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Functional Electrical Stimulation (FES) can be an

effective tool to augment paretic muscle function and

restore normal ankle function. Our approach incorpo-

rates a real-time, data-driven Model Predictive Control

(MPC) scheme built upon a Koopman operator theory

(KOT) framework. This framework adeptly captures

the complex nonlinear dynamics of ankle motion in

a linearized form, enabling the application of linear

control approaches for highly nonlinear FES-actuated

dynamics. Our method accurately predicts the FES-

induced ankle movements, accounting for nonlinear mus-

cle actuation dynamics, including the muscle activation

for both plantarflexors and dorsiflexors (Tibialis Ante-

rior (TA)). The linear prediction model derived through

KOT allowed the formulation of the MPC problem with

linear state space dynamics, enhancing the FES-driven

control’s real-time feasibility, precision, and adaptability.

We demonstrate the effectiveness and applicability of

our approach through comprehensive simulations and

experimental trials, including three participants with

no disability and a participant with Multiple Sclerosis.

Our findings highlight the potential of a KOT-based

MPC approach for FES-based gait assistance that offers

effective and personalized assistance for individuals with

gait impairment conditions.

I. INTRODUCTION

Neurological conditions such as stroke, spinal cord injury

(SCI), cerebral palsy, and multiple sclerosis (MS) often

impair ankle function, necessitating specialized rehabilitation

interventions. Functional Electrical Stimulation (FES) can re-

store ankle function by eliciting artificial muscle contractions

in paralyzed plantarflexor and dorsiflexor muscles through

the application of noninvasive electrical stimulation, thereby

facilitating improved joint function [1].
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To effectuate a natural and efficient walking pattern, FES-

based ankle assistance requires accurate timing and modu-

lation of the stimulation input to the Gastrocnemius (GAS)

muscle for plantarflexion during the push-off phase and to

Tibialis Anterior (TA) for dorsiflexion during the swing phase

of the gait cycle. Various control strategies for ankle rehabil-

itation [2]–[4] demonstrate the effectiveness of FES in gait

rehabilitation. Gil-Castilo et al. [5] comprehensively review

FES based control methods for assisting ankle function.

Among contemporary control methodologies, Iterative

Learning Control (ILC) has been often used for FES-

based assistance to correct ankle condition, called drop-

foot [6]. ILC schemes are often model-free or rely on

linear time-invariant dynamics, simplifying implementation.

For instance, Seel et. al. [6] used ILC with six inertial

sensors to estimate ankle angles in post-stroke patients,

achieving rapid convergence but introducing discontinuities

by resetting control inputs after each gait cycle and requiring

substantial sensor data. Freeman et. al. [7] improved the

ILC design by developing a continuous repetitive control

scheme, eliminating reinitialization, reducing computational

burden, and enhancing trajectory tracking. Similarly, Jiang

et. al. [8] designed a framework for dorsiflexion assistance

using dual parameters to reduce stimulation intensity and

mitigate muscle fatigue. Müller et. al. [9] extended ILC to

assist both knee and ankle motion, showing adaptability for

individual stimulation patterns but requiring refinement to

address sensitivity to knee angle resets.

ILC-based FES designs, including those in [8] and [7],

are often developed under linear system assumptions without

explicitly addressing nonlinearities in muscle recruitment.

While these approaches have demonstrated impressive kine-

matic tracking for cyclical tasks of walking, their reliance

on linearized models leave room for exploring nonlinear

approaches, which can lead to better stimulation design,

mitigating its adverse effects. Nonlinear control of FES for

ankle control was demonstrated by Zhang et. al. [10], where

ultrasound-derived muscle activation was integrated into a

nonlinear model for drop foot correction. However, their state

feedback-based dynamic surface controller (DSC) lacked

optimization of a performance index and constraint handling

of FES input constraints, which may risk overstimulation and

rapid muscle fatigue.

Moreover, results on FES based gait assis-

tance/improvement presented in [6]–[10] have primarily



focused on drop foot correction. In these results, FES mainly

targets the TA muscle during the swing phase, foregoing

stimulation of plantarflexors, which are critical for push-off

[11]. Efficacy of FES stimuli to plantarflexor muscles has

been shown for correcting post-stroke gait deficits [3] and

improving walking after SCI [12]. It was noted in [3],

[11], that applying stimulation to both plantarflexors and

dorsiflexors results in improved gait that is closer to the

normal gait cycle in chronic stroke survivors. Despite the

evidence on the significance of FES-elicited plantarflexion,

closed-loop control of both FES-evoked plantarflexion and

dorsiflexion remains unexplored.

In this paper, we present a novel Koopman Model Pre-

dictive Control (KMPC) framework for Functional Electrical

Stimulation (FES)-based gait assistance, applying optimally

designed stimulation signals to both plantarflexor and dor-

siflexor muscles throughout the gait cycle. By employing

Koopman Operator Theory (KOT), we capture the system’s

nonlinearities through the linear evolution of lifted observable

functions of the states, facilitating the application of linear

control techniques for the MPC framework. We derive a

linear representation of the inherently nonlinear ankle dy-

namics, enabling real-time prediction and control of the full

gait cycle. The data-driven operator converts the nonlinear

ankle motion dynamics into linear dynamics, which eases

MPC formulation and real-time implementation [13]–[15].

The KMPC formulation performs optimal feedback control

in real-time, utilizing the Koopman-based FES actuated ankle

model to solve the moving horizon optimization problem

under FES stimulation input constraints.

