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The Strominger system in the square of a Kähler class
Tristan Collins�, Sebastien Picard, and Shing-Tung Yau

Abstract: We study the Strominger system with fixed balanced

class. We show that classes which are the square of a Kähler metric

admit solutions to the system for vector bundles satisfying the nec-

essary conditions. Solutions are constructed by deforming a Calabi-

Yau metric and a Hermitian-Yang-Mills metric along a path inside

the given cohomology class.
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1. Introduction

Let M be a compact complex manifold of dimension n, and suppose · œ

H
n≠1,n≠1
BC

(M,R) is a Bott-Chern cohomology class such that there exists a
positive real (1, 1)-form Ê > 0 with

Ê
n≠1

œ ·.

A class · with this property is called a balanced class. Here the Bott-Chern
class is defined as

H
n≠1,n≠1
BC

(M,R) = {— œ �n≠1,n≠1(X,R) : d— = 0}/Im iˆ ¯̂.

The cone of balanced classes appears in the study of movable curves initiated
by Boucksom-Demailly-Paun-Peternell [9]; see [25, 53]. Here we consider the
problem of finding optimal representatives in a given balanced class. Various
approaches to this question have been proposed in the literature [22, 29, 30,
31, 47, 50, 52, 55, 56], and the Strominger system [51] stands out as a natural
candidate due to its importance in theoretical physics [1, 5, 6, 7, 10, 13, 42, 44].
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In this note, we will solve the Strominger system in balanced classes which
come from Kähler classes. Heterotic string theory on Kähler manifolds starts
with the work of Candelas-Horowitz-Strominger-Witten [11]. Solutions with
non-zero torsion from general gauge bundles over Kähler manifolds were ob-
tained by Li-Yau [41], and Andreas and Garcia-Fernandez [2, 3]. The di�er-
ence with the present work is that we fix the cohomology class of the solution.
The question of existence of solutions to the system on a non-Kähler manifold
is widely open [14, 17, 20, 21, 23, 24, 26, 28, 37, 40, 45, 48].

Let X be be a compact Kähler Calabi-Yau manifold of complex dimension
n = 3 equipped with a nowhere vanishing holomorphic (3, 0) form �. Let
· œ H

2,2
BC

(X,R) be such that
· = [Ê2

0]

for a Kähler metric Ê0. Let E æ X be a holomorphic vector bundle such that

c2(E) = c2(X), degÊ0(E) = 0

and assume that E is stable with respect to [Ê0]. By Yau’s theorem [58], there
exists a Kähler Ricci-flat metric Ê̂ œ [Ê0], and we may write · = [Ê̂2]. By the
Donaldson-Uhlenbeck-Yau theorem [16, 57], there is a Hermitian-Yang-Mills
metric Ĥ, solving

Ê̂
2

· F
Ĥ

= 0,

where F
Ĥ

is the curvature of the Chern connection of Ĥ. We will seek a new
metric H on E and a new metric Ê� on X of the form

|�|Ê�Ê
2
� = |�|Ê̂ Ê̂

2 + � > 0, � = iˆ ¯̂—

for — œ �1,1(X,R), so that
Ê

2
� · FH = 0,

iˆ ¯̂Ê� = Tr R� · R� ≠ Tr FH · FH .

Here R� denotes the curvature of the Chern connection of Ê�. By construc-
tion, the metric Ê� is conformally balanced; this means

d(|�|Ê�Ê
2
�) = 0.

Furthermore, Ê� has (conformally) balanced class

|�|Ê�Ê
2
� œ [|�|Ê̂ Ê̂

2] œ H
2,2
BC

(X,R).
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Since |�|Ê̂ is constant for a Calabi-Yau metric Ê̂, we are looking for solutions
to the Strominger system in a rescaling of the balanced class · . Our main
theorem states that the system is solvable in the large radius limit.

Theorem 1.1. Let X be a complex manifold of dimension 3 equipped with

a holomorphic volume form � and a Kähler Ricci-flat metric Ê̂. Let E æ X

be a holomorphic vector bundle such that c2(E) = c2(X) and suppose E is of

degree zero and stable with respect to [Ê̂2].

