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ABSTRACT
This paper presents a comprehensive study on real-time music rhythm analysis, cov-
ering joint beat and downbeat tracking for diverse kinds ofmusic signals. We introduce
BeatNet+, a two-stage approach to real-time rhythmanalysis built on a previous state-
of-the-art method named BeatNet. The main innovation of the proposed method is
the auxiliary training strategy that helps the neural network model to learn a repre-
sentation invariant to the amount of percussive components in the music. Together
with other architectural improvements, this strategy significantly improves the model
performance for generic music. Another innovation is on the adaptation strategies
that help develop real-time rhythm analysis models for challenging music scenarios,
including isolated singing voices and non-percussivemusic. Two adaptation strategies
are proposed and experimented with using different neural architectures and training
schemes. Comprehensive experiments and comparisons with multiple baselines are
conducted, and results show that BeatNet+ achieves superior beat tracking and down-
beat tracking F1 scores for generic music, isolated singing voices, and non-percussive
audio, with competitive latency and computational complexity. Finally, we release
beat and downbeat annotations for two datasets that are designed for other tasks,
and revised annotations of three existing datasets. We also release the code reposi-
tory and pre-trained models on GitHub.
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1 INTRODUCTION

Music can be regarded as one of the most intricate and
diverse art forms in the world. It is created through the
incorporation of various sounds that are arranged in a
meaningful manner to produce a unique composition.
One of the key elements of music is rhythm, which refers
to the sequential pattern of sounds and silences that
occur over time. Rhythm is crucial in music, as it forms
the fundamental basis uponwhich a piece is constructed.
In recent years, there has been an increasing interest
in developing real-time music rhythm analysis systems
(Heydari and Duan, 2021).

Accurate and robust real-time music rhythm anal-
ysis holds the potential to advance the music indus-
try, enabling innovative applications. It can serve as a
fundamental component for a variety of use cases,
including automatic music generation, processing, and
analysis. With the recent advancements in virtual and
augmented reality, there is a growing demand for real-
time music processing and analysis across various sit-
uations. This need has also gained prominence due to
its role in empowering the creation of immersive music-
based interactive experiences. These experiences, includ-
ing but not limited to real-time music visualization (Bain,
2008), dancing robots (Bi et al., 2018), DJing and live
remixing and sampling performance (Cliff, 2000), live
video editing and synchronization (Davis and Agrawala,
2018), dynamic lighting systems, andmusic-driven inter-
active video games (Bégel et al., 2018), offer users the
chance to engage with music on the fly.

Developing real-time music rhythm analysis systems
involves addressing three key challenges: The first chal-
lenge is maintaining high accuracy while not access-
ing future input data, as offline models do. The second
challenge is achieving low latency, especially on low-
powered devices. These first two challenges are easy to
understand. We argue that the third challenge is gener-
alization to various kinds of music audio. While state-of-
the-art rhythm analysis research has shown promising
performance on music recordings that contain strong
percussive components (e.g., drums, rhythmic guitar, and
piano; Heydari et al., 2021), there are scenarios where the
music audio lacks such components. For example, real-
time rhythm analysis of isolated singing voices plays a
crucial role in understanding and processing vocal per-
formances, and it enables applications such as accom-
paniment generation on the fly and live music remix-
ing (Heydari et al., 2023). As another example, real-time
generation of drum tracks requires rhythm analysis of
non-percussive music tracks and can enable collabora-
tive music making between human musicians and artifi-
cial intelligence (AI) agents.

In this work, we propose BeatNet+ for real-time
rhythm analysis for diverse kinds of music audio. Simi-
lar to BeatNet (Heydari et al., 2021), BeatNet+ processes

the music audio magnitude spectrum with a convolu-
tional recurrent neural network (CRNN) to compute beat
and downbeat activations in each audio frame. The acti-
vations are then post-processed by a two-level cascade
Monte Carlo particle filter. The key innovations of Beat-
Net+ are an auxiliary training strategy that improves
the system performance compared with state-of-the-art
rhythm tracking methods on generic music, as well as
adaptation strategies that improve the ability to gener-
alize to less percussive music, such as isolated singing
voices andmusic without drums, which are novel rhythm
analysis settings.

Specifically, the auxiliary training strategy leverages a
parallel regularization branch that has an identical struc-
ture without weight sharing with the main branch (i.e.,
used for inference) during training. The main branch is
fed with full music mixtures, while the auxiliary branch
is fed with the full music of the same pieces less drum
tracks (referred to as non-percussive versions). In addition
to the cross-entropy (CE) losses for each branch, a mean
squared error (MSE) loss is computed between the latent
embeddings of the two branches to regularize the repre-
sentation learning of the main branch.

Regarding the adaptation strategies for BeatNet+ to
work with less percussive music, we propose two tech-
niques termed “auxiliary-freezing” (AF) and “guided fine-
tuning” (GF). The AF approach (Figure 2) again adopts
a two-branch auxiliary training strategy similar to the
one mentioned above. However, the main branch (left)
is now trained on the target music type (i.e., less per-
cussive music), while the auxiliary branch (right) is frozen
as the pre-trained main branch of the BeatNet+ that
is trained for full music mixtures. The GF technique
(Figure 3) employs a single-branch model initialized with
the pre-trainedmain branch of the BeatNet+model. Sub-
sequently, this model undergoes fine-tuning on input
music pieces, starting with full music mixtures (aligned
with the original data type of the pre-trained model),
which are gradually adapted to match the target music
type. For instance, if the target is isolated singing voices,
non-singing parts of the music input are progressively
removed during training iterations. We perform experi-
ments on two types of less percussive music types to
demonstrate the effectiveness of the adaptation strate-
gies: isolated singing voices and non-percussive music.
Rhythm tracking for both settings is novel and could
enable novel applications such as real-time drum track
generation.

