
Client-Aided Privacy-Preserving Machine
Learning

Peihan Miao1, Xinyi Shi1(B), Chao Wu2, and Ruofan Xu3

1 Brown University, Providence, USA
{peihan miao,xinyi shi}@brown.edu

2 University of California, Riverside, USA
chao.wu@email.ucr.edu

3 University of Illinois Urbana-Champaign, Urbana, USA
ruofan4@illinois.edu

Abstract. Privacy-preserving machine learning (PPML) enables multi-
ple distrusting parties to jointly train ML models on their private data
without revealing any information beyond the final trained models. In
this work, we study the client-aided two-server setting where two non-
colluding servers jointly train an ML model on the data held by a large
number of clients. By involving the clients in the training process, we
develop efficient protocols for training algorithms including linear regres-
sion, logistic regression, and neural networks. In particular, we introduce
novel approaches to securely computing inner product, sign check, acti-
vation functions (e.g., ReLU, logistic function), and division on secret
shared values, leveraging lightweight computation on the client side. We
present constructions that are secure against semi-honest clients and
further enhance them to achieve security against malicious clients. We
believe these new client-aided techniques may be of independent interest.

We implement our protocols and compare them with the two-server
PPML protocols presented in SecureML (Mohassel and Zhang, S&P’17)
across various settings and ABY2.0 (Patra et al., Usenix Security’21) the-
oretically. We demonstrate that with the assistance of untrusted clients in
the training process, we can significantly improve both the communica-
tion and computational efficiency by orders of magnitude. Our protocols
compare favorably in all the training algorithms on both LAN and WAN
networks.

Keywords: Privacy-Preserving Machine Learning · Secure
Multi-Party Computation · Client-Aided Protocols

1 Introduction

In recent years, we have witnessed machine learning (ML) emerge as one of
the most influential technologies and rapidly expanding research domains. Its
applications span a diverse spectrum, ranging from recommendation systems to
self-driving cars, large language models, and even medical prediction and diagno-
sis. This is in part due to increasing amount of data being collected and available
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in the Big Data era. Meanwhile, as these machine learning algorithms and appli-
cations are deployed in various real-world scenarios, data privacy is becoming
increasingly critical, especially in domains dealing with sensitive or confidential
data such as healthcare, finance, and government. In cases where entities are
hesitant or restricted from sharing their data due to privacy regulations, the
significance of protecting data privacy is further emphasized.

Addressing these concerns, privacy-preserving machine learning (PPML) has
become a crucial approach to training ML models in a distributed manner, which
enables multiple distrusting parties to collaboratively train ML models on their
private data while maintaining data privacy. The most commonly considered
setting in PPML, as proposed by Mohassel and Zhang [28], involves data owners
(e.g., clients) secret sharing their data among two non-colluding parties (e.g.,
servers), who then jointly perform training on the secret-shared data.

At a high level, this approach can be conceptualized as two servers engaging
in secure two-party computation to train the ML model on secret-shared data.
Importantly, the servers learn nothing beyond the final trained model, ensur-
ing the privacy of individual data points. Nevertheless, prior work [15,20,26,
28,29,31,32] has overlooked the fact that the data was initially owned by the
clients in the clear. In this work, we show that actively involving clients in the
training process can yield significant improvements in both communication and
computational efficiency of the overall protocol.

1.1 Our Contributions

We study two-server PPML training where the data is held by a large number
of clients. Since the clients initially hold the training data in the clear, they
can assist in certain computations based on their clear data to achieve better
efficiency than computing on shared data. Additionally, we can leverage tech-
niques from secure two-party computation with the assistance of an untrusted
third party by treating the clients as the untrusted third party. This approach
introduces a novel way of computing activation functions as well as division in
the training algorithms, which proves to be much more efficient than the garbled
circuit-based approaches commonly used in PPML. We believe these client-aided
techniques may be of independent interest.

Our Contributions. In this work, we

– develop a new client-aided inner product protocol that enables a client and
two servers to jointly compute the inner product of two private vectors 〈x,y〉,
where x is secret shared among the two servers and y is held by the client;

– develop a series of client-aided protocols that, with the assistance of an
untrusted client, allow two servers

• to determine if their secret shared value is positive or not,
• to compute activation functions (e.g., ReLU, logistic function) on their

secret shared value, and
• to compute divisions on their secret shared values (for softmax);
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– put these techniques all together into PPML training protocols for linear
regression, logistic regression, and neural networks, which are secure against
semi-honest servers and clients;

– present techniques to enhance our security guarantees to protect against mali-
cious clients;

– implement our protocols and demonstrate performance improvement com-
pared with prior work.

Experimental Results. We implement our two-server PPML protocols for
both semi-honest and malicious clients. We compare our performance with
SecureML [28] in various settings and compare with the state-of-the-art
ABY2.0 [29] theoretically (their code is not available). For linear regression,
we achieve an improvement of 6.12−1047× over [28] in the LAN setting and
3.63−73.5× in the WAN setting. For logistic regression, we achieve an improve-
ment of 4.85−723× on LAN and 2.71−44.3× on WAN. For neural networks,
we achieve an improvement of 3.19× on LAN and 3.92× on WAN. When
enhancing our security guarantees to malicious clients, we incur a small con-
stant (2.55−4.95×) overhead compared to our semi-honest variant. This is orders
of magnitude more efficient than the OT- and LHE-based variants of [28]. We
also give comprehensive comparisons for the communication costs as well as the
offline/online efficiency. See Sect. 5 for more details.

