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Abstract

Rivers efficiently collect, process, and transport terrestrial-derived carbon. River ecosystem metabolism is the
primary mechanism for processing carbon. Diel cycles of dissolved oxygen (DO) have been used for decades to
infer river ecosystem metabolic rates, which are routinely used to predict metabolism of carbon dioxide (CO,)
with uncertainties of the assumed stoichiometry ranging by a factor of 4. Dissolved inorganic carbon (DIC) has
been less used to directly infer metabolism because it is more difficult to quantify, involves the complexity of
inorganic carbon speciation, and as shown in this study, likely requires a two-station approach. Here, we devel-
oped DIC metabolism models using single- and two-station approaches. We compared metabolism estimates
based on simultaneous DO and DIC monitoring in the Upper Clark Fork River (USA), which also allowed us to
estimate ecosystem-level photosynthetic and respiratory quotients (PQg and RQg). We observed that metabolism
estimates from DIC varied more between single- and two-station approaches than estimates from DO. Due to
carbonate buffering, CO, is slower to equilibrate with the atmosphere compared to DO, likely incorporating a
longer distance of upstream heterogeneity. Reach-averaged PQg ranged from 1.5 to 2.0, while RQg ranged from
0.8 to 1.5. Gross primary production from DO was larger than that from DIC, as was net ecosystem production
by 100 mmol m~2 d~'. The river was autotrophic based on DO but heterotrophic based on DIC, complicating
our understanding of how metabolism regulated CO, production. We suggest future studies simultaneously

model metabolism from DO and DIC to understand carbon processing in rivers.

The transport and processing of dissolved inorganic carbon
(DIC) in rivers and streams are considerably an important
parts of the global carbon cycle. DIC comprises dissolved CO5,
bicarbonate (HCOj) ions, and carbonate ions (CO3") that are
in chemical equilibrium in water (Fig. 1). Dissolved CO, is the
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gaseous form that exchanges with the atmosphere and is thus
often quantified as the partial pressure of CO, (pCO,) to allow
direct comparisons with atmospheric equilibration. Rivers and
streams (hereafter, rivers) provide a pathway for efficient
export of DIC through atmospheric CO, emissions (Butman
and Raymond 2011; Raymond et al. 2013; Lauerwald
et al. 2015) and downstream flow to the coastal oceans. River-
ine DIC originates mostly from DIC in groundwater inflows
and aquatic ecosystem respiration of terrestrially derived
organic matter (Cole et al. 2007; Butman et al. 2016; Drake
et al. 2018). The relative contributions of these processes
greatly vary between and within rivers (Hotchkiss et al. 2015),
and our ability to model and predict DIC fluxes remains lim-
ited (Battin et al. 2023).

Gross primary production (GPP) and ecosystem respiration
(ER) in river ecosystems have a strong influence on DIC
dynamics, but these processes are usually estimated from
diel cycles of dissolved oxygen (DO) concentrations
(i.e., Odum 1956; Demars et al. 2015). The widespread use of
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O, is primarily due to early advances in DO sensors (Lan-
gdon 1984) and the availability of modeling methods to esti-
mate metabolism from DO data (i.e., Grace et al. 2015; Payn
et al. 2017; Appling et al. 2018). Connecting DO metabolism
and DIC cycling relies on converting fluxes of DO to DIC by
characterizing the whole-ecosystem metabolic photosynthetic
quotient (PQg) (Trentman et al. 2023) and respiration quotient
(RQg) (Berggren et al. 2012) (Fig. 1). We differentiate PQg from
the biochemical photosynthetic quotient (PQ), and RQg from
the biochemical respiration quotient (RQ) to acknowledge the
additional physical and biological ecosystem processes that
may greatly alter observed stoichiometric behavior from their
cellular-level biochemical controls. Current efforts mostly use
fixed values of PQg and RQg that are based on biochemical
assumptions or generalizations of PQ and RQ (Trentman
et al. 2023). PQg and RQg were assumed to be 1 in Rocher-Ros
et al. (2020) and the Redfield ratio of 138:106 in Gomez-Gener
et al. (2016).

Many ecosystem processes can decouple fundamental bio-
chemical stoichiometric links between DO and DIC, causing
the disparities between PQg and PQ, or RQg and RQ. For
example, bubbling of DO from the sediments (ebullition) can
contribute up to 20% of DO loss (Howard et al. 2018) without
an equivalent loss of CO, because DO is less soluble in water
than CO, and more likely to form bubbles. Similarly, nitrifica-
tion can consume DO with a much smaller relative change in
CO, (Pathak et al. 2022). In contrast, calcite precipitation
releases CO; (Stets et al. 2009) without change in DO. DO
models for inferring GPP and ER cannot distinguish each pro-
cess that contributes to the differential variability of DO and
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Fig. 1. A conceptual diagram showing biogeochemical cycling of CO,
and DO (Oy) in alkaline rivers. CO; is one of the components in the total
DIC pool, while HCO3 accounts for the majority under most conditions.
Due to the DIC speciation, CO, saturation gradient and air-water fluxes
are less than those of DO. DIC is used to accurately compute carbon mass
balances. In the simplest possible scenario, ecosystem-level photosyn-
thetic and respiration quotients (PQg and RQg) stoichiometrically link
changes in DIC and DO. Aqueous CO; and its hydrated form H,CO; are
not differentiated, and are combined as CO,. Bubbles in the figure only
represent the relative magnitude of gas flux and do not indicate the for-
mation of bubbles. DIC, dissolved inorganic carbon; DO, dissolved
oxygen.
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DIC. Empirical measurements, such as isotopic methods
(Carvalho 2014), could provide ecosystem-level values, but
cannot capture their potential variability over time (Berggren
et al. 2012; Trentman et al. 2023). These other ecosystem pro-
cesses jointly make it difficult to predict the PQg and RQg.
Ultimately, we need a better understanding of the processes
that control DIC cycling in rivers, which requires coupling
time series measurements of DIC with models of inorganic
carbon dynamics.

GPP and ER can be estimated from diel cycles of DIC after
accounting for CO, equilibration with atmosphere. Develop-
ment of models for DIC has been slower than for DO, how-
ever, likely due to the added complexity of inorganic carbon
equilibria and lack of accurate, inexpensive, and easy to use in
situ pCO, sensors. DIC models must account for CO, equilib-
ria with HCO3 and COj~ within the DIC pool, that is, carbon-
ate buffering (Fig. 1). Many models have used CO, (pCO,
converted to CO, using Henry’s law constant) directly without
accounting for the CO, equilibria (Wright and Mills 1967;
Wolf and Olson 1974; Crawford et al. 2014), which neglects
that fact that HCO; is the dominant DIC species in
circumneutral to alkaline rivers (Stets et al. 2017).