Finally, we release beat and downbeat annotations of
MUSDB18 (Rafii et al., 2017) and URSing (Li et al., 2021)
datasets, which were originally designed for other MIR
tasks, enabling them to be utilized for music rhythm
analysis applications. Also, we correct mistakes in the
rhythm annotations of three pre-existing music rhythm
analysis datasets including Real World Computing (RWC)
Jazz, RWC Pop, and RWC Royalty-free (Goto et al., 2002;

https://doi.org/10.5334/tismir.198


Heydari and Duan Transactions of the International Society for Music Information Retrieval DOI: https://doi.org/10.5334/tismir.198 276

Goto, 2004). The source code of the BeatNet+, adaptation
models, and rhythmic annotations of MUSDB and URSing
will be online.

2 RELATED WORK

Existing work on rhythm analysis can be reviewed along
different dimensions. Here we review it along the dimen-
sions that are related to the proposed work.

2.1 TWO-STAGE APPROACH
The majority of rhythm analysis methods (e.g., beat
tracking) adopt a two-stage approach. In the first stage,
a salience function (also called likelihood function, detec-
tion function, or activation strength) is computed from
the input audio signal to represent the salience of the
target event (e.g., a beat) in different time frames. In
the second stage, an inference process (also called post-
processing) is employed to make binary decisions on the
presence of the target event in each audio frame based
on the salience function. Different techniques have been
proposed in each of these stages, and we will review
them in the following sections.

2.1.1 Salience calculation stage
There are generally two paradigms in computing the
salience function. The first paradigm is rule-based and
uses hand-crafted functions to indicate the presence
of important rhythmic elements in music, such as
onsets and beats (Chiu et al., 2023; Mottaghi et al.,
2017). Such functions often describe the “novelty” of
the current audio frame compared with the previous
frame(s) in terms of energy (Schloss, 1985) and spec-
tral content (Masri, 1996). These hand-crafted func-
tions are generally fast to compute and robust to
music styles. However, their detection accuracy is lim-
ited compared with the data-driven methods in the next
paragraph.

The second paradigm focuses on machine learning
techniques, where models are trained to establish the
relationship between low-level acoustic features and
annotations of rhythmic elements (Böck and Schedl,
2011; Böck et al., 2016; Gkiokas et al., 2012; Holzapfel et
al., 2012). Deep learning-basedmethods have gained sig-
nificant attention due to their exceptional performance
in rhythm analysis. These models typically require super-
vision and are trained on large datasets with labeled
rhythmic patterns, making them highly accurate in rec-
ognizing complex rhythmic patterns. They leverage neu-
ral networks to extract “activation strength” for every
time frame. Several neural network structures are uti-
lized for music rhythm analysis tasks such as convolu-
tional networks (Gkiokas and Katsouros, 2017), cepstroid
invariant networks (Elowsson, 2016), recurrent networks
(Eyben et al., 2013), transformers (Heydari and Duan,

2022), temporal convolutional networks (Davies and
Böck, 2019), and autoencoders (Greenlees, 2020).

Recently, self-supervised learning (SSL) models have
gained popularity, as they can be trained on massive
amounts of unlabeled data. Desblancs et al. (2023) pro-
posed ZeroNS, which leverages a self-supervised pre-
processing block for its beat tracking model. Similar
to our proposed BeatNet+ model, ZeroNS contains two
branches and leverages different music stems in train-
ing. However, there are several fundamental differences
between the two models. BeatNet+ is a supervised
model with a latent matching loss, whereas ZeroNS is
self-supervised and lacks a loss-matching regularization
term. BeatNet+ focuses on the causal joint beat and
downbeat tracking, while ZeroNS serves as a non-causal
model designed only for beat tracking. In terms of struc-
ture, BeatNet+ utilizes CRNN networks, while ZeroNS only
incorporates convolutional blocks in its pipeline. SSL rep-
resentations have also been used in rhythm analysis of
challenging music inputs such as isolated singing voice
(Heydari and Duan, 2022). Such representations, how-
ever, can be difficult to use in real-time applications due
to causal and low latency requirements.

It is worth stating that each of the mentioned meth-
ods can operate in either the time domain (e.g., Hey-
dari and Duan, 2022; Steinmetz and Reiss, 2021) or fre-
quency domain (e.g., Böck and Davies, 2020; Chiu et al.,
2023; Meier et al., 2021), or the two combined (e.g.,
Morais et al., 2023). Time-domain techniques operate
on the audio waveform, while frequency-domain tech-
niques operate on a time-frequency representation com-
puted from Fourier, constant-Q, or other transforms. They
provide explicit information about the signal’s frequency
components and are known for their robustness to noise
when compared with time-domain techniques (Zheng-
qing and Jian-hua, 2005). Spectral approaches face a
time-frequency resolution trade-off, where extending the
time window captures lower frequencies beneficial for
rhythm analysis but reduces time resolution, and vice
versa. To tackle the time-frequency resolution trade-
off issue, some works (e.g., Böck et al., 2014) employ
multi-resolution embeddings, which involve concatenat-
ing spectral features calculated on the basis of different
window lengths.

