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The Strominger system in the square of a Kahler class

TRISTAN COLLINS*, SEBASTIEN PICARD, AND SHING-TUNG YAU

Abstract: We study the Strominger system with fixed balanced
class. We show that classes which are the square of a Kéhler metric
admit solutions to the system for vector bundles satisfying the nec-
essary conditions. Solutions are constructed by deforming a Calabi-
Yau metric and a Hermitian-Yang-Mills metric along a path inside
the given cohomology class.

Keywords: Non-Kéhler Calabi-Yau, Balanced class, Strominger
system.

1. Introduction

Let M be a compact complex manifold of dimension n, and suppose 7 €
Hg,al’n*l(M ,R) is a Bott-Chern cohomology class such that there exists a
positive real (1, 1)-form w > 0 with

wler

A class 7 with this property is called a balanced class. Here the Bott-Chern
class is defined as

HEM"YMR) = {8 € Q""" 1(X,R) : dB = 0}/Tm idd.

The cone of balanced classes appears in the study of movable curves initiated
by Boucksom-Demailly-Paun-Peternell [9]; see [25, 53]. Here we consider the
problem of finding optimal representatives in a given balanced class. Various
approaches to this question have been proposed in the literature [22, 29, 30,
31, 47, 50, 52, 55, 56], and the Strominger system [51] stands out as a natural
candidate due to its importance in theoretical physics [1, 5, 6, 7, 10, 13, 42, 44].
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In this note, we will solve the Strominger system in balanced classes which
come from Kahler classes. Heterotic string theory on Kéhler manifolds starts
with the work of Candelas-Horowitz-Strominger-Witten [11]. Solutions with
non-zero torsion from general gauge bundles over Kéhler manifolds were ob-
tained by Li-Yau [41], and Andreas and Garcia-Fernandez [2, 3]. The differ-
ence with the present work is that we fix the cohomology class of the solution.
The question of existence of solutions to the system on a non-Kéhler manifold
is widely open [14, 17, 20, 21, 23, 24, 26, 28, 37, 40, 45, 48].

Let X be be a compact Kéhler Calabi-Yau manifold of complex dimension
n = 3 equipped with a nowhere vanishing holomorphic (3,0) form Q. Let
T E H%%()Q R) be such that

r =[]

for a Kéhler metric wg. Let £ — X be a holomorphic vector bundle such that
e2(E) = ex(X),  deg, (E) =0

and assume that E is stable with respect to [wp]|. By Yau'’s theorem [58], there
exists a Kéhler Ricci-flat metric @ € [wp], and we may write 7 = [?]. By the
Donaldson-Uhlenbeck-Yau theorem [16, 57|, there is a Hermitian-Yang-Mills
metric H, solving

&N Fy =0,

where I is the curvature of the Chern connection of H. We will seek a new
metric H on F and a new metric wg on X of the form

Quows = |Qp&® +0 >0, ©=1id0p

for B € QM (X, R), so that
wé/\FHzO,

i00we = Tr Ro A Rg — Tr Fy A Fy.

Here Rg denotes the curvature of the Chern connection of wg. By construc-
tion, the metric weg is conformally balanced; this means

d(|Qwowd) = 0.
Furthermore, wg has (conformally) balanced class

|Qwowd € (I20a0%] € Hyo(X,R).
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Since || is constant for a Calabi-Yau metric &, we are looking for solutions
to the Strominger system in a rescaling of the balanced class 7. Our main
theorem states that the system is solvable in the large radius limit.

Theorem 1.1. Let X be a complex manifold of dimension 8 equipped with
a holomorphic volume form Q and a Kdhler Ricci-flat metric ©. Let E — X
be a holomorphic vector bundle such that co(E) = co(X) and suppose E is of
degree zero and stable with respect to [0,

There exists Ly > 1 depending on (X, E,&) with the following property.
For all My > Lo, there exists a pair (w, H) with
[0l w?] = Mo[&®] € Hpa(X,R),
which solves the system

WAEAFg =0, d(|9Q],w?) =0,

i00w = Tr R, AR, — Tr Fyy A Fyy.