DIC metabolism models can be derived using the single-
station (Kelly et al. 1983; Lynch et al. 2010) or two-station
methods (Pennington et al. 2018), analogous to common
practices with inferential DO models (Demars et al. 2015). Ide-
ally for the single-station approach, the upstream reach
should approximately follow the same diel pattern as mea-
sured at the sensor site. This behavior is more likely to be
observed for DO because of its relatively rapid equilibration
with the atmosphere, such that any heterogeneous process,
for example, a tributary input, is erased over a relatively short
reach. The reach length has been proposed to be estimated
using 3v/Kpo (v, flow velocity; Kpo, gas exchange rate coeffi-
cient) (Reichert et al. 2009) which is the distance required for
erasing 95% of upstream metabolic fluxes of DO. CO, gas
exchange takes much longer to erase the upstream influence
of metabolism on DIC, however, because the majority of DIC
is in the form of HCOj that buffers the effect of gas exchange
on the rate of return to a CO, saturation state (Stets
et al. 2017) (Fig. 1). The low equilibration rate with the atmo-
sphere for DIC relative to DO suggests that the river “remem-
bers” upstream variation in DIC over a much longer reach
than that of DO, thereby preventing DO and DIC single-
station models from representing the metabolic effects of the
same reach. Two-station approaches can alleviate this problem
because the influencing reach is explicitly defined by the two
sensor locations (Hensley and Cohen 2016). The changes in
DO or DIC in parcels of water as they pass between two mea-
surement stations are calculated using the travel time. For a
particular river section, the shorter time for DO to reach air-
water equilibrium makes single- and two-station DO models
generally agree unless a large discontinuity (e.g., dam or tribu-
tary) exists (Hall and Hotchkiss 2017). However, metabolism

2212

ASULOI'T SUOWWO)) dA1Ear)) d[qearjdde ay) Aq pPauIoA0S oIk SA[OIIE V() 2SN JO SO[NI 10§ AIRIQIT SUIUQ) AJ[IAN UO (SUONIPUOD-PUB-SULI)/ W0’ AA]1m KTRIqI[aur[uo//:sdyy) SuonIpuo)) pue suid [ 3y 23S [670z/10/0€] uo Areiqr auruQ L3[1pn ‘99971 0uf/z001 0 1/10p/wod"KafimKreiqrjaurjuo sqndoyse;/:sdny woiy papeojumo ‘6 ‘v70T ‘065661



Shangguan et al.

estimates from the single-station DIC model could be
influenced by the river processes well upstream of monitoring
stations, which should be evaluated by comparing with esti-
mates from the two-station DIC model.

Here, we explore how riverine metabolism estimated from
DIC and DO differ. We hypothesized that the difference
between DIC and DO metabolism is reflected by deviation of
PQg from PQ, or RQg from RQ because multiple processes
occur concomitantly that have different stoichiometries
decoupling DIC and DO. Quantifying the difference should be
aided by two-station modeling of both DIC and DO. We
therefore (1) developed new DIC models that are based upon
high-frequency time series of pCO, and account for carbonate
buffering; (2) examined model capabilities of recovering
parameters with simulated data; (3) tested modeling methods
by comparing single- and two-station model fits and metabo-
lism estimates in a mid-order river at three reaches; (4) exam-
ined relationships (PQg, RQg) between two-station DO and
DIC metabolism; (5) used the two-station model to evaluate
the relationship between both DO and DIC metabolism and
CO, emissions.

Methods

Site descriptions

We deployed sensors in reaches along a 216-km section of
the Upper Clark Fork River (Fig. 2a). The section of the river is a
mid-order, open-canopied channel with several tributaries from
mountainous headwaters that greatly contribute to the total
discharge. The river is the site of extensive remediation due to
contamination of floodplain sediments by the redistribution of
mining byproducts from a major flood (Moore and
Langner 2012). The filamentous green algae, Claudophora
glomerata, blooms on the cobble riverbed. Benthic algal chloro-
phyll a can routinely exceed 100 mg m~2, motivating develop-
ment of strategies to manage eutrophication by reducing
external nutrient loading (Dodds et al. 1997; Suplee et al. 2012).

This study focused on three reaches: Garrison, Jens, and
Milltown, which are 45, 90, and 200 km from the river’s ori-
gin, respectively (Fig. 2a; Supporting Information Table S1;
Fig. S1). We selected sites to avoid reaches with substantial net
gains from groundwater and surface tributary inputs. In 2020,
sensors were deployed at three sites along Garrison starting
~ 4 km downstream from the Deer Lodge waste water treat-
ment plant (WWTP) and ~ 11 km downstream from the town
of Deer Lodge (Fig. 2b; Supporting Information Fig. S1). We
refer to these sites as “up,” “mid,” and “down” relative to river
flow, and use a hyphen to denote reaches for two-station
models, for example, up-mid indicates the reach from
upstream to middle sites. The distance was ~ 7 km for up-
down, and ~3km for up-mid. In 2019, sensors were
deployed at two sites (up and down) separated by ~ 6 km
along Jens (Fig. 2c¢; Supporting Information Fig. S1). Two
deployments were performed in Milltown in September and
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December, 1999, before the Milltown Dam was removed
(Fig. 2d; Supporting Information Fig. S1). The September
deployment occurred in a 9-km reach which was 1-km down-
stream from the Milltown Dam. In December, the upstream
site was moved downstream to shorten the reach to ~ 6 km.
This old dataset was never published in peer-reviewed litera-
ture (Reynolds 2001) and is included here to provide a case
study of a distinct upstream heterogeneity in river chemistry.

Data collection
Sensor deployments

For Garrison and Jens, we installed sensors for CO, (SAMI-
CO,, Sunburst Sensors), DO (miniDOT, PME) and conductiv-
ity (HOBO-U24-001, Onset) at each site, which sampled at
15-min intervals (data summarized in Table 1). Water temper-
ature was measured by all sensors with an agreement of
+ 0.2°C. For Milltown, DO and conductivity were recorded by
a multiparameter sonde (YSI model 6000) with the same CO,
sensor as in other reaches. The SAMI-CO, measures pCO, by
allowing ambient river pCO, to equilibrate across a
gas-permeable membrane with a colorimetric pH indicator
solution (DeGrandpre et al. 1995). SAMI-CO,, sensors were cal-
ibrated in a temperature-controlled tank with CO, quantified
using an infrared gas analyzer (LI-COR, LI-840A). The pH indi-
cator optical absorbances are recorded in situ, which enables
calculation of water pCO,. Calibration uncertainties were 1%,
estimated by deploying three SAMI-CO, sensors at the same
river location for a 24-h period. Oxygen sensors were cali-
brated by measuring oxygen-free water prepared by adding
excess sodium persulfate and were also initially co-located in
the river with an agreement of 0.8%. The conductivity sensor
was calibrated with 1000uS cm™! conductivity standards
(RICCA Chemical Company), and the YSI conductivity sonde
was calibrated with factory supplied standards. While no drift
was identified for the miniDOT, prior and post calibrations
suggest that the YSI DO sondes in the two 1999 deployments
drifted by 6% to 15% (Reynolds 2001). A linear correction was
applied as suggested by the manufacturer.

Discrete samples were also collected over the deployments
for sensor quality assurance. DO was measured in discrete
samples by Winkler titration (Carpenter 1965). Discrete pCO,
was calculated from spectrophotometric pH (Lai et al. 2016)
and alkalinity (Ap) determined by titration (Young
et al. 2022). We found that the time series did not have sys-
tematic offsets between upstream and downstream sites. More
descriptions of sensor data validation are presented in the sen-
sor time-series plots (Supporting Information Figs. S2, S3). At
from discrete samples was also used to drive DIC metabolism
models, as described below.

Supporting data

We collected the meteorological and hydrological data nec-
essary for the metabolism models. Mean atmospheric CO,
mole fraction was 360 ppm in 1999 and 414 ppm in 2019 and
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Fig. 2. Map of the Upper Clark Fork River showing locations of reaches and sites (Supporting Information Table S1). (a) An overview of the river, tribu-
taries and the three reaches, Garrison, Jens, and Milltown. (b) An enlarged view of Garrison with three sites, up, mid, down, and U.S. Geological Survey
(USGS) gaging station #12324400. The river flows by the town of Deer Lodge and its Waste Water Treatment Plant (WWTP). (c) Jens with up and down
sites and USGS gaging station #12324680. (d) Milltown with upstream September (Sep), upstream December (Dec), and down. The gaging station
#12340500 near up (Dec) was located ~ 4 km downstream from the Milltown Dam.