2.1.2 Decision stage
In real-time scenarios, causal inference methods such
as the forward algorithm (Federgruen and Tzur, 1991),
Kalman filtering (Shiu and Kuo, 2007), particle filtering
(Hainsworth and Macleod, 2004), and jump-back-reward
inference (Heydari et al., 2022) are used. Particle filter-
ing, in particular, represents and evolves rhythmic state
distributions (e.g., beat, downbeat) over time, applied to
tempo detection (Hainsworth and Macleod, 2004) and
joint beat, downbeat, and time signature tracking (Hey-
dari et al., 2021).
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It is noted that particle filtering struggles with long-
term dependencies and extensive state spaces due to
its Markovian nature. Dynamic particle filtering (Heydari
et al., 2023) improves inference with historical data but
increases computational cost. Jump-back reward infer-
ence (Heydari et al., 2022), a semi-Markovian model,
reduces computation time in one-dimensional (1D) state
spaces but performs worse on complex tasks such as
downbeat tracking.

2.2 REAL-TIME SYSTEMS
In this subsection, we briefly review a few real-time beat
and downbeat tracking systems. IBT (Oliveira et al., 2010)
is a signal-processing-basedmulti-agent system for real-
time beat tracking. It initializes a set of agents with var-
ious hypotheses. Each agent carries a hypothesis con-
cerning the rate and placement ofmusical beats, and the
model dynamically chooses the best agent on the basis
of music onsets.

In the realm of deep-learning-based methods, Böck
et al. (2014) employed a recurrent neural network (RNN)
to compute activations and apply the forward algorithm
(Federgruen and Tzur, 1991) for inferring beats in a causal
setting. Heydari et al. (2021) proposed BeatNet, a real-
time system for joint beat, downbeat, and meter track-
ing. It employs a fully causal CRNN structure with a 1D
convolutional layer to produce three activations for beat,
downbeat, and non-beat. It uses efficient two-level parti-
cle filtering for inference. In their follow-up work, Heydari
et al. (2022) utilized BeatNet activations and presented
a so-called jump-back reward strategy to speed up the
particle filtering process, as reviewed in the previous sub-
section.

Chang and Su (2024) proposed an online beat and
downbeat tracking system named BEAST based on the
streaming Transformer (Tsunoo et al., 2019). Through the
incorporation of contextual block processing in the Trans-
former encoder and relative positional encoding in the
attention layer, BEAST achieves significant improvements
over existing state-of-the-art models. It uses the forward
algorithm (Federgruen and Tzur, 1991) as the inference
stage.

2.3 RHYTHM ANALYSIS FOR ISOLATED SINGING
VOICES
To address the isolated singing voice rhythm analy-
sis task, Heydari and Duan (2022) proposed a model
that leverages pre-trained self-supervised speech mod-
els such as WavLM (Chen et al., 2022) and Distilhubert
(Chang et al., 2022) and built some linear transformers
(Katharopoulos et al., 2020) on top of them to jointly
extract the beats of singing voices in an offline fash-
ion. This study highlights the substantial performance

improvement achieved by utilizing pre-trained speech
models and transformers. Nonetheless, their computa-
tional heaviness poses challenges for real-time and low-
resource applications, especially in scenarios with lim-
ited computational power, such as in-device use cases.
SingNet (Heydari et al., 2023) pioneered real-time singing
voice joint beat and downbeat, andmeter tracking. It uti-
lizes a slightly larger CRNN model compared with Beat-
Net for calculating activation functions. Recognizing the
irregular and noisy activations delivered by singing voices,
SingNet introduces dynamic particle filtering, a novel
inference module that incorporates offline estimation
and activation saliences into the online inference process.

2.4 RHYTHM ANALYSIS FOR NON-PERCUSSIVE
MUSIC
In addition to isolated singing voices, there are other
types of music audio that are less percussive, e.g., music
without drums. Real-timemusic rhythm analysis for such
music is also challenging but can be useful inmany appli-
cations such as the automatic generation of drum tracks.
Wu et al. (2022) developed an offline drum accompa-
niment system based on an offline drum-aware beat
tracking method (Chiu et al., 2021). Online methods,
however, are limited to a few traditional signal processing
approaches such as those of Goto (2001) and Goto and
Muraoka (1999) that only track beats but not downbeats
or meter.

3 METHODOLOGY

In this section, we present a novel two-stage approach,
named BeatNet+, to real-time joint beat, downbeat, and
meter tracking for diverse kinds of music inputs. The first
stage estimates beat and downbeat saliences fromaudio
frames, while the second stage makes decisions using
particle filtering. Additionally, we elaborate on adapting
the BeatNet+ model for rhythm analysis of more chal-
lenging data types.

3.1 STAGE 1: BEAT AND DOWNBEAT SALIENCE
ESTIMATION
This section describes the proposed neural network
model and training strategies for robust computation of
beat and downbeat saliences from diverse kinds of music
inputs.