1.2 Related Work

Privacy-Preserving Machine Learning. In the PPML domain, secure multi-
party computation has been used for various ML algorithms such as decision
trees [23], k-means clustering [5,14], and SVM classification [34,38]. However,
these solutions are far from practical due to the high overheads that they incur.
Mohassel and Zhang [28] introduced a practically-efficient PPML framework in
the two-server setting. Since then, there has been a rich body of research in
PPML that follows the same framework: data owners first secret share their
data among two or more non-colluding parties who then perform training on
the secret-shared data. Prior work has studied this problem in various settings,
including secure training and inference, semi-honest and malicious security, with
a focus on a small number of servers (e.g., two-server [15,20,26,28,29,31,32],
three-server [8,19,20,27,30,35], and four-server [6,9,19]) where the adversary
can corrupt at most one of them. In this work, we focus on the two-server setting
for ML training, and we anticipate that the client-aided techniques developed
here can be applied to ML inference.

Federated Learning. As a similar setting of PPML, federated learning
(FL) [3,4,10,16,18,24] enables multiple entities (e.g., mobile devices) to collab-
oratively train a model under the coordination of a central server (e.g., service
provider) while keeping the training data decentralized, protecting the privacy
of the individual users. The two-server setting has also been studied in FL [1,10].
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Most of the existing FL frameworks rely on a key building block known as secure
aggregation [1,3,4,10], which protects clients’ raw data (in particular, individ-
ual model updates) through secure aggregation. However, they reveal the global
model updates, particularly the mini-batch stochastic gradient descent, to the
central server(s) as well as all the clients. Recent work has shown that this frame-
work is vulnerable to various privacy attacks [12,25,33,36,39]. As a side product
of this work, we can apply client-aided PPML to two-server FL to enhance the
privacy guarantee of FL, revealing only the final model to the central servers.

1.3 Roadmap

We give a high-level overview of our new techniques in Sect. 2. We provide pre-
liminaries including the definitions of required cryptographic building blocks
and machine learning algorithms in Sect. 3. In Sect. 4, we present our new client-
aided protocols for inner product, sign check, activation functions, and division
over secret shared values. These building blocks can be put all together into
client-aided PPML protocols that are secure against semi-honest clients, which
we defer to the full version of this paper. Additionally, we enhance the security
guarantees to protect against malicious clients in the full version of the paper.
We discuss our performance and experimental results in Sect. 5.

2 Technical Overview

During the training process, we keep the invariant that all the intermediate
values (e.g., model parameters, clients’ data, etc.) are additively secret shared
among the two servers. Their secret shares are only revealed to each other when
the training process is finished and they would like to learn the final model. We
discuss how to maintain the invariant for each type of operation in the training
algorithms. First, addition is almost free, which can be computed locally by the
servers. We discuss below how to deal with the operations that require more
work, and how we can improve the efficiency by involving an untrusted client in
the computation. In the full version of this paper, we present protocols for ML
algorithms that are built on these building blocks.

Client-Aided Inner Product. One of the key steps in linear regression is to
compute the inner product of two vectors, one vector w denoting the current
model, and the other vector x denoting the client’s data. In the existing PPML
framework, the servers hold secret shares of both w and x and they perform
a secure two-party computation protocol to compute secret shares of the inner
product 〈w,x〉, e.g., by using Beaver multiplication triples [2] generated in an
offline setup phase [28].

We notice that since x is entirely known to the client, she can compute a
masked inner product with x and share the masking information with the two
servers. This improves both the computation and communication between the
servers. Moreover, it does not require heavy computation on the client side, nor
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does it require extra round of communication between the servers and the client.
In particular, the client still sends secret shares of x to the servers, along with
which she will send some extra masking values. We present the detailed protocol
in Sect. 4.1.

When the vectors have dimension 1 (as a special case), this technique can be
used to compute multiplication of a value shared among the servers with another
value held by the client. This will be a key building block below.

Client-Aided Activation Functions. For logistic regression and neural net-
works, besides vector inner product (and more generally matrix multiplication),
we also need to perform activation functions (e.g., logistic function, ReLU) on
secret shared values. To do this, we need a way for the two servers to jointly
determine whether a secret shared value is positive or not (we view the value as a
two’s complement representation). This is not an arithmetic operation, and the
existing PPML frameworks [27–29] mainly rely on garbled circuits that compute
the sum of two secret shared values to determine its highest order bit.

In this work, we present a new approach that utilizes a client as an untrusted
third party. For two secret shares �x�0 and �x�1, the problem of determining if
�x�0 + �x�1 > 0 is essentially a secure comparison problem, namely determining
whether �x�0 > − �x�1. Instead of relying on garbled circuits [37], we reduce
this problem to a special secure two-party computation problem, private set
intersection cardinality (PSI-CA), via a certain encoding of the input values. In
particular, each party generates a set of elements based on their input and they
jointly compute the cardinality of the intersection of the two sets. �x�0 > − �x�1
iff the set intersection cardinality is 1, and �x�0 ≤ − �x�1 iff the set intersection
cardinality is 0. With the assistance of an untrusted third party (i.e., untrusted
client), PSI-CA can be securely computed in an extremely efficient way requiring
only symmetric-key cryptographic operations.