For ankle assistance control, [16] used an MPC to design

optimal muscle excitation for the TA muscle for adequate

toe/foot clearance. While constraints on ankle and control

inputs were considered, a formal closed-loop stability and

control feasibility analysis were missing. As the effectiveness

of MPC depends on model accuracy, necessitating extensive

system identification, especially for complex neuromuscular

dynamics. Addressing nonlinear dynamics and constraints

can increase computational demands, posing challenges for

real-time implementation. To mitigate these issues, [17] used

a Koopman-based data-driven MPC control to calculate op-

timal FES stimulation for the TA muscle to correct drop

foot during the swing phase to avoid toe drag. In this

paper, we extend the data-driven MPC to design optimal

FES stimulation for ankle assistance for both plantarflexors

and dorsiflexors to provide assistance during a complete

gait cycle. To the best of our knowledge, this is the first

implementation of an FES-based optimal control strategy for

the gait cycle in real-time.

The paper is organized as follows – II describes the ankle

dorsiflexion and plantarflexion motion dynamics actuated

under FES. III discusses the overview of the Koopman-based

data-driven model of ankle dynamics and the subsequent

formulation of the MPC-based control synthesis problem in

Section IV. Experimental setup, simulation, and experiment

results are presented in V. VI includes a discussion on

experimental results and their comparison with existing FES-

based ankle assistance approaches, limitations of the KMPC

approach, and future directions.

II. ANKLE JOINT GAIT DYNAMICS

During a gait cycle, the ankle movement is modeled as

continuous dynamics within swing and stance phases with

a discrete transition event between the two phases. There-

fore, the ankle dynamics, modeled as a switched system to

accommodate for the transition, is given as

ÿ

JP 7̈ + fP
J (7, 7̇)

JD 7̈ + fD
J (7, 7̇)

�

=

(

'P + 'ext t ∈ tst

'D, t ∈ tsw
(1)

where the net torque about the ankle is defined as ' ζ =
gζJ(7, 7̇u

ζ) ∈ R, where ã = P,D represent the ankle dynam-

ics driven by ankle plantarflexors during the stance phase

and ankle dorsiflexors during the swing phase, respectively.

The net torque terms, gζJ(7, 7̇u
ζ), include the torque-angle

and torque-angular velocity terms, and and uζ ∈ R, which

is the FES modulated parameter (current, pulse width, or

frequency) applied on the GAS, and TA muscles [18]. During

the stance phase, the ankle torque is influenced not only by

muscle activations (modulated by uP ) but also by external

torque, 'ext = r(7)FGRF (t), due to an additional moment

arising from the ground reaction force (GRF) FGRF (t) acting

with a moment arm, r(7), from the ankle joint to the point

of application of the GRF.

The stance and swing phases are timed as tst :=
[tstart, tstance] and tsw := [tswing, tend], respectively. Jζ ∈

R
+ is the unknown inertia term of the foot along the

dorsiflexion and plantarflexion axis of rotation, and 7(t),
7̇(t), and 7̈(t) ∈ R denote the angular position, angular

velocity, and angular acceleration, respectively. fζ
J (7, 7̇) in

(1) is composed of the musculoskeletal viscosity torque term,

musculoskeletal elasticity, and the gravitational term. The

explicit definitions of the functions can be obtained from [18].

For each phase tst and tsw, we can rewrite the system

dynamics in (1), by selecting 71 = 7 and 72 = 7̇.The

equivalent state space representation for can be formulated

as

ẋa =

(

fP
a (xa) + gPa (xa, u

P , t) ∀ t ∈ tst

fD
a (xa) + gDa (xa, u

D) ∀ t ∈ tsw
(2)

where ẋa =
å

7̇1 7̇2
åT

, fζ
a (xa) ∈ R

2 are the system

dynamics, and gζa(xa, u
ζ) ∈ R

2 are the actuation dynamics.

We can now set up the optimal tracking problem by

defining a tracking error e(t) ∈ R
2, which is defined as

e = xa − xd, (3)

where xd ∈ R
2 is a bounded desired trajectory for the desired

position and velocity. It is assumed that xd and its first

derivative, ẋd = hd(xd) ∈ R
2, are Lipschitz continuous.

By defining an augmented state as x =
å

eT xT
d

åT
∈

R
3, the system dynamics can be written as

ẋ = fζ(x) + gζ(x, uζ), where the system matrices

fζ(x) and gζ(x, uζ) matrices become fζ(x) =
ÿ

fζ(e+ xd)− hd(xd)
hd(xd)

�

; gζ(x, uζ) =

ÿ

gζ(e+ xd)
0

�

.



Using zero order hold approximation the continuous-time

system above can be discretized and described as

xk+1 =

(

fP (xk) + gP (xk, u
P
k ) ∀ t ∈ tst

fD(xk) + gD(xk, u
D
k ) ∀ t ∈ tsw

(4)

We can define an indicator function �k based on the gait

phase time intervals for the stance and swing phases as

�k =

(

0 ∀ t ∈ tst

1 ∀ t ∈ tsw
, (5)

where the phase indicator �k takes the value 0 for the

stance phase and 1for the swing phase. Upon incorporating

the phase indicator the complete ankle motion dynamics

during a gait cycle can then be described as

xk+1 = (1− �k)
�

fP (xk) + gP (xk, u
P
k )

�

+�k

�

fD(xk) + gD(xk, u
D
k )

�

. (6)

Assumption 1: Based on human ankle kinematic data

[19], ankle position, velocity, and moment are continuous.