3.1.1 Audio feature representation
Weutilize short-time fourier transform (STFT) to compute
a log-magnitude spectrogram as the input feature rep-
resentation. The window length is set to 80 ms with a
Hann window. The window hop size, i.e., themodel’s the-
oretical latency, is set to 20 ms. The frequency range is
between 30 Hz and 17,000 Hz with 288 bins.
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3.1.2 Neural architecture and training strategy
BeatNet+ (Figure 1) features two branches, where both
themain branch (left) and the auxiliary branch (right) are
used in training, while for inference, only themain branch
is utilized. Both branches employ a convolutional recur-
rent neural network (CRNN) structure similar to BeatNet
(Heydari et al., 2021), where the convolutional block is
identical to that of BeatNet, but the recurrent block is
expanded from two layers to four layers of long short-
term memory (LSTM) cells on the basis of preliminary
empirical studies. This deeper design is reasonable, as
BeatNet+ is expected to handle diverse music inputs,
including isolated singing voices and less-percussive
music with complex rhythmic structures. The size of the
hidden states is 150, the same as in BeatNet. It is worth
mentioning that, in our pilot study, we explored various
alterations to the neural architecture, such as incorporat-
ing batch normalization, linear layers, rectified linear unit
(ReLU) activations, and leaky ReLU activations. However,
these modifications did not yield significant performance
improvements.

To increase the robustness to music with various
levels of percussive components, we use an auxiliary
branch (the right branch of Figure 1) to train Beat-
Net+. The auxiliary branch is identical to the main
branch, except that it takes a different type of input
during training, and it does not include the SoftMax
layer, which is only used during inference in the main
branch. Note that, since cross-entropy loss with logits
is being used, applying SoftMax is unnecessary during
training.

Figure 1 Neural structure of BeatNet+ for general music rhythm
analysis. Both the main (left) and auxiliary (right) branches are
initialized randomly and trained jointly, but only the main
branch is utilized for inference.

Training of BeatNet+ takes three losses, as in
Equation (1):

Ltotal = LCE1 + LCE2 + 𝜆LMSE. (1)

The main branch is trained on full music mixtures with
a cross-entropy loss denoted as LCE1. The auxiliary branch
is trained on the non-percussive parts of the same music
mixtures with another cross-entropy loss denoted as LCE2.

3.1.3 Adaptation for more challenging music
inputs
Additionally, we introduce a mean squared error (MSE)
loss, LMSE, between intermediate representations of the
two branches. This can be viewed as a training regular-
ization to encourage similarity between the latent repre-
sentations of the two branches, given that their outputs,
i.e., their rhythm information, are expected to be identi-
cal. Based on our pilot studies, mean squared error (MSE)
is found to be more suitable than other losses, such as
mean absolute error (MAE) or Huber loss, for this regular-
ization. It is important to note that the only connection
between the main and auxiliary branches is via the MSE
feature matching loss, and the branches do not share
weights. The constant weight parameter 𝜆 controls the
strength of the regularization. A similar latent matching
strategy has been used before to enhance a talking face
generation model’s robustness to noise (Eskimez et al.,
2019).

To address the real-time rhythm analysis of challeng-
ing inputs such as isolated singing voices and other less-
percussive music, we propose two adaptation strate-
gies, named auxiliary freezing (AF) and guided fine-tuning
(GF), respectively. Here we take the isolated singing voice
scenario as an example, but the proposed adaptation
strategies can be applied to other scenarios, e.g., non-
percussive music, as well. In the AF approach (shown
in Figure 2), we adopt a two-branch auxiliary training
approach similar to that in Section 3.1.2. In this case,
the auxiliary branch (right) is initialized with the frozen
weights from the pre-trained main branch of BeatNet+
(i.e., left branch in Figure 1) taking full music mixtures as
inputs, while themain branch (left) is trained fromscratch
on isolated singing voices of the corresponding music
mixtures. MSE loss is imposed between the latent repre-
sentations of the two branches in addition to the cross-
entropy loss of the right branch. After this adaptation, the
main branch (left) is used for rhythm analysis of isolated
singing voices. Note that, similar to BeatNet+, the main
and auxiliary branches of AF do not share weights. Also,
this approach bears similarity to teacher–student model
distillation methods, e.g., Kim and Rush (2016), wherein
the student model is trained to replicate similar latents
as the frozen teacher model. However, the key distinc-
tion lies in the fact that commonly used teacher–student
models try to perform model distillation, i.e., to attain
similar results with smaller networks on the same data,
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Figure 2 Neural structure of the auxiliary-freezing (AF)
adaptation approach for singing voice rhythm analysis. The
main branch (left) is initialized randomly and trained for
real-time inference, while the auxiliary branch (right) is
initialized with the pre-trained BeatNet+ main branch weights
and remains frozen during training.

while our model’s objective is to achieve similar results
with identical networks on different but related data.

In the guided fine-tuning (GF) approach, we com-
mence by initializing a single-branch model with the
weights and biases of the main branch of BeatNet+ that
is pre-trained on full music mixtures, i.e., the left branch
of Figure 1. Subsequently, we fine-tune themodel for iso-
lated singing voices by gradually reducing the intensity of
the accompanying music during training. In each epoch,
a percentage of the accompanying music is deducted,
with a linear decay factor denoted as 𝛾. After a number
of epochs, the strength of accompanying music in the
training data diminishes to zero. Figure 2 illustrates this
adaptation approach for isolated singing voicemusicwith𝛾 = 0.01.