2020 measured at Mauna Loa Observatory (Andrews
et al. 2020), which were used to calculate atmospheric pCO,
based on local barometric pressure after correcting for water
vapor pressure (Dickson et al. 2007). For Garrison in 2020 and
Jens in 2019, we obtained local barometric pressure and
photosynthetically active radiation (PAR) from a MesoWest
station (mesowest.utah.edu) near Deer Lodge (Fig. 2b). For
Milltown in 1999, we obtained barometric pressure from the
NOAA National Climatic Data Center in Missoula, Montana,
and monitored PAR using an underwater LI-COR quantum
sensor (model LI-192SA). River discharge was downloaded

from nearby U.S. Geological Survey (USGS) gaging stations
(Fig. 2; Supporting Information Table S1). To obtain real-time
depth data, we compiled results from 29 channel morphology
surveys in the Upper Clark Fork River. Each survey had 20 tran-
sects over a > 3 km reach with 10 evenly spaced depth mea-
surements at every transect. We derived an empirical
relationship using values from the 29 surveys of discharge and
depth (Carter et al. unpubl.) that allows depth time series to
be back calculated from discharge (Table 1). We measured
travel time for the Garrison reach by performing a Rhodamine
water tracer release experiment and identifying the timing of
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Table 1. Three reaches and all measured variables, expressed as mean + one standard deviation. All sensor measurements, discharge
and depth were obtained at 15-min intervals. The Garrison reach had two subsections with travel time (z) of 75 and 105 min for up-
mid and mid-down, respectively. At measurements were based on discrete samples with a total number of 41 for Garrison, 22 for Jens,
28 for Milltown (September), and 27 for Milltown (December). Number of samples for sites at the same reach was nearly identical.
More data descriptions are given in Supporting Information 2 (Supporting Information Figs. S2, S3).

T pCO, DO Ar Temp. Discharge Depth Cond.
Reach Days (min.) (uatm) @molL™")  (umolL™") (@) m3s (m) @S cm™
Garrison 47 75 +105 627 + 300 292 + 66 3179 + 58 13+3 57+0.7 0.55 + 0.01 482 + 7
Jens 50 180 711 +£ 300 268 + 46 3028 + 92 16 £ 3 10 +£2.9 0.63 + 0.04 418 £13
Milltown (Sep) 14 255 349 + 92 326 + 30 2727 + 27 11 +£2 36 +1.8 1.16 +£ 0.03 255+ 9
Milltown (Dec) 10 150 351 + 47 398 + 14 2662 + 30 1.7 +0.8 40+ 1.4 1.23 £ 0.03 266 + 5

DO, dissolved oxygen; pCO,, partial pressure of CO,.

peak fluorescence at each site. For Jens and Milltown, we esti-
mated their travel time by identifying spikes in conductivity
that coincided with distinct discharge events (Table 1).

Metabolism models
Single-station models

We used the open-source R package streamMetabolizer
(Appling et al. 2018) as the single-station DO model. The
streamMetabolizer package uses a DO mass balance that
is a function of ecosystem metabolic fluxes and gas
exchange:

Cpo,tiar=Cpor _
Ppo L Rpo "
+At K? : —) — <?> +Kpo,t <CDO,t - CDOJ)} !

at each point, for example, sensor imprecision. Process errors
occur when models do not accurately quantify underlying
processes (i.e., metabolism and gas exchange). For example,
ER is assumed to be constant but may vary between day and
night (Hotchkiss and Hall 2014). Process errors are added for
each time step and persist over time. We considered both
types of errors. The streamMetabolizer allows users to pool
Keoo against discharge to reduce equifinality (i.e., three param-
eters covary to achieve good fits to the DO data), but we chose
not to use the Kgoo ~ discharge relationship because the dis-
charge variation was < 30% during the deployments (Table 1;
Supporting Information Fig. S2). We used coefficient of deter-
mination (R? between modeled and observed data for
assessing the within-day quality of fitting.

L We also derived a single-station model for DIC metabolism,
(1) B
_ Ppic Lt
where Cpo, and Cpoiar are the modeled DO at time t and Cpic,e+ar = Coic +AL [_( Z f)
t+ At, and At is the sensor measurement interval (Supporting Roic .
Information 3; Table S2). Z is reach-averaged water depth (m). +— TKeou 'KH't<PCOZ/f _PCO“> ’ (2)

Ppo and Rpgo are GPP and ER inferred from DO (GPPpgo and
ERpo, mmol m—2 d’l). We assumed a linear relationship to
derive Ppo from PAR variation, modeled as the ratio of photo-
synthetic photon flux density at time t (L;) over its daily mean
(L, pmol m~2 d '), which works well for most rivers (Hall
et al. 2016). The gas exchange flux uses the saturation concen-
tration of DO at time ¢ as a function of water temperature and
local barometric pressure (CEo,t> (Garcia and Gordon 1992).
Kpo,: is a time-variant, temperature-dependent gas exchange
coefficient (d™') for DO, which is converted from a standard
gas exchange coefficient with a Schmidt number of 600 (Keo)
(Raymond et al. 2012).

The streamMetabolizer package uses Bayesian inference of a
state space hierarchical model to sample posterior probability
distributions of the parameters (Appling et al. 2018). The
state space hierarchical model estimates observation error
and process error assumed in the DO time series. Observation
errors are random noise directly added to the modeled data

where DIC is used to construct the mass balance equation
rather than pCO, due to carbonate equilibria (Stets
et al. 2017), while pCO, is only used to calculate gas
exchange flux. Ppic and Rpjc are GPP and ER inferred from
DIC (GPPDIC and ERch, mmol m*Z d_l). CDIC,t+At and CDIC,t
are modeled DIC at time ¢ and t + At. Pco,+ and P¢, , are river
pCO, and local atmospheric pCO, at time ¢, respectively.
Ku: is the temperature dependent solubility of CO,
(Weiss 1974). Pco,, is calculated by Cpics, Ar and tempera-
ture for each time step by solving mass balance, alkalinity bal-
ance and equilibrium equations based on deprotonation
reactions of dissolved CO, and HCOj (details in Supporting
Information 4). Comparing the signs in DO (Eq. 1) and DIC
(Eq. 2) models, we enforced the budgetary sign conventions
with the stoichiometric coefficients rather than the process
rates for multi-metabolite modeling and later deriving PQg
and RQg.
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We assume protolytic nutrients (e.g., phosphate), calcite min-
eralization, and organic acids have negligible contributions to Ar
in the Upper Clark Fork River. Biological CO, uptake and release
and air-water CO, exchange do not change At. Ar can vary on
short-term (< diel) scales due to processes not included in this
model, such as evapotranspiration (ET) that drives diel cycles
of groundwater inputs (Shangguan et al. 2021). While ET
could also contribute to DIC dynamics, we have insufficient
data to parameterize the more complex model of diel changes
in groundwater influence. Instead, using a constant At to cal-
culate DIC from pCO, maximizes contributions of metabolism
and gas exchange to the DIC mass balance and minimizes that
of ET. We performed simple numerical experiments to evalu-
ate the error introduced by assuming the use of a constant A
(Supporting Information 5; Table S3; Fig. S4). Three scenarios
were simulated to represent different effects of ET and calcite
precipitation. The results demonstrated the varying At should
change the metabolism estimates by < 10% in the Upper
Clark Fork River. We also found that + 5% systematic errors in
Ar had negligible effects on metabolism estimates.

