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Table 1. The nine formal knitout operations, excluding nop. Parameters ; and B control metric properties (e.g.,

length) and are irrelevant to topology.

Operation Parameters Description

in 38A =.G ~ Activates yarn carrier ~ and moves it to the 38A side of

needle =.G .

out 38A =.G ~ Deactivates yarn carrier ~ by cutting the yarn at the 38A

side of needle =.G .

miss 38A =.G ~ Moves yarn carrier ~ to the 38A side of needle =.G .

tuck 38A =.G ; (~, B) Drapes a loop formed in direction 38A over needle =.G

using the yarn from carrier ~.

knit 38A =.G ; ~0A=B Forms new loops in direction38A by pulling the yarns from

carrier set ~0A=B through the existing loops on needle =.G .

The existing loops are dropped off the needle.

split 38A =.G =′ .G ′ ; ~0A=B Forms new loops in direction38A by pulling the yarns from

carrier set ~0A=B through the existing loops on needle =.G .

The existing loops are moved to needle =′ .G ′.

drop =.G Drops all loops on =.G .

rack A Aligns front and back bed such that f.G is across from

b.(G − A ).

xfer =.G =′ .G ′ Moves loops from needle =.G to needle =′ .G ′.

to produce the sixth box (8). We further simplify these diagrams by abstracting away the exact

topology inside boxes to produce Figure 3d, again with eight boxes corresponding to the tuck and

knit operations in order of execution. We preserve topological information of the internals of

boxes with annotations. We use triangles such as ◮ in our diagrams, where the direction of the

triangle encodes the direction of carrier yarn movement, and the fill categorizes its symmetry: gray

triangles ◮ are used for rotationally symmetric (antichiral) tuck boxes, while filled ◮ and unfilled

⊲ triangles represent boxes of different chiralities from knit and split.

Using the link between algebraic string diagrams and category theory, we present an algorithm

that canonicalizes our knit diagrams in polynomial time. This in turn means we can decide equiv-

alence for knitout programs in polynomial time. Figure 4 shows an example of our algorithm in

action.5 It flips boxes over, drags yarns around them, and swaps the vertical order of boxes to

achieve a canonical form. Our algorithm runs in three stages:

(1) Layer (Section 5) runs from top to bottom, rotating and horizontally shifting each box to

cancel out specific yarn crossings above the box.

(2) Swap (Section 6) swaps the boxes’ vertical orders to achieve a canonical order. This is

analogous to reordering operations in the knitout program.

(3) Braid (Section 4) simplifies the yarn crossings between boxes.

3 Semantic Domain

In this section, we define the categorical semantics that represent knitout. Our semantics are inspired

by Joyal and Street [10], who formalized the connections between the topology of diagrams and

certain monoidal categories that we use. Readers interested in a more complete description of the

connections between monoidal categories and string diagrams should see Selinger [22].

5Machine knitting can use multiple colors of yarn in an object to achieve colored designs. In this paper, we color yarns

solely as a visual aid; the colors of yarns in diagrams do not correspond with the true colors in physical objects.
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repeatedly applying Layer, we have canonicalized the L1, L2, and L3 moves. We can then apply

Braid on every braid in the result to canonicalize the B1, B2, and B3 moves.

5.1 Formalizing Layer

This subsection is meant to give the reader a feel for how we formalize concepts in Layer like

circled crossings. We introduce some notation that will be used later, but reserve formal definitions

until Appendix A of our supplementary material.

Let ( be some box morphism. As mentioned in Section 3, we also use ( to refer to the ordered set

of strands coming out of (above) the box (, so the set ( := {B1, B2, . . .}. Similarly, ( ′ is the ordered

set of strands coming into (below) the box (, so ( ′ := {B′1, B
′
2, . . .}.

We encode circled crossings with two functors (i.e., structure-preserving transformations), W(
and X( . They both map braids in B containing the B8 strands (so these braids must be above the

box () to braids on less strands by ignoring certain strands, leaving only circled crossings behind.

The W( functor records circled crossings from L1 and L2, while X( records crossings from L3. The

crossings recorded by L3 always commute with those from L1 and L2: the Δ twist from L3 slides

through L1’s crossings via B3, and past L2’s crossing via B2.

