®

Check for
updates

Computation Efficient Structure-Aware
PSI from Incremental Function Secret
Sharing

Gayathri Garimella™), Benjamin Goff, and Peihan Miao

Brown University, Providence, USA
{gayathri_garimella,benjamin goff,peihan miao}@brown.edu

Abstract. Structure-Aware Private Set Intersection (sa-PSl), recently
introduced by Garimella et al. (Crypto’22), is a PSI variant where Alice’s
input set Sa has a publicly known structure (for example, interval, ball
or union of balls) and Bob’s input Sg is an unstructured set of elements.
Prior work achieves sa-PSI where the communication cost only scales
with the description size of S4 instead of the set cardinality. However,
the computation cost remains linear in the cardinality of S4, which could
be prohibitively large.

In this work, we present a new semi-honest sa-PSI| framework where
both computation and communication costs only scale with the descrip-
tion size of Sa. Our main building block is a new primitive that we
introduce called Incremental Boolean Function Secret Sharing (ibFSS),
which is a generalization of F'SS that additionally allows for evaluation on
input prefixes. We formalize definitions and construct a weak ibFSS for a
d-dimensional ball with £, norm, which may be of independent interest.
Independently, we improve spatial hashing techniques (from prior work)
when S4 has structure union of d-dimensional balls in ({0,1}*)%, each
of diameter §, from O(u - d - (logd)?) to O(logd - d) in terms of both
computation and communication. Finally, we resolve the following open
questions from prior work with communication and computation scaling
with the description size of the structured set.

— Our PSI framework can handle a union of overlapping structures,
while prior work strictly requires a disjoint union.

— We have a new construction that enables Bob with unstructured
input Sg to learn the intersection.

— We extend to a richer class of functionalities like structure-aware PSI
Cardinality and PSI-Sum of associated values.

1 Introduction

Private Set Intersection (PSI) enables two distrusting parties, each hold-
ing a private set of elements, to jointly compute the intersection of their
sets without revealing any additional information. Over the past decade, PSI
has found numerous real-world applications, such as secure password breach
checkup [1,2,5,9], mobile private contact discovery [6,48], online advertising
measurement [4,45,52], privacy-preserving contact tracing in a global pan-
demic [3,13,65], and more. There has been enormous progress towards realizing

© International Association for Cryptologic Research 2024
L. Reyzin and D. Stebila (Eds.): CRYPTO 2024, LNCS 14927, pp. 309-345, 2024.
https://doi.org/10.1007/978-3-031-68397-8_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-68397-8_10&domain=pdf
https://doi.org/10.1007/978-3-031-68397-8_10

310 G. Garimella et al.

PSI efficiently to be deployed in practice, at scale. Most of these protocols have
both the computational and communication complexity proportional to the size
of the two sets [14,23,26,28,38,43,44,51,54,57,61,63,64,64].

Recent work by Garimella et al. [39] considers the scenario where one party’s
input set has a publicly known structure. They introduce Structure-Aware PSI
(sa-PSl), where Alice has an input set S4 € S from a known family of structured
sets S (for example, a single-dimensional interval, high-dimensional ball, disjoint
union of balls) and Bob’s input set Sp consists of an unstructured collection of
elements. The size of Sy could potentially be much larger than Sp, namely
|Sa| > |Sgl, but the structure leads to a succinct description size of the set Sg4.
sa-PSI [39,40] allows Alice to learn the intersection S4 N Sp with communication
& |S4al, that scales with the description size of S4 instead of its cardinality.

Structure-aware PSI finds many applications in practice. For instance, sup-
pose Alice and Bob each have a set of points A and B respectively, and they
want to identify which pairs of their points are close by, namely (z,y) € A x B
satisfying D(z,y) < §, where D is a public distance metric and ¢ is a public
threshold. We can model this problem as an instance of sa-PSI, where Alice’s
structured input S4 is a union of d-balls (for each point x € A, consider a ball
centered at x with radius § under the distance metric D), and Bob’s input is his
unstructured input set B. This can be used for applications such as noisy/fuzzy
biometric matching [34,66] and privacy-preserving ride sharing [35,62], among
others.

Prior works [39,40] present a general framework for semi-honest and mali-
cious secure sa-PSl, respectively, with specific construction for set family of union
of d-dimensional balls in the £,, norm, where the communication cost is inde-
pendent of the total volume of the balls in the structured input. However, an
inherent limitation is that Alice’s local computation cost remains linear in the
size of her structured input |S4| (that is, total volume of the balls), which can
be exponentially large. This leaves us with the following open problem that is
explicitly mentioned in [39]:

Can we achieve sa-PSI where both computation and communication costs only
scale with the description size of the structured set?