We used Kgoo derived from streamMetabolizer for all other
metabolism analyses to remove the confounding influence of
variations in Kgyo on DIC vs. DO metabolism estimates. The
DIC model becomes essentially a two-parameter inverse model
(i.e., GPPpic and ERpyc) after fixing Keoo (Eq. 2). Kco, i, the gas
exchange coefficient for CO, at time ¢, is scaled to Kgpp with
Schmidt number coefficients (Jahne et al. 1987). Uncertainty
of Kg¢oo inferred from different DO metabolism models does
not affect estimates of the DO and DIC stoichiometry
(Supporting Information 6; Tables S4, S5; Figs. S5, S6).

DIC metabolism models were implemented in C++. Inter-
faces to the models including maximum likelihood inversion
tools were developed in R (R Core Team 2018). We used a
Maximum Likelihood Estimation (MLE) function (optim func-
tion in R) to find GPPpic and ERpic by assuming residuals
between Pco,; and measured pCO, are independent and nor-
mally distributed. MLE saves the runtime via a single realiza-
tion and does not have equifinality problems for only two free
parameters (GPP and ER).

Two-station models

Two-station models simulate changes in solute concentra-
tions (e.g., DO) in parcels of water traveling a defined reach
between upstream and downstream monitoring stations (Hall
and Tank 2005; Hall et al. 2016; Payn et al. 2017). The two-
station DO and DIC models are presented in Egs. 3 and 4,
respectively, based on the same processes as those in single-
station models:

Il

P R Kpo,: * *
Cpo,; +78¢ - =7 — "7 =0 T( po,: — Cpo, + CDO,H—T)

[l

Cpo,tic=

’

Kpo,:
14+=57

3)
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7 Ko Pcoytse
Coic ¢ +Kco,,e———F—"—1

Kt <P*COz,t - Pcoz,r>
2

§
Kitie-Peo, e
+ f T’

(4)

where 7 is the travel time between stations and t is the time at
the upstream site (Supporting Information Table S2). In Eq. 3,
Cpo,r+. and C*DO,t . are downstream modeled DO concentra-
tion and atmospheric saturation concentration at time t+v,
respectively. Cpos and Cpgo, are corresponding upstream
values at time t. In Eq. 4, Pco,,t+. and Cpict, are modeled
downstream pCO, and DIC, which are solved simultaneously
constrained by Ar (Supporting Information 4). Pco,: and
Cpic,: refer to upstream values of pCO, and DIC. As identified
by discrete sample data, the downstream Ar is the same as the
upstream Ar for Cpict. Pgo, i, and Ky, are downstream
atmospheric pCO, and the solubility constant, respectively,
while P, , and Ky, are corresponding upstream values.

A Crank Nicolson approximation was applied over the
period of r to average variables at upstream and downstream
stations for prediction (Supporting Information Table S2),
which is commonly employed for two-station models
(e.g., Payn et al. 2017). For any parcel of water traveling
through the reach, PAR is approximated as the average of
upstream and downstream PAR offset by ¢ (L,). We also
applied the same approximation for the DO and CO, gas
exchange coefficient (Kpo,. andKco, ).

To ensure consistency in Keoo among different model ana-
lyses, we did not estimate Keoo as a free parameter for two-sta-
tion models. Rather, we used Kg¢op based on streamMetabolizer
estimates (Eq. 1) at the downstream site, leaving GPPpo and
ERpo (Eq. 3), or GPPpic and ERpic (Eq. 4) as the only two esti-
mated parameters. The Milltown reach is an exception where
the single-station model did not fit to the data (shown later),
so we allowed the two-station DO model to infer Keoo (Eq. 3)
for this reach only, which was subsequently imported into the
two-station DIC model (Eq. 4). We employed MLE to find
parameters by assuming residuals between measured down-
stream DO and modeled Cpott. (EqQ. 3), or measured down-
stream pCO, and modeled Pco,r+. (Eq. 4) are independent
and normally distributed.

Model testing by simulated data with errors

We tested the models by simulating pCO, and DO data,
adding errors to the data and estimating the ability of the
model to recover prespecified parameters. For both single- and
two-station models, we assigned 150 mmol m~2 d! to GPPpo
and GPPpyc, 225 mmol m~2 d™! to ERpo and ERpyc, 10d™! to
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Kgoo. Net ecosystem production (NEP) for both DO (NEPpo)
and DIC (NEPpic) were set to —75 mmol m 2 d~'. These
parameter values are typical for the Upper Clark Fork River
(Carter et al. unpubl.). For the single-station model (Egs. 1, 2),
we extracted measured depth, temperature, and light at the
downstream site, Garrison on August 28, 2020 to simulate
Cpo,+ and Pco,,. For the two-station model (Eqgs. 3, 4), we
started with a 46-d pCO, and DO time series at the upstream
site, Garrison that provides a natural upstream boundary con-
dition (i.e., measured Cpo, and Pco,; at upstream). We used
7=3 h (the travel time for up—down at Garrison, Table 1) to
simulate downstream pCO, and DO data (.e.,
and Pco, t4+)-

Error structures differ in simulated diel cycles for single-
and two-station models (equations in Supporting Informa-
tion 7). All errors are normally distributed around a mean of
zero. For pCO,, observation errors had one standard deviation
(SD) of 10 patm based on field co-deployment data, and pro-
cess errors had a SD of 960 gatm d~! (10 yatm for At). For DO,
observation errors had a SD of 2umolL™", and process errors
had a SD of & 192 ymol L~ d™! the same as the upper bound
values in Appling et al. (2018). We added both types of errors
to the simulated data for single-station models, but only
observation errors for two-station models. The two-station
model calculates the changes between upstream and down-
stream data (DO or DIC), thereby minimizing the process
errors. In addition, we evaluated potential error in Kggo that
propagates systematically into GPP and ER because DIC
models used Kgpp inferred by DO models. An error ranging
from —2 to 2 at an interval of 1 d™ was applied to examine
the model sensitivity to Keoo considering the range of inferred
Kgo0 by DO models (Supporting Information Fig. SS5).

Simulated data with added errors were treated as “observed”
data to understand how the error influences parameter esti-
mates. For single-station models, the procedures of simulation
and inference were repeated for 50 realizations of the same
diel cycle, but with new errors for every simulation to con-
strain the uncertainty. Uncertainty was bracketed by the maxi-
mum and minimum estimates from the ensemble of
realizations. For two-station models, we calculated the uncer-
tainty based on 46 estimates of GPP, ER, and NEP from realiza-
tions of the 46-d time series. Observation errors were
regenerated for each day.

Cpo,t+c

Comparison of single- and two-station models

We used regressions between single- and two-station model
results for both DO and DIC data to illustrate where they pro-
vide similar or disparate information on river metabolism.
Uncertainties of metabolism estimates were present for both
single- and two-station models. This comparison evaluated
the uncertainties primarily driven by reach heterogeneity and
other factors such as r and data inaccuracy. For the Garrison
reach, the three sites yielded three sub-reaches for two-station
models (up-down, up-mid, and mid-down). Intercomparison

Divergent oxygen and carbon metabolism

of the three sub-reaches further verified the two-station model
results and the effect of = (Supporting Information 8; Table S6;
Fig. S7). We used reduced major axis (RMA) regressions to
account for the influence of errors on both the horizontal and
vertical axes because of the symmetric nature of comparing
two methods (Warton et al. 2012).