There are two issues in this approach. First, the existing client-aided PSI-
CA protocols reveal the cardinality of the set intersection to either the client or
one of the two servers. However, it is crucial that the result is never revealed to
any party in our PPML protocols. We develop a new way to secret share the
cardinality result between the client and the two servers. Another issue is that
the reduction above only works if values are both positive or both negative. We
observe that �x�0 and �x�1 have different signs with high probability throughout
the training process, hence we can ensure the comparison is only between values
of the same sign in our protocol.

To compute ReLU, we need to multiply the secret shared PSI-CA result with
the secret shared value x. We can utilize the aforementioned client-aided inner
product (with dimension 1) to efficiently compute the multiplication. Putting it
all together, we present the client-aided ReLU protocol in Sect. 4.2. We further
extend these ideas to the logistic function, see the full version of this paper for
details.

Client-Aided Division. In neural network training, we additionally need to
compute a softmax function on secret shared values. We use the MPC-friendly
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variant of it (see Sect. 3.2) which requires division of two secret shared values. We
compute the quotient bit-by-bit sequentially starting from the most significant
bit. In every step, we need to compare the current dividend with the divisor,
which can be done using the client-aided sign check protocol described above.
The secret shared output needs to be multiplied with the secret shared divisor,
which can be done using the client-aided inner product with dimension 1. The
protocol is presented in Sect. 4.4.

Security Against Malicious Clients. In the aforementioned client-aided pro-
tocols, it is critical that the clients are semi-honest, namely they follow the pro-
tocol description honestly while trying to extract more information from the
protocol execution. This might not be a realistic assumption in practice. Hence
we further enhance the security guarantees of our protocol to protect against
malicious clients. The two main building blocks we need is the client-aided inner
product and client-aided sign check. To ensure security against malicious clients,
we leverage the cut-and-choose technique to verify that the results are computed
correctly. See the full version of this paper for details.

As it turns out, our malicious variant only incurs a small constant overhead
compared to our semi-honest variant and is orders of magnitude more efficient
than prior work (see the full version of this paper).

3 Preliminaries

Notation. We use λ, σ to denote the computational and statistical security
parameters, respectively. We use �v� to denote an additive secret sharing of a
value v ∈ Z2� between two servers S0,S1. In particular, server Si (i ∈ {0, 1})
holds �v�i such that v = �v�0 + �v�1. To sample a random additive secret sharing

of v, we use the notation (�v�0 , �v�1) ← Sharing(v). We use $←− to denote random
sampling from a uniform distribution. We use [n] to denote the set {1, 2, . . . , n}.
For a vector v, we use v[i] to denote the i-th element of the vector. By negl(λ)
we denote a negligible function, i.e., a function f such that f(λ) < 1/p(λ) holds
for any polynomial p(λ) and sufficiently large λ.

Fixed-Point Arithmetic. Throughout our protocols, we follow the prior work
[28,29] to use the two’s complement fixed-point representation to denote real
numbers and keep at most �f bits in the fractional part for all intermediate
values during the training process. In particular, we transform a real number x
(with at most �f bits in its fractional part) into an integer in Z2� by computing
x′ = 2�f ·x. Furthermore, we assume that all intermediate values have at most �w

bits in the whole number part and that �w +�f � � (this follows from prior work
[28,29]). To multiply two real numbers x and y, we multiply x′ = 2�f · x with
y′ = 2�f · y to obtain z′ = x′ · y′ ∈ Z2� . Note that z′ has 2 · �f bits representing
the fractional part of the product, so we truncate the least significant �f bits of
z′ such that it has �f bits in the fractional part. Since we keep the invariant that
all intermediate values are additively secret shared between the two servers and
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that �w + �f � �, we can truncate z′ by truncating its shares �z′�0 and �z′�1
locally on the two servers [28].

We use the function RtoI (x) to denote the function of transforming a real
number x to an integer in Z2� , namely RtoI (x) = 2�f · x. We use the function
Trunc (x′) to denote the function of truncating an integer in Z2� by the lowest
order �f bits, namely Trunc (x′) = �x/2�f 	. When we compare x ∈ Z2� with 0,
we view x as a two’s complement representation and compare it with 0. When
we divide x by y, which are both positive real numbers represented in Z2� , we
compute the quotient by Quotient (x, y) := �x · 2�f /y	 ∈ Z2� .

3.1 Specialized Two-Party Computation

Secure multi-party computation (MPC) [13,37] allows multiple parties, each
holding a private input, to jointly compute a function on their private inputs
without revealing anything beyond the output of the function. In this work, we
consider MPC protocols for three parties with honest majority. In particular, the
three parties are two servers and a client, where the adversary corrupts either the
client or one of the two servers. We say an adversary is semi-honest if it follows
the protocol description honestly while trying to extract more information from
it, while a malicious adversary may arbitrarily deviate from the protocol speci-
fication. In our work, we assume both servers are semi-honest, and we consider
both semi-honest and malicious clients. We follow the Universal Composition
(UC) security definition of MPC, and refer the reader to [7] for details.

3.2 Machine Learning Algorithms

We consider a set of training data {xi, yi}i=1,...,n. All the algorithms take the
stochastic gradient descent (SGD) approach, which involves iteratively updating
a target coefficient vector/matrix by following the gradient of a particular loss
function evaluated on a random batch of training data. In the SGD method,
we use B to denote the batch size, α to denote the learning rate, E to denote
the number of epochs, n to denote the size of training data, and define t = E·n

B
as the number of iterations. We refer the reader to prior work [28,29] on more
details about these ML models.

