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Functional Electrical Stimulation (FES) can be an
effective tool to augment paretic muscle function and
restore normal ankle function. Our approach incorpo-
rates a real-time, data-driven Model Predictive Control
(MPC) scheme built upon a Koopman operator theory
(KOT) framework. This framework adeptly captures
the complex nonlinear dynamics of ankle motion in
a linearized form, enabling the application of linear
control approaches for highly nonlinear FES-actuated
dynamics. OQur method accurately predicts the FES-
induced ankle movements, accounting for nonlinear mus-
cle actuation dynamics, including the muscle activation
for both plantarflexors and dorsiflexors (Tibialis Ante-
rior (TA)). The linear prediction model derived through
KOT allowed the formulation of the MPC problem with
linear state space dynamics, enhancing the FES-driven
control’s real-time feasibility, precision, and adaptability.
We demonstrate the effectiveness and applicability of
our approach through comprehensive simulations and
experimental trials, including three participants with
no disability and a participant with Multiple Sclerosis.
Our findings highlight the potential of a KOT-based
MPC approach for FES-based gait assistance that offers
effective and personalized assistance for individuals with
gait impairment conditions.

I. INTRODUCTION

Neurological conditions such as stroke, spinal cord injury
(SCI), cerebral palsy, and multiple sclerosis (MS) often
impair ankle function, necessitating specialized rehabilitation
interventions. Functional Electrical Stimulation (FES) can re-
store ankle function by eliciting artificial muscle contractions
in paralyzed plantarflexor and dorsiflexor muscles through
the application of noninvasive electrical stimulation, thereby
facilitating improved joint function [1].
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To effectuate a natural and efficient walking pattern, FES-
based ankle assistance requires accurate timing and modu-
lation of the stimulation input to the Gastrocnemius (GAS)
muscle for plantarflexion during the push-off phase and to
Tibialis Anterior (TA) for dorsiflexion during the swing phase
of the gait cycle. Various control strategies for ankle rehabil-
itation [2]-[4] demonstrate the effectiveness of FES in gait
rehabilitation. Gil-Castilo et al. [5] comprehensively review
FES based control methods for assisting ankle function.

Among contemporary control methodologies, Iterative
Learning Control (ILC) has been often used for FES-
based assistance to correct ankle condition, called drop-
foot [6]. ILC schemes are often model-free or rely on
linear time-invariant dynamics, simplifying implementation.
For instance, Seel et. al. [6] used ILC with six inertial
sensors to estimate ankle angles in post-stroke patients,
achieving rapid convergence but introducing discontinuities
by resetting control inputs after each gait cycle and requiring
substantial sensor data. Freeman et. al. [7] improved the
ILC design by developing a continuous repetitive control
scheme, eliminating reinitialization, reducing computational
burden, and enhancing trajectory tracking. Similarly, Jiang
et. al. [8] designed a framework for dorsiflexion assistance
using dual parameters to reduce stimulation intensity and
mitigate muscle fatigue. Miiller et. al. [9] extended ILC to
assist both knee and ankle motion, showing adaptability for
individual stimulation patterns but requiring refinement to
address sensitivity to knee angle resets.

ILC-based FES designs, including those in [8] and [7],
are often developed under linear system assumptions without
explicitly addressing nonlinearities in muscle recruitment.
While these approaches have demonstrated impressive kine-
matic tracking for cyclical tasks of walking, their reliance
on linearized models leave room for exploring nonlinear
approaches, which can lead to better stimulation design,
mitigating its adverse effects. Nonlinear control of FES for
ankle control was demonstrated by Zhang et. al. [10], where
ultrasound-derived muscle activation was integrated into a
nonlinear model for drop foot correction. However, their state
feedback-based dynamic surface controller (DSC) lacked
optimization of a performance index and constraint handling
of FES input constraints, which may risk overstimulation and
rapid muscle fatigue.

Moreover, results on FES based gait assis-
tance/improvement presented in [6]-[10] have primarily



focused on drop foot correction. In these results, FES mainly
targets the TA muscle during the swing phase, foregoing
stimulation of plantarflexors, which are critical for push-off
[11]. Efficacy of FES stimuli to plantarflexor muscles has
been shown for correcting post-stroke gait deficits [3] and
improving walking after SCI [12]. It was noted in [3],
[11], that applying stimulation to both plantarflexors and
dorsiflexors results in improved gait that is closer to the
normal gait cycle in chronic stroke survivors. Despite the
evidence on the significance of FES-elicited plantarflexion,
closed-loop control of both FES-evoked plantarflexion and
dorsiflexion remains unexplored.

In this paper, we present a novel Koopman Model Pre-
dictive Control (KMPC) framework for Functional Electrical
Stimulation (FES)-based gait assistance, applying optimally
designed stimulation signals to both plantarflexor and dor-
siflexor muscles throughout the gait cycle. By employing
Koopman Operator Theory (KOT), we capture the system’s
nonlinearities through the linear evolution of lifted observable
functions of the states, facilitating the application of linear
control techniques for the MPC framework. We derive a
linear representation of the inherently nonlinear ankle dy-
namics, enabling real-time prediction and control of the full
gait cycle. The data-driven operator converts the nonlinear
ankle motion dynamics into linear dynamics, which eases
MPC formulation and real-time implementation [13]-[15].
The KMPC formulation performs optimal feedback control
in real-time, utilizing the Koopman-based FES actuated ankle
model to solve the moving horizon optimization problem
under FES stimulation input constraints.