There exists L0 Ø 1 depending on (X, E, Ê̂) with the following property.

For all M0 Ø L0, there exists a pair (Ê, H) with

[|�|Ê Ê
2] = M0[Ê̂2] œ H

2,2
BC

(X,R),

which solves the system

Ê
2

· FH = 0, d(|�|Ê Ê
2) = 0,

iˆ ¯̂Ê = Tr RÊ · RÊ ≠ Tr FH · FH .

Remark 1.2. The system was previously solved by Andreas and Garcia-
Fernandez [2] for holomorphic bundles E æ (X, Ê̂) over Kähler Calabi-Yau
manifolds assuming the necessary conditions that E is stable, degree 0, and
with c2(E) = c2(X). The setup in [2, 3, 41] is a bit di�erent, as it does not
fix the balanced class of the solution, though it was expected [31] that this
approach could be modified to control the balanced class. We confirm this
here and present a method which fixes the balanced class, and we refer to
§3.2 for further discussion and comparisons to prior work.

There is another way to view this result by introducing a parameter –
Õ
> 0

and looking for solutions in the fixed balanced class · = [Ê̂2]. From a solution
produced by the theorem above with class |�|Ê Ê

2
œ L[Ê̂2], we can consider

Ễ = L
≠2

Ê, which now solves

Ễ
2

· FH = 0, d(|�|Ễ Ễ
2) = 0,

iˆ ¯̂Ễ = –
Õ(Tr RỄ · RỄ ≠ Tr FH · FH),

for –
Õ = L

≠2, and with

[|�|Ễ Ễ
2] = [Ê̂2] œ H

2,2
BC

(X,R).

From this point of view, the scale of the balanced class is fixed, but the
parameter –

Õ is tunable and we obtain a sequence of solutions as –
Õ
æ 0.
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M. Garcia-Fernandez and R. Gonzalez Molina have recently discovered
[34, 35] a Futaki invariant, which on ˆ ¯̂-manifolds is a pairing ÈF0, ·Í œ C
for each balanced class · œ H

2,2
BC

(R). They proved that if · admits a solution
to the system (more precisely, the version of the system described in §3.2),
then ÈF0, ·Í = 0. As a consequence of §3.2, on a simply-connected Kähler
Calabi-Yau threefold then ÈF0, ·Í = 0 for all balanced classes of the form
· = [Ê2] where Ê is a Kähler metric.

The cone of balanced classes on a Kähler manifold was studied by Fu-Xiao
[25], and they found that not every balanced class comes from the square of
a Kähler metric (see [25, 54] for examples). Thus to complete the picture,
it remains to understand balanced classes which do not come from Kähler
classes, but rather are squares of classes on the boundary of the Kähler cone.

2. The linearized system

2.1. Setup

Let X be a compact Kähler manifold of complex dimension n = 3 admitting
a holomorphic volume form �. To solve the system, we will deform a pair of
metrics (Ĥ, Ê̂) where Ê̂ is a Kähler Ricci-flat on X and Ĥ is a vector bundle
metric on E æ X solving the Hermitian-Yang-Mills equation with respect to
Ê̂.

• To deform Ĥ, we will look for solutions of the form e
u
Ĥ with

u œ H0(E) =
;

u œ �(End E) : u
†

Ĥ = u, Tr u = 0
<

.

Our conventions for the bundle metric Ĥ are as follows. First, the inner
product on sections u, v œ �(E) is given in a local trivialization by

Èu, vÍ
Ĥ

= u
–
Ĥ

–—̄
v—,

and the adjoint u
†

Ĥ of an endomorphism u is with respect to this inner prod-
uct. Next, we denote the inverse of the local matrix Ĥ by Ĥ

—̄–, and if H = e
u
Ĥ

then (eu)–
— = H–µ̄Ĥ

µ̄—. For u œ H1(E), we write Fu = FH = ¯̂((ˆH)H≠1) to
denote the curvature of the Chern connection of H = e

u
Ĥ. Given a hermitian

metric Ê = ig
jk̄

dz
j

· dz̄
k on the complex manifold, we use the notation

(1) i�ÊFH = ≠g
jk̄

ˆ
k̄
(ˆjHH

≠1) œ �(End E)
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so that
Ê

2
· iFH = (i�ÊFH) Ê

3
,

and the Hermitian-Yang-Mills equation is i�ÊFu = 0. We note that

(2) Tr iFu = ≠iˆ ¯̂ log det e
u + Tr iF

Ĥ
.