Linear Regression. In linear regression, we try to learn a coefficient vector w
such that the following loss function is minimized:

∑n
i=1 (〈w,xi〉 − yi)

2. Apply-
ing SGD to the linear loss function gives that we update w in each iteration
according to the following expression:

w ← w − α

B

B∑

i=1

(〈w,xi〉 − yi) · xi. (1)
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Logistic Regression. The only difference between logistic regression and linear
regression is that the logistic (Sigmoid) function f(z) = 1

1+e−z is applied to the
inner product z = 〈w,xi〉, and the loss function needs to be adjusted accordingly
so that the loss function is convex and SGD still works. The SGD update step in
this case is identical to linear regression except for applying the logistic function
to the inner product. In particular,

w ← w − α

B

B∑

i=1

(f(〈w,xi〉) − yi) · xi. (2)

The above logistic function is not MPC-friendly, and we follow the approach
of [28] by considering a piecewise linear function instead, which they demon-
strated yields comparable accuracy in training. We refer the reader there for
more details. In particular, we approximate the logistic function by

f(z) =

⎧
⎨

⎩

0 if z < −1/2
z + 1/2 if z ∈ [−1/2, 1/2]
1 if z > 1/2

. (3)

Neural Networks. Neural networks are a generalization of regression to learn
more complex relationships between high dimensional input and output data.
A basic neural network can be divided into m layers, each containing di nodes.
Each node is a linear function composed with a non-linear activation function.
One of the most popular activation functions considered in neural networks
is the rectified linear unit (ReLU) function, which can be expressed as f(x) =
max{0, x}. To evaluate a neural network, the nodes at the first layer are evaluated
on the input features. The outputs of these nodes are then forwarded as inputs to
the next layer of the network until all layers have been evaluated in this manner.
For classification problems with multiple classes, usually a softmax function is
applied at the output layer, and we use the MPC-friendly variant [28] of the
softmax function f(ui) = ReLU(ui)

∑dm
k=1 ReLU(uk)

. The training of neural networks is

performed using SGD in a similar manner to logistic regression except that each
layer of the network should be updated in a recursive manner, starting at the
output layer and working backward.

4 Client-Aided Protocols

4.1 Client-Aided Inner Product

In this section, we present a protocol for computing the inner product of a
vector x ∈ Z

d
2� that is additively secret shared among two servers and another

vector y ∈ Z
d
2� held by a client. As a result, the two servers learn an additive

secret sharing of the inner product 〈x,y〉 and the client learns nothing. The ideal
functionality for our client-aided inner product is presented in Fig. 1. Looking
ahead, whenever we run this protocol, the vector y will also be shared among the
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servers (either directly shared by the client or learned from another protocol),
hence in the ideal functionality we also let the servers input a secret share of y.
This will make this protocol better compile with our other protocols, especially
in the case of malicious clients.

Fig. 1. Ideal functionality Fd
InnerProd for computing the inner product.

Construction Overview. The client first samples a uniform random vector r $←−
Z

d
2� . Viewing r as a mask for the servers’ input x, the client generates a data-

dependent multiplication triple by computing the inner product of r and its input
vector y, and sends the a secret share of the triple to the two servers. By using the
data-dependent triple generated by the client, the two servers recover x − r and
compute a secret share of 〈x,y〉. Our protocol is described in Fig. 2. We state the
theorem below and give the security proof in the full version of this paper.

Fig. 2. Protocol Πd
InnerProd for computing the inner product.

Theorem 1. The protocol Πd
InnerProd (Fig. 2) securely computes the ideal func-

tionality Fd
InnerProd (Fig. 1) against a semi-honest adversary that corrupts either

the client C or one of the two servers.

Communication and Optimizations. In our protocol, each party computes
only one inner product, so the servers and the client compute three inner prod-
ucts in total. The communication between the client and two servers is (2d + 2)
ring elements in Z2� and the communication among the two servers is 2d ring
elements. The total communication is (4d + 2) ring elements.
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We discuss some optimizations in our implementation. In Steps 1a, 1c, 1d,
the client needs to sample random vectors �r�0 , �r�1 as well as random secret
shares of u, and send them to the servers, leading to a total communication cost
of (2d+2) ring elements in Z2� . To reduce this communication, we let each server
share a PRF key with the client. Then the client can use the PRF keys to generate
(pseudo)random vectors �r�0 , �r�1 for the two servers without communication.
To generate a (pseudo)random secret sharing of u, the client can use the shared
PRF key with one server S0 to generate �u�0 without communication, and send
the other share �u�1 to S1. That is, apart from sharing the PRF keys, we can
reduce the communication between the client and the servers from (2d + 2) to 1
ring element.

4.2 Client-Aided Sign Check

In this section, we present a protocol that allows two servers to jointly learn
if a secret shared value x ∈ Z2� is positive or not (by viewing x as a two’s
complement representation), with the assistance of a client. The three parties
will learn a binary secret sharing of the sign check outcome b. In particular, the
servers both learn one binary share bS and the client learns the other share bC

such that bS ⊕ bC = b. The ideal functionality is presented in Fig. 3. Looking
ahead, this protocol will be used in computing activation functions as well as
divisions (for softmax). In our learning algorithms, we note that the absolute
value of x is significantly less than 2� throughout the training process, hence
�x�0 and �x�1 have opposite signs with overwhelming probability. In particular,
we assume x has at most �f bits in the fractional part and �w bits in the whole
number part, and that �w + �f � � (this follows from prior work [27–29]).
Given that (�x�0 , �x�1) is a uniformly random share of x ∈ Z2� , the probability
that �x�0 and �x�1 have the same sign is no greater than 2�w+�f −�. The proof
follows from the analysis in [28]. Therefore, we assume �x�0 and �x�1 in the ideal
functionality. In addition, we let the two servers learn a secret share of bC so
that this protocol can be incorporated more easily into other protocols.