For ankle assistance control, [16] used an MPC to design
optimal muscle excitation for the TA muscle for adequate
toe/foot clearance. While constraints on ankle and control
inputs were considered, a formal closed-loop stability and
control feasibility analysis were missing. As the effectiveness
of MPC depends on model accuracy, necessitating extensive
system identification, especially for complex neuromuscular
dynamics. Addressing nonlinear dynamics and constraints
can increase computational demands, posing challenges for
real-time implementation. To mitigate these issues, [17] used
a Koopman-based data-driven MPC control to calculate op-
timal FES stimulation for the TA muscle to correct drop
foot during the swing phase to avoid toe drag. In this
paper, we extend the data-driven MPC to design optimal
FES stimulation for ankle assistance for both plantarflexors
and dorsiflexors to provide assistance during a complete
gait cycle. To the best of our knowledge, this is the first
implementation of an FES-based optimal control strategy for
the gait cycle in real-time.

The paper is organized as follows — II describes the ankle
dorsiflexion and plantarflexion motion dynamics actuated
under FES. III discusses the overview of the Koopman-based
data-driven model of ankle dynamics and the subsequent
formulation of the MPC-based control synthesis problem in
Section IV. Experimental setup, simulation, and experiment
results are presented in V. VI includes a discussion on
experimental results and their comparison with existing FES-

based ankle assistance approaches, limitations of the KMPC
approach, and future directions.

II. ANKLE JOINT GAIT DYNAMICS

During a gait cycle, the ankle movement is modeled as
continuous dynamics within swing and stance phases with
a discrete transition event between the two phases. There-
fore, the ankle dynamics, modeled as a switched system to
accommodate for the transition, is given as
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where the net torque about the ankle is defined as 7¢ =
93(6, fu) € R, where ¢ = P, D represent the ankle dynam-
ics driven by ankle plantarflexors during the stance phase
and ankle dorsiflexors during the swing phase, respectively.
The net torque terms, g§(0,9u<), include the torque-angle
and torque-angular velocity terms, and and ¢ € R, which
is the FES modulated parameter (current, pulse width, or
frequency) applied on the GAS, and TA muscles [18]. During
the stance phase, the ankle torque is influenced not only by
muscle activations (modulated by u®) but also by external
torque, Text = 7(0)Fgrr(t), due to an additional moment
arising from the ground reaction force (GRF) Frp(t) acting
with a moment arm, r(6), from the ankle joint to the point
of application of the GRF.

The stance and swing phases are timed as tg =
[tstarts tstance) and tsw = [tswing, tend), TeSpectively. J¢ €
R* is the unknown inertia term of the foot along the
dorsiflexion and plantarflexion axis of rotation, and 6(t),
O(t), and 6(t) € R denote the angular position, angular
velocity, and angular acceleration, respectively. f§(0,9) in
(1) is composed of the musculoskeletal viscosity torque term,
musculoskeletal elasticity, and the gravitational term. The
explicit definitions of the functions can be obtained from [18].

For each phase t,; and tg,, we can rewrite the system
dynamics in (1), by selecting §; = 6 and 6; = 6.The
equivalent state space representation for can be formulated
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where @, = [ 0; 0, ]T, fS$(z,) € R? are the system

dynamics, and g$(z,,u¢) € R? are the actuation dynamics.
We can now set up the optimal tracking problem by
defining a tracking error e(t) € R?, which is defined as

e =2, — T4, 3)

where 24 € R? is a bounded desired trajectory for the desired
position and velocity. It is assumed that x4 and its first
derivative, 24 = hq(x4) € R?, are Lipschitz continuous.

. T
By defining an augmented state as x = [ el :EdT } €

R3, the system dynamics can be written as
@ = fS(x) + ¢°(z,u’), where the system matrices
fS(x) and ¢°(z,uS) matrices become fC(x) =
fele+za) — ha(wa) ‘(e +za)
d d\+Ld . gC(J? UC) _ g d
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Using zero order hold approximation the continuous-time
system above can be discretized and described as
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We can define an indicator function o} based on the gait
phase time intervals for the stance and swing phases as
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where the phase indicator oy takes the value 0 for the
stance phase and 1for the swing phase. Upon incorporating
the phase indicator the complete ankle motion dynamics
during a gait cycle can then be described as

Tpy1 = (1—on) (fp(l”k) + gp(xk,u,f,’))
+or (fP (xk) + 9" (xr,up)) - (6)

Assumption 1: Based on human ankle kinematic data
[19], ankle position, velocity, and moment are continuous.
Therefore, at slow gait cycle speed, f¢(.) and ¢¢(.) are
assumed to be Lipschitz at the switching instant. We utilize
this assumption in subsequent sections to derive the linear
predictor model using Koopman operator. Switching criteria
for similar systems with continuous states, but discrete ac-
tuation have been considered in [20], where the switching
between different muscle groups is represented by their
respective actuation matrices which are bounded.