Then, we use a bifunctor q( that acts as a pseudo-inverse to W( and X( . It reconstructs braids

above the ( box representing the L1, L2, and L3 moves using the braids output by W( and X( .

This is guaranteed to reconstruct the circled crossings exactly, up to L3’s crossings commuting

with L1’s and L2’s. To simplify our notation, we letk( be shorthand for this operation on braids:

k( (G) := q( (W( (G), X( (G)).

Finally, there is a bifunctor q( ′ , similar to q( , that takes the circled crossings from W( and X( and

reconstructs braids below the ( box representing the diagram moves. We use the abbreviation g( (G)

for reconstructing circled crossings below the box: g( (G) := q( ′ (W( (G), X( (G)). Note that g( takes a

braid above the box (, but returns a braid below the box (. Figure 13 contains examples of these

functors applied to a word G ∈ B.

Our Layer move takes some portion of a word G8 ; (8 ;G8+1, and calculates both W(8 (G8+1) and

X(8 (G8+1). It uses those results to calculate

k(8 (G8+1) = q(8 (W(8 (G8+1), X(8 (G8+1)) and g(8 (G8+1) = q( ′
8
(W(8 (G8+1), X(8 (G8+1)),

and rewrites

G8 ; (8 ;G8+1 = G8 ;g(8 (G8+1); (8 ;k(8 (G8+1)
−1;G8+1

= G8 ;q( ′
8
(W(8 (G8+1), X(8 (G8+1)); (8 ;q(8 (W(8 (G8+1), X(8 (G8+1))

−1;G8+1,

effectively conjugating the (8 box with braids on either side to make the braid above (8 the identity

in the projections of both W(8 (G8+1) and X(8 (G8+1).

We prove later that Layer’s rewrite can be recreated using only L1, L2, and L3, so Layer preserves

word equivalence. A key algebraic insight is that after applying Layer around some box morphism

(8 , the braid on top of (8 will always have circled crossings that cancel out:

W(8 (k(8 (G8+1)
−1;G8+1) = id and X(8 (k(8 (G8+1)

−1;G8+1) = id,

sok(8 (k(8 (G8+1)
−1;G8+1) = id. We refer to this property as the braid being simplified by Layer.

Repeatedly applying Layer to move complexity down the word canonicalizes the L1, L2, and

L3 moves. After that, Braid on each braid canonicalizes B1, B2, and B3. All that remains is to

canonicalize M1 by achieving a canonical order of box morphisms; our next section details that

process.
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6.2 Achievable Canonical Order

We use the ideal (but possibly not achievable) order of boxes and our move-past decision procedure

to achieve a canonical order of boxes. The possibly unachievable order of boxes gives each box (8
some canonical index 8 . We repeatedly find the highest index 8 such that (8 can be moved to the

top of the word. Some box must be found, since there is always some box already at the top of the

word. We provide results in Subsection 7.1 that show this procedure’s chosen box is canonical. We

execute the swaps to move that target box to the top of the word, and lock its position. We repeat

for the rest of the boxes, finding the highest index 8 such that (8 is unlocked and can be moved

above all other unlocked boxes.

This step canonicalizes equalities by M1. The earlier sequence of repeated Layer applications

canonicalized L1, L2, and L3. Applying Braid to every braid G8 canonicalizes B1, B2, and B3, com-

pleting our canonicalization.

7 Outline of Algorithm’s Correctness

We provide an outline of the proof of our canonicalization’s correctness, omitting the more involved

lemmas. We first present our full canonicalization algorithm in Algorithm 1.

Algorithm 1: Canonicalization algorithm

Data:Word - ∈ K

Result: Canonical form of -

for 8 =< . . . 1 do

Execute Layer around (8 ; /* Step 1: Layer */

end

(8 ← ideal order of boxes ; /* reindex (8 */

while some boxes have not been locked do

for every unlocked box ( in decreasing ideal order do

if ( can be moved above all unlocked boxes then

Move ( above all unlocked boxes using Swap ; /* Step 2: Swap */

Lock ( ;

end

end

end

for each braid G8 do

Execute Braid on G8 ; /* Step 3: Braid */

end

7.1 Move-past Procedure

Theorem 7.1 establishes that the move-past procedure always returns the correct result up to

rewrites of the �;G ;) subword. We state and prove a more general result than our algorithm uses –

in our algorithm,k� (G) = id always so the move-past check is simpler.