By the Donaldson-Uhlenbeck-Yau theorem [16, 57], if E æ (X, Ê̂) is stable
then it admits a metric solving the Hermitian-Yang-Mills equation. Recall
that E æ (X, Ê̂) is stable if the following stability condition holds: for all
coherent subsheaves S µ E with 0 < rk(S) < rk(E), then

µ(S) < µ(E),

where µ(S) = 1
rk(S)c1(S) · [Ê̂2].

• To deform Ê̂, we will look for solutions of the form

(3) |�|Ê�Ê
2
� := |�|Ê̂ Ê̂

2 + � > 0

where

� œ U =
;

� œ Im iˆ ¯̂ fl �2,2(X,R) : |�|Ê̂ Ê̂
2 + � > 0

<
.

Since Ê̂ is Kähler and |�|Ê̂ is constant, then d(|�|Ê̂Ê̂
2) = 0. For an arbitrary

� œ U , the formula (3) defines a conformally balanced metric Ê� [43] by
taking a square root of a positive (2, 2) form. To be concrete, we note the
explicit formula which can be found in [47]. If we write

� =
ÿ

k,j

ckj�kj̄
dz

1
· dz̄

1
· · · · ·

‰
dzk · dz̄

k
· · · · · dz

j
·

‰
dz̄j · · · · · dz

3
· dz̄

3
,

with ckj = i
22!(sgn(k, j)), then the metric Ê = ig

jk̄
dz

j
· dz̄

k solving the
equation |�|Ê Ê

2 = � is locally given by

(4) g
jk̄

= det(�pq̄)
f(z)f(z)

(�≠1)
jk̄

,

where � = f(z)dz
1

· dz
2

· dz
3 in local coordinates,

(5) |�|
2
Ê

= f(z)f(z)
det g

jk̄

,
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and �kj̄(�≠1)
¸j̄

= ”
k

¸.

• Our space of deformations of (Ĥ, Ê̂) is then

Z = H0(E) ◊ U

and we let F : R ◊ Z æ W be given by

(6) F (–Õ
, (u, �)) =

C
|�|Ê�e

≠u/2[Ê2
� · iFu]eu/2

iˆ ¯̂Ê� ≠ –
Õ(Tr R� · R� ≠ Tr Fu · Fu)

D

.

The image of F is contained in

W = V ◊ (Im iˆ ¯̂ fl �2,2(X,R)),

where

V =
;

s œ �6(X, End E) : s
†

Ĥ = s,

⁄

X

Tr s = 0
<

.

We now verify that the image F is indeed in W . First, we note that
⁄

X

|�|Ê�Ê
2
� · Tr [e≠u/2

iFue
u/2] =

⁄

X

|�|Ê̂Ê̂
2

· Tr iF
Ĥ

= 0

by (2), (3), and Stokes’s theorem. Next, we verify the condition

5
e

≠u/2(i�Ê�Fu)eu/2
6†

Ĥ

= e
≠u/2(i�Ê�Fu)eu/2

.

The expression (1) shows that (i�ÊF )H is a hermitian matrix, which we write
[i�ÊF ]†H = i�ÊF i.e. (i�F ) is selfadjoint with respect to H. We will need
the image of F to be selfadjoint with respect to the reference Ĥ, which is
the reason for conjugating by e

u/2. In general, given two hermitian positive
definite matrices Ĥ, H and and a matrix A, if AH is a hermitian matrix then
(h≠1/2

Ah
1/2)Ĥ is a hermitian matrix where h = HĤ

≠1. This shows that
e

≠u/2(i�Ê�Fu)eu/2 is self-adjoint with respect to Ĥ.
Finally, the hypothesis c2(T 1,0

X) = c2(E) guarantees that the image of
the second component of F is iˆ ¯̂ exact by the iˆ ¯̂-lemma.