III. KOOPMAN-BASED MODEL PREDICTIVE CONTROL

This section provides the mathematical framework for
predicting the nonlinear ankle joint dynamics actuated by
FES using Koopman Operator Theory (KOT).

A. Prediction/Identification

We consider the dynamics in 4 where the controlled state
zx € X, input uy € Uare sampled to form a finite set, N-.
The Koopman operator acts on a function space JFof mapping
from X into R, referred to as observables. The Koopman
operator, [, is an infinite-dimensional linear operator that
models the time-based evolution of a composite function
A(zg) € R, which act as the koopman observables,
forward in time. Koopman operators are parameterized by
Ty, uras follows

A(f(:vk,uk)), AeF (7)

where K maps observables to the original state space
dynamics in 4. A subspace is Koopman-invariant if

KA € F, VAeF,Yuel (8)

A dictionary of observables, y : X — RV, is Koopman-
invariant if its elements span a Koopman-invariant subspace.

Since evaluation of the dictionary often involves “lifting”
of the original state vector to a higher dimensional space,
X(xk), which is commonly referred to as the lifted state.
X(zx) is composed of the original state themselves, or non-
linear functions of state that are Lipschitz continuous. The
extension to non-autonomous systems has been researched
extensively recently, see [13], [14], [21]. The extension to
non-autonomous system is given as

K(A(xk,uk)) = A(f(ack,uk), h(xk,uk)) VA e ]:,(9)

While this operator renders an infinite-dimensional system
and accurately describes a nonlinear system through a lin-
ear system, but is practically infeasible to implement. For
practical feasibility, the infinite-dimensional operator, K, is
approximated using a finite dimensional operator, defined as
K, which is calculated using the Extended Dynamic Mode
Decomposition (EDMD) [13].

To derive the Koopman operators for each phase, we
collect the time-series data snapshots of the state data as
{xx 1| where xjrepresents the state at time step k, and
control input data as {ug}fe”:l where uirepresents the control
input at time step k during the stance and swing phases.

We define the lifted-space Koopman observable,
Uy (z,u) € RY, to set up an EDMD problem to predict the
linear evolution of the Koopman observable vector using

U1 (z,u) = K¥U(z,u), (10)

where K is the finite-dimensional Koopman operator which
maps the lifted-state observables forward in time. Using the
state and control time-series snapshots we populate the lifted-
space matrices, as

D = [wlud) o W)
Diyy [W(22,u$) U (2, unr))

where D¢y, D¢pyq € RPXM Vg = 1,..., M, are the
collected observable block snapshots from FES inputs and
IMU state measurements for each gait phase. The Koopman
observable vector dynamically evolves as

D1 = KDy, (11)

where Dy, = Uy (z,u) = [Vq (k) \Ilu(uk.)}T. To obtain the
control state and control flow maps in the lifted space, the
approximated Koopman operator,K can be further subdivided

as _ -
= K K
IC — |:~II ~l”IJ, , (12)
ICu:E ]C'M’LL
where I@m represents the influence of the state observ-
ables, W, (x), on the future state observables, and /.,
represents the influence of the control observables, W, (uy),
on the future state observables. The terms K., Ky, in 12
refers to mappings that evolve the observations on control
which are ignored here.



To determine the Koopman operator for each phase,
¢ = {P — stance phase, D — swing phase}, we set up a
least-squares regression problem wherein the error difference
between the observed next step data Dy, and the prediction
from K¢Dy, described as

) M—1
K¢ = argmin Z
k=0

M [l

2

(13)

where

(14)

where pseudoinverse G is utilized. Using the indicator
function in 5 and the phase-based Koopman operator, the
ankle motion dynamics during a complete gait cycle can then
be represented as

(o(z1)] = (L—ox) [KE, KL] [Wi(z,u")]

+o [KE, KB [Tr(z,uP)]  (15)

To obtain the prediction dynamics for the original state
in (4), we compute the flow map between lifted-space
observables, U (x,u) and original state dynamics, xi. We
redefine the state vector xj as zp to avoid any notational
confusion with (IT). To recover zp, we can describe the
mapping between Koopman observable, Uy (x, u), and zj, as
2, = OWy(z,u), where C' € R**Fdenotes the mapping. To
obtain C, we solve the following least-squares problem

M—-1

1
argmcin ; §||C’\I/k(x,u) — | %

(16)

By solving (16), and plugging ¥y, (z,u) = C 'z into the
lifted-space flow map 10, we obtain the linear prediction
model for phase-based FES-driven ankle motion dynamics
during a complete gait cycle as

i1 = Az + BNCUi, (17
where

A = CKkS.o7v BS=cKRS, 7l (18)
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Figure 1. Prediction results - Plot shows the ankle motion prediction
during a gait cycle under test FES actuation for different observables
(states, custom, trigonometric). The dynamics approximated from (19)
are utilized to predict the approximate dynamics.
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Figure 2. Comparison of actual and predicted (zx) ankle motion angles
using different embedding lengths (L) in the Koopman-based prediction
framework. The black solid line represents the actual ankle motion trajectory,
while the dashed lines correspond to predictions with embedding lengths
L = 1 (yellow), L = 8 (orange), and L = 50 (red). Increasing
the embedding length improves prediction accuracy, as evidenced by the
closer alignment of the L = 50 prediction with the actual trajectory. The
results highlight the importance of appropriate embedding length selection
in achieving accurate Koopman-based predictions.

