US imaging sensors that are easy to attach to
the leg and are less prone to dislocations could be developed.
Wearable ultrasound transducers, shown in studies like [62]
and [63], are already developed and validated. These smaller
US transducers could reduce the computational and hardware
limitations of our current setup while simultaneously obtaining
information from multiple muscles.

VII. CONCLUSION

In this work, we propose a phenomenological model that
can predict the force generated at each electrode during
SDAS. The model can account for phase delayed stimulation
frequency and intensity. We further investigated the muscle
contractility of the VL and VM during SDAS with the aim
of incorporating US images into the model. Analysis of US
imaging-derived strain rates of both muscles indicated changes
in muscle contractility between pre and post-fatigue states
has a strong correlation with the proposed dynamic model’s
fatigue variable. Additionally, MPC simulations and experi-
mental validation show that using optimized current inputs
during a fatiguing protocol increases muscle force output
and the fatigue decay rate. The SDAS approach was then
extended to a non-isometric dynamic model and incorporated
into a shared control framework in a hybrid exoskeleton.
Preliminary experiments showed the functionality of walking
with SDAS and demonstrated that the overall effort required
from the motor was reduced when compared to the traditional
stimulation approach, implying that more power was being
generated by SDAS.
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