We note that F(0, (0, 0)) = 0. We will use the implicit function the-
orem to show that for each –

Õ
œ (≠‘, ‘) there is a pair (u–, �–) so that
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F(–Õ
, (u–, �–)) = 0. For this, we will calculate the linearization of F at the

origin in the W directions, which we write as

(D2F)|0(u̇, �̇) =
C
L1 A

0 L2

D C
u̇

�̇

D

.

We now compute L1, A, L2.

2.2. Linearized Yang-Mills equation

Let H(t) be a path of metrics with H(0) = Ĥ. Di�erentiating the curvature
gives

d

dt

----
t=0

F
jk̄

= ≠ˆ
k̄

d

dt

----
t=0

(ˆjHH
≠1)

which can be written as

d

dt

----
t=0

F
jk̄

= ≠ˆ
k̄
Òj(ḣh

≠1),

with h = HĤ
≠1 and Ò the Chern connection of Ĥ acting on sections of

End E. Therefore, along a path H = e
u(t)

Ĥ with u(0) = 0 and F
Ĥ

· Ê̂
2 = 0,

then

d

dt

----
t=0

5
|�|Ê̂e

≠u(t)/2[Ê̂2
· iFu(t)]eu(t)/2

6
= ≠ĝ

jk̄
ˆ

k̄
Òj u̇ ¢ |�|Ê̂

Ê̂
3

3! .

We let L1 : �(End E) æ �6(End E) be

L1h := ≠ĝ
jk̄

ˆ
k̄
Òjh ¢ |�|Ê̂

Ê̂
3

3! .

We can also vary the first component of F along a path of hermitian metrics on
the base manifold X. Let �(t) be a path of exact (2, 2)-forms with �(0) = 0.
Then

d

dt

----
t=0

5
|�|Ê�(t) Ê

2
�(t) · iF̂

6
= 2|�|Ê̂ Ê̇ · Ê̂ · iF̂

where Ê̇ = d

dt

--
t=0 Ê�(t) will be computed in the next section. The result will

be (16), and we let
A(�̇) := �Ê̂�̇ · Ê̂ · iF̂ .
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To end this section, we note the identity

(7)
⁄

X

ÈL1h, hÍ
Ĥ

= 1
2

⁄

X

5
|ˆ

Ĥ
h|

2
ĝ,Ĥ

+ | ¯̂h|
2
ĝ,Ĥ

6
|�|Ê̂

Ê̂
3

3! ,

which holds for all self-adjoint endomorphisms h œ �(End E). The inner
product on endomorphisms is Èh1, h2Í

Ĥ
= Tr h1h

†
Ĥ

2 . To derive (7), we start
with

ĝ
jk̄

ˆ
k̄
ˆjÈh, hÍ

Ĥ
= Èĝ

jk̄
ˆ

k̄
Òjh, hÍ

Ĥ
+ Èh, ĝ

j̄k
Òkˆ

j̄
hÍ

Ĥ
+ ĝ

jk̄
ÈÒjh, ÒkhÍ

Ĥ

+ĝ
jk̄

Èˆ
k̄
h, ˆ

j̄
hÍ

Ĥ
.(8)

Since ĝ
jk̄

F̂
jk̄

= 0, we may freely commute covariant derivatives so that
ĝ

jk̄
Òkˆ

j̄
h = ĝ

jk̄
ˆ

j̄
Òkh. Then

ĝ
jk̄

ˆ
k̄
ˆjÈh, hÍ

Ĥ
= 2Èĝ

jk̄
ˆ

k̄
Òjh, hÍ

Ĥ
+ |ˆ

Ĥ
h|

2
ĝ,Ĥ

+ | ¯̂h|
2
ĝ,Ĥ

.

Multiplying through by |�|Ê̂
Ê̂

3

3! , integrating and applying Stokes’s theorem
gives (7).

2.3. Linearized conformally balanced equation

We now record how Ê� varies under a change in �. This variational formula
is fundamental in the study of the Anomaly flow, and its derivation can
be found in [46]. For other related setups where a similar formula is used,
see [8, 18, 19, 49]. We reproduce the full calculation here for the sake of
completeness.