Using the indicator function, oy, the combined state dy-
namics can be written as

Zkp1 = (1 —o) (Apzk + BPU,I:)

+or, (ADzk + BDukD> (19)

where z, = [ el =z} ]T € R3 is the state vector.
AP AP € R3*3 By, By € R®*! are the Koopman operator
based linear state space mappings, and u}, ul’ € R are the
FES control input vector for assisting ankle plantarflexion
and dorsiflexion during a gait cycle.

B. Koopman Observables

The choice of basis functions for constructing the dictio-
nary of observables significantly impacts the performance
of the Koopman operator [13]. Appropriate choice for basis
functions can be found in [22]. The accuracy of the Koopman
operator improves with the length, P, of the observable
vector, Uy(z,u). As P — oo, the Koopman operator,



Table 1
ROOT MEAN SQUARE ERRORS (||Z||) AND STANDARD DEVIATION
(0)FOR SELECTING APPROPRIATE DICTIONARY (DICT.). CUSTOM,
ORIGINAL STATE, TRIG. - TRIGONOMETRIC FUNCTIONS.

PF S1 Al A2 A3
Dict. | TGl o el o Tasll o Tadll o
Custom 5.6 2.1 6.5 2.8 . . 2.1
State 14.7 3.7 10.8 3.7 11.3 4.2 9.8 34
Trig. 2.3 0.8 1.6 0.9 1.8 0.7 2.0 1.1
DF S1 Al A2 A3
Dict. | ael o 1@l o Tasll o Tadll o
Custom 6.9 . . .
State 23.3 49 17.6 6.7 11.3 5.4 14.4 5.1
Trig. 34 1.8 2.1 0.8 2.8 0.7 2.5 1.1

K. accurately describes linear prediction dynamics for the
original nonlinear system [23].

We set a prediction accuracy threshold, ||z — 2x||? < 7,
for n < 0.5 RMSE for ankle motion during a gait cycle.
We achieved the threshold for P = 13. For the ankle assis-
tance control with state as joint angles - 6(¢) and 6(t), our
Koopman observable library included a custom library: linear
terms - 1, 05, 01,05 , and nonlinear terms - sin(6y), cos(61),
sin(6), cos(02),0%, 62, 6104, 6,05. The choice of observable
is dictated by the ankle dynamics that exhibit nonlinear
effects due to muscle activation, phase transitions, and joint
stiffness. Observables like sin(f) and 62 can theoretically
capture such effects by approximating periodic and quadratic
relationships seen in ankle motion, respectively. Including
higher-order terms (e.g., 02 sin(#)) helps approximate the
nonlinearities associated with force-length and force-velocity
relationships in muscle dynamics.

Remark 1. (Koopman Invariance)

To maintain Koopman invariance, the observables should
be chosen to cover the system’s entire dynamic range,
while upholding Assumption 1. Theoretically, the observables
should be designed to provide a stable, controllable Koopman
linear system approximation. Also, to uphold Assumption 1,
we use the same set of observables for both stance and swing
phase.

C. Koopman Model Prediction Accuracy

Accuracy of K is tested with simulation results. Simulation
were performed by using the parameters from [18] with
different initial conditions to obtain the samples of actual
system trajectories. The dataset used to train the Koopman-
based MPC framework for gait rehabilitation was derived
from 150 gait cycles. Each gait cycle consists of 200
samples, with an even split between the stance and swing
phases to capture phase-specific dynamics. This sampling
approach resulted in a dataset with approximately 30,000
samples. To construct the dataset, we first sample initial states
(@, &, ufpes) € [25,—20] x [—2,2] x [0, 50]. Here, x represents
the initial position, & represents the initial velocity, and u f¢s
denotes the FES (Functional Electrical Stimulation) input
level. These ranges were chosen to account for variability
in patient gait patterns, the extent of ankle joint movement
during gait cycles. The control inputs were linearly varied

within the range of 0 to 30 mA. This ensured that the
dataset captured the system’s response to different stimulation
levels. A sampling frequency of 200 Hz was used. With the
generated dataset the Koopman operator was designed. Based
on the prediction dynamics, simulation results for a nominal
sinusoidal trajectory tracking of the ankle joint dynamics for
different observables are given in Fig. (1).

Another important criteria for prediction accuracy of K¢
is the number of past states considered in the observables
referred as the embedding length.We considered different
sample ranges to compare the prediction accuracy of the ap-
proximated Koopman operator, K¢, for different embedding
lengths. Prediction for sample ranges L = 1, 8, 50 are plotted
in Fig. (2).