Therefore, at slow gait cycle speed, fζ(.) and gζ(.) are

assumed to be Lipschitz at the switching instant. We utilize

this assumption in subsequent sections to derive the linear

predictor model using Koopman operator. Switching criteria

for similar systems with continuous states, but discrete ac-

tuation have been considered in [20], where the switching

between different muscle groups is represented by their

respective actuation matrices which are bounded.

III. KOOPMAN-BASED MODEL PREDICTIVE CONTROL

This section provides the mathematical framework for

predicting the nonlinear ankle joint dynamics actuated by

FES using Koopman Operator Theory (KOT).

A. Prediction/Identification

We consider the dynamics in 4 where the controlled state

xk ∈ X , input uk ∈ Uare sampled to form a finite set, Nc.

The Koopman operator acts on a function space Fof mapping

from X into R, referred to as observables. The Koopman

operator, K, is an infinite-dimensional linear operator that

models the time-based evolution of a composite function

å(xk) ∈ R
∞, which act as the koopman observables,

forward in time. Koopman operators are parameterized by

xk, ukas follows

Kå(xk) = å(f(xk, uk)), å ∈ F (7)

where K maps observables to the original state space

dynamics in 4. A subspace is Koopman-invariant if

Kå ∈ F̄ , ∀å ∈ F̄ , ∀u ∈ U (8)

A dictionary of observables, � : X → R
N , is Koopman-

invariant if its elements span a Koopman-invariant subspace.

Since evaluation of the dictionary often involves “lifting”

of the original state vector to a higher dimensional space,

�(xk), which is commonly referred to as the lifted state.

�(xk) is composed of the original state themselves, or non-

linear functions of state that are Lipschitz continuous. The

extension to non-autonomous systems has been researched

extensively recently, see [13], [14], [21]. The extension to

non-autonomous system is given as

K(å(xk, uk)) = å(f(xk, uk), h(xk, uk)) ∀å ∈ F ,(9)

While this operator renders an infinite-dimensional system

and accurately describes a nonlinear system through a lin-

ear system, but is practically infeasible to implement. For

practical feasibility, the infinite-dimensional operator, K, is

approximated using a finite dimensional operator, defined as

K̃, which is calculated using the Extended Dynamic Mode

Decomposition (EDMD) [13].

To derive the Koopman operators for each phase, we

collect the time-series data snapshots of the state data as

{xk}
M
k=1

where xkrepresents the state at time step k, and

control input data as {uζ
k}

M
k=1

where uζ
krepresents the control

input at time step k during the stance and swing phases.

We define the lifted-space Koopman observable,

Ψk(x, u) ∈ R
P , to set up an EDMD problem to predict the

linear evolution of the Koopman observable vector using

Ψk+1(x, u) = K̃Ψk(x, u), (10)

where K̃ is the finite-dimensional Koopman operator which

maps the lifted-state observables forward in time. Using the

state and control time-series snapshots we populate the lifted-

space matrices, as

Dζ
k =

h

Ψ(x1, u
ζ
1) · · · Ψ(xM−1, u

ζ
M−1

)
i

Dζ
k+1

=
å

Ψ(x2, u
ζ
2) · · · Ψ(xM , uM )

å

where Dζ
k, Dζ

k+1 ∈ R
P×M ∀ k = 1, . . . ,M , are the

collected observable block snapshots from FES inputs and

IMU state measurements for each gait phase. The Koopman

observable vector dynamically evolves as

Dk+1 = K̃Dk, (11)

where Dk = Ψk(x, u) =
å

Ψx(xk) Ψu(uk)
åT

. To obtain the

control state and control flow maps in the lifted space, the

approximated Koopman operator,K̃ can be further subdivided

as

K̃ =

ÿ

K̃xx K̃xu

K̃ux K̃uu

�

, (12)

where K̃xx represents the influence of the state observ-

ables, Ψx(xk), on the future state observables, and K̃xu

represents the influence of the control observables, Ψu(uk),
on the future state observables. The terms K̃ux, K̃uu in 12

refers to mappings that evolve the observations on control

which are ignored here.



To determine the Koopman operator for each phase,

ã = {P − stance phase, D − swing phase}, we set up a

least-squares regression problem wherein the error difference

between the observed next step data Dk+1, and the prediction

from K̃ζDk, described as

K̃ζ = argmin
K̃

M−1
X

k=0

�

�

�

�

ÿ

Ψx(xk+1)
Ψu(uk+1)

�

−

ÿ

K̃ζ
xx K̃ζ

xu

K̃ζ
ux K̃ζ

uu

� ÿ

Ψx(xk)
Ψu(uk)

�
�

�

�

�

2

The least-squares solution for K̃ is given as

K̃ = FG†, (13)

where

F =
1

M

M−1
X

k=0

Dk+1D
T
k ,

G =
1

M

M−1
X

k=0

DkD
T
k , (14)

where pseudoinverse G† is utilized. Using the indicator

function in 5 and the phase-based Koopman operator, the

ankle motion dynamics during a complete gait cycle can then

be represented as

å

Ψx(xk+1)
å

= (1− �k)
å

K̃P
xx K̃P

xu

å å

Ψk(x, u
P )

å

+�k

å

K̃D
xx K̃D

xu

å å

Ψk(x, u
D)

å

(15)

To obtain the prediction dynamics for the original state

in (4), we compute the flow map between lifted-space

observables,Ψk(x, u) and original state dynamics, xk. We

redefine the state vector xk as zk to avoid any notational

confusion with (II). To recover zk, we can describe the

mapping between Koopman observable, Ψk(x, u), and zk as

zk = CΨk(x, u), where C ∈ R
3×P denotes the mapping. To

obtain C, we solve the following least-squares problem

argmin
C

M−1
X

k=0

1

2
||CΨk(x, u)− zk||

2. (16)