Remark 1.2. The system was previously solved by Andreas and Garcia-
Fernandez [2] for holomorphic bundles £ — (X,®) over Kahler Calabi-Yau
manifolds assuming the necessary conditions that F is stable, degree 0, and
with ca(E) = c2(X). The setup in [2, 3, 41] is a bit different, as it does not
fix the balanced class of the solution, though it was expected [31] that this
approach could be modified to control the balanced class. We confirm this
here and present a method which fixes the balanced class, and we refer to
§3.2 for further discussion and comparisons to prior work.

There is another way to view this result by introducing a parameter o > 0
and looking for solutions in the fixed balanced class 7 = [&?]. From a solution
produced by the theorem above with class ||, w? € L|®?], we can consider
& = L~%w, which now solves

G*ANFy =0, d(|Qso*) =0,

1000 = o/ (Tr Ry A Ry — Tr Fyy A Fy),
for o/ = L2, and with
101 &%) = [6°] € Hpo (X, R).

From this point of view, the scale of the balanced class is fixed, but the
parameter ' is tunable and we obtain a sequence of solutions as o’ — 0.
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M. Garcia-Fernandez and R. Gonzalez Molina have recently discovered
[34, 35] a Futaki invariant, which on dd-manifolds is a pairing (Fp,7) € C
for each balanced class 7 € H?Bé(]l{) They proved that if 7 admits a solution
to the system (more precisely, the version of the system described in §3.2),
then (Fo,7) = 0. As a consequence of §3.2, on a simply-connected Kéhler
Calabi-Yau threefold then (Fy,7) = 0 for all balanced classes of the form
7 = [w?] where w is a Kéhler metric.

The cone of balanced classes on a Kéhler manifold was studied by Fu-Xiao
[25], and they found that not every balanced class comes from the square of
a Kéhler metric (see [25, 54] for examples). Thus to complete the picture,
it remains to understand balanced classes which do not come from Kéhler
classes, but rather are squares of classes on the boundary of the Kéhler cone.

2. The linearized system
2.1. Setup

Let X be a compact Kéhler manifold of complex dimension n = 3 admitting
a holomorphic volume form €. To solve the system, we will deform a pair of
metrics (f] ,&) where @ is a Kéahler Ricci-flat on X and H is a vector bundle
metric on £ — X solving the Hermitian-Yang-Mills equation with respect to

A

w.

e To deform H, we will look for solutions of the form e“H with
u € Ho(E) = {u €T(EndE) :u't = u, Tru= 0}.

Our conventions for the bundle metric H are as follows. First, the inner
product on sections u,v € I'(E) is given in a local trivialization by

(u,v) g = uaﬁagﬁ,

and the adjoint uf# of an endomorphism u is with respect to this inner prod-
uct. Next, we denote the inverse of the local matrix H by HbP andif H = e“H
then (¢*),® = HuuH"P. For u € H\(E), we write F,, = Fyy = 9((0H)H™") to
denote the curvature of the Chern connection of H = e*H. Given a hermitian
metric w = z'gj,;dzj A dZz* on the complex manifold, we use the notation

(1) iN,Fy = —g*0,(0;HH ") € [ (End E)
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so that

w2 A 1Fyg = (ZAWFH) w3,
and the Hermitian-Yang-Mills equation is iA, F,, = 0. We note that
(2) TriF, = —i00logdet e" + Trily.

By the Donaldson-Uhlenbeck-Yau theorem [16, 57], if E — (X, ®) is stable
then it admits a metric solving the Hermitian-Yang-Mills equation. Recall
that £ — (X,®) is stable if the following stability condition holds: for all
coherent subsheaves S C E with 0 < rk(S5) < rk(E), then

p(S) < u(E),
where p(S) = rk(#5)01(8) A [@?].
e To deform @, we will look for solutions of the form
(3) 1Qwewd = Qs @* +60 >0
where

OclU = {@ € Imidd N Q**(X,R): |Q|s&*+ 6 > o}.