IV. DATA-DRIVEN MODEL PREDICTIVE CONTROL
A. Koopman Model Predictive Control
Let the decision and state variables be defined as
(20
(2D

2 = [ Zyg 2Nk 1

ug = [“?qk “2+N71\k ],

where the vectors zj, uy € R3, R are the state and control
vectors written in the standard MPC notation.. Using the
indicator function in (5), we can describe both the stance
and swing phase, timed as [Tstart, tstance] and [tswing, Tend)s
linear prediction dynamics. The model predictive problem
can then be formulated as follows

min
uP,ud

Ty
i=1

subject to
Zrrijie = (1 —ox) (AP 2, + BPu))
+ o (ADZk + BD'LLkD>

(23)
e € 025, gy € 2§ (b)
AzpyTy € 201, (¢)

where 1() = (Il + (1~ on)llufillhe +
ox[uPl |3 and Vi, = 2p 7, S 2ky, are the running
and terminal cost. Ty is the prediction horizon. Based on the
indicator function, oy, Ty represents the prediction horizon
for the gait intervals ¢4 and tg,. The indicator function
during experiments is implemented based on ground reaction
forces (GRF) which is non-zero during the stance phase
and zero during the swing phase. The running cost, I(.), is
the performance measure penalizing the kinematic state and
control inputs considered over the control horizon, 1y, for
both stance and swing phase. Q € R?>*2 and R € R are
positive definite weighting matrices penalizing the individual
states and control inputs and ensures [ and V are positive
definite (PD) and radially unbounded (RU). S¢ € R?*? is
the terminal cost weighting matrix. (2, denotes the FES
stimulation bounds and (2, denotes the set of the state



constraints. (As the current time step is fixed based on
the number of samples, z; will be used instead of z
, and system matrices derived over M samples will be
denoted by A, B¢ to simplify the notations). £2,+ denotes
the terminal set defined to ensure that the state remains within
a stabilizable region at the end of the prediction horizon. Gait
phase based terminal weighting matrix

SP,
5S¢ = {SD,

is derived for both the stance and swing phase by solving the
discrete-time algebraic Riccati equation (DARE)

N
op =0 (24)
lfO‘k:1

§¢ = KT k¢
KT 4 SR (R4 KT, SRS, ) KT, 5K
+Q, (25)
where Iégi, I@gu are obtained from the Koopman prediction
model. . We define the terminal set as §2,+ = {z |

(zk+TU)TSCzk+TU < e€},such that there exists a stabilizing
terminal control law, such as an LQR policy, where u%N =
7(27y_,) € £25 which ensures that the closed-loop stability
criteria, VTN+1 < VTN — (I(ETN s TTN—15 (ZETNfl)), is satisfied
for the MPCA problem in 22. The set is parameterized by
€ which ensures that the terminal state remains bounded and
controllable.

V. EXPERIMENTAL RESULTS
A. Data Collection

The study was approved by the Institutional Review Board
(at North Carolina State University (IRB Protocol number:
20602).

Participants: Three able-bodied subjects (Al, A2, A3,
age: 27.4 + 3.1 years, height: 1.73 + 0.15 m, mass: 82.0
7.1 kg) without any neuromuscular or orthopedic disorders
were recruited. One subject (S1, age: 62years, height 1.53 m,
mass: 49kg) with multiple sclerosis (MS) was recruited.

System ID task: For the data collection pertaining to
walking tasks, the experimental setup was designed to capture
the dynamics of gait on a treadmill. Both able-bodied and MS
subjects, designated as Al, A2, and A3, and S1, respectively,
walked at a controlled speed of 0.1m/s, 0.2m/s, and
0.3m/s , to accommodate the slow speed and no volition
of subject with Multiple Sclerosis (MS). This setup aimed
to collect comprehensive Inertial Measurement Unit (IMU)
data reflecting joint angles, as well as stimulation currents
(plantarflexion = 10 — 25mA, dorsiflexion = 10 — 20mA,
frequency = 33Hz) directed at the TA and GAS muscles.
The stimulation parameters, specifically the current and
frequency, were maintained consistently across trials, with
FES stimulation current as decision variable. This approach
allowed for the collection of detailed data on how varying
the control input influence the muscles’ response during
the walking task for accurate Koopman operator derivation.
Each subject underwent three trials for the first two sessions

to ensure a robust data set for accurate koopman operator
derivation.

Experimental protocol: A wearable sensing system,
based on [24], was used to measure the ankle joint kinemat-
ics. Along with measuring the ankle kinematics, IMU and
ground reaction forces (GRF) measurements were also used
for gait phase detection based on methods discussed in [25],
[6]. A real-time target machine (Speedgoat Inc., Liebefeld,
Switzerland) was used for experiments with integrated GRF,
IMU signals, and FES stimulation through MATLAB 2019b.
The data is sampled at a sampling frequency of 200 Hz.
The prediction horizon, Ty, is selected based on the average
duration of a gait cycle of individuals, which was an average
of 2—4 seconds for the speeds 0.1m/s, 0.2m/s, and 0.3m/s.
A prediction horizon of 100 — 200 ms were chosen.