Fig. 3. Ideal functionality FSignCheck for determining if a secret shared value is positive
or not.



Client-Aided Privacy-Preserving Machine Learning 217

Construction Overview. We first give an overview of our construction. The
two servers hold an additive secret share of a value x ∈ Z2� , namely each server
Si (i ∈ {0, 1}) holds �x�i such that �x�0 + �x�1 = x. We additionally assume
that �x�0 and �x�1 have opposite signs. Suppose without loss of generality that
�x�0 ≥ 0 and �x�1 < 0, then checking whether �x�0 + �x�1 > 0 is equivalent to
checking whether �x�0 > − �x�1, where both �x�0 and − �x�1 are non-negative
values. We take inspiration from [22] to reduce our problem to PSI and then
leverage techniques from client-aided PSI.

Let a = a� · · · a1 denote the binary representation of a non-negative value
a. We denote its 0-encoding by P0

a = {a� · · · ai+110 · · · 0|i ∈ [�], ai = 0} and its
1-encoding by P1

a = {a� · · · ai0 · · · 0|i ∈ [�], ai = 1}. Note that all binary strings
in the sets have the same length �. We then pad the two sets with dummy
elements to be of size � each. Define two sets G0

a and G1
a as follows. G0

a is a set
of size � − |P0

a| where all the elements are random �-bit strings starting with 10,
and G1

a is a set of size � − |P1
a| where all the elements are random �-bit strings

starting with 11. Let the corresponding augmented 0-encoding be defined as
A0

a = P0
a ∪G0

a and augmented 1-encoding be A1
a = P1

a ∪G1
a. Following the work

[22], the set intersection A1
�x�0

∩ A0
−�x�1

has size 1 if and only if �x�0 > − �x�1
and the intersection is empty otherwise. For the other case where �x�0 < 0 and
�x�1 ≥ 0, we simply swap the tasks of two parties and check whether − �x�0 <
�x�1.

Now we reduce our problem to computing the size of the intersection of two
private sets, namely PSI-CA. With the assistance of an untrusted client, we can
utilize techniques from client-aided PSI-CA [17,21]. Nevertheless, we need an
additional security guarantee that the servers and the client only learn a binary
secret share of the PSI-CA result.

We leverage the fact that the output of our PSI-CA can only be 0 or 1,
and we randomly choose to compare either �x�0 > − �x�1 or �x�0 < − �x�1. In
particular, the servers randomly sample a bit bS and flip the comparison if bS = 1.
To be more specific, S0 generates an augmented (1−bS)-encoding of �x�0 and S1
generates an augmented bS-encoding of − �x�1. Then they perform a client-aided
PSI-CA protocol using a pseudorandom function (PRF). The client-aided sign
check protocol is presented in Fig. 4. We state the theorem below and give the
security proof in the full version of this paper.
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Fig. 4. Protocol ΠSignCheck for determining if a secret shared value is positive or not.

Theorem 2. Assuming F is a secure PRF, the protocol ΠSignCheck (Fig. 4)
securely computes the ideal functionality FSignCheck (Fig. 3) against a semi-
honest adversary that corrupts either the client C or one of the two servers.

Communication and Optimizations. In our protocol, each server computes
� PRF operations. The total communication cost is (2λ�+λ+1) bits with 2 ring
elements. We can apply the same optimization as in Sect. 4.1 to reduce commu-
nication by using shared PRF keys to generate random values. In particular, in
Step 1 the servers can use a shared PRF key to generate (pseudo)random val-
ues (bS, k) together without communication; in Step 4 the client C can use the
shared PRF key to generate a (pseudo)random value with one server without
communication. Then, the communication can be reduced to 2λ� bits with 1
ring elements.

4.3 Client-Aided ReLU

In this section, we present a protocol that allows two servers to jointly compute
the ReLU function of an integer x ∈ Z2� that is additively secret shared among
them, with the assistance of the client. Looking ahead, this protocol is a crucial
component in computing activation functions. The ideal functionality for our
client-aided ReLU is presented in Fig. 5.
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Fig. 5. Ideal functionality FReLU for computing the ReLU function.

Construction Overview. The servers hold a secret share of an integer x ∈ Z2�

and want to jointly learn a secret share of ReLU(x) = max{0, x} = (x > 0) · x.
Observe that the ReLU function simply consists of a sign check operation and
a multiplication operation, which can be computed by using the protocols in
Sects. 4.2 and 4.1, respectively. To combine these two protocols, the challenge
is that the output of the sign check is a binary share among the servers and
the client, while the input of the inner product should be additive secret shares.
Observe that x · (bS ⊕ bC) = x · bS + (x · bC) · (1 − 2bS) and the servers have bS

in clear, we only need to use the inner product protocol (with dimension 1) to
compute a secret share of x · bC, and then let each server Si (i ∈ {0, 1}) compute�
x · (bS ⊕ bC)

�
i

= �x�i · bS +
�
x · bC

�
i
· (1 − 2bS). Our protocol is described in

Fig. 6. We state the theorem below and defer the proof to the full version of this
paper.

Fig. 6. Protocol ΠReLU for computing ReLU in the (FSignCheck,F1
InnerProd)-hybrid

model.