Lemma 2.1. [46] Let Ê > 0 solve |�|ÊÊ
2 = �. Then

(9) (”g)
jk̄

= ≠
1

2|�|Ê
g

sr̄(”�)
sr̄jk̄

.

If we use the notation

(i�Ê�)
jk̄

= g
ab̄�

ab̄jk̄

for � œ �2,2(X), then

(10) ”Ê = 1
2|�|Ê

�Ê”�.
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Proof. Taking the variation of |�|ÊÊ
2 = � gives

(”|�|Ê) Ê
2 + 2|�|Ê”Ê · Ê = ”�.

Di�erentiating the definition of |�|Ê (5), we obtain

”|�|Ê = ≠
1
2 |�|Ê g

jk̄(”g)
jk̄

.

Therefore

(11)
5

≠
1
2g

jk̄(”g)
jk̄

6
Ê

2 + 2”Ê · Ê = 1
|�|Ê

”�.

The computation to extract ”g was done in [46]. One approach is to use the
Hodge star operator, and another is to expand both sides in components. We
will take the component approach. Using the convention

� = 1
4�

sr̄jk̄
dz

s
· dz̄

r
· dz

j
· dz̄

k
,

and Ê = ig
jk̄

dz
j

· dz̄
k, we have

Ê
2 = (igsr̄dz

s
· dz̄

r) · (ig
jk̄

dz
j

· dz̄
k)

which is
Ê

2 = (≠gsr̄g
jk̄

) dz
s

· dz̄
r

· dz
j

· dz̄
k

and after antisymmetrization becomes

(12) (Ê2)
sr̄jk̄

= ≠2gsr̄g
jk̄

+ 2gjr̄g
sk̄

.

Next, we have

Ê · ”Ê = (igsr̄dz
s

· dz̄
r) · (i”g

jk̄
dz

j
· dz̄

k),

which becomes

(13) (Ê · ”Ê)
sr̄jk̄

= ≠gsr̄(”g)
jk̄

+ gjr̄(”g)
sk̄

≠ g
jk̄

(”g)sr̄ + g
sk̄

(”g)jr̄.

Substituting (12) and (13) into (11), we obtain
5

≠
1
2g

pq̄(”g)pq̄

65
≠ 2gsr̄g

jk̄
+ 2gjr̄g

sk̄

6



10 Tristan Collins et al.

+2
5

≠ gsr̄(”g)
jk̄

+ gjr̄(”g)
sk̄

≠ g
jk̄

(”g)sr̄ + g
sk̄

(”g)jr̄

6

= 1
|�|Ê

(”�)
sr̄jk̄

.(14)

Contracting by g
sr̄, we obtain
5

≠
1
2g

sr̄(”g)sr̄

65
≠ 2(3)g

jk̄
+ 2g

jk̄

6

+2
5

≠ 3(”g)
jk̄

+ (”g)
jk̄

≠ [gsr̄(”g)sr̄]g
jk̄

+ (”g)
jk̄

6

= 1
|�|Ê

g
sr̄(”�)

sr̄jk̄
.(15)

The terms g
sr̄(”g)sr̄ cancel exactly. Simplifying gives (9), which proves the

lemma.

We will need the variation of iˆ ¯̂Ê�. Let �(t) be a 1-parameter family of
closed (2, 2) forms with �(0) = 0. Then by (10), we have

(16) d

dt

----
t=0

iˆ ¯̂Ê�(t) = iˆ ¯̂
5 1

2|�|Ê̂
�Ê̂�̇

6
,

where Ê�(0) = Ê̂ and �̇ = d

dt
|t=0�. If Ê̂ is Kähler Ricci-flat, then |�|Ê̂ is

constant and the Kähler identity [�, ¯̂] = ≠iˆ
† implies

d

dt

----
t=0

iˆ ¯̂Ê�t
= ≠

1
2|�|Ê̂

ˆˆ
†
Ê̂
�̇ = ≠

1
2|�|Ê̂

�Ê̂�̇,

using that d�̇ = 0. Here �Ê = ˆˆ
†
Ê

+ ˆ
†
Ê
ˆ. We then denote

L2�̇ := ≠
1

2|�|Ê̂
�Ê̂�̇,

to be the linearization of iˆ ¯̂Ê� along paths of metrics constrained to the
form |�|Ê�Ê

2
� = |�|Ê̂Ê̂

2 + �.