1.1 Owur Contributions

Structure-Aware PSI with Efficient Computation. In this work, we
answer the above question in the affirmative. We present a new semi-honest
sa-PSl protocol for union of £4.-balls in a d-dimensional space, where both com-
putation and communication costs only scale with the description size of the
structured set. We achieve both communication and communication complexity
of O(N4 -u?), in a d dimensional space ({0,1}*)? where N4 is the number of
balls in Alice’s set, instead of scaling with |S4|, which could potentially be as
large as 2“¢.

Incremental Boolean Function Secret Sharing. The main building block
underneath our construction is a new notion we introduce, called Incremental

Computation Efficient Structure-Aware PSI 311

Boolean Function Secret Sharing (ibFSS). Intuitively speaking, FSS [17] splits a
function f from a function family F into two functions, foy, f1, such that each
function f;, hides the function f and that fo(z)+ f1(x) = f(z) for all input z. Our
new notion ibFSS is an instance of Boolean FSS [39], for a function that captures
set membership of a structured set S,4, meaning that f(x) = 0 if © € S4 and
f(x) =1 otherwise. Additionally, ibFSS also enables evaluation on prefizes of all
the points while preserving the FSS properties. We formalize the notion of ibFSS
and give a construction for d-dimensional /.-balls. We then present a generic
framework of constructing sa-PSI from ibFSS, and instantiate the protocol with
d-dimensional f4.-balls. As a result, Alice’s computation cost is reduced from
O(|S4]) to O(u?) for a single ball (see Table1 in Sect.7.1). It is worth noting
that our ibFSS construction only uses lightweight operations of pseudorandom
generators (PRGs) and may be of independent technical interest.

New, Efficient Construction for Union of (Overlapping) Structured
Sets. We develop a new approach for PSI with union of structures as input,
that improves both computation and communication costs from exponential to
linear in the dimension d, namely from O(u¢) to O(u-d) (see Table 2 in Sect. 7.2).
The construction in prior works [39,40] crucially requires that Alice’s structure
is a union of disjoint balls, because it is unclear how to construct an efficient FSS
scheme for a union of overlapping structures. However, such a requirement may
not be feasible in certain applications such as privacy-preserving ride sharing.
We answer the following question in the affirmative:

Can we achieve sa-PSl for a union of overlapping balls?

New Spatial Hashing Techniques. Garimella et al. [39] introduced a spa-
tial hashing technique to improve the performance of structure-aware PSI for a
union of N4 disjoint d-dimensional /,.-balls of the same diameter §. This tech-
nique was further improved in [40]. In this work, we introduce a new perspective
on spatial hashing, which improves both computation and communication costs
from O(u - d - (log§)?) to O(logd - d) (see Table3 in Sect.7.3). Furthermore,
we relax the restrictions on the balls, supporting overlapping balls with dif-
ferent diameters. The new spatial hashing techniques is compatible with the
previous framework [39,40] and improves the communication cost of all prior
constructions.

Extended Functionalities. The previous construction [39,40] is critically
restricted to one-sided, plain PSI, where Alice, the party holding the struc-
tured set, learns the entire set intersection. It is unclear how to extend it to
more advanced functionalities. For instance, certain real-world applications may
require only Bob to learn the output. A naive approach that does not work is to
have Alice send the FSS evaluations of all her elements in S4 to Bob, which is
highly inefficient. Even worse, these evaluations can reveal critical information
about Alice’s structured set; in fact, they reveal Alice’s entire set to Bob! As
another extension, we may want to reveal only aggregate information about the
intersection, while hiding the actual contents of the intersection. One notable

312 G. Garimella et al.

functionality, PSI-Cardinality, allows two parties to only learn the cardinality of
their intersection |S4 N Sp|.

Can we achieve sa-PSl that enables only Bob to learn the output?
Can we achieve sa-PSl that enables Alice (or Bob) to learn PSI-Cardinality?

In this work, we present new sa-PSI protocols for these extended functionalities,
allowing them to learn PSI-Cardinality as well as PSI-Sum [45], in which Bob has
an integer value associated with every element in his set and they jointly learn
the summation of all the associated values for elements in the intersection. We
further allow only Bob to learn the output in all these functionalities, including
PSI, PSI-Cardinality, and PSI-Sum. All our protocols have communication and
computation costs that only scale with the description size of the structured set.
Our constructions only use lightweight symmetric-key cryptographic operations
(such as pseudorandom generators and hash functions) and oblivious transfer
(OT) [60], which can be instantiated efficiently with OT extension [46].