Theorem 3. The protocol ΠReLU (Fig. 6) securely computes the ideal function-
ality FReLU (Fig. 5) in the (FSignCheck,F1

InnerProd)-hybrid model against a semi-
honest adversary that corrupts either the client C or one of the two servers.

Communication and Optimization. The communication of a ReLU function
consists of the communication of a sign check and an inner product of vectors
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with dimension 1. Applying the optimizations we mentioned, the communication
between the client and the servers is 2λ� bits with 2 ring elements and the
communication between the two servers is 2 ring elements. The computational
cost on each server mainly contains � PRF (AES) operations.

4.4 Client-Aided Division

In this section, we present a client-aided protocol that computes division of
two shared values. Assume the servers hold secret shares of x, y ∈ Z2� such
that 0 ≤ x ≤ y and y �= 0, they jointly compute an additive secret share of
the quotient Quotient (x, y) = �x · 2�f /y	 with the assistance of the client. See
Fig. 7 for the ideal functionality. Looking ahead, the division protocol is used to
approximate the softmax function in the output layer of neural networks.

Fig. 7. Ideal functionality FDiv for computing division of two secret shared values.

Construction Overview. Inspired by the division protocol of SecureNN [35],
we compute the quotient bit by bit. Let ki (i ∈ {�f , . . . , 0}) be every bit of the
quotient. In our protocol, the servers compute a secret share of each bit step by
step and then combine them together to get a secret share of the quotient. In
particular, the servers store a secret share of an intermediate variable u ∈ Z2�

(the dividend) initiated to be x. We start with the most significant bit k�f
by

computing the sign check of u−y. Afterwards, we replace u by u = 2·(u−k�f
·y).

Then we can compute the next bit in exactly the same way, i.e., k�f −1 is equal
to the sign of u−y. We can simply repeat the above two steps for the remaining
bits. The main idea is that when we compute the i-th bit ki (i ∈ {�f −1, . . . , 0})
after getting k�f

, . . . , ki+1, we are actually computing the sign of x · 2�f − y ·
�f∑

j=i+1

kj · 2j − y · 2i. Our protocol is described in Fig. 8. We state the theorem

below and give the security proof in the full version of this paper.
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Fig. 8. Protocol ΠDiv for computing division in the (FSignCheck,F1
InnerProd)-hybrid

model.

Theorem 4. The protocol ΠDiv (Fig. 8) securely computes the ideal function-
ality FDiv (Fig. 7) in the (FSignCheck,F1

InnerProd)-hybrid model against a semi-
honest adversary that corrupts either the client C or one of the two servers.

Communication. Considering all the computation among secret shared values,
the servers and the client jointly compute (�f +1) sign checks and multiplications
in our division protocol. We can naturally use the protocols proposed in Sects. 4.1
and 4.2. The total communication is 2(�f + 1) · λ · � bits with 4 · (�f + 1) ring
elements.

5 Performance Evaluation

We implement our two-server PPML protocols for training algorithms includ-
ing linear regression, logistic regression, and neural networks, against both semi-
honest and malicious clients. We report our performance in comparison with
SecureML [28] in the semi-honest model in this section and defer the performance
against malicious clients to the full version of the paper. We did not compare the
concrete performance with the state-of-the-art ABY2.0 [29] because their code for
ML training is not available, but we did theoretical comparisons with their work.

We did not compare our protocols to prior works on PPML with three or
more non-colluding servers because we believe our model differs from theirs in
several key aspects. While the clients in our model could be considered as an
additional server, the requirements on them are much weaker. Specifically, in
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prior works with three or more non-colluding servers, all the servers jointly hold
secret shares of all the intermediate values. They participate in every step of the
computation throughout the entire protocol. Nevertheless, our approach does
not require the clients to stay online or hold any secret state. In client-aided
sign check, activation functions, and division protocols, each time the servers
may choose an arbitrary client for assistance while other clients are offline. After
each iteration, the client may completely go offline without having to keep any
secret state. Furthermore, the clients initially hold their data in the clear, which
can be leveraged in client-aided inner product.

5.1 Implementation Details

We implement our protocols in C++. The only cryptographic primitive we need
is PRF, which is instantiated with AES. We set the computational security
parameter λ = 128 and statistical security parameter σ = 40.

Experiment Settings. Our experiments are performed on a single Amazon
Web Services (AWS) Elastic Compute Cloud (EC2) c4.8xlarge virtual machine
with 18-core 2.9 GHz Intel Xeon CPU and 60 GB of RAM which is the same
as [28]. We simulate the network connection using the Linux tc command. For
the experiments on a LAN network, we set the round-trip time (RTT) latency
to be 0.34 ms and network bandwidth to be 8192 Mbps, same as [28]. For the
experiments on a WAN network, we set the RTT latency to be 60 ms and the
network bandwidth to be 60 Mbps.

Dataset and Parameters. In our experiments, we train our algorithms on the
MNIST dataset [11], which contains images of handwritten digits from 0 to 9.
Each training sample has 784 features representing 28 × 28 pixels in the image.

In our training protocols, we have the number of features d = 784; we set the
mini-batch size B = 128 and the number of epochs E = 2 (all the samples are
used twice in training). The total number of training samples n varies between
10,240 and 100,352. The total number of training iterations is t = E·n

B .
For fixed-point arithmetic, we set � = 64, �f = 13, �w = 6. That is, all the

values are represented in Z264 , where the lowest order 13 bits are the fractional
part, and we assume there are at most 32 bits in the whole number part. These
parameters are taken from [28].