As previously mentioned, both adaptation strate-
gies can be applied to address different types of less-
percussive music input. For instance, in Figures 2 and 3,
substituting the singing stemwith completemusicalmix-
tures excluding drum stems enables the models to be
trained specifically for non-percussive music.

3.2 STAGE 2: DECISION
Monte Carlo particle filtering is ideal for real-time infer-
ence because it does not rely on future data, unlike MAP
algorithms such as Viterbi and smoothing algorithms. It
also does not require strong distribution assumptions,

Figure 3 Illustration of the guided fine-tuning (GF) approach for
singing voice rhythm analysis. The model is initialized with the
pre-trained BeatNet+ main branch weights and fine-tuned
using music mixtures with backing music gradually removed
over training epochs.

making it versatile for any distribution. Previous works,
e.g., (Heydari et al., 2021), have shown its superior per-
formance over other models. For the mentioned reasons,
we use it as the decision-making block for all proposed
methods and scenarios. In this section, we provide a brief
description of the method we used.

3.2.1 State space, transition, and observation
models
The state space, transition, and observation models are
based on BeatNet (Heydari et al., 2021) and utilize the
discrete two-dimensional (2D) state space from Krebs
et al. (2015). We adopt BeatNet’s two-stage cascade
approach, for beat and tempo tracking, and downbeat
andmeter tracking, respectively. The first state space has
tempo and beat phase dimensions, with adjacent states
representing successive time frames. The second state
space has meter and downbeat phase dimensions, with
adjacent states representing successive beats. Transition
models allow tempo and meter changes at beat and
downbeat positions, while observation models use neu-
ral network estimates to compute beat and downbeat
likelihoods.

3.2.2 Causal inference
Particle filtering involves two steps: predict/motion and
update/correction. Themotion step updates particle posi-
tions on the basis of predicted trajectories, while the
correction step adjusts particles and weights based on
observed data. Given latent state 𝜙k and observation yk,
the procedure updates the posterior to p(𝜙k+1|y1+1) for the
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next frame. Equation (2) describes the motion step using
the state transition model p(𝜙k+1|𝜙k).

p(𝜙k+1|y1∶k) = ∑𝜙k p(𝜙k+1|𝜙k)p(𝜙k|y1∶k). (2)

Equation (3) describes the correction step by incorpo-
rating the observation likelihood p(yk+1|𝜙k+1) into the one-
step-ahead prediction to estimate the next-step poste-
rior:

p(𝜙k+1|y1∶k+1) = 1
Zk+1 p(yk+1|𝜙k+1)p(𝜙k+1|y1∶k). (3)

By combining these motion and correction steps iter-
atively, particle filtering refines the estimation of the sys-
tem’s state, making it a powerful technique for tracking
and inference in dynamic environments.

4 EXPERIMENTS

In this section, we discuss the training specifics of the
proposed models. We also describe the details of our
comparison methods, utilized datasets (existing and
annotated), and the evaluation metrics for each task.
Finally, we report the experimental results for all of the
models and compare them with state-of-the-art meth-
ods for each task. Note that all experiments with the pro-
posed methods employ the same inference method, i.e.,
the particle filtering approach proposed in BeatNet (Hey-
dari et al., 2021).

4.1 DATASETS
To increase data diversity, we use multiple music audio
datasets with beat and downbeat annotations, as shown
in Table 1. Among these datasets, Ballroom (Gouyon
et al., 2006; Krebs et al., 2013), GTZAN (Marchand and
Peeters, 2015; Tzanetakis and Cook, 2002), Hainsworth
(Hainsworth and Macleod, 2004), Rock Corpus (De Clercq

and Temperley, 2011), and RWC Jazz, Pop, and Royalty-
free datasets (Goto, 2004; Goto et al., 2002) already come
with beat and downbeat annotations. However, some
downbeat annotations of RWC Jazz, Pop, and Royalty-
free datasets are not accurate, and we revise themman-
ually. In addition, MUSDB18 (Rafii et al., 2017) and URSing
(Li et al., 2021) are multi-track singing datasets without
beat or downbeat annotations, and we annotate them
using BeatNet (Heydari et al., 2021) followed by manual
corrections.

Following previousworks, we employ thewhole GTZAN
dataset as the test set, given that it is one of the largest
and most genre-inclusive datasets for our tasks. Impor-
tantly, none of the reported models have been exposed
to this dataset during their training phase, ensuring a fair
and unbiased assessment. The rest of the datasets out-
lined in Table 1 are utilized for training and validation pur-
poses.

It is noted that, to obtain the audio stems of the
datasets for different tasks except the ones that include
separate stems, i.e., MUSDB18 and URSing, we utilize
Demucs (Défossez, 2021), a top-performing open-source
music source separation model. It separates each piece
of music into four tracks: bass, drums, vocals, and
others.