1.2 Related Work

Conventional PSI and Related Notions. In recent years, many paradigms
for PSI protocols have evolved, including circuit-based [43,56-58], Diffie-
Hellman [30,44,45,47], oblivious polynomial evaluation [29,50], RSA [11,
30], fully homomorphic encryption [24,25,27], bloom filters [31,63], oblivi-
ous transfer [23,51,54,59], and vector oblivious linear evaluation [28,38,61,64]
approaches, achieving both semi-honest and malicious security [14,24,26,53,55,
63,64].

As discussed earlier, certain applications require PSI with more refined
functionalities, such as allowing only a designated party to learn the out-
put or enabling restricted computation on the elements in the intersection
[22,37,42,42,49,57,64]. For instance, PSI-Cardinality and PSI-Sum model many
applications like aggregated ads measurement [45,52] and privacy-preserving
contact tracing [13,65].

Structure-Aware PSI. Recent work of Garimella et al. [39] introduced the
notion of structure-aware PSI, where Alice holds a set with a publicly known
structure and Bob holds an unstructured set of points. In such a setting where
one party’s set could be substantially larger than the other, namely unbalanced
PSI, it is possible to construct protocols with communication sublinear in the
larger set using RSA accumulators [11,30], leveled fully homomorphic encryp-
tion [24,25,27], or laconic PSI [8,10,32,36]. However, they require expensive
public-key cryptographic operations, and the computation cost remains linear
the larger set.

In contrast, the work of Garimella et al. [39] constructs a semi-honest
structure-aware PSI using lightweight cryptographic tools including PRG, hash
functions, and OT, taking advantage of the efficient OT extension [46]. A follow-
up work [40] extends the protocol to achieve malicious security. Both works
achieve communication cost that only scales with the description size instead

Computation Efficient Structure-Aware PSI 313

of cardinality of Alice’s structured set. However, Alice’s computation cost still
scales with the cardinality of her set. Another recent work [67] achieves both
communication and communication costs that scale linearly with the diameter
¢ and exponentially in the dimension d, in two interaction messages. They rely
on the Decisional Diffie-Hellman (DDH) assumption and public-key operations,
especially leveraging the homomorphism of ElGamal encryption [33].

The following works [12,41,68-70] study fuzzy matching or threshold PSI, that
reveals the intersection, only when it is above a certain threshold. Chakraborti
et al. [21] and [66] construct fuzzy PSI protocols (which they call distance-aware
PSI) for Hamming distance metric, based on homomorphic encryption.

Function Secret Sharing. Function secret sharing (FSS) was first introduced
by Boyle et al. [17] who proposed efficient FSS constructions for point functions,
comparison functions, and a few other interesting classes. These original FSS
constructions were further optimized and extended in a sequence of works for
point functions, multi-point functions, comparison functions and d-dimensional
intervals [16,18,20]. Boneh et al. [15] extended the construction of Distributed
Point Function (DPF), namely FSS for point functions, to Incremental DCF,
which allows for evaluation on any prefix of a string. In this work, we further
extend the notion to Incremental Distributed Comparison Function (DCF) and
give an efficient construction of it from PRG, which may be of independent
interest. Boolean FSS (bFSS) was introduced by Garimella et al. [39] to cap-
ture structured sets, and they present bFSS constructions for union of disjoint
structured sets. We formalize an extended notion of Incremental Boolean FSS
(ibFSS) and present an ibFSS construction for d-dimensional £, balls, from which
we construct our sa-PSI protocol.

2 Technical Overview

Prior Framework for sa-PSI. We first briefly revisit the framework in prior
works [39,40]. The main building block is a weak Boolean FSS scheme ¢-bFSS
(with evaluation output bit length t) for Alice’s set family (e.g., a single-
dimensional interval, d-dimensional ball, or union of balls). The scheme suc-
cinctly secret shares a set S4 and produces a pair of keys (ko, k1) < Share(17,54)
with the property that each key share k; hides the structure S4 and that
Eval(ko,) @ Eval(k1,%) = 0 when ¢ € Sa and Eval(kg, %) @ Eval(ky,¥) # 0°
otherwise. The authors leverage this tool for set-membership testing and realize
a secure PSI scheme as follows.

Alice generates k independent sharings of her set and obtains (short) keys
(kél),kil)) «— Share(1%,54) for each instance i € [k], where x is the security
parameter. Bob randomly samples a string s < {0, 1}" to indicate his choice bits
for each sharing. Alice and Bob perform an oblivious transfer (OT) protocol [60],
where Bob, as the receiver, learns one of the two shares kgz[z] based on his choice

bit s[i], while Alice remains oblivious to Bob’s choice bits. Bob defines a special
function that can be computed as follow:

314 G. Garimella et al.

F(j) = H (Eva|(k§f3],g)|| . HEvaI(kiﬁ,gj)) .