2.4. Implicit function theorem

Let F : R ◊ C
k+2,–(Z) æ C

k,–(W ), denoted F(–Õ
, (u, �)), be given by (6)

as before. Combining our work so far, we computed the linearization of F at
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the origin in the W directions to be

D2F|0 : C
k+2,–

3
H0(E) ◊ (Im iˆ ¯̂ fl �2,2)

4
æ C

k,–

3
V ◊ (Im iˆ ¯̂ fl �2,2)

4

(D2F)|0(u̇, �̇) =
C
L1 A

0 L2

D C
u̇

�̇

D

,

where the diagonal operators are

L1 : C
k+2,–(H0(E)) æ C

k,–(V )

L1 = ≠ĝ
jk̄

Ò
k̄
Òj ¢ |�|Ê̂

Ê̂
3

3!

and

L2 : C
k+2,–((Im iˆ ¯̂ fl �2,2)) æ C

k,–((Im iˆ ¯̂ fl �2,2))

L2 = ≠
1

2|�|Ê̂
�Ê̂

and the o�-diagonal is

A : C
k+2,–((Im iˆ ¯̂ fl �2,2)) æ C

k,–(V )
A(�̇) = �Ê̂�̇ · Ê̂ · iF

Ĥ
.

The diagonal operators L1, L2 are both invertible and thus D2F|0 is invertible.
Indeed:

• Invertibility of L2: the operator L2 is invertible by Hodge theory and
the iˆ ¯̂-lemma. Said otherwise, on a Kähler manifold we can view the domain
and range as L2 : Im d æ Im d and exchange ˆˆ

† + ˆ
†
ˆ with the usual Hodge

Laplacian dd
† + d

†
d.

• Invertibility of L1: the operator L1 has an adjoint L
†
1 : �6(End E) æ

�(End E) with L
2 inner product

(u ¢
Ê̂

3

3! , v ¢
Ê̂

3

3! )L2 =
⁄

X

Èu, vÍ
Ĥ

Ê̂
3

3! .

By (7), we know that if

(17) (L1u, u ¢
Ê̂

3

3! )L2 = 0,
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then ¯̂u = 0. Therefore if u œ Ker L1, then u is a holomorphic endomorphism
of E. Since E æ X is stable, u must be a multiple of the identity, other-
wise considering the subsheaves Ker u µ E, Im u µ E violates the stability
condition.

Ker L1 = C · id.

Since L1 : H0(E) æ V , then Ker L1 = {0}. Similarly, if u¢
Ê̂

3

3! œ Ker L
†
1, then

(17) holds and

Ker L
†
1 = C · id ¢

Ê̂
3

3!
which implies Im L1 = (Ker L

†
1)‹ = V .

• Invertibility of D2F|0: this follows since the diagonal operators are in-
vertible.

(D2F|0)≠1 =
C
L

≠1
1 ≠L

≠1
1 AL

≠1
2

0 L
≠1
2

D

.

By the implicit function theorem, there exists ‘ > 0 such that for all –
Õ

œ

(≠‘, ‘), there exists (u, �) œ C
k+2,–(Z) such that F(–Õ

, (u, �)) = 0.

Remark 2.2. From a solution F(–Õ
, (u, �)) = 0 with small –

Õ
> 0, we can

consider Ễ = –
Õ≠1

Ê�, which solves

(18) iˆ ¯̂Ễ = Tr RỄ · RỄ ≠ Tr FHu
· FHu

,

but changes the balanced class to

|�|ỄỄ
2

œ –
Õ≠1/2[|�|Ê̂Ê̂

2].

As –
Õ

æ 0, we obtain a sequence of solutions to (18) in balanced classes of
the form M0[Ê̂2] with radius M0 = –

Õ≠1/2
|�|Ê̂ tending to infinity M0 æ Œ.