Theorem 7.1. For all subwords �;G ;), let

5 (G) := Braid(k� (G)
−1;G ;k ′) (k� (G)

−1;G)−1).

Then

5 (G) = id ⇐⇒ �,) can move past each other in the subword �;G ;) .
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Theorem 7.2 extends Theorem 7.1 by showing that the move-past procedure always returns the

same result for a pair of adjacent boxes �,) , regardless of interference by other boxes in a larger

word:

Theorem 7.2. For any word - containing the subword �;G ;),

∃- ′ a rewrite of - : ) is below � ⇐⇒ �,) can move past each other in the subword �;G ;) .

We provide proofs of both theorems in Appendix C of our supplementary material. Taken

together, they imply that the move-past procedure always returns a correct and consistent result

for any two boxes. When using the move-past procedure to query whether some box can move

to the top of the word, if the move-past procedure fails to move that box above another, the box

cannot move to the top of the word.

7.2 Algorithm Canonicalizes

We formalize our algorithm as an Abstract Rewriting System (ARS) over words in K . An ARS is

some binary relation→ on words inK, with - → - ′ meaning that the word - can be rewritten to

- ′ . An important feature of rewriting systems is whether they are canonicalizing. Given any word

-, a canonicalizing ARS will always rewrite - to some unique term - ′ that cannot be rewritten,

called a normal form. This happens regardless of→ choices made along the way when some term

rewrites to multiple terms. A sufficient condition for an ARS to be canonicalizing is when it is both

terminating (there are no infinite chains of rewrites) and weakly confluent (if - → -1 and - → -2,

there exists some - ′ where -1
∗
→ - ′ and -2

∗
→ - ′, where

∗
→ is the reflexive transitive closure of

→). We prove our ARS is canonicalizing by showing it is both terminating and weakly confluent.

Definition 7.3. Let X be the set of words representing morphisms in our category K, and let

≡3 ⊆ X × X be the reflexive transitive symmetric closure of the diagram rules, so two words

G,~ ∈ X are equivalent in ≡3 when they can be rewritten to each other.

We describe the energy of a word, where the lower a word’s energy is, the closer it is to its

canonical form. We use energy to direct our rewrites, only allowing rewrites that strictly lower

energy.

Definition 7.4. The energy of a word

- = G0; (1;G1; · · · ; (< ;G<

is a tuple in N
3, and energies are ordered in dictionary order (the first coordinate is the most

important).

Its first entry is
<
∑

8=1

{

8 k8 (G8 ) ≠ id

0 otherwise,

which encodes the first step of the algorithm, where braids should be simplified from the top down.

For some box (8 , we define

goal((8 ) = the vertical position of (8 after the Swap step of the algorithm completes,

so the box with the highest goal((8 ) is the highest box in the (possibly unachievable) canonical

order that can move to the top of the word. After moving that box to the top, the second-highest

goal((8 ) is defined similarly, ignoring the already-assigned box at the very top. The energy’s second

entry is the inversion number

<
∑

8=1

<
∑

9=8+1

{

1 goal((8 ) > goal(( 9 )

0 otherwise.
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This entry encodes the second step of the algorithm, where boxes are vertically ordered.

Its third entry is
<
∑

8=0

{

1 G8 not in canonical braid form

0 otherwise,

which encodes the third step of the algorithm, where braids should be put into canonical form.

We describe an ARS with a new set of diagram rewrites, with 3 classes of rewrites instead of

7. The rewrites closely correspond to the stages of our algorithm. We restrict them to always

strictly decrease the energy of a word, so these rewrites are directed. Because N and its powers are

well-founded, this makes our rewriting system terminating. We first prove that if two words are

equivalent by ≡3 , then they can be rewritten into some shared form by our ARS. This shows that

our new rewrites capture the correct equalities. We then prove our desired result: our rewriting

system is canonicalizing.

Definition 7.5. We form an ARS (→) ⊆ X × X from the following rewrite rules, included in→

whenever they strictly reduce energy:

• Layer: Rewrites some subword �;G ;) to g� (G);�;k� (G)
−1;G ;), like in the first step of the

algorithm.