For the isolated singing rhythmanalysis task, the avail-
ability of singing stems is essential. Yet, in the datasets
we use, many pieces do not have singing, and some have
extended segments with only instrumental music and
no vocals. To address this challenge, we introduce a pre-
processing stage designed to eliminate vocal-less pieces
and extended segments without singing. This is achieved
by implementing energy-based vocal root mean square
(RMS) thresholding on separated singing tracks. As a con-
sequence, datasets such as RWC Jazz (Goto, 2004; Goto
et al., 2002) were entirely excluded from the data pool
for the singing voice rhythm analysis task. Furthermore,

Dataset Number
of pieces

Number
of vocals

Labels Train Validation Test

Ballroom 699 452 Original ✓ ✓ ✗

GTZAN 999 741 Original ✗ ✗ ✓

Hainsworth 220 154 Original ✓ ✓ ✗

Rock Corpus 200 315 Original ✓ ✓ ✗

MUSDB18 150 263 Added ✓ ✓ ✗

URSing 65 106 Added ✓ ✓ ✗

RWC jazz 50 0 Revised ✓ ✓ ✗

RWC pop 100 188 Revised ✓ ✓ ✗

RWC-Royalty-free 15 29 Revised ✓ ✓ ✗

Table 1 Datasets used in our experiments.
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some vocal tracks containing extended silent intervals
are split into shorter vocal segments.

4.2 EVALUATION METRICS
The reported metrics comprise beat and downbeat F1
scores, system latency, and real-time factor (RTF). Fol-
lowing the literature, F1 scores are reported with a toler-
ance window of 70ms. Latency is defined as the hop size
of the short-time fourier transform (STFT) for processed
data. RTF is another important metric for real-time mod-
els and refers to the speed or responsivenesswithwhich a
model can process and generate outputs in real-time. It is
the averaged ratio between the total processing time and
the total audio length across thewhole test set. Note that
the reported RTFs are measured on a Windows machine
with an AMD Ryzen 9 3900X CPU and 3.80 GHz clock fre-
quency.

Previous work (Heydari et al., 2023) used 200 ms as
the tolerance for singing voice beat and downbeat track-
ing. This was based on their observation that human tol-
erance to beat and downbeat timing deviations tends to
be more lenient for less percussive music compared with
music with strong percussions. Therefore, we also report
F1 scores with a tolerance of 200ms for singing voice and
non-percussive music datasets in addition to the stan-
dard 70 ms tolerance.

4.3 COMPARISON METHODS
To assess the effectiveness of the auxiliary training strat-
egy in Section 3.1.2, we trained two models: BeatNet+
is the proposed model with auxiliary training using two
branches, and BeatNet+ (Solo) trains the main branch
without the auxiliary branch, i.e., only LCE1 is used in
Equation 1.

To evaluate the BeatNet+ model on real-time rhythm
analysis for generic music, we compare it with five base-
line models. (1) BeatNet (Heydari et al., 2021) employs
a CRNN structure and proposes efficient particle filter-
ing for joint beat, downbeat, and meter tracking. (2)
Novel 1D (Heydari et al., 2022) utilizes BeatNet activa-
tions and proposes the jump-back reward strategy, a
semi-Markov inference method, to reduce computation.
(3) IBT (Oliveira et al., 2010) is a signal-processing-based
method that uses onset strength to select an agent with
the most correct beat position hypothesis out of multiple
agents. (4) Böck FF (Böck et al. 2014) utilizes an RNN and
a forward algorithm for beat tracking. (5) BEAST (Chang
and Su, 2024) employs a streaming Transformer and a
forward algorithm for joint beat and downbeat track-
ing, achieving the best performance comparedwith exist-
ing state-of-the-art models on the GTZAN benchmark.
Among the reported methods, IBT and Böck FF only per-
form beat tracking and do not provide downbeat results.

It is also important to mention that certain prior stud-
ies, such as BEAST (Chang and Su, 2024), present their
results by incorporating multiple hop-size look-ahead

steps in addition to their real-time online performance.
While these look-ahead steps enhance the performance
of rhythm analysis systems, they introduce significant
delays and make the models non-causal. To ensure a
fair and consistent comparison among onlinemodels, we
only compare the fully online performance of all models.

To better put online music rhythm analysis methods
in context, we also compare them with two state-of-
the-art offline rhythm analysis models. They include the
(1) Transformers (Zhao et al., 2022) model that uses a
transformer encoder for estimating the activations and
dynamic Bayesian networks (DBN) for decisions, and (2)
SpecTNT-TCN (Hung et al., 2022) that leverages a com-
bination of temporal convolutional networks (TCN) and
SpecTNT (Lu et al., 2021), which integrates spectral and
temporal information, to calculate activations and a DBN
block for decisions.

For the two challenging scenarios, isolated singing
voices and non-percussive music, we evaluate the two
proposed adaptation methods. AF represents the first
adaptation approach illustrated in Figure 2, where the
auxiliary branch (right) is initialized with the frozen
weights of the BeatNet+ generic model, and the main
branch (left) undergoes training on the particular music
arrangement and is used for inference. GF represents
the second adaptation approach illustrated in Figure 3,
involving fine-tuning a pre-trained model for specific
tasks by adaptation of the input data over time.

To assess the effectiveness of the adaptation
approaches, we also present results for the same mod-
els trained from scratch for the specific tasks, without
leveraging the adaptation techniques. These models are
referred to as AF-scratch and GF-scratch, respectively.
In particular, AF-scratch uses the auxiliary branch struc-
ture and training data, but trained from scratch without
initializing the auxiliary branch weights with the frozen
weights of the pre-trained BeatNet+ main branch. GF-
scratch utilizes a GF single-branch structure, trained from
scratch and without guided fine-tuning.