3. Further remarks

3.1. Ellipticity and regularity

In the previous section, we use the implicit function theorem to obtain C
3,–

solutions to F(–Õ
, (u, �)) = 0. We will now show that these C

3,– solutions are
smooth for –

Õ small enough. This will follow from ellipticity of the system of
equations in the regime |–

Õ
Rg|g π 1. Note that since the anomaly cancellation

equation is a fully nonlinear PDE system for the metric due to the Tr Rg ·Rg
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term, we do not expect the equation to be elliptic everywhere, but it should
be elliptic in an open set of solution space.

The solutions (–Õ
, (u–, �–)) obtained by the implicit function theorem lie

in the regime |–
Õ
Rg|g π 1, since as –

Õ
æ 0 then �– æ 0, R�–

æ Rĝ and so
|–

Õ
R�–

| æ 0.

Proposition 3.1. Consider a solution (H, g�) œ C
3,–

to the equations

(g�)jk̄(FH)
jk̄

= 0,

iˆ ¯̂Ê� ≠ –
Õ(Tr R� · R� ≠ Tr FH · FH) = 0

with |�|Ê�Ê
2
� = |�|Ê̂ Ê̂

2 + � and � = iˆ ¯̂—. Suppose g� lies in the ellipticity

region |–
Õ
Rg� |g� < ‘ with ‘ > 0 a universal constant. Then the pair (H, g�)

is smooth.

Proof. We work in a local coordinate chart B1. Here the first equation is of
the form

g
jk̄

� ˆjˆk̄
H = O(H, g�, ˆH) œ C

2,–(B1).

By interior Schauder estimates, we obtain that the components H
–—̄

œ C
4,–(B1/2).

Next, we upgrade the regularity of the metric g�. Let ” denote di�erentiation
of local components in a coordinate direction, e.g. ” = ˆ

ˆxk . Di�erentiating
the anomaly equation gives

iˆ ¯̂”Ê� ≠ 2–
ÕTr R� · ”R� + 2–

ÕTr FH · ”FH = 0.

We computed ”Ê� earlier (10), and the variation of the curvature of the Chern
connection is

”Rg� = ¯̂ˆÒ(”g� g
≠1
� ).

The di�erentiated equation becomes

iˆ ¯̂
5 1

2|�|Ê�

�Ê�”�
6

(19)

= –
Õ
5
Tr R� · ¯̂ˆÒ

3 1
|�|Ê�

(�Ê�”�) g
≠1
�

4
≠ 2Tr FH · ¯̂ˆÒ(”H H

≠1)
6

We note the following non-Kähler identity, which can be found in Demailly
[15] Chapter VI Theorem 6.8:

[�, ¯̂] = ≠iˆ
†

≠ i[�, ˆÊ]†.
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Since � = iˆ ¯̂—, then ”� is closed and

iˆ ¯̂
5 1

2|�|Ê�

�Ê�”�
6

= ≠
1

2|�|Ê�

�ˆ”� + O(�, D�, D
2�).

It follows that

iˆ ¯̂
5 1

2|�|Ê�

�Ê�”�
6

= 1
2|�|Ê�

(g�)jk̄
ˆjˆk̄

”� + O(�, D�, D
2�).

The local equation on B1 can then be written as

(g�)jk̄
ˆjˆk̄

”� ≠ 2–
ÕTr R� · (�Ê�

¯̂ˆÒ”�)g≠1
� œ C

1,–

which is of the form
A

IJpq̄
ˆpˆq̄(”�)J = f

I

with f œ C
1,–, A

IJpq̄
œ C

1,– and

A
IJpq̄

›p›q·I·J Ø ⁄|›|
2
|· |

2

for 2–
Õ
|R�| π 1 small enough. By the Schauder estimates for elliptic systems

(e.g. [36]), we conclude that ”� œ C
3,–. Therefore � œ C

4,–, and the solution
(g�, H) œ C

4,–. Repeating this process gives (g�, H) œ C
k,– for every positive

integer k.