• Swap: Rewrites some subword �;G ;) ;~; ( wherek� (G) = id,k) (~) = id, and where �,) can

move past each other to

) ;g� (~);�;k� (~)
−1;g ′) (G);~;(,

like in the second step of the algorithm.

• Braid: Rewrites some subword �;G ;) to �; canon(G);) like in the third step of the algorithm.

Swap always preserves the simplification from Layer, so it does not increase Layer’s higher-

importance energy value:

Lemma 7.6. For disjoint �,) , with both |� |, |) | > 1, ifk� (G) = id andk) (~) = id then

k) (g� (~)) = id andk� (k� (~)
−1;g ′) (G);~) = id.

Proof. See Appendix D of our supplementary material. �

We prove these new rewrites express the same equalities as the old rewrites in Appendix D. Here,

we provide an informal proof.

Lemma 7.7. ≡3 (the reflexive transitive symmetric closure of the diagram rules) is the same equiva-

lence relation as the reflexive transitive symmetric closure of→ .

Proof. For the forward direction: if two words are connected by B1, B2, B3, then applying Braid

on both makes them the same. Similarly, L1, L2, and L3 are undone by Layer. The M1 case is difficult,

as M1 does not require words to be simplified, but Swap does. In the formal proof, we simplify the

word, apply Swap, and show we arrive at the same result and reduced energy with each rewrite.

For the backwards direction, we recognize Layer, Swap, and Braid as compositions of diagram

rewrites. �

After establishing that Layer, Swap, and Braid represent the desired equivalences, we show

that→ is weakly confluent. We again supply an informal proof; our full proof is in Appendix D.

Theorem 7.8. The rewriting system→ on words inK formed by Layer, Swap, and Braid is weakly

confluent.
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Proof. Our proof handles the 6 cases of each of the 3 rules being weakly confluent with itself or

another rule. Most of our cases are trivial. Layer with Layer and Swap with Swap are our most

involved, and we provide sketches for each.

Let �;G ;) ;~; ( be a subword of - . Our Layer case shows that simplifying the braid at ~ then G

results in the same word as simplifying G then ~ then G, showing that energy is reduced by each

rewrite.

Our Swap case shows that for some initial order of boxes �;�;�, swapping �, � then �,� then

�,� (reversing the boxes’ order) results in the same word as swapping �,� then �,� then �, �,

again showing each rewrite reduces energy. �

Corollary 7.9. → is canonicalizing.

Proof. Because N and its powers are well-founded,→ is terminating. By Theorem 7.8, it is

weakly confluent. Because→ is both terminating and weakly confluent, it is canonicalizing. �

7.3 Polynomial-Time Execution

We claim the algorithm presented in Section 6 calculates the normal form of our ARS. We provide

full proofs of these statements in Appendix E of our supplementary material.

Lemma 7.10. Given any word -, the algorithm in Algorithm 1 calculates the normal form of - in

→.

Proof. We show in Appendix E that the word returned by Algorithm 1 always has zero energy,

so it must be irreducible. �

Finally, we show that Algorithm 1 runs in polynomial time. It should be noted that we do not

believe our bound is tight, as the goal of this paper is to establish a polynomial result. Future work

in efficient algebraic representations or algorithmic tricks specific to machine knitting may produce

much faster results.

Theorem 7.11. Algorithm 1 runs in $ (=5<712 log(=)) time on words in K with = strands in total,

< box morphisms, and braid words between pairs of box morphisms with $ (1) crossings each.

8 Translating Knitout

In this section, we informally describe how to map knitout into our categorical semantics. The main

contribution of this paper is the canonicalization of words in K, and this section motivates our

canonicalization by connecting knitout programs to words inK .We provide an intuitive description

of our translation here, and leave formal definitions to Appendix F of our supplementary material.