Offline vs. Online. In the protocols of [28], there is an offline and an online
phase, where the offline phase includes all the computation and communication
that can be done without presence of data while the online phase consists of
all data-dependent steps of the protocols. In the offline phase, they proposed
three different approaches, one based on oblivious transfer (OT), one based on
linearly homomorphic encryption (LHE), and one client-aided. The OT-based
and LHE-based offline protocols are performed among the two servers to generate
multiplication triples, while the client-aided offline protocol relies on a client to
generate the triples.

Our protocols, on the other hand, only have an online phase, where the clients
are heavily involved in the protocol execution. In particular, they will generate
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data-dependent triples in the client-aided inner product protocol. Getting rid of
the offline phase allows us to reduce the offline storage on the servers as well as
the amount of communication between the servers. In our experiments below,
we give comprehensive comparisons to [28] in both offline and online phases.

5.2 Linear Regression

In this section, we compare the performance of our semi-honest linear regression
training to [28] instantiated with an OT-based, LHE-based, or client-aided offline
phase. We report the running time in both LAN and WAN settings in Table 1
and the communication costs in Table 2.

Table 1. Running time of semi-honest linear regression on LAN and WAN networks
comparing our protocol to [28] instantiated with different offline approaches. * indicates
estimated running time.

n Offline Time (s) Online Time (s) Total Time (s)

LAN WAN LAN WAN LAN WAN

Our work 10,240 0 0 1.32 52.1 1.32 52.1

100,352 0 0 13.2 505 13.2 505

OT-based [28] 10,240 266 3,733 2.42 57.8 268 3,791

100,352 2,667 36,600* 25.8 557 2,692 37,157*

LHE-based [28] 10,240 1,414 1,435 2.42 57.8 1,416 1,493

100,352 13,800* 14,000* 25.8 557 13,826* 14,557*

Client-aided [28] 10,240 4.69 94.9 3.39 94.4 8.08 189

100,352 52.0 749 35.3 1,126 87.3 1,875

Table 2. Communication cost of semi-honest linear regression comparing our protocol
to [28] instantiated with different offline approaches. “S − S” and “C − S” denote the
communication between the two servers and the communication between the clients
and servers, respectively. * indicates estimated communication.

n Offline Comm (MB) Online Comm (MB) Total

S− S C− S S− S C− S Total Comm

Our work 10,240 0 0 2.23 185 187 187

100,352 0 0 21.8 1,814 1,836 1,836

OT-based [28] 10,240 24,151 0 125 123 248 24,399

100,352 236,607 0 1,224 1,204 2,428 239,034

LHE-based [28] 10,240 115 0 125 123 248 362

100,352 1,120* 0 1,224 1,204 2,428 3,548*

Client-aided [28] 10,240 0 614 368 123 491 1,105

100,352 0 6,016 3,609 1,204 4,813 10,829
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In Table 1, we report the running time for both the offline and online phases
in [28] as well as the total time. Our protocol does not incur any offline cost,
and our online phase is also more efficient as our computation overhead is lower.
In particular, in the online phase we achieve 1.83−2.67× improvement over [28]
in the LAN setting and 1.11–2.23× improvement in the WAN setting. For the
total running time (offline + online), we achieve 6.12−1047× improvement in
the LAN setting and 3.63−73.5× improvement in the WAN setting.

In Table 2, we report both the communication between the two servers and
the communication between the clients and servers, which are denoted by “S−S”
and “C − S” respectively in the table. Again, our protocol does not incur any
offline cost. In the online phase, our communication cost between the two servers
is significantly lower than [28]. In particular, our S − S online communication
is 2(B + d) · t ring elements. The S − S online communication of the OT-based
and LHE-based protocols in [28] is 2n · d + 2(B + d) · t ring elements, and that
of the client-aided variant is 2n · d + 2(Bd + B) · t ring elements. Although our
online communication between the clients and servers is higher than [28], the
total communication is still much lower than [28]. In particular, in the online
phase our S−S communication achieves 56.1−165× improvement over [28], and
our total online communication achieves 1.32−2.63× improvement. For the total
communication (offline + online), we achieve 1.93−130× improvement.

Increasing Mini-Batch Size. If we increase the mini-batch size B, we can
achieve lower communication, and hence the performance also improves espe-
cially in the WAN setting. This is because some part of the communication
grows with the number of iterations. If the number of epochs and n remain
the same and the mini-batch size is increased, then the number of iterations
decreases and the communication is lowered as well. See Fig. 9 for the perfor-
mance of the online phase in the WAN setting with different mini-batch sizes.
We only compare with the client-aided variant of [28] because they achieve the
most comparable overall running time.

Fig. 9. Total running time of semi-honest linear regression over WAN with different
mini-batch sizes.
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Comparison with ABY2.0 [29]. We compare our performance with [29] the-
oretically as their code is not available. Since [29] uses the same OT-based and
LHE-based multiplication triples generation as [28] in the offline phase, as seen
in Tables 1 and 2, their offline time and communication are already much higher
than our total time and communication.

Although not mentioned in their paper, we observe that a similar client-
aided approach can be applied to [29] to improve the efficiency of the offline
phase while introducing some overhead in the online phase. Nevertheless, we
expect our work to still outperform [29] in that case. With a client-aided offline
phase, the total communication (offline + online) of [29] is (12Bd + 6B + 4d) · t
ring elements. If using all the optimizations we mentioned, its communication
can be reduced to n · (3d + 1) + (Bd + 3B + 2d) · t ring elements. In comparison,
our total communication is n · (d + 1) + (Bd + 3B + 2d) · t ring elements and our
computation cost is roughly half of [29]. This is because each server computes
two matrix multiplications for a private inner product in [28,29], while they each
compute one matrix multiplication in our protocol.