Bob sends {F(%) | ¥ € Sp} to Alice. Alice can only compute this special function
if ¥ € S4, otherwise the output looks pseudorandom. Why? When i € S4, both
key shares evaluate to the same value, namely Eval(k:(()i), y) = Eval(kgi),) by the
t-bFSS property, hence the function evaluation is independent of Bob’s choice
bits. She simply computes the function as follows:

F(7) = H (Eval(k{", ... |IEval (k™. 7))

When § ¢ S, it holds that Eval(k\”,#) # Eval(k{”,7), so Alice must simulta-
neously guess all of Bob’s choice bits (which is negligibly likely), to compute the
function. The output F(¥) is pseudorandom to Alice assuming H is a correlation
robust hash function. Therefore, Alice only recognizes evaluations on values in
the intersection.

Cost Analysis. If there exists a t-bFSS scheme with succinct keys (of size
o K |Sal) for Alice’s set family, then the sa-PSI protocol is communication-
efficient with cost O((o + |Sp|) - k). However, an inherent drawback of this
approach is that Alice must compute the following set of size | S|

{H(Eval(k{", 2| ... ||Eval(k{™, 2)) | & € Sa}

in order to locally compare with Bob’s message of hash evaluations, and identify
matches to learn the intersection. Alice’s computation cost scales with the car-
dinality of her structured input |S4|, which can be prohibitively large for many
applications.

Our New Framework for sa-PSI. Our first contribution is a new framework for
sa-PS| where both computation and communication costs scale with the (short)
description size of Alice’s set, from a new tool called weak Incremental Boolean
Function Secret Sharing ibFSS. At a high-level, the idea is that Bob will craft and
send additional “hints” along with hash evaluations on his inputs. The hints will
help Alice efficiently identify and search for values that are in the intersection,
without having to expand and compute on every item in her full set.

Firstly, we observe that a structured set from a set family S4 € S can be
succinctly represented by a distinct and bounded set of w critical prefixes, where
w is a direct function of S. Each of these critical prefixes is a placeholder for all
inputs in S that share the same prefix. Stated differently, every input in S4
has one of the w critical prefixes as its prefix. For instance, if Alice’s structured
set is a one-sided interval (0, a], where the partition point « € {0,1}*, then at
most w critical prefixes will span her interval (since « is a string of length u).
Alternatively, if the structured set is a d-dimensional /..-ball, which is a cross
product of 2 - d one-dimensional intervals, then at most u*® critical prefixes will
span such an input. In our new sa-PSl framework, we exploit the fact that the set
of critical prefixes is much smaller than the total set size to reduce computation.
For this, we will require an additional property on the weak Boolean FSS (from

Computation Efficient Structure-Aware PSI 315

prior work [39]) that allows evaluation not only on the inputs strings but also
on all its prefixes. The guarantee will be Eval(kg, 3) @ Eval(k1,7) = 0 for all ¥
that is a critical prefix or contains a critical prefix (this implicitly includes every
input in Alice’s set S4). For all other ¢, it holds that Eval(ko, 7) ® Eval(k1,¥) #
0f. We formalize these requirements and define weak Incremental Boolean
Function Secret Sharing ibFSS in Sect. 4, and present a construction for d-
dimensional £.-balls in Sect. 6.

So, how does our sa-PSI protocol work and what are these “hints”? Let’s use
a simple example. Alice’s input S4 is a single d-dimensional ball (or any other
structure in d-dimensional space), while Bob’s input Sp contains a single point
7= (y1,--.,94) € [2%]%. Following prior work, Alice secret shares her input &
times using ibFSS. Bob then samples a uniform string s «— {0,1}* and via OT
learns one of the two keys for each sharing. Now, Bob defines a special function
using his shares and evaluates on his input ¥

F(j) = H (Eval(k(l) D |Eval(k®) g)) .

s[i]? s[i]’
Additionally, he evaluates on all prefixes g? of his input as “hints” and sends to

Alice: , . . .
5 1 € |ul,...,Lq € |Uul,
{F(y) y = (Y1), - .-, (ya)la) }

Alice identifies a set of critical prefixes for her input ball. The claim is that if
Bob’s input i € S4, then there is exactly one critical prefix p'= (py,...,pq) that
is a prefix match of §. As guaranteed by the ibFSS scheme, Alice can compute
Bob’s function on this prefix p as follows:

Fp) = H (Eval (6§, 7). [Eval (k5 7))

Alice can recognize F() from Bob’s set of hints. Furthermore, it’s not hard to
see that exactly one of the two prefixes (p1]|0, pa, - ..,pd), (P1]|1,p2,-..,pa) is a
prefix of 4. Alice can correctly compute the function on the matching prefix and
is guaranteed to find this value in Bob’s set of hints (since he sends evaluations
on every prefix of his input). Similarly, Alice can iteratively figure out the rest
of the bits of ¥ using binary search, to learn the intersection. Finally, if Bob’s
input ¢ ¢ Sy, then Alice cannot compute Bob’s function correctly on any of her
prefixes, and as a result, learns nothing about his private input. This is the crux
of our new approach and how we achieve savings in computation at the cost of
slightly increased communication from Bob.

Multiple (Overlapping) Balls with Multiple Points. Next, we consider the
case when Alice’s input is a union of multiple balls (or any structure), namely
S = S’&D U...u §E4NA), and Bob’s input contains multiple points |Sg| > 1.
Prior work [39,40] introduced an elegant sum transformation to obtain a 1-
bFSS scheme for a disjoint union of structures. However, this technique is only
compatible with a restricted class of strong 1-bFSS schemes that output a single

316 G. Garimella et al.

bit, whose constructions are significantly more expensive. In particular, both the
key share sizes and evaluation costs scale exponentially in the dimension d.

In this work, we circumvent this limitation to realize sa-PSl for union of
structures (even possibly overlapping structures, under certain conditions) from
the more efficient weak t-bFSS schemes with both key share sizes and evaluation
costs linear in d. Our improvement comes from the following observation. If Alice
learns from the PSI ideal functionality that an element g is in the intersection,
then it implicitly reveals the underlying structured set(s) that contain ¥, that is,

every i € [N4] for which y € §X). Hence, we propose a new protocol where Alice

compares each of her structures §X),i € [N4], individually, with Bob’s input &
(effectively, N4 instances of PSI with a single structure against Bob’s input).
Since we evaluate each structure separately, the underlying ¢-bFSS scheme can
be instantiated more efficiently (no longer restricted by the sum transformation)
and it’s compatible even when the structures are overlapping.

To handle multiple points in Bob’s set, he will send prefix evaluations for each
of his inputs to Alice. It could happen that some prefixes overlap across different
inputs, which may leak extra information to Alice. A simple fix is to have Bob
send the union of his evaluations across all inputs and pad with dummy values,
which we will show is sufficient. We present the full construction in Sect. 5.1.

Spatial Hashing. One drawback of our sa-PSI protocol discussed so far is that
Bob’s communication cost scales with the number of structures in Alice’s set
Ny4. Garimella et al. [39] introduced a technique called spatial hashing, that
removes this dependence for a disjoint union of d-dimensional /,,-balls of the
same, fixed diameter ¢. This technique was further improved in [40]. Their high-
level idea is to divide the input space into contiguous grid cells, construct FSS
keys for all the active grid cells that contain or intersect with Alice’s input
balls, and then pack these FSS keys into an oblivious key value store (OKVS)
data structure [38]. In our work, we present a new, improved spatial hashing
technique, that is composable with our new (and prior) framework instantiated
with weak FSS, and supports overlapping structures of varying size. We discuss
more in Sect. 5.2.

Extended Functionalities. We solve another open question from prior work —
can we construct sa-PS| where Bob (with unstructured set) learns the intersec-
tion? We leverage the fact that, Alice can identify a (bounded) set of w < |S4|
critical prefixes to represent her set. For a given input ¢ € Sp, Bob only needs
to compare all its prefixes with Alice’s critical prefixes. If Bob learns that there
is exactly one match, then he includes ¥ in the intersection; otherwise not. A
straightforward method is to run a standard PSI-Caridinality between both sets
of prefixes, for each of Bob’s input. We present the construction in Sect. 8.1.
Finally, we present the first construction for Structure-Aware PSI-
Cardinality. A naive approach is that both parties run the best known semi-
honest PSI-Cardinality protocol on their inputs. However, since the communi-
cation and computation will scale with Alice’s set size |Sal, the protocol is not
efficient. Instead, since Alice can identify a set of w < |Sa| critical prefixes, if

Computation Efficient Structure-Aware PSI 317

Bob’s input intersects/matches with any of the critical prefixes, then it should
be counted for intersection cardinality, otherwise not. This idea can be further
generalized to compute PSI-Sum. We discuss the full details in Sect. 8.2.