By solving (16), and plugging Ψk(x, u) = C−1zk into the

lifted-space flow map 10, we obtain the linear prediction

model for phase-based FES-driven ankle motion dynamics

during a complete gait cycle as

zk+1 = Ãζzk + B̃ζuζ
k, (17)

where

Ãζ = C̃K
ζ

xxC
−1; B̃ζ = CK̃ζ

xuC
−1. (18)

Figure 1. Prediction results - Plot shows the ankle motion prediction
during a gait cycle under test FES actuation for different observables
(states, custom, trigonometric). The dynamics approximated from (19)
are utilized to predict the approximate dynamics.

Figure 2. Comparison of actual and predicted (zk) ankle motion angles
using different embedding lengths (L) in the Koopman-based prediction
framework. The black solid line represents the actual ankle motion trajectory,
while the dashed lines correspond to predictions with embedding lengths
L = 1 (yellow), L = 8 (orange), and L = 50 (red). Increasing
the embedding length improves prediction accuracy, as evidenced by the
closer alignment of the L = 50 prediction with the actual trajectory. The
results highlight the importance of appropriate embedding length selection
in achieving accurate Koopman-based predictions.

Using the indicator function, �k, the combined state dy-

namics can be written as

zk+1 = (1− �k)
ã

ÃP zk + B̃PuP
k

;

+�k

ã

ÃDzk + B̃DuD
k

;

(19)

where zk =
å

eT xT
d

åT
∈ R

3 is the state vector.

AP , AD ∈ R
3×3,B1, B2 ∈ R

3×1 are the Koopman operator

based linear state space mappings, and uP
k , u

D
k ∈ R are the

FES control input vector for assisting ankle plantarflexion

and dorsiflexion during a gait cycle.

B. Koopman Observables

The choice of basis functions for constructing the dictio-

nary of observables significantly impacts the performance

of the Koopman operator [13]. Appropriate choice for basis

functions can be found in [22]. The accuracy of the Koopman

operator improves with the length, P , of the observable

vector, Ψk(x, u). As P → ∞, the Koopman operator,



Table I
ROOT MEAN SQUARE ERRORS (||x̃k||) AND STANDARD DEVIATION

(σ)FOR SELECTING APPROPRIATE DICTIONARY (DICT.). CUSTOM,
ORIGINAL STATE, TRIG. - TRIGONOMETRIC FUNCTIONS.

PF S1 A1 A2 A3

Dict. ||x̃k|| σ ||x̃k|| σ ||x̃k|| σ ||x̃k|| σ

Custom 5.6 2.1 6.5 2.8 6.2 2.4 5.9 2.1
State 14.7 3.7 10.8 3.7 11.3 4.2 9.8 3.4
Trig. 2.3 0.8 1.6 0.9 1.8 0.7 2.0 1.1

DF S1 A1 A2 A3

Dict. ||x̃k|| σ ||x̃k|| σ ||x̃k|| σ ||x̃k|| σ

Custom 6.9 2.3 4.3 1.8 5.2 2.7 5.7 2.3
State 23.3 4.9 17.6 6.7 11.3 5.4 14.4 5.1
Trig. 3.4 1.8 2.1 0.8 2.8 0.7 2.5 1.1

K̃, accurately describes linear prediction dynamics for the

original nonlinear system [23].

We set a prediction accuracy threshold, ||xk − zk||
2 ≤ ;,

for ; ≤ 0.5 RMSE for ankle motion during a gait cycle.

We achieved the threshold for P = 13. For the ankle assis-

tance control with state as joint angles - 7(t) and 7̇(t), our

Koopman observable library included a custom library: linear

terms - 71, 72, 7̇1,7̇2 , and nonlinear terms - sin(71), cos(71),
sin(72), cos(72),7

2
1 , 722 , 7172, 7̇17̇2. The choice of observable

is dictated by the ankle dynamics that exhibit nonlinear

effects due to muscle activation, phase transitions, and joint

stiffness. Observables like sin(7) and 72 can theoretically

capture such effects by approximating periodic and quadratic

relationships seen in ankle motion, respectively. Including

higher-order terms (e.g., 7̇2 , sin(7)) helps approximate the

nonlinearities associated with force-length and force-velocity

relationships in muscle dynamics.

Remark 1. (Koopman Invariance)

To maintain Koopman invariance, the observables should

be chosen to cover the system’s entire dynamic range,

while upholding Assumption 1. Theoretically, the observables

should be designed to provide a stable, controllable Koopman

linear system approximation. Also, to uphold Assumption 1,

we use the same set of observables for both stance and swing

phase.

C. Koopman Model Prediction Accuracy

Accuracy of K is tested with simulation results. Simulation

were performed by using the parameters from [18] with

different initial conditions to obtain the samples of actual

system trajectories. The dataset used to train the Koopman-

based MPC framework for gait rehabilitation was derived

from 150 gait cycles. Each gait cycle consists of 200
samples, with an even split between the stance and swing

phases to capture phase-specific dynamics. This sampling

approach resulted in a dataset with approximately 30, 000
samples. To construct the dataset, we first sample initial states

(x, ẋ, ufes) ∈ [25,−20]× [−2, 2]× [0, 50]. Here, x represents

the initial position, ẋ represents the initial velocity, and ufes

denotes the FES (Functional Electrical Stimulation) input

level. These ranges were chosen to account for variability

in patient gait patterns, the extent of ankle joint movement

during gait cycles. The control inputs were linearly varied

within the range of 0 to 30 mA. This ensured that the

dataset captured the system’s response to different stimulation

levels. A sampling frequency of 200 Hz was used. With the

generated dataset the Koopman operator was designed. Based

on the prediction dynamics, simulation results for a nominal

sinusoidal trajectory tracking of the ankle joint dynamics for

different observables are given in Fig. (1).