To prevent muscle fatigue, particularly in the TA and
GAS muscle, sufficient rest periods were integrated into
the experimental protocol. The treadmill was equipped with
GRF sensors. GRF measurements enabled describing the
indicator function, o, which facilitates precise triggering of
the stance and swing phases’ FES stimulation. The data
garnered from these walking tasks, including IMU readings
of joint angles and FES stimulation details, were used to
populate the observable matrix.

B. Experiments & Results

The participants walked on a treadmill with FES applied
on on the TA and GAS muscles during the swing and stance
phases, respectively. The walking setup is illustrated in Fig.
(3). The FES electrodes were placed on the fibular head and
the lateral malleolus of the TA muscle. For plantarflexion, the
negative electrode is placed on the head of GAS muscle and
the positive electrode is placed above the Achilles tendon.
The DDMPC algorithm described in (22) computed FES
inputs to TA and GAS muscles. The switching between them
was implemented with ground reaction force based gait phase
detection indicator function, oy, to trigger stance and swing
optimal stimulation for plantarflexion and dorsiflexion. The
primary objective of these task was to avoid any foot drag
and achieve adequate foot clearance (pitch, 20deg > x; >
—20deg.) for each gait cycle during the entire trial.

The real-time implementation was implemented in MAT-
LAB/Simulink (R2019b, MathWorks, MA, USA) and exe-
cuted on a Speedgoat target machine (Speedgoat Inc., Liebe-
feld, Switzerland). The Koopman Model Predictive Control
(MPC) was implemented using the Gradient-based Receding
Horizon Model Predictive Control (GRAMPC) solver [26].
The GRAMPC algorithm used a prediction horizon of 0.1
seconds and a sampling rate of 200 Hz. The solver uses a
gradient-based optimization approach, dynamically switch-
ing between controlling the tibialis anterior (TA) and GAS
muscles based on a GRF-based gait phase detection indicator
function.

The experiments were divided into 8 sessions where the
first 2 sessions were used to generate Koopman operator
characteristics. For implementing Koopman MPC, in each
session we conducted 4 trials each at speeds 0.1m/s, 0.2m/s,
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Figure 3. The experimental setup DDMPC framework for FES-driven gait assistance are illustrated - . The participant walks on a treadmill equipped

with ground reaction force (GRF) sensors to detect gait phase transitions (stance and swing phases). FES electrodes are placed on the Gastrocnemius
(GAS) and Tibialis Anterior (TA) muscles to induce plantarflexion and dorsiflexion, respectively, with stimulation parameters set at f = 33 Hz, i = up,
mA. Kinematic data sensors record ankle motion dynamics, while the treadmill enables constant-speed walking. Phase-based data collection captures state
measurements (x) and FES inputs (uy) during walking, dividing the gait cycle into stance and swing phases. The raw data is lifted to a higher-dimensional
space using Koopman observables, which capture nonlinear dynamics in a linear framework. The Koopman operator predicts the system dynamics via the
lifted representation: 2j, 14|, = (1 — o) (AP 2z, + BP'u,kP) + 0, (AP 2y, + BDukD), where oy, distinguishes stance (o = 0) and swing (o, = 1)
phases. The Koopman MPC optimizes FES inputs to minimize a task-specific performance measure while adhering to state and control constraints, enabling

real-time, phase-specific gait assistance. This framework effectively coordinates plantarflexion and dorsiflexion to support natural walking patterns.

and 0.3m/s, that is 12 trials in total per session. Each trial
was conducted with rest intervals of 5-7 minutes to recover
from muscle fatigue. In total, 4 trials each at 3 different
speeds across 3 sessions were conducted for each subject,
that is, 36 trials in total.

For each speed the first trial showed the best tracking
results. The mean trajectory tracking plots for both plan-
tarflexion and dorsiflexion for first trials across all speeds and
sessions are presented in Fig. (4) and the RMSE metrics are
presented in (II). The treadmill walking speeds in the current
study were selected as 0.1m/s, 0.2m/s, and 0.3m/s, due
to the targeted clinical population with little to no volition
in their affected leg. Successive trials across all sessions and
speeds showed a drop in trajectory tracking due to muscle
fatigue.  Trajectory tracking showed consistent ankle plan-
tarflexion and dorsiflexion response actuated by FES using
Koopman MPC. We observe that FES input saturated only for
participant A3 but maintained good trajectory tracking. FES
input for TA muscle always remained within the prescribed
limits, which is an improvement to our past results presented
in [17] and shows the benefit of using gait-specific MPC
controller to design FES input ankle assistance during gait
constrain the inputs. Effect of FES-driven gait assist in
S1 is described in Fig. (7). Fig. (6) shows the trajectory

tracking results for a single gait cycle. For experiments,
the reference trajectory consists of set points representing
the adequate plantarflexion and dorsiflexion angles for the
stance, swing, and rest phases of the gait cycle (green dashed
line). The tracked trajectory (blue solid line) demonstrates
the controller’s ability to accurately follow these set points.
Subplot (left) illustrates the trajectory tracking performance,
while subplot (right) shows the corresponding control input
(red solid line) applied to achieve the tracking.