Stoichiometry, metabolism, and CO; emissions

We quantified PQg and RQg using DO and DIC metabolism
estimates. For each deployment, we performed ordinary least
squares (OLS) regressions between two stations GPPpo and
GPPpic, ERpo and ERpic with intercepts fixed to
0 mmol m~2d™!. PQg is the slope + one standard error for
GPP, and RQy is the inverse of the slope for ER. Single-station
models are not discussed here because one of our findings is
that errors in single-station DIC results were large, generating
large scatter in PQg and RQg. PQg and RQg were also calcu-
lated by using individual estimates from two-station models
each day:

GPPpo ERpic
PQp=—2" = .
QE GPPDIC ’ E ERDO (5)
PQg and RQg > 1 indicates GPPpo>GPPpc and

ERpo <ERpic on a molar basis, respectively. We also used RMA
regressions to explore the difference between NEPpo and
NEPpyc that is driven by a combined effect of PQg and RQg.
NEPpic and daily CO, emissions were compared in OLS
regressions to illustrate where ecosystem metabolism may
be the primary driver of CO, emissions. Daily CO, emis-
sions were obtained by integrating air-water equilibration
terms in Eq. 4 at every measurement step for each day:

Kco,,«(Kit (Pcost=Péoyt )/ 2+Kigie(Pcos tve — P, )/ 2) - The
same regression was performed using NEPpo for comparison.
The relationship of daily CO, emission to NEP suggests that
in-stream CO, production contributed to CO, levels. A nega-
tive NEPp;c means net respiration, that is, DIC and CO, addi-
tion, and a positive NEPpic means net photosynthesis, that is,
DIC and CO; reduction. The regression intercept, or zero
NEPpic, quantifies the external source of CO, from upstream
of the reach that raised mean levels of CO, above atmospheric
saturation. Generally, we expect that higher Pco,: indicates
more CO, imported from upstream, like those observed at
Garrison and Jens (mean values in Table 1). Note the external
CO;, source included CO, produced in upstream sections and
exported to the reach and groundwater DIC inputs (Hotchkiss
et al. 2015).

Results

Results from this work assessed the utility of river metabo-
lism models based on DIC dynamics. Simulation experiments
evaluated how error structures in diel data and systematic
errors in Kgoo affected parameter estimates. Comparison of
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single- and two-station models illustrates how the river reach
linked to a given metabolism estimate may vary between the
methods. Finally, comparison of metabolism estimates from
DO and DIC models revealed variations in ecosystem-level
stoichiometry.

Estimating metabolism from simulated diel cycles

At the baseline Kgoo of 10 d™!, metabolism estimates from
simulated diel cycles demonstrated that the single-station
models of both DO and DIC resulted in more uncertainty (20—
40mmolm 2 d™!) in recovered parameters (Fig. 3a,b) than
two-station models (Fig. 3c,d). The difference comes from pro-
cess errors that were explicitly applied to single-station models
as explained above (equations in Supporting Information 7).
Observation errors simply added noise to the recovered param-
eters, the magnitude of which did not differ between single-
and two-station models (i.e., note the similar size of the error
bars in Fig. 3a,c or Fig. 3b,d). The assigned values in
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observation errors had greater effects on DO than DIC as
shown by comparing a and b in Fig. 3.

The DO and DIC models reflected different levels of error
in metabolic parameters caused by errors in Kgoo (Fig. 3). We
focused here on two-station models to remove effects of pro-
cess error. Although error in GPPpo and ERpo (Fig. 3c) was >
2 times more sensitive to error in Kgog than GPPpic and ERpic
(Fig. 3d), NEPpo was relatively insensitive to the Kgoo error
(Fig. 3¢). The error in NEPpjc was stronger than that in NEPpo
(Fig. 3d) because the error in GPPpo and ERpo tracked
together but the error in GPPpjc and ERpyc differed. The differ-
ence between the DO and DIC parameters points to the
different diel variations in air-water exchange fluxes for DO
and CO,. The instantaneous gas exchange flux was smaller for
CO, than DO (Fig. 1). CO, supersaturation was observed
for nearly at all times at Garrison with greater emissions at
night than during the day (Supporting Information Fig. S2al).
Conversely, DO efflux and influx between daytime and

y il
()] _— Two-station models

80 -

®
801 §
-160 L+—m——
8 9 10 11 12
(d)
160
80
§ N )
9 S SRS S
g ® °
= - ®
-804
~160 +— —

8 9 10 11 12
Ksoo(d_1)

Fig. 3. Errors in Keoo and diel pCO, and DO data affected estimation of GPP (orange), ER (purple), and NEP (black) for single-station (left) and two-
station (right) models. Error bars represent the uncertainty quantified by the range of estimates. For all simulations, GPP=150 mmol m—2d~",

ER=225mmol m2d~", and Kepo=10d"".

Observation errors are 0+2umolL™" for DO and 0+10 patm for pCO,. Process errors are

0+192umolL~'d™" for DO and 0+ 960 uatm d~' for pCO,. However, only observation errors were applied to the two-station models as explained in
the text and Supporting Information 7. Each panel corresponds to (a) single-station DO model, (b) single-station DIC model, (c) two-station DO model,
and (d) two-station DIC model. For DIC models, uncertainties are small and not visible on the y-axis scale. DIC, dissolved inorganic carbon; DO, dissolved
oxygen; ER, ecosystem respiration; GPP, gross primary production; NEP, net ecosystem production; pCO,, partial pressure of CO,.
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nighttime were relatively close because DO was symmetrically
distributed around saturation (Supporting Information
Fig. S2b1). Importantly, the two-station DIC model recovered
the parameters successfully given an accurate Keoo (Fig. 3d). By
fixing the same Kgoo for DO and DIC models, error in Kgoo
interferes with the comparison of DO and DIC metabolism to
an even lesser extent.

Comparing single- and two-station metabolism estimates
Fits of single-station models to data generally captured the
major features of the DO and pCO, metabolite signals at Garri-
son and Jens (modeled vs. measured data, R =0.94), but failed
to follow observations at Milltown (R*=0.60) (Fig. 4 upper
right two rows). At Garrison and Jens, the relatively small

Divergent oxygen and carbon metabolism

residual errors were highly autocorrelated in DO and pCO,
model fits (not shown), suggesting subtle structural errors in
the models, for example, offset of light due to diel shading
(Yard et al. 2005). The lack of ability to fit single-station
models to the dam-influenced data with double peak or dip
structures (Fig. 4; Supporting Information Fig. S3) led to eco-
logically unreasonable metabolic estimates for both DO and
DIC. Accordingly, we excluded these datasets from further
analysis.