Another important criteria for prediction accuracy of K̃ζ

is the number of past states considered in the observables

referred as the embedding length.We considered different

sample ranges to compare the prediction accuracy of the ap-

proximated Koopman operator, K̃ζ , for different embedding

lengths. Prediction for sample ranges L = 1, 8, 50 are plotted

in Fig. (2).

IV. DATA-DRIVEN MODEL PREDICTIVE CONTROL

A. Koopman Model Predictive Control

Let the decision and state variables be defined as

zk = [ zi
k|k ... zi

k+N |k ]; (20)

uk = [ ui
k|k ... ui

k+N−1|k ], (21)

where the vectors zk,uk ∈ R
3, R are the state and control

vectors written in the standard MPC notation.. Using the

indicator function in (5), we can describe both the stance

and swing phase, timed as [Tstart, tstance] and [tswing, Tend],
linear prediction dynamics. The model predictive problem

can then be formulated as follows

min
up,ud

J(zk, uk|k) =

TU
X

i=1

l(.) + VTN
(22)

subject to

zk+1+j|k = (1− �k)
�

AP zk +BPuP
k

�

+ �k

�

ADzk +BDuD
k

�

(a)
(23)

zk|k ∈ 'ζ
χ, uk|k ∈ 'ζ

υ (b)

∆zk+TN
∈ 'χ+ , (c)

where l(.) = ||z̄Tk+1
||2Q1

+ (1 − �k)||u
PT

k+1
||2
Rζ +

�k||u
DT

k+1
||2
Rζ and VTN

= zTk+TU
Sζzk+TU

are the running

and terminal cost. TU is the prediction horizon. Based on the

indicator function, �k, TU represents the prediction horizon

for the gait intervals tst and tsw. The indicator function

during experiments is implemented based on ground reaction

forces (GRF) which is non-zero during the stance phase

and zero during the swing phase. The running cost, l(.), is

the performance measure penalizing the kinematic state and

control inputs considered over the control horizon, TU , for

both stance and swing phase. Q ∈ R
2×2 and R ∈ R are

positive definite weighting matrices penalizing the individual

states and control inputs and ensures l and V are positive

definite (PD) and radially unbounded (RU). Sζ ∈ R
2×2 is

the terminal cost weighting matrix. 'υ denotes the FES

stimulation bounds and 'χ denotes the set of the state



constraints. (As the current time step is fixed based on

the number of samples, zk will be used instead of zk|k
, and system matrices derived over M samples will be

denoted by Aζ , Bζ to simplify the notations). 'χ+ denotes

the terminal set defined to ensure that the state remains within

a stabilizable region at the end of the prediction horizon. Gait

phase based terminal weighting matrix

Sζ =

(

SP , if �k = 0

SD, if �k = 1
, (24)

is derived for both the stance and swing phase by solving the

discrete-time algebraic Riccati equation (DARE)

Sζ = K̃T
ζ

xxS
ζK̃ζ

xx

−K̃T
ζ

xxS
ζK̃ζ

xu(R+ K̃T
ζ

xuS
ζK̃ζ

xu)
−1K̃T

ζ

xuS
ζK̃ζ

x

+Q, (25)

where K̃ζ
xx, K̃

ζ
xu are obtained from the Koopman prediction

model. . We define the terminal set as 'χ+ = {z |
(zk+TU

)TSζzk+TU
≤ /},such that there exists a stabilizing

terminal control law, such as an LQR policy, where uζ
TN

=
á(zTN−1

) ∈ 'ζ
υ which ensures that the closed-loop stability

criteria, VTN+1 ≤ VTN
−(l(z̄TN

, '̄TN−1, �̄TN−1)), is satisfied

for the MPCA problem in 22. The set is parameterized by

/ which ensures that the terminal state remains bounded and

controllable.

V. EXPERIMENTAL RESULTS

A. Data Collection

The study was approved by the Institutional Review Board

(at North Carolina State University (IRB Protocol number:

20602).

Participants: Three able-bodied subjects (A1, A2, A3,

age: 27.4 ± 3.1 years, height: 1.73 ± 0.15 m, mass: 82.0 ±

7.1 kg) without any neuromuscular or orthopedic disorders

were recruited. One subject (S1, age: 62years, height 1.53 m,

mass: 49kg) with multiple sclerosis (MS) was recruited.

System ID task: For the data collection pertaining to

walking tasks, the experimental setup was designed to capture

the dynamics of gait on a treadmill. Both able-bodied and MS

subjects, designated as A1, A2, and A3, and S1, respectively,

walked at a controlled speed of 0.1m/s, 0.2m/s, and

0.3m/s , to accommodate the slow speed and no volition

of subject with Multiple Sclerosis (MS). This setup aimed

to collect comprehensive Inertial Measurement Unit (IMU)

data reflecting joint angles, as well as stimulation currents

(plantarflexion = 10 − 25mA, dorsiflexion = 10 − 20mA,

frequency = 33Hz) directed at the TA and GAS muscles.