Remark 2. (Reference Trajectory for Slow Speed Walking)

The desired trajectories used in the experiments do not
strictly satisfy the Lipschitz continuity assumption on ve-
locity, but the slow gait speed ensures that the transition
between phases remains physically realizable. Moreover, the
ability of the Koopman-MPC framework to successfully
track these trajectories despite their high-velocity transitions
demonstrates the controller’s robustness in handling such
conditions. Walking at very slow speeds (0.1 to 0.2m/s) is
common for rehabilitation applications, hence the transition
between the stance and swing phases is assumed to be
smooth. In the experiments, the reference trajectory is defined
based on comfortable plantarflexion and dorsiflexion angles,
ensuring that the desired motion aligns with natural ankle
movements.
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bjects Al, A2, A3, and S1 (clockwise). The figure illustrates ankle motion

trajectory tracking performance when the muscles are fully rested. The tracking achieved in this condition demonstrates a Root Mean Square Error (RMSE)

of 1.625°, highlighting the system’s effectiveness in accurate control under
are provided for both phases.

optimal muscle conditions. Note, only absolute values of FES stimulation, u,

Table IT
MEAN AND SD VALUES OF ANKLE JOINT TRAJECTORY TRACKING FOR THE MEAN GAIT CYCLE FOR SUBJECTS FOR BOTH PLANTARFLEXION (LEFT)
AND DORSIFLEXION (RIGHT) FOR TRIAL 1 AT SPEEDS 0.1m/s, 0.2m/s, AND 0.3m /s ACROSS ALL SESSIONS. 12 TRIALS PER SPEED IN
TOTAL.(UNIT:®)

Speed 0.1 m/s 0.2 m/s 0.3 m/s Speed 0.1 m/s 0.2 m/s 0.3 m/s
Participant | Mean SD Mean SD Mean SD  Participant | Mean SD Mean SD Mean SD
S1 2.3 0.6 2.8 1.4 6.7 2.5 S1 14 0.4 2.2 0.8 4.7 1.3
Al 1.7 0.7 2.0 1.1 2.8 1.1 Al 0.8 0.2 1.5 0.3 2.5 0.8
A2 1.8 0.6 1.9 0.8 3.1 14 A2 0.9 0.3 1.9 0.3 1.9 1.1
A3 1.5 0.8 2.3 1.2 3.5 1.6 A3 1.1 0.5 1.3 0.4 2.1 0.7
Table IIT

MEAN AND SD VALUES OF ANKLE JOINT TRAJECTORY TRACKING FOR
THE Walking Task FOR SUCCESSIVE TRIALS (TRIALS 2, 3 AND 4) FOR
SPEEDS 0.1m/s, 0.2m/s, AND 0.3m/s. 12 TRIALS PER SPEED PER
SESSION IN TOTAL.(UNIT:®)

Speed Trial 1 (0.1m/s) Trial 2(0.1) Trial 3(0.1)m/s
Participant | Mean SD Mean SD  Mean SD
S1 4.6 1.2 5.2 1.6 11.2 2.8
Al 23 1.3 2.8 1.6 2.6 1.5
A2 2.8 1.3 35 1.3 4.7 2.1
A3 3.2 1.7 42 2.4 4.5 2.6

VI. DISCUSSION

In this work, we used the KOT approach that can efficiently
linearize the nonlinear dynamics of human ankle allowing for
the application of a linear MPC strategy for both plantarflex-
ion and dorsiflexion control. This linearization facilitates the
formulation of the MPC problem as a real-time solvable

quadratic program. This approach also offers a high degree
of adaptability. By continuously incorporating new data, the
model can dynamically adjust to changes in the patient’s
gait, such as variations in walking speed. This makes the
system highly personalized, as it can cater to the specific
requirements and progress of each individual patient. This
approach is particularly suited to the complex neuromuscular
ankle motion dynamics as it accounts for human variability in
muscle response due to FES stimulations, but doesn’t actually
require the exact individual system parameters.

We hypothesize that incorporating volitional muscle activ-
ity should lead to optimal design of GAS and TA FES stim-
ulation levels which mitigate muscle fatigue effects which
is a future direction for this work. For S1, we observe that
swing phase is consistently of longer duration as compared
to able bodied subjects. Moreover, the trajectory tracking
performance deteriorated over time. This is as expected as
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Figure 5. Ankle motion trajectory tracking results averaged over the final trial of each session for each participant Al, A2, A3, and S1 (clockwise).. The
figure illustrates trajectory tracking performance after 3—4 walking trials of 60 seconds each, reflecting the effects of muscle fatigue. The trajectory Root
Mean Square Error (RMSE) is 3.1°, indicating the onset of fatigue-induced deviations in tracking accuracy.
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Figure 6. Comparison of the desired and tracked ankle pitch angle trajectories during a single gait cycle, achieved using a Koopman-based Model Predictive
Control (MPC) framework.
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Figure 7. Comparison of gait performance for Subject S1 before and after using the FES-driven gait assist controller. A: Foot/toe drag observed prior
to FES application, where the subject was unable to sustain walking on a treadmill at the lowest speed of 0.1 ms—'. B: No foot/toe drag observed after
applying the FES-driven controller, enabling sustained walking at treadmill speeds of 0.1, 0.2, 0.3 ms™!. Annotations highlight the transition between
pre-FES and post-FES conditions and the effectiveness of the proposed controller in supporting walking performance.

there is no volition for S1 in their left ankle. We now intend
to combine a closed-loop ultrasound informed muscle activity
information, described in [10], in our data-driven optimal
FES control framework to improve trajectory tracking for
longer duration of walking and at higher speed.