3 Preliminaries

Notation. Let x and A denote the computational and statistical security param-
eter, respectively. For an integer m € N, let [m] = {1,2,...,m}. PPT stands
for probabilistic polynomial time. By 2, and 22, we mean two distributions are
computationally indistinguishable and statistically close, respectively. Given a
string a € {0,1}*, we use || to denote its length, and ai to represent the prefix
of length ¢ of «, where i € [|a|]. For two strings «, 5 € {0,1}*, we use «||3 to
denote string concatenation.

Ball of Diameter ¢ in ¢, Metric Space. Let © = (z1,...,24) be a point in

a d-dimensional space. The £, norm of x is defined as |x|x L max; |z;|. A ball

consists of the set of points within some distance of a center point. The ball of

diameter & (or radius) centered at z is defined as B(z,) €of {y | d(z,y) <
%}. Under the ¢o, norm, a ball B(z, g) is a polytope with 2d faces, i.e., the
intersection of 2d half-spaces. Namely, the ball B(0, g) centered at the origin
is the intersection of all half-spaces of the form +xz; < % for every ¢ and every

choice of sign.

Oblivious Key Value Stores. An oblivious key value stores (OKVS) (intro-
duced in [38]) is a data structure that encodes a set of key value mappings,
which effectively hides the underlying key set when the associated values are
pseudorandom.

Definition 1 (Oblivious Key Value Stores (OKVS) [38]). An OKVS con-

sists of algorithms Encode and Decode, with an associated key space K and value

space V.

— Encode takes as input a set of A € K x V of key-value pairs and outputs an
object KV (or, with statistically small probability, an error indicator L).

— Decode takes as input an object KV, any key k € K, and outputs a value v.

An OKVS must satisfy the following properties:

- Correctness: For all A C K x V with distinct keys, and all (k,v) € A:
Pr[Decode(Encode(A), k) = v] =1
Note that, we can invoke Decode(IKCV, k) on any key k on a given object KV .
~ Obliviousness: For all distinct {kY,...,kO} and distinct {k},...,kL}, the
output of R(KY,... k%) is computationally indistinguishable from that of
R(k}, ... kL), where:

»'n

fori e [n):v; <V
return Encode({(k1,v1), ..., (kn,vn)})

318 G. Garimella et al.

The obliviousness property guarantees that if the values are pseudorandom, then
any two outputs of experiment R, encoding different sets of keys are computa-
tionally indistinguishable. Additionally, our construction requires an additional
independence property, that is satisfied by all the constructions presented in [38].

Definition 2. An OKVS satisfies the independence property if for all A C
I x V with distinct KC-values, and any k* not appearing in the first component
of any pair in A, the output of Decode(Encode(A), k*) is indistinguishable from
random, over the randomness in Encode.

Other Cryptographic Tools. We give definitions for other cryptographic tools
including pseudorandom generators, Hamming correlation robust hash func-
tions and secure two-party computation (2PC) and specific 2PC functionalities,
including oblivious transfer (OT), PSI cardinality, and PSI with associated sum
in the full version of the paper.

4 Incremental Boolean Function Secret Sharing

In this section, we define a weak multi-dimensional incremental Boolean Function
Secret Sharing (ibFSS) scheme. Looking ahead, we will use this scheme as a
building block to construct our structure-aware PSI protocol in Sect. 5. We then
give a construction of ibFSS for d-dimensional £..-balls in Sect. 6 and discuss our
PSI protocol instantiated with it in Sect. 7.

A d-dimensional ibFSS scheme is defined for a family of d-dimensional sets
S C M x ... x 24 where U = {0,1}*." As a concrete example, one can think

of § as thed family of all d-dimensional /..-balls. For each d-dimensional set
in the family S, namely S = (S1 x -+ x84) €S (in the example, S is a d-
dimensional ¢..-ball), the set S implicitly defines a Boolean function f on input
space ({0,1}*)¢ as follows. For all & = (z1,...,24) where each z; € {0,1}%, we
define f(Z) = 0 if £ € S, and f(Z) = 1 otherwise. In incremental Boolean FSS,
we additionally define the function f evaluated on all prefixes of Z. Specifically,
for all ¥ = (z1,...,24) where each z; € |J;_,{0,1}¢ can be of arbitrary length
(at most u bits), we define f(Z) = 0 if the prefix & spans a set that is entirely
contained in S (in our formal definition below, PreSz C §), and f(Z) = 1 other-
wise. An ibFSS scheme splits the function f into two functions fy, f1 (defined by
keys ko, k1) such that each function f;, hides f, and that fo(Z) @ f1(Z) = f(Z)
for all prefixes Z.