Two-station model fits to the concentration change in par-
cels traveling the reach demonstrated reasonable model
behavior in all three reaches (Fig. 4 lower two rows). The most
accurate model fits (R*=0.95) occurred in the Garrison up-
down and Jens reaches when daily variation in metabolites
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Fig. 4. Examples of model fits (orange lines) to observed data (gray points). Shaded areas indicate photoperiods (local time). For the single-station DO
or DIC model (top two rows), dashed lines are DO solubility or atmospheric pCO,. For the two-station DO or DIC model (bottom two rows), dashed lines
are zero lines. In the Garrison reach, up—down and up-mid differ by travel time. Dates for the example data at three reaches are September 4, 2020,
August 28, 2019, and December 13, 1999, respectively. Note that the Milltown panels have a different scale. DIC, dissolved inorganic carbon; DO, dis-

solved oxygen; pCO,, partial pressure of CO,.
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was largest. The shorter distance for the Garrison up-mid
(R2 =0.85) had smaller changes in metabolite concentrations
compared to Garrison up—down, which led to more uncer-
tainty in inference of model parameters (more details in
Supporting Information 8; Table S6; Fig. S7). The Garrison
mid-down, however, displayed comparable uncertainty to
that observed for the longer up—down, supporting the quality
of sensor data and two-station modeling. At Milltown, the
two-station model greatly diminished the delayed peak for
DO and dip for pCO, (R*=0.92), but weak diel signals
(Supporting Information Fig. S3) made it difficult to infer
parameters.

The single- and two-station inferences of metabolism from
DO data were similar, yet the single- and two-station infer-
ences from DIC differed strongly. The RMA regressions
between single- and two-station approaches showed that the
DIC metabolism estimates between the two approaches had
higher chances of large discrepancy than DO (Fig. 5; Fig. S8;
Table S7 in Supporting Information 9). The discrepancy
between the two approaches was more evident in Garrison
(Fig. 5a,b) than Jens (Fig. 5c,d). Generally, the R? increased
from upstream to downstream sites for both reaches,
suggesting progressively reduced influence of upstream hetero-
geneity (Fig. 5Sb,d). At Garrison, for GPPpo and ERpo, slopes <

Divergent oxygen and carbon metabolism

1 were associated with non-zero intercepts (Supporting Infor-
mation Table S7; Fig. S8a,c). For GPPpjc, the slopes < 1 for all
sites (Fig. 5a), and single-station GPPpj¢ stayed nearly constant
and were approximately two thirds of the two-station GPPpic
(Supporting Information Fig. S8b). Both GPPpic and ERpic
had low R? at Garrison (Fig. 5b). At Jens, the comparison for
GPPpjc and ERpjc improved considerably, evident by higher
R? and slopes close to unity (Fig. 5¢,d), indicating Jens had less
upstream heterogeneity compared to Garrison. To summarize,
at times parameters derived by single- and two-station
approaches were dissimilar based either on DO or DIC data,
with discrepancy between values more likely when based
on DIC.

DO and DIC metabolism differed

The DO and DIC metabolism consistently differed for all
three reaches. Two-station PQg were 1.67 4+ 0.06, 1.95 4 0.09,
and 1.45 £ 0.06 at Garrison, Jens, and Milltown, respectively
(Fig. 6a—c), meaning GPPpo>GPPpic for all three reaches
(Eq. 5). PQg ranged from 0.8 to 2.8 among individual (daily)
estimates. GPPpo increasingly deviated from GPPpic as GPP
magnitude increased, with daily PQg covarying with values of
daily integrated light (Supporting Information 10; Fig. S9a).
RQg were 0.84 +0.02, 0.80+0.02, and 1.45 +0.41 at Garrison,
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Fig. 5. Regression results for two-station up-down (x-axis) vs. single-station (up, mid, or down) (y-axis). Data and one-to-one plots are shown in
Supporting Information Table S7 and Fig. S8, respectively. These results revealed that DIC models likely had larger discrepancy between single and two-
station approaches than DO models. For each panel, data are grouped by parameters: GPPpo, ERpo, GPPpic, and ERpjc. Two-station up—down on the x-
axis was compared to single-stations via RMA regression for both reaches. Sites at Garrison are indicated by red gradient color (up, mid, down), and sites
at Jens are indicated by blue gradient color (up, down). Top two panels: slope of regression at Garrison (a) and Jens (c). Error bars represent one standard
error of the regression slope, and dashed lines represent values of one. Bottom two panels: R® of regression at Garrison (b) and Jens (d). DIC, dissolved
inorganic carbon; DO, dissolved oxygen; ER, ecosystem respiration; GPP, gross primary production; RMA, reduced major axis.
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Fig. 6. Comparison of metabolism parameters estimated using DO (y-axis) and DIC (x-axis) data. Slopes of regressions between GPPpc (x-axis) and
GPPpo (y-axis) represent ecosystem-level photosynthetic quotient (PQg), while the inverse of slopes between ERpc (x-axis) and ERpo (y-axis) represent res-
piration quotient (RQg). Intercepts of the regressions for PQg and RQg were fixed at 0 mmol m—2 d~". NEPp,c was compared to NEPpo by RMA regres-
sion. All metabolism estimates are from two-station models (up—down). Top panel: (a—c) for PQg at Garrison, Jens, and Milltown. September and
December data at Milltown are indicated by filled and open circles, respectively. PQg > 1 with GPPpo > GPPpic. Middle panel: (d-f) for RQg as the inverse
of regression slopes. RQg <1 with ERpo <ERpic except for Milltown. Bottom panel: NEPpc <NEPpo by an average of 100 mmol m—2 d~'. RMA showed
y=(1.57£0.18)x+ (96 £ 9) for Garrison (g) and y=(1.23+0.17)x+ (109 £15) for Jens (h), and no relationship for Milltown (i). Dotted lines indicate
zero lines. PQg and RQg deviated from conventional values of one in alignment with the difference between NEPpc and NEPpo. DIC, dissolved inorganic
carbon; DO, dissolved oxygen; ER, ecosystem respiration; GPP, gross primary production; NEP, net ecosystem production; RMA, reduced major axis.

Jens, and Milltown, respectively (Fig. 6d-f), meaning
ERpo >ERpjc except for Milltown (Eq. 5). Individual RQg at
Garrison and Jens were mostly < 1, and there were a few out-
lier estimates (> 3) at Milltown (Supporting Information
Fig. S9b), likely due to inaccurate estimates from the weak diel
cycles of DO and pCO, (Supporting Information Fig. S3).

NEPpo indicated mostly autotrophic conditions and
NEPpic indicated net heterotrophy in accordance with
PQg>1 and RQg <1 (Fig. 6g-i). At Garrison and Jens, regres-
sions between NEPpc and NEPpo vyielded slopes of
1.57+0.18 and 1.23+0.17, and intercepts of 96+9 and
109+ 15 mmol m—2 d’l, respectively. At Milltown, NEPpic
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Fig. 7. Examination of the relationship between daily CO, emission and metabolism. Metabolism is NEPpg in green and NEPpc in orange, which were
compared to CO, emissions in regressions. The autotrophic NEPpo and heterotrophic NEPpc provided contrasting views into the role of metabolism in
producing CO,. All metabolism estimates are from two-station models. (a) Garrison. (b) Jens. (c) Milltown in September (filled circles) and December
(open circles). The two seasonal deployments at Milltown were grouped for regressions. Dashed lines represent zero NEP or zero CO, emission in (c). For
Garrison and Jens, the regression intercepts suggested an external source of CO, from upstream of the reach. Regressions between NEPpo and CO, emis-
sions are not shown in Jens and Milltown (b,c) due to the weak relationship. DIC, dissolved inorganic carbon; DO, dissolved oxygen; NEP, net ecosystem

production; RMA, reduced major axis

and NEPpo had weak (R2:0.03) or nonsensical (negative)
regressions (Fig. 6i) caused by the difficulty in inferring ER.