A. Comparison with existing controllers

The table IV highlights the performance of the proposed
Koopman-MPC framework compared to ILC framework [6],
Iterative Timing Control [8], and Adaptive Control [10]
for FES-based gait assistance. Koopman-MPC achieves the
lowest trajectory tracking error (RMSE: 2-3°). Unlike previ-
ous controllers, which primarily focus on the swing phase,
Koopman-MPC provides assistance during both the stance
and swing phases, offering more comprehensive gait support
by facilitating both dorsiflexion for toe clearance and plan-
tarflexion for push-off. Moreover, while traditional methods
require cycle-by-cycle resetting, Koopman-MPC performs
continuous real-time optimization, ensuring greater adaptabil-
ity and stability. Additionally, Koopman-MPC allows for the
potential integration of physiological sensors (e.g., SEMG,
ultrasound) to enhance controller adaptability, whereas prior
approaches do not address this aspect, losing muscle activity-
based performance enhancement in FES design. Computa-
tional efficiency is maintained at 30 ms per cycle, making
it comparable to adaptive controllers while offering better
stimulation phase coverage and lower RMSE. Performance
metric can be adapted to incorporate physiological sensor to
account for muscle activity and potentially mitigating muscle
fatigue effects.

B. Limitations and Future Work

The Koopman operator framework provides a linear pre-
diction model for nonlinear dynamical systems, enabling
effective integration with Model Predictive Control (MPC).

However, it faces certain challenges, such as the need for
finite-dimensional approximations of an inherently infinite-
dimensional operator. The appropriate selection of observ-
ables that accurately capture the system’s dynamics remains
critical for achieving robust and precise predictions. Lim-
itations also arise in handling muscle fatigue and real-time
variability in neuromuscular behavior, particularly in dynamic
and repetitive tasks like gait rehabilitation. Future research
will aim to enhance the Koopman MPC framework by
integrating real-time feedback from physiological sensors,
such as surface electromyography (SEMG) and ultrasound, to
account for muscle activation and fatigue dynamics. Develop-
ing adaptive Koopman operator update laws that incorporate
this physiological data will improve the MPC controller’s
robustness and adaptability to changing muscle conditions.
Incorporating muscle fatigue models directly as observables
or leveraging real-time sensor feedback will enable dynamic
adjustments to stimulation strategies, mitigating fatigue ef-
fects during repetitive gait cycles.

Additionally, addressing stability challenges introduced
by switched dynamics between stance and swing phases—
especially at faster gait speeds—will require the development
of phase-specific stability laws based on minimum dwell
time based Lyapunov methods. Future directions also include
extending the Koopman MPC framework for multi-joint
control and exploring scalable solutions for higher degrees
of freedom.

VII. CONCLUSION

We developed a data-driven Model Predictive Control
(MPC) framework to assist with achieving the normal range
of ankle motion during gait. Our approach leverages Koop-
man Operator Theory (KOT) to transform the inherently com-
plex and nonlinear dynamics of FES-actuated ankle motion
into a linearized representation. This linearization enables
the application of efficient linear control techniques to a



[ Controller | Koopman MPC | ILC [6] [ Tterative Timing [8§] | DSC [10] |
RMSE (°) 2—-8 4—-38 1-7 5—-9
Performance based Yes No No No
optimization
Ankle Model Koopman Linear Linear Nonlinear
Linear
Stimulation Phase Stance Swing Swing Swing
and
Swing
Real-Time Feasibility Continuous Requires resetting Requires timing Continuous
real-time after each resetting trajectory
optimization cycle tracking
Computational 30ms 20ms 50ms 30ms
Cost (ms per cycle)
Patient Population 4 6 10 5
(1 MS; 3 AB) (6 - Post Stroke) (10 - Drop Foot) (5 - AB)

Table IV
PERFORMANCE COMPARISON BETWEEN PROPOSED KOOPMAN-MPC AND PAST CONTROLLERS - ILC, PID, ADAPTIVE - FOR FES-BASED ANKLE
JOINT FUNCTIONALITY IMPROVEMENT

highly nonlinear system. The linear prediction model derived
through KOT allowed us to formulate the MPC problem
as a quadratic program, significantly enhancing the real-
time feasibility, precision, and adaptability of the FES-driven
control system.

The effectiveness and stability of our approach were vali-
dated through experimental trials involving three participants
without disabilities and one participant with multiple sclero-
sis (MS). The results demonstrated precise trajectory tracking
assistance for the developed Koopman MPC controller. The
developed KOT-based MPC framework can be used to deliver
effective, real-time, and personalized assistance for individu-
als with gait-related impairments, including those caused by
MS, stroke, and incomplete spinal cord injury (SCI).
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