The formal knitout language consists of a list of statements that each describe a mechanical

action to be performed by a knitting machine. Its syntax is as follows:

:B ::= :B1;:B2 | tuck 38A =.G ; (~, B) | knit 38A =.G ; ~0A=B

| split 38A =.G =′ .G ′ ; ~0A=B | miss 38A =.G ~ | in 38A =.G ~

| out 38A =.G ~ | drop =.G | xfer =.G =′ .G ′ | rack A | nop

=, =′ ::= f | b ~0A=B ::= (~, B)+ (without repetition of ~ values)

38A ∈ {+,−} B, ; ∈ R A, G, G ′ ∈ Z ~ ∈ N

Each operation moves some part of the machine, potentially introducing crossings between strands

and moving loops. Recall that the real-valued parameters B, ; ∈ R describe metric parameters for

the length of yarn used in an operation, so they are not used in our translation.
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in − f.0 2; yellow carrier 2 on left

in − f.1 1; cyan carrier 1 on right

tuck + b.1 5.0 (1, 2.0); first box

miss + f.0 2; move yellow carrier right

miss + f.1 2; move yellow carrier right

tuck + f.2 5.0 (2, 2.0); second box

rack 1; cyan loop moves right

xfer b.1 f.2; cyan loop joins yellow loop’s needle

split + f.2 b.1 5.0 (1, 2.0); third box

drop f.2; output loop of split is dropped

out + f.2 1; cyan carrier is dropped

out + f.2 2; yellow carrier is dropped

Fig. 17. Annotated formal knitout code that denotes the diagram in Figure 16.

left to right. In the − case, we order them right to left. We define boxmorphisms formally, including

their domains and codomains, in Appendix F of our supplementary material.

There are three operations that translate to boxes: tuck is mapped to the tuck variant, knit is

mapped to stitch with 3A>??43 = true, and split is mapped to stitch with 3A>??43 = false.

We call these box operations. Each box operation is guaranteed to have at least one carrier strand

~ as input and at least one loop (two strands) as output. Hence a straightforward mapping of box

operations to box morphisms would satisfy K’s restrictions on box morphisms.

However, we do not directly map box operations to box morphisms. Instead, the translation

depends on the in, out, and drop operations that are connected to the box operations via a strand.

The B;DA?43$DC, B;DA?43�=B, B;DA?43$DCB and 3A>??43 fields are populated and updated depending

on the nearby in, out, and drop operations in a process we describe next.

8.2 Preprocessing Knitout

The three box operations can be mapped to box morphisms, nop translates to id morphisms, and

the three operations miss, xfer, and rack can be represented with braids. The in, out, and drop

operations do not have counterparts inK, and this subsection explains how we preprocess a knitout

program to remove them by fusing them with box morphisms.

The in operation introduces a carrier strand, out removes a carrier strand, and drop removes one

or more loops. These cannot be represented with braids alone, but they also cannot be represented

with box morphisms, as K’s restrictions on domain/codomain sizes are not satisfied: each of the

three operations has 0 inputs (in) or 0 outputs (out, drop). We instead preprocess them in a step

we call slurping, dragging them towards a connected box operation and fusing them together. We

formalize this in Appendix F as an Abstract Rewriting System (ARS) over formal knitout programs.

The case for out is simplest, so we begin with it. Topologically, an out morphism is a loose end

produced when an active carrier’s yarn is cut. However, that loose end had to start somewhere –

either a box operation, an in operation, or the strand was there at the start of the program. In the

final case, we say the out is connected to the boundary of the program. Our rewrite system drags

the out towards wherever its strand is connected to.
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Lin et al. [12] is extended in Lin et al. [13] with instruction graphs. Lin et al. [13] describe a subset

of instruction graphs that are always machine knittable.

Markande and Matsumoto [15] introduce a separate topological semantics for machine knitting.

Instead of semantics for programs, they represent semantics for program snippets: swatches of

stitches embedded on a torus. Input and output loops and strands wrap around because of the

toroidal embedding, so fences around stitches are not necessary. However, the semantics are only

able to describe swatches with the same number of input/output loops and the same number of

input/output carrier strands – most machine knitted objects do not have that form.

Machine knitting design tools have historically used representations that are not formally defined

using topology. Autoknit [20] uses a knit graph to represent how stitches are connected by loops

and carrier strands. Their abstraction does not encode crossings of loops and strands, as the authors

use Autoknit to generate knitting machine instructions to knit any manifold and orientable triangle

mesh: crossings between loops and strands are irrelevant in their semantics. As such, knit graphs

cannot differentiate between programs that are topologically distinct.