Linking metabolism to CO, emissions

Relations between daily CO, emission and NEP depended
on how we measured NEP, with NEPpo and NEPp;c pointing
to contrasting roles of metabolism (Fig. 7). NEP should
strongly covary with CO, emissions. Comparing both NEPpo
and NEPp;c with CO, emissions showed that the more nega-
tive NEPpic produced greater CO, emissions, but NEPpo >0
did not follow CO, emissions except for Garrison. The slopes
of the regression model between CO, emissions and NEPpc
were —0.16+£0.04 (R*=0.32) at Garrison, —0.64+0.08
(R*=0.56) at Jens, and —0.15+0.02 (R*=0.69) at Milltown.

Jens demonstrated the largest changes in emissions with
changes in NEPpjc, and thus had the largest influence from
in-stream CO, production. Based on the intercepts of
the regression model, CO; emissions due to external sources
were similar at Garrison and Jens (62+2 and
67+7 mmol m~2 d'). Milltown had the lowest intercept of
1.3+1.5mmol m2d", demonstrating minimal external
influence. Relative to the baseline of external CO,, NEPpc as
much as doubled CO, emissions at Garrison and Jens (Fig. 7a,
b). At Milltown, NEPp;c completely explained CO, emissions
(or CO; influx) from the atmosphere (+ 100%) (Fig. 7c). Nev-
ertheless, the regression model for NEPpo greatly changed
interpretations of CO; sources at Garrison, and did not pro-
vide quantitative information at Jens and Milltown.
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Discussion

Metabolism estimates differed when using a new DIC
model compared with results by conventional methods using
DO. The two-station approach may be needed for comparing
DO and DIC metabolism. The two-station approach deviated
from the single-station approach for DIC but less strongly for
DO at Garrison (Fig. 5), which could be explained by the dif-
ferent time scales for DO and CO; to equilibrate with the
atmosphere (Fig. 1). With the two-station approach, the diver-
gent DO and DIC metabolism estimates demonstrate the
potential for variation in stoichiometry (PQg and RQg) to com-
plicate our understanding of oxygen and carbon processing in
rivers (Fig. 6). Our assessment of DIC metabolism adds a new
perspective on in-stream metabolic processes, terrestrial
inputs, and CO, emissions (Fig. 7). Understanding the differ-
ences between the DO and DIC metabolism will increase our
understanding of how in-stream processes control DIC
cycling.

The difference in upstream influence between DO and DIC

Because of the carbonate buffering in rivers with
circumneutral pH, CO; in the DIC pool takes longer to erase
the air-water gradient than DO (Stets et al. 2017), which could
compromise its use in single-station metabolism models. The
entire DIC pool comprises CO, (including carbonic acid),
HCOj3, and CO%‘ (Fig. 1). In alkaline waters, HCO; is much
more abundant than the other two. For example, HCO; is
80% of DIC at pH=7 and 97% at pH =8; thus, much of DIC
travels longitudinally in the form of HCOj;, which generates a
long-term effect on CO, dynamics via the equilibration
between HCO3 and CO, (Supporting Information Eq. S3).
Consequently, the influencing reach may be considerably lon-
ger than that for DO. Stets et al. (2017) simulated the time
periods for CO, equilibration with the atmosphere at
At =1000 and 2500 umol L', both of which are clearly longer
than that for DO with a longer equilibration period for the
high Ar (see Fig. Sa,c therein). The long memory of past DIC
concentrations for a heterogeneous reach may easily cause
uncertainty in linking single-station metabolism estimates to
a specific reach. The same notion was proposed by Hensley
and Cohen (2016) to contrast dynamics of nitrate and DO. At
Garrison, the discrepancy between single- and two-station
DIC models (Fig. 5a,b; Supporting Information Table S7;
Fig. S8) is likely caused by the upstream heterogeneity intro-
duced by groundwater and waste water effluent. By contrast,
the strong correspondence between single- and two-station
models at Jens (Fig. 5c,d) reflects a greater degree of homoge-
neity within this study reach. The claim is supported by elec-
trical conductivity signals, which were more correlated
between upstream and downstream sites (Supporting Informa-
tion 11; Fig. $10) and had more clear periodicity (Supporting
Information Fig. S11) at Jens than at Garrison. More uniform
conductivity signals between upstream and downstream sites

Divergent oxygen and carbon metabolism

indicate hydrological (e.g., evapotranspiration) and biological
(e.g., CO, uptake) processes are more homogeneous (Vogt
et al. 2010; Schmidt et al. 2012). The two-station model may
generate more reliable estimates of DIC metabolism because
rivers are not likely to be homogeneous at the scale of the
river length necessary to remove most of the upstream CO,
influence. For low At rivers, the single- and two-station DIC
models may have a higher chance of providing similar metab-
olism estimates. An analytical solution of how the influencing
reach length changes over a sequence of At or pH should be
the subject of a future study.

Implementing two-station studies of metabolism requires
consideration of reach length, complete mixing of representa-
tive river water at monitoring stations, and quality assurance
of data to avoid compounding error. First, 7 is a critical param-
eter for the two-station model and is controlled by sensor
placement which is often dictated by accessibility. At Garri-
son, for example, we observed the increased regression uncer-
tainty when comparing metabolism estimates between up-
down (=180 min) and up-mid (r=75 min) sub-reaches
(Supporting Information 8; Table S6; Fig. S7). Second, two-
station models require more data collection (two sensors
instead of one) and accurate sensor calibration. Any system-
atic offset in sensor data would likely result in error in the esti-
mate of ER (Holtgrieve et al. 2010; Schechner et al. 2021),
particularly for pCO, close to saturation values like in Mil-
Itown (Supporting Information Fig. S3). Collecting samples for
quality control of DO and pCO, and co-locating sensors in
situ prior to two-station deployment are critical to ensure that
measurement errors contribute as little as possible to errors in
metabolism estimates.

Metabolic stoichiometry of DIC and DO processing

PQg and RQg clearly deviated from biochemical PQ and
RQ. The differences between NEPpo and NEPpc varied around
100 mmol m~2 d™! (Fig. 6g-i), emphasizing the large uncer-
tainty of using biochemical PQ and RQ for DO metabolism.
Note the uncertainty of Koo cannot cause the NEP discrep-
ancy given the limited sensitivity of two-station NEP to Kgoo
(Fig. 3c,d; Supporting Information 6), and because we fixed
the same Kgoo for both DO and DIC two-station models. PQg
and RQg could encompass a wider range than conventional
PQ and RQ. PQ and RQ are directly linked to the elemental
composition of organic products or substrates in natural
aquatic ecosystems (Laws 1991), and are conceptually analo-
gous to the Redfield ratio of the planktonic communities in
marine ecosystems (Redfield 1958). PQg and RQg not only
incorporate variations in PQ and RQ, but also processes other
than aerobic metabolism that drive a variable stoichiometric
relationship of DO and DIC. Trentman et al. (2023) found a
range of PQy=0.1-4.2 in the literature, and Berggren et al.
(2012) measured RQg of 0.25-2.26 (1.2+0.45 as mean + SD)
by incubation in a myriad of lakes and ponds. Biochemical PQ
appeared not to be useful for the Clark Fork River: Trentman
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et al. (2023) predicted biochemical PQ to range from 0.5 to
0.9 in the same sites on the Clark Fork, which is far lower than
the PQy estimated here. Noteworthy, all PQg reported here are
all within the uncertainty range of 1.6 £ 0.5 by chamber mea-
surements in the same river (Trentman et al. 2023).