5.3 Logistic Regression

In this section, we compare the performance of our semi-honest logistic regres-
sion training to [28] in Tables 3 and 4. Compared to linear regression, the only
overhead of logistic regression is the cost of the activation function. In each
iteration, each client and the two servers run ΠReLU twice.

Our computation cost of one ReLU mainly consists of � PRF operations and
sorting these � PRF results for each server. As shown in Table 3 for the running
time, in the online phase we achieve 1.97−2.45× improvement over [28] in the
LAN setting and 1.23−1.64× improvement in the WAN setting. For the total
running time (offline + online), we achieve 4.85−723× improvement in the LAN
setting and 2.71−44.3× improvement in the WAN setting.

Table 3. Running time of semi-honest logistic regression on LAN and WAN networks
comparing our protocol to [28] instantiated with different offline approaches. * indicates
estimated running time.

n Offline Time (s) Online Time (s) Total Time (s)

LAN WAN LAN WAN LAN WAN

Our work 10,240 0 0 1.96 87.6 1.96 87.6

100,352 0 0 19.8 850 19.8 850

OT-based [28] 10,240 266 3,733 3.86 108 270 3,841

100,352 2,667 36,600* 40.0 1,056 2,707 37,656*

LHE-based [28] 10,240 1,414 1,435 3.86 108 1,418 1,543

100,352 13,800* 14,000* 40.0 1,056 13,840* 15,056*

Client-aided [28] 10,240 4.71 95.4 4.81 142 9.52 237

100,352 55.9 941 46.3 1,398 102 2,339
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Table 4. Communication cost of semi-honest logistic regression comparing our protocol
to [28] instantiated with different offline approaches. “S − S” and “C − S” denote the
communication between the two servers and the communication between the clients
and servers, respectively. * indicates estimated communication.

n Offline Comm (MB) Online Comm (MB) Total

S− S C− S S− S C− S Total Comm

Our work 10,240 0 0 2.85 266 269 269

100,352 0 0 28.0 2,605 2,633 2,633

OT-based [28] 10,240 24,151 0 257 123 380 24,531

100,352 236,607 0 2,524 1,204 3,728 240,335

LHE-based [28] 10,240 115 0 257 123 380 495

100,352 1,120* 0 2,524 1,204 3,728 4,848*

Client-aided [28] 10,240 0 614 502 123 625 1,239

100,352 0 6,016 4,424 1,204 5,628 11,644

In terms of communication, our total communication overhead in ΠReLU is
4B ·t·λ·� bits with 8B ·t ring elements, while the communication overhead in [28]
is 2B · t · (2λ · (2�−1)+3�) bits. In [29], the online communication for one ReLU
is 3� + 230 bits and the offline communication is 1337λ + 5� + 1332 bits, so its
total communication overhead for logistic regression is 2B · t ·(1337λ+8�+1562)
bits. As shown in Table 4, in the online phase our S−S communication achieves
90.1−176× improvement over [28], and our total online communication achieves
1.41−2.32× improvement. For the total communication (offline + online), we
achieve 1.84−91.3× improvement.

5.4 Neural Networks

We train a neural network consisting of three fully connected layers while the
cross entropy function is employed as the loss function. The neural network has
128 neurons in each hidden layer and 10 in the output layers. We use the ReLU
activation function for the two hidden layers and the MPC-friendly variant of
the softmax function (see Sect. 3.2) for the output layer.

Table 5. Running time of semi-honest neural networks on LAN and WAN networks
comparing our protocol to client-aided [28]. * indicates estimated running time.

n Offline Time (s) Online Time (s) Total Time (s)

LAN WAN LAN WAN LAN WAN

Our work 10,240 0 0 257 5875 257 5875

100,352 0 0 2,510* 57,500* 2,510* 57,500*

Client-aided [28] 10,240 674 16,350* 147 6,690* 821 23,040*

100,352 6,600* 160,200* 1,440* 65,600* 8,040* 225,800*
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Table 6. Communication cost of semi-honest neural networks comparing our protocol
to client-aided [28]. “S − S” and “C − S” denote the communication between the two
servers and the communication between the clients and servers, respectively. * indicates
estimated communication.

n Offline Comm (MB) Online Comm (MB) Total

S− S C− S S− S C− S Total Comm

Our work 10,240 0 0 664 35,798 36,462 36,462

100,352 0 0 6,500* 351,000* 357,500* 357,500*

Client-aided [28] 10,240 0 112,114 43,659 124 43,783 155,897

100,352 0 1,099,000* 427,900* 1,220* 429,100* 1,528,000*

We compare the performance of our semi-honest neural network training
to [28] in Tables 5 and 6. We only compare with the client-aided variant of
[28] because it achieves the most comparable performance to ours. The neural
network has two hidden layers with 128 neurons in each layer.

As shown in Table 5, in the online phase we achieve an improvement of 1.14×
on WAN. For the total running time (offline + online), we achieve an improve-
ment of 3.19× on LAN and 3.92× on WAN. As shown in Table 6, our S − S
communication in the online phase achieves an improvement of 65.8× and our
total online communication achieves an improvement of 1.20×. We achieve a
4.28× improvement for the total communication (offline + online).
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