The stimulation parameters, specifically the current and

frequency, were maintained consistently across trials, with

FES stimulation current as decision variable. This approach

allowed for the collection of detailed data on how varying

the control input influence the muscles’ response during

the walking task for accurate Koopman operator derivation.

Each subject underwent three trials for the first two sessions

to ensure a robust data set for accurate koopman operator

derivation.

Experimental protocol: A wearable sensing system,

based on [24], was used to measure the ankle joint kinemat-

ics. Along with measuring the ankle kinematics, IMU and

ground reaction forces (GRF) measurements were also used

for gait phase detection based on methods discussed in [25],

[6]. A real-time target machine (Speedgoat Inc., Liebefeld,

Switzerland) was used for experiments with integrated GRF,

IMU signals, and FES stimulation through MATLAB 2019b.
The data is sampled at a sampling frequency of 200 Hz.

The prediction horizon, TU , is selected based on the average

duration of a gait cycle of individuals, which was an average

of 2−4 seconds for the speeds 0.1m/s, 0.2m/s, and 0.3m/s.

A prediction horizon of 100− 200 ms were chosen.

To prevent muscle fatigue, particularly in the TA and

GAS muscle, sufficient rest periods were integrated into

the experimental protocol. The treadmill was equipped with

GRF sensors. GRF measurements enabled describing the

indicator function, �k which facilitates precise triggering of

the stance and swing phases’ FES stimulation. The data

garnered from these walking tasks, including IMU readings

of joint angles and FES stimulation details, were used to

populate the observable matrix.

B. Experiments & Results

The participants walked on a treadmill with FES applied

on on the TA and GAS muscles during the swing and stance

phases, respectively. The walking setup is illustrated in Fig.

(3). The FES electrodes were placed on the fibular head and

the lateral malleolus of the TA muscle. For plantarflexion, the

negative electrode is placed on the head of GAS muscle and

the positive electrode is placed above the Achilles tendon.

The DDMPC algorithm described in (22) computed FES

inputs to TA and GAS muscles. The switching between them

was implemented with ground reaction force based gait phase

detection indicator function, �k, to trigger stance and swing

optimal stimulation for plantarflexion and dorsiflexion. The

primary objective of these task was to avoid any foot drag

and achieve adequate foot clearance (pitch, 20deg > x1 >
−20deg.) for each gait cycle during the entire trial.

The real-time implementation was implemented in MAT-

LAB/Simulink (R2019b, MathWorks, MA, USA) and exe-

cuted on a Speedgoat target machine (Speedgoat Inc., Liebe-

feld, Switzerland). The Koopman Model Predictive Control

(MPC) was implemented using the Gradient-based Receding

Horizon Model Predictive Control (GRAMPC) solver [26].

The GRAMPC algorithm used a prediction horizon of 0.1
seconds and a sampling rate of 200 Hz. The solver uses a

gradient-based optimization approach, dynamically switch-

ing between controlling the tibialis anterior (TA) and GAS

muscles based on a GRF-based gait phase detection indicator

function.

The experiments were divided into 8 sessions where the

first 2 sessions were used to generate Koopman operator

characteristics. For implementing Koopman MPC, in each

session we conducted 4 trials each at speeds 0.1m/s, 0.2m/s,



Figure 3. The experimental setup DDMPC framework for FES-driven gait assistance are illustrated - . The participant walks on a treadmill equipped
with ground reaction force (GRF) sensors to detect gait phase transitions (stance and swing phases). FES electrodes are placed on the Gastrocnemius
(GAS) and Tibialis Anterior (TA) muscles to induce plantarflexion and dorsiflexion, respectively, with stimulation parameters set at f = 33 Hz, i = uk|k
mA. Kinematic data sensors record ankle motion dynamics, while the treadmill enables constant-speed walking. Phase-based data collection captures state
measurements (xk) and FES inputs (uk) during walking, dividing the gait cycle into stance and swing phases. The raw data is lifted to a higher-dimensional
space using Koopman observables, which capture nonlinear dynamics in a linear framework. The Koopman operator predicts the system dynamics via the
lifted representation: zk+1+j|k = (1 − σk)(A

P zk + BP uP
k
) + σk(A

Dzk + BDuD
k
), where σk distinguishes stance (σk = 0) and swing (σk = 1)

phases. The Koopman MPC optimizes FES inputs to minimize a task-specific performance measure while adhering to state and control constraints, enabling
real-time, phase-specific gait assistance. This framework effectively coordinates plantarflexion and dorsiflexion to support natural walking patterns.

and 0.3m/s, that is 12 trials in total per session. Each trial

was conducted with rest intervals of 5-7 minutes to recover

from muscle fatigue. In total, 4 trials each at 3 different

speeds across 3 sessions were conducted for each subject,

that is, 36 trials in total.

For each speed the first trial showed the best tracking

results. The mean trajectory tracking plots for both plan-

tarflexion and dorsiflexion for first trials across all speeds and

sessions are presented in Fig. (4) and the RMSE metrics are

presented in (II). The treadmill walking speeds in the current

study were selected as 0.1m/s, 0.2m/s, and 0.3m/s, due

to the targeted clinical population with little to no volition

in their affected leg. Successive trials across all sessions and

speeds showed a drop in trajectory tracking due to muscle

fatigue. Trajectory tracking showed consistent ankle plan-

tarflexion and dorsiflexion response actuated by FES using

Koopman MPC. We observe that FES input saturated only for

participant A3 but maintained good trajectory tracking. FES

input for TA muscle always remained within the prescribed

limits, which is an improvement to our past results presented

in [17] and shows the benefit of using gait-specific MPC

controller to design FES input ankle assistance during gait

constrain the inputs. Effect of FES-driven gait assist in

S1 is described in Fig. (7). Fig. (6) shows the trajectory

tracking results for a single gait cycle. For experiments,

the reference trajectory consists of set points representing

the adequate plantarflexion and dorsiflexion angles for the

stance, swing, and rest phases of the gait cycle (green dashed

line). The tracked trajectory (blue solid line) demonstrates

the controller’s ability to accurately follow these set points.