Since @ is Kéhler and |Q)|; is constant, then d(]Q2|;@?) = 0. For an arbitrary
© € U, the formula (3) defines a conformally balanced metric wg [43] by
taking a square root of a positive (2,2) form. To be concrete, we note the
explicit formula which can be found in [47]. If we write

U= UHdt NdZ A AP A A A AT A A d2P A A
k7j

with cg; = i22!(sgn(k, j)), then the metric w = ig;pdz’ A dz* solving the
equation ||, w? = ¥ is locally given by

det(WP7)
F(2)f(2)

where Q = f(2)dz! A d2? A d2? in local coordinates,

_f)f()
0 =

(4) 95 = (T

(5)

Y
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and \I/kj(\yfl)g = 5’%.
e Our space of deformations of (H,&) is then
Z =Hy(E)xU
and we let F : R x Z — W be given by

, _ ) |Q|w(_)e’“/2[w?9 A iFy)e/?
(6) Flel, (u,0)) = L'aaw@ —o/(TrRo A Ro — Tr Fy, A F))

The image of F is contained in
W =V x (Imidd N Q*?*(X,R)),

where

V= {S € Q% X,EndE) : s'n = s, / Trs = O}.
X
We now verify that the image F is indeed in W. First, we note that
/ IQoowd A Tr [e /2 Fyet?) = / Qa0 A TriF, =0
X X

by (2), (3), and Stokes’s theorem. Next, we verify the condition
Ta
[e“/Q(iAw@ Fu)e“/Q] = e 2Ny, Fy e

The expression (1) shows that (iA, F')H is a hermitian matrix, which we write
[iA,F]'# = iAF ie. (iAF) is selfadjoint with respect to H. We will need
the image of F to be selfadjoint with respect to the reference H, which is
the reason for conjugating by e*/2. In general, given two hermitian positive
definite matrices H, H and and a matrix A, if AH is a hermitian matrix then
(h_1/2Ah1/2)ﬁ is a hermitian matrix where h = HH~'. This shows that
e 2 (i, F,)e"? is self-adjoint with respect to H.

Finally, the hypothesis co(T1°X) = ¢3(F) guarantees that the image of
the second component of F is 100 exact by the i90-lemma.

We note that F(0,(0,0)) = 0. We will use the implicit function the-
orem to show that for each o/ € (—e¢,¢€) there is a pair (uq,©,) so that
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F(d, (uq, On)) = 0. For this, we will calculate the linearization of F at the
origin in the W directions, which we write as

ey L Al
wrvser=[i 4[4
We now compute L, A, Lo.

2.2. Linearized Yang-Mills equation

Let H(t) be a path of metrics with H(0) = H. Differentiating the curvature
gives
d

d

e (0;HH™)

t=0

t=0
which can be written as

d

t=0

with h = HH! and V the Chern connection of H acting on sections of
End E. Therefore, along a path H = ¢“®) H with u(0) = 0 and FqNo* =0,
then

d

dt

_ ~3
[|Q|@e_“(t)/2[@2 N iFyp)e" 2| = g% 0,V u @ |Q|@%.
t=0 !

We let L; : T(End E) — Q5(End E) be

- 3
Lih = —§*0,V,;h ® Qo7

We can also vary the first component of F along a path of hermitian metrics on
the base manifold X. Let O(t) be a path of exact (2,2)-forms with ©(0) = 0.
Then

d . R
— [|Q|wem woy NiF| =2[Qlpw A AIF
dtl,—g
where w = %| —owe() Will be computed in the next section. The result will

be (16), and we let
A(©) == AyO NG AIF.
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To end this section, we note the identity

1 ; _ o°
7 [ttty =5 [ [07hE 5 + 1002 |10k

which holds for all self-adjoint endomorphisms h € I'(End E). The inner
product on endomorphisms is (hi, ho) 5 = Tr hlhgﬁ . To derive (7), we start

with
PR Wy = (@FORV b b g + (h VDR g + 57 (V 5, Vih) g
8)

( + 7R (Oh, Bh) 4.

Since gj’?ﬁj,; = 0, we may freely commute covariant derivatives so that
9"V r0;h = §7%0;Vh. Then

77 050;(h by = 2067 OV, ) g+ (ORI + 1ORI2 5.