KODA [8] is an optimizing compiler that translates knitout to knitout. It does this by first lifting

knitout to an expanded knit graph, which includes information about crossings between loops

and strands by recording loop-loop and loop-strand crossings individually. While the expanded

knit graph representation does capture enough information to recreate a topologically equivalent

knitout program, KODA cannot represent all possible topological transformations. For example,

equalities by L1 are not considered by KODA. Additionally, KODA does not record movements of

carrier strands due to miss operations, so it only supports sound optimization on the subset of

knitout without miss.

Programming Languages in Fabrication. There is a rich history of applying ideas from program-

ming languages to the domain of fabrication. Nandi et al. [19] proposes the use of programming

languages techniques to the CAD process for 3D printing. The authors treat solid geometry as a

programming language, and provide a verified compiler from CAD code to meshes. They addi-

tionally supply a synthesis algorithm that translates meshes into CAD designs for easier editing.

Sottile and Tekriwal [24] detail the development of a verified interpreter for G-code for additive

manufacturing.

In a unique application, Zhu et al. [27] develop a language for machine knitting that is embedded

inside machine knit objects. They designed their machine knitting language with the intent of

developing quines for machine knitting – knitted objects that denote themselves. Clark and Bohrer

[3] introduce an imperative language for sewn quilts, with semantics inspired by homotopy type

theory.

Monoidal Categories in Programming Languages. There are many applications of monoidal cate-

gories to programming languages, often to represent semantics of computation. Bonchi et al. [1]

formulate the rewriting of string diagrams for symmetric monoidal categories using hypergraphs.

Choudhury et al. [2] reduce reversible boolean circuits to canonical forms using symmetric rig

groupoids (a special case of symmetric monoidal categories).

Outside of symmetric monoidal categories, Hasegawa and Lechenne [6] explore ribbon com-

binatory algebras, relating to the braided untyped linear lambda calculus and framed oriented

tangles. Their work expresses the geometric side of combinatory logic, and they study both braided

and balanced structures. The work in Joyal and Street [10] forms the foundation of our paper,

connecting monoidal categories and the topology of their string diagrams. Selinger [22] provides

an accessible survey of monoidal categories and their string diagrams.
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Polynomial-Time Program Equivalence. Most programming languages are not canonicalizable in

polynomial time, but one classic computational context is regular expressions, described by finite

automata [9]. Regular expressions still receive serious research attention today [17, 26].

11 Conclusion

We have presented an algebraic semantics for machine knitting and an algorithm to fully canoni-

calize those semantics into normal forms. Our canonicalization runs in polynomial time, and we

prove our algorithm’s correctness.

Our work inherits a limitation from the topological semantics in Lin et al. [12]; we do not capture

metric properties. Machine knitting is a physical process, and metrics such as the spacing between

stitches or the amount of slack on threads is not captured by our representation. Now that we have

developed the means to efficiently classify the topology of machine knitted objects, we hope to

incorporate metric properties into our algebraic representation in future work.

While our canonicalization algorithm is proven correct over words in K, our preprocessing

step makes noncanonical decisions as it maps knitout code into K . When it encounters an in

operation attached to a tuck that does not ladder, it attaches that in to the boundary. Because

in operations that connect directly to tucks tend to only appear in the beginning of machine

knitting programs, we believe that this preprocessing limitation does not affect the majority of

use cases in machine knitting. When performing local optimizations, the portion of the program

containing in operations can be ignored. In cases where our preprocessing is insufficient, a user

could modify their program to route the in operations to the boundary themselves to guarantee

properties of the canonicalization algorithm. We recognize this limitation as arising from a trade-off

between capturing all programs and equivalences in machine knitting using the full breadth of knot

theory, and capturing almost all programs and equivalences while maintaining polynomial-time

canonicalization.

We are excited to use these semantics in future programming languages research for machine

knitting. Our work develops algebraic semantics and a computable canonical form. A natural next

step is to develop an optimizing compiler for machine knitting with the formalisms and algorithm

of this paper. We expect that optimizing a language with polynomial-time equivalence checking will

produce fruitful results, but incorporating desired physical properties like metrics and fabrication

constraints may prove challenging. Finally, we hope to design a domain-specific language for

machine knitting that denotes our algebraic semantics directly. Such a language could serve as

an intermediate representation for design tools, enabling creators to formally and declaratively

describe machine knitted objects without specifying how to fabricate them on a knitting machine.
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