Subplot (left) illustrates the trajectory tracking performance,

while subplot (right) shows the corresponding control input

(red solid line) applied to achieve the tracking.

Remark 2. (Reference Trajectory for Slow Speed Walking)

The desired trajectories used in the experiments do not

strictly satisfy the Lipschitz continuity assumption on ve-

locity, but the slow gait speed ensures that the transition

between phases remains physically realizable. Moreover, the

ability of the Koopman-MPC framework to successfully

track these trajectories despite their high-velocity transitions

demonstrates the controller’s robustness in handling such

conditions. Walking at very slow speeds (0.1 to 0.2m/s) is

common for rehabilitation applications, hence the transition

between the stance and swing phases is assumed to be

smooth. In the experiments, the reference trajectory is defined

based on comfortable plantarflexion and dorsiflexion angles,

ensuring that the desired motion aligns with natural ankle

movements.



Figure 4. Trajectory tracking of ankle motion using DDMPC FES for subjects A1, A2, A3, and S1 (clockwise). The figure illustrates ankle motion
trajectory tracking performance when the muscles are fully rested. The tracking achieved in this condition demonstrates a Root Mean Square Error (RMSE)
of 1.625�, highlighting the system’s effectiveness in accurate control under optimal muscle conditions. Note, only absolute values of FES stimulation, u,
are provided for both phases.

Table II
MEAN AND SD VALUES OF ANKLE JOINT TRAJECTORY TRACKING FOR THE MEAN GAIT CYCLE FOR SUBJECTS FOR BOTH PLANTARFLEXION (LEFT)

AND DORSIFLEXION (RIGHT) FOR TRIAL 1 AT SPEEDS 0.1m/s, 0.2m/s, AND 0.3m/s ACROSS ALL SESSIONS. 12 TRIALS PER SPEED IN

TOTAL.(UNIT:°)

Speed 0.1 m/s 0.2 m/s 0.3 m/s

Participant Mean SD Mean SD Mean SD

S1 2.3 0.6 2.8 1.4 6.7 2.5

A1 1.7 0.7 2.0 1.1 2.8 1.1

A2 1.8 0.6 1.9 0.8 3.1 1.4

A3 1.5 0.8 2.3 1.2 3.5 1.6

Speed 0.1 m/s 0.2 m/s 0.3 m/s

Participant Mean SD Mean SD Mean SD

S1 1.4 0.4 2.2 0.8 4.7 1.3

A1 0.8 0.2 1.5 0.3 2.5 0.8

A2 0.9 0.3 1.9 0.3 1.9 1.1

A3 1.1 0.5 1.3 0.4 2.1 0.7

Table III
MEAN AND SD VALUES OF ANKLE JOINT TRAJECTORY TRACKING FOR

THE Walking Task FOR SUCCESSIVE TRIALS (TRIALS 2, 3 AND 4) FOR

SPEEDS 0.1m/s, 0.2m/s, AND 0.3m/s. 12 TRIALS PER SPEED PER

SESSION IN TOTAL.(UNIT:°)

Speed Trial 1 (0.1m/s) Trial 2(0.1) Trial 3(0.1)m/s

Participant Mean SD Mean SD Mean SD

S1 4.6 1.2 5.2 1.6 11.2 2.8

A1 2.3 1.3 2.8 1.6 2.6 1.5
A2 2.8 1.3 3.5 1.3 4.7 2.1
A3 3.2 1.7 4.2 2.4 4.5 2.6

VI. DISCUSSION

In this work, we used the KOT approach that can efficiently

linearize the nonlinear dynamics of human ankle allowing for

the application of a linear MPC strategy for both plantarflex-

ion and dorsiflexion control. This linearization facilitates the

formulation of the MPC problem as a real-time solvable

quadratic program. This approach also offers a high degree

of adaptability. By continuously incorporating new data, the

model can dynamically adjust to changes in the patient’s

gait, such as variations in walking speed. This makes the

system highly personalized, as it can cater to the specific

requirements and progress of each individual patient. This

approach is particularly suited to the complex neuromuscular

ankle motion dynamics as it accounts for human variability in

muscle response due to FES stimulations, but doesn’t actually

require the exact individual system parameters.

We hypothesize that incorporating volitional muscle activ-

ity should lead to optimal design of GAS and TA FES stim-

ulation levels which mitigate muscle fatigue effects which

is a future direction for this work. For S1, we observe that

swing phase is consistently of longer duration as compared

to able bodied subjects. Moreover, the trajectory tracking

performance deteriorated over time. This is as expected as



Figure 5. Ankle motion trajectory tracking results averaged over the final trial of each session for each participant A1, A2, A3, and S1 (clockwise).. The
figure illustrates trajectory tracking performance after 3–4 walking trials of 60 seconds each, reflecting the effects of muscle fatigue. The trajectory Root
Mean Square Error (RMSE) is 3.1�, indicating the onset of fatigue-induced deviations in tracking accuracy.