Multiplying through by |Q|w°§—,3, integrating and applying Stokes’s theorem
gives (7).

2.3. Linearized conformally balanced equation

We now record how wg varies under a change in ©. This variational formula
is fundamental in the study of the Anomaly flow, and its derivation can
be found in [46]. For other related setups where a similar formula is used,
see [8, 18, 19, 49]. We reproduce the full calculation here for the sake of
completeness.

Lemma 2.1. [/6] Let w > 0 solve |Q|,w? = O. Then

1
2|9,

(9) (09) 5 = — )

stjk*

If we use the notation
(iAY) 7 = 9"V
for ¥ € O%%(X), then

1

1 - _ -
(10) TN

A,00.
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Proof. Taking the variation of |Q|,w? = © gives
(6]9,) w? + 2|9 ,0w A w = 60.

Differentiating the definition of ||, (5), we obtain

1 -
B10L = —510% 7™ (59) 5.
Therefore

1 .;
(11) [—gﬂk(ég)jE}WQ—l-%w/\w: O.

1
> oL’

The computation to extract dg was done in [46]. One approach is to use the

Hodge star operator, and another is to expand both sides in components. We
will take the component approach. Using the convention

1 .
U= 10 ds" AdZ A dE N dz*,

and w = igj,;dzj A dz*; we have

w? = (igerdz® N dZ") A (igj,;dzj A dz*)
which is

w? = (=9srg;5) dz° Ndz" N dz? A dz*
and after antisymmetrization becomes
(12) (W) ik = —205795% + 295797
Next, we have

WA dw = (igsrdz® A dz") A (idg,p, dz? A dz"),

which becomes
(13) (wA 5”)3?3‘1% = _gsf(59)jlé + 957 (09) 55 — gjic(ag)sf + 955(09) ji-

Substituting (12) and (13) into (11), we obtain

1 =
[ - 29”q(59)pq] { — 295795 + 295795,
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+2| = 0ur09),1.+ 91209) 1~ 9,409 + 9.09)s]

B 1

(14 oL

(00)

sPjk*
Contracting by ¢*", we obtain

[ - ;gmg)w} [ —2(3)g; + 2gjk]

42| = 3(60) -+ (0,5~ o™ (o)l + (09)]
1

(15) = mg%@)

stE'
The terms ¢°"(dg)sr cancel exactly. Simplifying gives (9), which proves the

lemma. O

We will need the variation of i00we. Let ©(t) be a 1-parameter family of
closed (2,2) forms with ©(0) = 0. Then by (10), we have

(16) 2

_ T 1 .
i0we ) = 100 {AQG} ,
P 219,

where wg(y = @ and 0 = %|t:09. If & is Kéahler Ricci-flat, then [Q|; is

constant and the Kahler identity [A, 9] = —id' implies

1
2190

1

2‘£2LQZX@()1

i00we, = 90LO = —

t=0

4
dt
using that d© = 0. Here A, = 99, + d[,0. We then denote

1

“2f

1:26) =

to be the linearization of id0we along paths of metrics constrained to the
form |Q],owd = [Q]0? + O.

2.4. Implicit function theorem

Let F : R x C*+22(Z) — C*(W), denoted F(o/, (u,®)), be given by (6)
as before. Combining our work so far, we computed the linearization of F at
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the origin in the W directions to be

Dy Flo : CFF2@ (HO(E) x (Imidd N Q“)) — Ohe (v x (Imidd N Q“))

Sy L Al
(DQF)’()(u>®) - lo LJ [®‘| )
where the diagonal operators are

Ly : CM2(H(E)) = CH(V)
T w3
Ly = —§"ViV; @ Qe

and

Ly = C*22((Imidd N Q*?%)) — CF((Imidd N Q>?))
1

Ly = ———A;
2 2|95

and the off-diagonal is

A OFP2e((Imidd N Q%?%)) — CF(V)
AO) = AOANDNIF,.