For singing voice rhythm analysis, we compare them
with SingNet (Heydari et al., 2023), the current state of
the art for this task. For non-percussive music rhythm
analysis, no priormodels are available. Thus, we compare
them with the state-of-the-art real-time rhythm analy-
sis method, BeatNet (Heydari et al., 2021), when trained
exclusively on non-percussive music pieces.

4.4 TRAINING DETAILS
This section covers the training details of the BeatNet+
models for generic music rhythm analysis as well as the
“auxiliary-freezing” and “guided fine-tuning” adaptation
techniques for challenging scenarios. These models are
trained on the training and validation splits of datasets in
Table 1.

All proposed models are trained using the Adam opti-
mizerwith a constant learning rate of 5×10−4 and a batch
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size of 40. All models employ a cross-entropy loss with
logits, whoseweights are set to 200 for downbeats, 60 for
beats, and 1 for non-beats, accounting for their average
occurrence rates across total training audio frames. The
feature matching MSE loss weight for models with auxil-
iary training is set to 𝜆 = 200. Training batches comprise
randomly selected 15-second excerpts from the training
audio files.

For the BeatNet+ and BeatNet+ (Solo), AF-scratch and
GF-scratch, all weights, and biases are randomly initial-
ized. In contrast, the AF model only initializes its main
branch randomly, while its auxiliary branch is initialized
as the pre-trainedmain branch of BeatNet+. Similarly, the
GFmodel is also initialized as the pre-trainedmain branch
of BeatNet+.

Note that, for all external comparison methods,
their pre-trained models are utilized. However, for non-
percussive music rhythm analysis, the benchmark Beat-
Net model is trained on non-percussive audio with the
training specifics of the original BeatNet model.

4.5 RESULTS AND DISCUSSIONS
In this section, we present our evaluation results for var-
ious scenarios on the GTZAN dataset. We report the per-
formance of the proposed model and adaptation tech-
niques for generic music, isolated singing voices, and
non-percussive music rhythm analysis.

4.5.1 Results on generic music
Table 2 compares the performance of online rhythm
analysis methods as well as two offline methods for
generic music. We can see that the proposed BeatNet+

outperforms all the other online methods on both beat
tracking and downbeat tracking F1 scores, while main-
taining competitive latency and RTF. Regarding compu-
tational complexity, the Novel 1D model achieves the
lowest RTF, thanks to its utilization of an exceptionally
lightweight inference approach. The F1 score improve-
ment from BeatNet+ (Solo) to BeatNet+, especially on
downbeat tracking, highlights the benefit of using the
auxiliary branch during the training process and lever-
aging the latent-matching technique between the two
branches; the latency and RTF do not change, as Beat-
Net+ utilizes only one branch during inference. Finally,
BeatNet+ (Solo) does better compared with BeatNet on
both beat and downbeat F1 scores.

In the comparative analysis between BeatNet+ and
BEAST, BeatNet+ demonstrates a marginal advantage in
beat tracking and a significant superiority in downbeat
tracking. It is noteworthy that the latency and RTF of
BeatNet+ models are more than two times and nearly
seven times shorter than those of the BEAST model,
making them more convenient for real-time and low-
resource applications. The main reason for its substan-
tially reduced computational cost lies in its utilization of
a source-efficient light 1D CRNNmodel, in contrast to the
inclusion of streaming transformers used in BEAST.

To assess system performance across various genres,
we present the beat and downbeat F1 scores achieved by
the top-performing method, BeatNet+, across all GTZAN
genres in Figure 4. A comparative analysis of the reported
box plots reveals notable variations in model perfor-
mance for different genres. Specifically, the model’s best
overall performance is observed for Disco and Hip-hop;
this is potentially attributed to the presence of strong

Table 2 Results of online rhythm analysis evaluation for generic music and offline state-of-the-art references, showcasing F1 scores in
percentages with a tolerance window of 70 ms, latency, and RTF for the GTZAN dataset.

Metrics (performance on full mixtures)

Online models

BeatNet+ 80.62 56.51 20 0.08

BeatNet+ (Solo) 78.43 49.74 20 0.08

BeatNet (Heydari et al., 2021) 75.44 46.69 20 0.06

Novel 1D (Heydari et al., 2022) 76.47 42.57 20 0.02

IBT (Oliveira et al., 2010) 68.99 – 23 0.16

Böck FF (Böck et al., 2014) 74.18 – 46 0.05

BEAST (Chang and Su, 2024) 80.04 52.23 46 0.40

Offline models

Transformers (Zhao et al., 2022) 88.5 71.4 – –

SpecTNT-TCN (Hung et al., 2022) 88.7 75.6 – –

Method
Beat F1
(70 ms)

Downbeat F1
(70 ms)

Latency
(ms)

RTF
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Figure 4 F1 scores for beat tracking and downbeat tracking of the BeatNet+ model across diverse genres within the GTZAN dataset.

percussive and harmonic cues and their more straight-
forward rhythmic patterns. Conversely, genres such as
Classical and Jazz demonstrate below-average model
performance, potentially owing to the diverse musical
characteristics and intricate rhythmic patterns inherent
to these genres.