Figure 6. Comparison of the desired and tracked ankle pitch angle trajectories during a single gait cycle, achieved using a Koopman-based Model Predictive
Control (MPC) framework.



Figure 7. Comparison of gait performance for Subject S1 before and after using the FES-driven gait assist controller. A: Foot/toe drag observed prior
to FES application, where the subject was unable to sustain walking on a treadmill at the lowest speed of 0.1ms�1. B: No foot/toe drag observed after
applying the FES-driven controller, enabling sustained walking at treadmill speeds of 0.1, 0.2, 0.3ms�1. Annotations highlight the transition between
pre-FES and post-FES conditions and the effectiveness of the proposed controller in supporting walking performance.

there is no volition for S1 in their left ankle. We now intend

to combine a closed-loop ultrasound informed muscle activity

information, described in [10], in our data-driven optimal

FES control framework to improve trajectory tracking for

longer duration of walking and at higher speed.

A. Comparison with existing controllers

The table IV highlights the performance of the proposed

Koopman-MPC framework compared to ILC framework [6],

Iterative Timing Control [8], and Adaptive Control [10]

for FES-based gait assistance. Koopman-MPC achieves the

lowest trajectory tracking error (RMSE: 2–3°). Unlike previ-

ous controllers, which primarily focus on the swing phase,

Koopman-MPC provides assistance during both the stance

and swing phases, offering more comprehensive gait support

by facilitating both dorsiflexion for toe clearance and plan-

tarflexion for push-off. Moreover, while traditional methods

require cycle-by-cycle resetting, Koopman-MPC performs

continuous real-time optimization, ensuring greater adaptabil-

ity and stability. Additionally, Koopman-MPC allows for the

potential integration of physiological sensors (e.g., sEMG,

ultrasound) to enhance controller adaptability, whereas prior

approaches do not address this aspect, losing muscle activity-

based performance enhancement in FES design. Computa-

tional efficiency is maintained at 30 ms per cycle, making

it comparable to adaptive controllers while offering better

stimulation phase coverage and lower RMSE. Performance

metric can be adapted to incorporate physiological sensor to

account for muscle activity and potentially mitigating muscle

fatigue effects.

B. Limitations and Future Work

The Koopman operator framework provides a linear pre-

diction model for nonlinear dynamical systems, enabling

effective integration with Model Predictive Control (MPC).

However, it faces certain challenges, such as the need for

finite-dimensional approximations of an inherently infinite-

dimensional operator. The appropriate selection of observ-

ables that accurately capture the system’s dynamics remains

critical for achieving robust and precise predictions. Lim-

itations also arise in handling muscle fatigue and real-time

variability in neuromuscular behavior, particularly in dynamic

and repetitive tasks like gait rehabilitation. Future research

will aim to enhance the Koopman MPC framework by

integrating real-time feedback from physiological sensors,

such as surface electromyography (sEMG) and ultrasound, to

account for muscle activation and fatigue dynamics. Develop-

ing adaptive Koopman operator update laws that incorporate

this physiological data will improve the MPC controller’s

robustness and adaptability to changing muscle conditions.

Incorporating muscle fatigue models directly as observables

or leveraging real-time sensor feedback will enable dynamic

adjustments to stimulation strategies, mitigating fatigue ef-

fects during repetitive gait cycles.

Additionally, addressing stability challenges introduced

by switched dynamics between stance and swing phases—

especially at faster gait speeds—will require the development

of phase-specific stability laws based on minimum dwell

time based Lyapunov methods. Future directions also include

extending the Koopman MPC framework for multi-joint

control and exploring scalable solutions for higher degrees

of freedom.

VII. CONCLUSION

We developed a data-driven Model Predictive Control

(MPC) framework to assist with achieving the normal range

of ankle motion during gait. Our approach leverages Koop-

man Operator Theory (KOT) to transform the inherently com-

plex and nonlinear dynamics of FES-actuated ankle motion

into a linearized representation. This linearization enables

the application of efficient linear control techniques to a



Controller Koopman MPC ILC [6] Iterative Timing [8] DSC [10]

RMSE (�) 2− 8 4− 8 1− 7 5− 9
Performance based

optimization
Yes No No No

Ankle Model Koopman
Linear

Linear Linear Nonlinear

Stimulation Phase Stance
and

Swing

Swing Swing Swing

Real-Time Feasibility Continuous
real-time

optimization

Requires resetting
after each

cycle

Requires timing
resetting

Continuous
trajectory
tracking

Computational
Cost (ms per cycle)

30ms 20ms 50ms 30ms

Patient Population 4
(1 MS; 3 AB)

6
(6 - Post Stroke)

10
(10 - Drop Foot)

5
(5 - AB)

Table IV
PERFORMANCE COMPARISON BETWEEN PROPOSED KOOPMAN-MPC AND PAST CONTROLLERS - ILC, PID, ADAPTIVE - FOR FES-BASED ANKLE

JOINT FUNCTIONALITY IMPROVEMENT

highly nonlinear system. The linear prediction model derived

through KOT allowed us to formulate the MPC problem

as a quadratic program, significantly enhancing the real-

time feasibility, precision, and adaptability of the FES-driven

control system.

The effectiveness and stability of our approach were vali-

dated through experimental trials involving three participants

without disabilities and one participant with multiple sclero-

sis (MS). The results demonstrated precise trajectory tracking

assistance for the developed Koopman MPC controller. The

developed KOT-based MPC framework can be used to deliver

effective, real-time, and personalized assistance for individu-

als with gait-related impairments, including those caused by

MS, stroke, and incomplete spinal cord injury (SCI).
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