What we need for structure-aware PSI is a weak ibFSS, which relaxes the
above definition in two ways. First, the function f outputs a ¢-bit string instead
of a single bit. Second, for each prefix ¥, it holds that fo(%) & f1(¥) = 0! if

! In the ibFSS definition, we consider all dimensions to have the same input domain
for simplicity. The same definition and our constructions also work for dimensions
with different input domains.

Computation Efficient Structure-Aware PSI 319

PreSz C S and fo(Z) ® f1(Z) # 0' otherwise. This weak definition follows from
prior work [39,40]. In fact, they further relaxed the definition to allow for false
positives, which we don’t need to consider in this work. Throughout the rest of
the paper, we refer to ibFSS as the weak variant unless specified otherwise.

Definition 3. [(u,d,t)-ibFSS: Syntax] A (two-party) d-dimensional weak incre-

mental Boolean function secret sharing scheme (u,d,t)-ibFSS for a family of

sets S C M x - x U where U = {0,1}*, consists of a pair of algorithms
—_——

d
(Share, Eval) with the following syntax:

— (ko, k1) < Share(l”,g): The randomized share function takes as input the
security parameter 1 and (the description of) a d-dimensional set S = (S; x
<+ X Sy) €S, and outputs two key shares.

— Yiax — Eval(idx, kigx, ©): The deterministic evaluation function takes as input
a party index idx € {0,1}, the corresponding key share kig, and input & =
(z1,...,7q) where each z; € J;_, {0, 1}, It outputs a string yig € {0,1}¢.

Notation. For a string z € (J,_,{0,1}¢ and & = {0,1}*, we define a prefix
set PreS, := {s | s|lz| = z,s € U} as the set of all the strings in U with a
prefix z. For a vector ¥ = (z1,...,24), where each z; € (J,_,{0,1}*, we define
PreSz == {5 = (s1,...,84) | (si)|xs| = z; foralli € [d],s; € U}. Note that
PreSz = PreS,, x --- x PreS,,.

Definition 4. [(u,d,t)-ibFSS: Security] A (two-party) (u,d,t)-ibFSS scheme
(Share, Eval) for S is secure if it satisfies the following conditions:

— Correctness for yes-instances: For every d-dimensional set S = (S1 %
- x Sq) € S, every input ¥ = (x1,...,xq) for which PreS,, C
S1,...,PreS,, C Sy (or equivalently, PreSz C g), and security parameter
H?
(ko, k1) < Share(1%, S)
Pr Yo Dy1 = Ot Yo — EvaI(O,ko,f) =1
Y1 — EVB'(l,kl,f)

— Correctness for no-instances: For every d-dimensional set S = (S1 x
<X Sq) €S, every input & = (x1,...,24) for which PreS,, € S1 or ... or
PreS,, € Sq (or equivalently, PreSz € S), and security parameter s,

(ko, k1) < Share(1%, S)
Pr|yo® vy # 0" |yo < Eval(0, ko, T) =1.
y1 < Eval(1, kq, @)

— Privacy: There exists a PPT simulator Sim such that for all idx € {0,1} and

all S e S, the following distributions are computationally indistinguishable in
the security parameter k:

(ko, k1) < Share(1%, S)

return Kigx

&, Sim(1%, idx).

320 G. Garimella et al.

We say the ibFSS scheme has pseudorandom keys property, if the output of
the simulator is a random string of fixed length.

Decomposing a Set into Prefix Sets. In our structure-aware PSI protocol, we
will decompose each structured set into a disjoint union of prefix sets. Specifically,
for any single-dimensional set S € 24, there is a unique way to decompose it
into a disjoint union of prefix sets, S = (J;¢(,PreSss where 27 e Uy, {0,1}".

Similarly, for any d-dimensional set § = (Sy x---x Sy) € 24 x -+ x 2, there is a
—_———

jEw

u

unique way to decompose it into a disjoint union of prefix sets, S = U ielw) PreS—
x

where 7 = (27, ...,2)) and z € J,_,{0,1}".

For instance, consider a single-dimensional interval S = {z | 2 < a, z €
{0,1}%}, where a = aMa@ ... o € {0,1}* (bit representation of «). The set
S can be decomposed into a disjoint union of at most u prefix sets, namely
S = Uje[u]:a(j):lPreSm. Similarly, a d-dimensional interval can be
decomposed into a disjoint union of at most u? prefix sets.

5 sa-PSI with Alice Learning Output

In this section, we present our new sa-PSI protocols where Alice holds a struc-
tured set and Bob holds a set of unstructured points. We present the proto-
col where Alice’s input is a union of (overlapping) structures and Bob’s input
contains multiple points in Sect. 5.1 and our new spatial hashing techniques in
Sect. 5.2. In both protocols, only Alice learns the output.