Interestingly, some genres show contrasting perfor-
mance between beat tracking and downbeat tracking.
Specifically, Reggae receives one of the best beat tracking
performance but the second-worst downbeat tracking
performance with the widest range across different
pieces. This suggests that, while the percussive and har-
monic elements of Reggae are ample for beat track-
ing, they are not sufficient for distinguishing between
beats and downbeats. This phenomenon is attributed
to the presence of a substantial amount of syncopation
and frequently used off-beat rhythmic patterns such as
“one-drop,” “steppers,” and “rockers” in Reggae. Simi-
larly, Jazz and Blues also show large performance dispar-
ity between beat and downbeat tracking, attributable to
the prevalent use of styles such as the “swing feel” within
these genres.¹

4.5.2 Results on singing voices
Rhythm analysis of isolated singing voices is the most
challenging task among all discussed in this work. The
first row of Figure 5 compares the F1 scores of the pro-
posed model with different adaptation strategies with
SingNet (Heydari et al., 2023), the state-of-the-art singing
voice rhythm analysis model, on singing stems from
the GTZAN dataset. According to the figure, GF delivers
the best performance for beat tracking by a significant
improvement of 14.58% and 13.27% over the SingNet
model for T = 70ms and T = 200ms tolerances, respec-
tively. For downbeat tracking, AF outperforms SingNet by
2.43% and 0.51% for T = 70ms ms and T = 200ms tol-
erances. A more significant improvement in beat track-
ing accuracy compared with downbeat tracking suggests

that the proposed models enhance acoustic modeling
more effectively than capturing higher-level semantic
modeling.

Comparing the adaptation models with the same
BeatNet+ structures trained from scratch, GF outper-
forms GF-scratch significantly for beat tracking across
both tolerances. However, it marginally underperforms
GF-scratch for downbeat tracking. In contrast, AF out-
performs AF-scratch for downbeat tracking while under-
performing AF-scratch for beat detection. The aforemen-
tioned records indicate that, for singing voice rhythm
analysis, guided fine-tuning and auxiliary freezing tech-
niques are effective for beat and downbeat tracking,
respectively. However, there is no optimal joint model for
both tasks.

4.5.3 Results on non-percussive music
Rhythmanalysis of non-percussivemusic is another chal-
lenging task. The plots on the second rowof Figure 5 com-
pare the performance of the proposed BeatNet+ model
with different adaptation strategies against the Beat-
Net model on GTZAN pieces after removing the drums.
As mentioned earlier, for this comparison, the BeatNet
model is trained on the same data as the proposedmod-
els, i.e., non-percussive parts of the training set from
scratch. According to the results, AF delivers the best per-
formance for both beat and downbeat tracking among
all models, with a significant improvement of 8.88%
and8,19%8.19% for T = 70 and 10.55% and 12.85% for
T = 200 over the baseline BeatNet model.

Comparing AF with AF-scratch highlights the impact of
auxiliary freezing on non-percussive rhythm analysis. Dis-
abling auxiliary freezing results in a notable downgrade
in model performance, shifting it from being the best
across all models to the overall worst. However, com-
paring GF with GF-scratch reveals that guided fine-tuning
offers similar performance for non-percussive rhythm
analysis.
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Figure 5 F1 scores of online rhythm analysis models on singing voices (top row) and non-percussion music (bottom row) with two
tolerance windows, 70 ms and 200 ms.

Also, we acknowledge that the rhythmanalysis perfor-
mance for non-percussive and isolated singing voices of
some pieces may be impacted by residual signals, result-
ing from utilizing source separation techniques to extract
music stems from the mixture signals. However, prior
studies such as Heydari et al. (2023) have shown that
this effect is negligible, as evidenced by comparing their
model performance formusic pieceswith pure stems ver-
sus separated ones. Furthermore, comparisons of mod-
els in this paper are conducted on the same evaluation
dataset, making impacts of residual signals, if any, even
across all models.

5 CONCLUSION

This paper presents BeatNet+, a novel online rhythm
analysis model that significantly advances the state of
the art in real-time music rhythm analysis and pro-
vides state-of-the-art results. By incorporating an aux-
iliary branch regularization mechanism and employing
novel adaptation strategies, BeatNet+ demonstrates out-
standing performance across various music scenarios,
including generic music pieces, isolated singing voices,
and non-percussive audio tracks. Additionally, we release
the rhythmic annotations of MUSDB andURSing datasets,
enabling them to be utilized formusic rhythmanalysis, as
well as revised annotations of RWC Jazz, Pop and Royalty-
free along with this work.

6 REPRODUCIBILITY

We open-source the following: codes: https://github.com
/mjhydri/BeatNet-Plus; annotations: https://github.com/
mjhydri/BeatNet-Plus/tree/main/annotations.

NOTE

1. Syncopation: Irregular drum patterns created by accenting weak beats
commonly not emphasized, and by omitting or displacing notes, such
as downbeats and upbeats, in 4

4 meter. One drop: is a prominent drum
set rhythm in Reggae, differing from the typical backbeat by empha-
sizing the kick on beats 2 and 4 instead of 1 and 3. Steppers: follow the
“four on the floor” pattern, featuring the kick drum hitting on all four
downbeats in each measure. Rockers: a Reggae beat in which the kick
drum is on 1 and 3, while the snare is on beats 2 and 4 in 4

4 meter.
Swing feel: a specific type of syncopation that emphasizes the off-beat,
giving the music a bouncy, lively feel (Morena, 2021).
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