The diagonal operators Ly, Ly are both invertible and thus Do F|j is invertible.
Indeed:

e Invertibility of Lo: the operator Lo is invertible by Hodge theory and
the 100-lemma. Said otherwise, on a Kéahler manifold we can view the domain
and range as Ly : Imd — Im d and exchange 00" 4 010 with the usual Hodge
Laplacian dd' + d'd.

e Invertibility of L;: the operator L; has an adjoint LI : Q5(End F) —
['(End E) with L? inner product

I o
(u®§,v®§)m—/x<u,v>ﬁ§.

By (7), we know that if

(17) (Ll’LL,U ® 7)[/2 = O,
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then du = 0. Therefore if u € Ker Ly, then u is a holomorphic endomorphism
of E. Since £ — X is stable, v must be a multiple of the identity, other-
wise considering the subsheaves Keru C F, Imu C E violates the stability
condition.

Ker L; = C-id.

Since Ly : Hy(E) — V, then Ker L; = {0}. Similarly, if u® "g—? € Ker LI, then
(17) holds and
@3
Ker L} =C-ide
which implies Im L; = (Ker L)+ = V.
o Invertibility of DaF|o: this follows since the diagonal operators are in-
vertible.

0 Lyt

-1 r-ly7-1
(DyFlo)~" = lLl L AL ]

By the implicit function theorem, there exists € > 0 such that for all o/ €
(—€,¢€), there exists (u, ©) € C*+2%(Z) such that F(a/, (u,0)) = 0.

Remark 2.2. From a solution F(c/, (u,©)) = 0 with small o/ > 0, we can
consider @ = o/ "'wg, which solves

(18) i00% = Tr Ry A Ry — Tr Fy, A Fy

u?

but changes the balanced class to
Q0% € o'"V2[|Q)50?).

As o — 0, we obtain a sequence of solutions to (18) in balanced classes of
the form My[w?] with radius My = o/~1/2|Q|; tending to infinity My — oco.

3. Further remarks
3.1. Ellipticity and regularity

In the previous section, we use the implicit function theorem to obtain C3
solutions to F(/, (u,0)) = 0. We will now show that these C*“ solutions are
smooth for o/ small enough. This will follow from ellipticity of the system of
equations in the regime |/ R,|, < 1. Note that since the anomaly cancellation
equation is a fully nonlinear PDE system for the metric due to the Tr Ry A R,
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term, we do not expect the equation to be elliptic everywhere, but it should
be elliptic in an open set of solution space.

The solutions (¢, (uq, ©4)) obtained by the implicit function theorem lie
in the regime |o/R,|, < 1, since as o’ — 0 then ©, — 0, Rg, — R; and so
|&’Rg,| — 0.

Proposition 3.1. Consider a solution (H,ge) € C>% to the equations

(90) (Fi)y = 0,
i00we — o/ (Tt Re ARe — Tt Fy AFy) = 0

with |Qwewd = |Qs &> + O and © = i00S. Suppose ge lies in the ellipticity
region | Ryg|ge < € with € > 0 a universal constant. Then the pair (H, ge)
is smooth.

Proof. We work in a local coordinate chart B;. Here the first equation is of
the form

glF 0,0, H = O(H, go,0H) € C>*(By).

By interior Schauder estimates, we obtain that the components H 5 € 04’0‘(31/2).
Next, we upgrade the regularity of the metric go. Let § denote differentiation

of local components in a coordinate direction, e.g. § = %. Differentiating
the anomaly equation gives

i000we — 2a'Tr Ro A 0Re + 2a'Tr Fiy A §Fy = 0.