CO, production by physical and biological processes other
than aerobic respiration could explain the divergent finding of
DIC heterotrophy and DO autotrophy in the Upper Clark Fork
River. These processes would increase observed RQg, breaking
the reciprocal relationship with PQg (Eq. 5). Denitrification,
for example, is anaerobic respiration that produces CO, with-
out consuming DO (Burgin and Loecke 2023). Madinger and
Hall (2019) measured the molar ratio of denitrification to DO
respiration around 1.1% in mountain headwater streams, but
the ratio can be higher in high nitrate rivers (Reisinger
et al. 2016). The Upper Clark Fork River is productive relative
to other rivers (Savoy et al. 2019) with high incident light and
large spatial gradients of nitrate (Valett et al. 2022), and may
thus support high rates of denitrification. Photo-oxidation of
organic matter (Rocher-Ros et al. 2021) can increase DIC and
consume DO, but its potential influence on RQg is less clear
because the molar ratio of CO, and DO due to photochemical
processes is pathway-dependent (Ward and Cory 2020). In
addition, calcite formation in the vicinity of photosynthetic
cells (Tobias and Bohlke 2011) can occur under well-lit, high
pH and Ar conditions. In the Clark Fork River, calcite satu-
ration states ranged from 5 to 30 (Shangguan et al. 2021),
and therefore calcite precipitation possibly occurred. We
ignored this process by assuming a constant Ar. Yet, our
simulation results suggest that calcite precipitation could
lower NEPpic by <12 mmol m2 d™! under scenarios of
variable At (Supporting Information 5; Table S3). Finally,
although we selected sites with minimal change in flow from
upstream to downstream, small volumes of groundwater
would be difficult to detect between the two stations. Ground-
water inputs could increase river CO, but decrease DO by a
smaller non-stoichiometric magnitude. Therefore, groundwa-
ter potentially causes different systematic errors in both ERpic
and ERpo (Hall and Tank 2005).

Different photosynthetic pathways might explain
GPPpic < GPPpo, and therefore NEPpic < NEPpo. One model
assumption is that DIC uptake via photosynthesis does not
change Ar, that is, the charge balance. If algae take up CO,,
then we expect negligible change to Ar. On the other hand, if
they use carbonic anhydrase to convert HCO; to CO,, then
the effect on Ay will depend on the specifics of that process.
Algae possess a diversity of ways to concentrate inorganic car-
bon using carbonic anhydrase (Maberly and Gontero 2017),
including direct uptake of NaHCO3, which would lower Ar.
Evidence for ecosystem-level effects of this process comes from
Aho et al. (2021) who found high rates of photosynthesis at
low CO, concentrations; such a pattern is consistent with
direct HCOj3; uptake and if occurring in the Clark Fork River,
could explain why GPPpic <GPPpo. However, in the Clark

Divergent oxygen and carbon metabolism

Fork River, the minimum CO, concentrations (Ku-Pco,, in
Eq. 2) were 8 umol L™ and CO, depletion was not observed as
in Aho et al. (2021).

Despite NEPpo >NEPpc, processes that decrease NEPpo by
consuming or losing DO may also occur. The resulting flux of
DO must be smaller than flux of CO, production by processes
like denitrification. DO has large diel swings and is frequently
above 100% saturation in the river (Supporting Information
Figs. S2, S3b1,b2), creating favorable conditions for photores-
piration. Generally, photorespiration decreases PQg by con-
suming 3mol of DO and producing only 1mol of CO,
(Stewart 1974). Similarly, nitrification can consume DO while
fixing only a small amount of CO,; this flux can be high in
high N rivers (Pathak et al. 2022). Finally, ebullition could also
decrease PQg when oxygen is released into the atmosphere via
bubbles. Undissolved gas bubbles produced by primary pro-
ducers are not measured by sensors and therefore not modeled
into GPPpo. These processes potentially contribute to the
observed difference between NEPpo and NEPpjc and the large
range of PQg and RQg. Taken together, the myriad of processes
that control DIC and DO outside of the cellular reactions of
photosynthesis and respiration complicate our ability to pre-
dict or understand the causes in variation in PQg and RQg.

NEP and CO, emissions

Although assessments of relationships between NEP and
CO, emissions were sensitive to whether metabolism was esti-
mated from DO or DIC, large variations of NEP and CO, emis-
sions suggest the substantial contribution of metabolism in
the Clark Fork River. Other studies have also demonstrated
that the contributions of in-stream metabolic processes can
exceed those of groundwater inputs to supply CO, emissions
(Bernal et al. 2022; Carter et al. 2022). For our study sites, the
slopes of regression between NEPpic and CO, emissions < 1
suggests that CO, emissions were constrained by kco,
(Rocher-Ros et al. 2019), supported by the low Kgoo of 12 d ™"
from DO models (Supporting Information Fig. S5). Every mole
of in-stream CO, production was only partially emitted over
the reach. For the same reason, the external sources at Garri-
son and Jens (Fig. 7a,b) include parts of in-stream CO, produc-
tion imported from upstream and groundwater-delivered DIC.
The low CO, emissions at the downstream Milltown reach
were almost completely driven by NEPpic with negligible
external sources (Fig. 7c¢), which is in agreement with low
Radon-222 concentration near the reach (Horne 2017). Conse-
quently, NEP was greater than CO, emissions (Fig. 7c¢), similar
to findings at a tropical stream (Solano et al. 2023).

Conclusion

In this work, we showed that the DIC metabolism modeled
from pCO, and At differed from DO metabolism. The DIC
model enabled us to evaluate the best strategies for estimating
metabolism from pCO, data. A two-station approach is
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essential for estimating DIC metabolism when pH is high
enough that HCO; comprises a substantial fraction of DIC.
Although the single-station DIC model gave similar metabo-
lism results in some reaches, it is not possible to readily pre-
dict homogeneity for a longer influencing reach and therefore
single-station DIC results will be questionable. Yet, in acidic
rivers, the upstream influencing reach should be greatly short-
ened which, we suggest, should be evaluated in future work
before using the single-station DIC model. It is necessary to
account for carbonate buffering for pCO, at each time step in
order to correctly implement the DIC two-station model. High
quality pCO, data reduce systematic errors and noise in
metabolism results. Next, based on DIC modeling methods
in conjunction with commonly used DO, our results
show NEPp;c was lower than NEPpo by an average of
100 mmol m~2 d ! in the Upper Clark Fork River. The differ-
ence between NEPp;c and NEPpo was reflected by PQg >1 and
RQg <1, confounding our interpretations of how in-stream
processes contribute to CO, emissions. The linkage between
diel cycles of DIC and DO is likely driven by multiple physical
and biological processes as opposed to aerobic metabolism
only, some of which may be unknown or unmeasured. Due to
this complexity, it is difficult to predict PQg by assuming cer-
tain processes exist in rivers (Trentman et al. 2023); direct esti-
mates are required that involve more data collection and
modeling.

The variability in PQg and RQg becomes a source of uncer-
tainty in studies of metabolism and carbon cycling using
long-term DO sensor data. DO time series on annual scales
have been more commonly available (e.g., Bernhardt
et al. 2022) while CO, or DIC data are relatively limited. It is
encouraging, however, that PQg estimates in the same river
were similar (Fig. 6a—c), possibly indicating a commonality of
underlying mechanisms for their variability. Eventually, more
information regarding PQr and RQg may reduce the uncer-
tainty of using DO metabolism and more accurately constrain
the global contributions of in-stream processes to carbon
cycling.

Data availability statement

The data and codes that support the findings of this study
can be accessed in the Environmental Data Initiative reposi-
tory (https://doi.org/10.6073/pasta/7b5d1fe9a3d17847a9cf50
12da2a3456).
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