3.2. Instantons on the tangent bundle

There are other versions of the heterotic system considered in the literature
which combine observations of Strominger [51], Hull [38], and Ivanov [39],
and these involve an instanton connection on the tangent bundle. For recent
work using this setup, see e.g. [4, 13, 32, 33, 34, 35].

We now describe the equations solved by Andreas and Garcia-Fernandez
[2] by implicit function theorem on Kähler manifolds. The system of equations
in this case is for a triple (Ê, Ò1, Ò2), where g is a metric on T

1,0
X, Ò1 is a

connection on T
1,0

X which is unitary with respect to g, and Ò2 is a connection
on E, solving

(20) R
0,2
Ò1 = R

2,0
Ò1 = 0, F

0,2
Ò2 = F

2,0
Ò2 = 0,

Ê
2

· RÒ1 = 0, Ê
2

· FÒ2 = 0,
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d(|�|Ê Ê
2) = 0,

iˆ ¯̂Ê = –
Õ(Tr RÒ1 · RÒ1 ≠ Tr FÒ2 · FÒ2),

where Ê = ig
jk̄

dz
j

· dz̄
k. Assuming that the holomorphic tangent bundle is

stable (by [12, 27] this is true for non-Kähler threefolds created by a conifold
transition), a way to find solutions to this system is to instead fix a holomor-
phic structure on (E, T

1,0
X), and look for a triple (g, h, H) where g, h are

metrics on T
1,0

X and H is a metric on E solving

(21) Ê
2

· Rh = 0, Ê
2

· FH = 0, d(|�|Ê Ê
2) = 0,

iˆ ¯̂Ê = –
Õ(Tr Rh · Rh ≠ Tr FH · FH),

where Rh, FH are the curvatures of the Chern connections of the metrics h, H.
Denote the Chern connection of h by Ò

h. To use solutions of (21) to solve the
equations from setup (20), we need to change Ò

h to be unitary with respect to
g. Our conventions are Èu, vÍh = h

jk̄
u

j
vk, which we write in matrix notation

as Èu, vÍh = u
T

hv̄. Define the gauge transformation ‡ by g = ‡̄
†
h‡̄. Then

Ò̃ = ‡
≠1

¶ Ò
h

¶ ‡ is unitary with respect to g, as direct computation shows
that

ˆiÈu, vÍg = ÈÒ̃iu, vÍg + Èu, Ò̃
ī
vÍg.

Since RÒ̃ = ‡
≠1

RÒh‡, the connection Ò̃ can be used to solve the equations
from setup (20).

The method described here adapts to setup (21) as well, and we give a
sketch of the proof. Let Ê̂ = iĝ

jk̄
dz

j
· dz̄

k be Kähler Ricci-flat and Ĥ solve
Ê̂

2
· F

Ĥ
= 0. We deform (ĝ, Ĥ, Ê̂) to (eu1 ĝ, e

u2Ĥ, Ê�) with

(u1, u2, �) œ Z = H0(T 1,0
X) ◊ H0(E) ◊ U

and

|�|Ê�Ê
2
� = |�|Ê̂Ê̂

2 + �

as before. Let F : R ◊ Z æ W be given by

(22) F (–Õ
, (u1, u2, �)) =

S

WU
|�|Ê�e

≠u1/2[Ê2
� · iRu1 ]eu1/2

|�|Ê�e
≠u2/2[Ê2

� · iFu2 ]eu2/2

iˆ ¯̂Ê� ≠ –
Õ(Tr Ru1 · Ru1 ≠ Tr Fu2 · Fu2)

T

XV .
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We have that F(0, (0, 0, 0)) = 0, and the linearization of F at the origin is of
the form

(D2F)|0(u̇1, u̇2, �̇) =

S

WU
L1 0 A1
0 L2 A2
0 0 L3

T

XV

S

WU
u̇1
u̇2
�̇

T

XV .

Provided that X is simply-connected, then T
1,0

X is stable and the methods
in this paper can be applied to show that L1, L2, L3 are invertible in suitable
spaces. The implicit function theorem then gives solutions for small –

Õ
œ

(≠‘, ‘). This shows that the result of Andreas and Garcia-Fernandez [2] can
be modified to control the balanced class of the solution as expected in [31].
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