We computed dweg earlier (10), and the variation of the curvature of the Chern
connection is

§Ry = 00v (g0 gél).
The differentiated equation becomes
(19) '88{1A 5@]
R P P

= o {Tr Re A 00y (ml(Awed@) gg;) —2Tr Fy A 0Oy (6H H™Y)

we

We note the following non-Kéhler identity, which can be found in Demailly
[15] Chapter VI Theorem 6.8:

[A, 9] = —id" —i[A, 0w’
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Since © = i003, then 60O is closed and

71
286[2’9’% wea@}

1
2|0

ANpd© + O(O, DO, D2@).
It follows that

_ 1 1 -
00 | ————A,, = ——(g0)*0;0; DO, D?0).
208[2|Q|w@ @5@} 20l (90)%0;0;00 + O(©, DO, D?*O)

The local equation on By can then be written as
(90)7%0;0:60 — 20/ Tr Ro A (A 00v60)gg" € C1*

which is of the form
AP, 0.(60) 5 = f!
with f € ¢l Al7Pi ¢ O and

AIJpqu{qTITJ > AP r?

for 2a/| Rg| < 1 small enough. By the Schauder estimates for elliptic systems
(e.g. [36]), we conclude that 6© € C*®. Therefore © € C*%, and the solution
(9o, H) € C**. Repeating this process gives (go, H) € C** for every positive
integer k. O

3.2. Instantons on the tangent bundle

There are other versions of the heterotic system considered in the literature
which combine observations of Strominger [51], Hull [38], and Ivanov [39],
and these involve an instanton connection on the tangent bundle. For recent
work using this setup, see e.g. [4, 13, 32, 33, 34, 35].

We now describe the equations solved by Andreas and Garcia-Fernandez
[2] by implicit function theorem on Kéhler manifolds. The system of equations
in this case is for a triple (w, V1, Va), where g is a metric on TH°X | V; is a
connection on TH°X which is unitary with respect to g, and V5 is a connection
on F, solving

0,2 2,0 0,2 2,0
(20) vasz:O? sz :sz =0,

w2/\Rv1=0, w2/\Fv2=0,
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d(|Q,w?) =0,

i00w = o/ (Tr Ry, A Ry, — Tr Fy, A Fy,),

where w = z'gj,;dzj A dz*. Assuming that the holomorphic tangent bundle is
stable (by [12, 27] this is true for non-Kéhler threefolds created by a conifold
transition), a way to find solutions to this system is to instead fix a holomor-
phic structure on (E,T°X), and look for a triple (g,h, H) where g, h are
metrics on 75°X and H is a metric on F solving

(21) W AR, =0, w*AFg=0, d(|Q,w’) =0,

i00w = o/ (Tr Ry, A Ry, — Tr Fg A Fy),

where Rj,, Fy are the curvatures of the Chern connections of the metrics h, H.
Denote the Chern connection of h by V". To use solutions of (21) to solve the
equations from setup (20), we need to change V" to be unitary with respect to
g. Our conventions are (u,v), = hj,;ujﬁ, which we write in matrix notation
as (u,v), = uThv. Define the gauge transformation ¢ by g = o'ha. Then
V=c'loVhoois unitary with respect to g, as direct computation shows
that

9i{u,v)g = <@iu>v>g + (u, @E'U>g~
Since Ry = o0 'Ryno, the connection V can be used to solve the equations
from setup (20).

The method described here adapts to setup (21) as well, and we give a
sketch of the proof. Let © = igj,;dzj A dz* be Kahler Ricci-flat and H solve

&* A Fp = 0. We deform (g, I:I,c?)) to (e"g, e“Qﬁ,w@) with
(u1,u,0) € Z = Hy(T*°X) x Ho(E) x U
and
1Q]powd = |Qei® + O
as before. Let F : R x Z — W be given by
\Q\w@e_ulﬂ[w% A z'Rul]eul/2

(22)  F(d,(ug,uz2,0)) = B |Q|wee_“2/2[wé N iF,,)eu2/?
i00we — o/ (Tr Ry, A Ry, — Tr Fyy A Fyy)
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We have that F(0, (0,0,0)) = 0, and the linearization of F at the origin is of
the form
) L1 0 Al U1
(DaF)|o(n, i2,0) = | 0 Ly Az |t
0 0 L3||©

Provided that X is simply-connected, then 719X is stable and the methods
in this paper can be applied to show that L1, Lo, L3 are invertible in suitable
spaces. The implicit function theorem then gives solutions for small o/ €
(—e¢,€). This shows that the result of Andreas and Garcia-Fernandez [2] can
be modified to control the balanced class of the solution as expected in [31].
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