5.1 Multiple (Overlapping) Balls with Multiple Points

We present in Fig.2 a general framework for two-party, semi-honest secure
sa-PSI| protocol, where Alice’s input is a union of (overlapping) structures in
a d-dimensional, well-defined metric space. We summarize the key features in
our framework below.

— Incremental Boolean FSS is a new tool, that allows Alice and Bob to
evaluate on the prefixes of their inputs. Bob evaluates his key share on every
prefix of his input. Alice identifies a set of critical prefizes, such that, a match
with any critical prefix indicates that the element is in the intersection.

— Intersection Search is a method for Alice to recursively search for Bob’s
input in her set. For every critical prefix in Alice’s input, she checks if there
is a matching FSS evaluation in Bob’s set Y. She then appends bit 0 to
the prefix and checks if the FSS evaluation belongs to set Y. If not, she is
guaranteed to find prefix append with bit 1 in set Y. This process continues
until she figures out the matching input.

Computation Efficient Structure-Aware PSI 321

— OR Observation is a new method for sa-PSI when Alice’s input is a union of
N4 structures. In our protocol, we break away from the ibFSS abstraction for
the union of structures. Instead, Alice computes an independent ibFSS secret
sharing for each of her structures and compares with Bob’s entire input set
Sp. An immediate advantage is that the sets can be overlapping since they
are handled independently. Furthermore, prior known FSS constructions for
union of structures are not as efficient as F'SS for individual structures, leading
to an advantage for our approach (for the set families considered in [39,40]).
We discuss the comparison in more detail in Sect. 7.

Parameters: A family of sets S C 2% x - -+ x 2 where U = {0, 1}*. Number of Alice’s
N———

d
structured sets N4 and size of Bob’s set Ng.

Functionality:
1. Receive input Sa = |J
from Alice.
2. Receive input Sg C U of size Np from Bob.
3. [output] Send Sa N Sp to Alice.

iEN 4 §X), where S_"X) € S (or a concise representation of Sa)

Fig. 1. Ideal functionality Fe, psi for structure-aware PSI, where Alice learns the out-
put.

Algorithm 1. Recursive Intersection Search
1: global variable: intersection set I

2: procedure INTSEARCH({k(" }, ¢ (], u, index, Z,Y)
3 Parse ¥ = (z1,...,24)

4 Compute h := H (Z||index; Eval(k(), Z)| ... || Eval(k(®), 7))
5: if h ¢ Y then

6: return
7.

8

9

else if |z;| = u for all ¢ € [d] then
I:=T1uU{7}
: return
10: Let ¢ € [d] be the smallest index such that |z;| <u—1
11: for b=0to 1 do
12: z = (xl,...,:cifl,a:iHb,xiJrl,...,xd)
13: INTSEARCH({k(M}, ¢ (), u, index, z,Y)

Theorem 1. Given a two-party (u,d,t)-ibFSS scheme for a family of sets
S C2Mx .. x2M where U = {0,1}* and every set in S is a disjoint union
—_——
d
of at most w prefix sets, and a Hamming-correlation robust hash H: {0,1}* —
{0, 1} Hlog INalHlog [Np[+logwidlogu " yhe protocol in Fig. 2 realizes Feapsi (Fig. 1)
in the For-hybrid model in the presence of semi-honest adversaries.

322 G. Garimella et al.

Parameters:
— computational security parameter x and statistical security parameter A
— family of sets S with corresponding (u, d, t)-ibFSS scheme (Share, Eval)
— oblivious transfer functionality For
— hamming-correlation robust hash H with output length A + log|Na| + log |Ng| +
log w + dlogu
Inputs:
— Alice has N4 structured sets Sa = J

ieN, 5'&”, where §X> €s.

— Bob has an unstructured set Sg C U? of size Ng.

Protocol:
1. Alice initializes the intersection as I := {).
2. Bob chooses a random string s < {0, 1}"~.
3. For each i € [Na], the parties do the following (in parallel for each set):

(a) Alice generates x independent ibFSS sharings of her structured set SEZ). For
each 1 € [k], compute (k(()n), k) < Share(17, SS)).
(b) The parties invoke x (parallel) instances of oblivious transfer using For. In
the n-th instance:
— Alice is the sender with input (k{", k{");
— Bob is the receiver with choice bit s[n]. He obtains output k7 = k:i?rz]
(c) Bob does the following:
i. Initialize an empty set Y := ().
ii. For each element ¢ € Sp:
— Write ¥ = (y1,...,ya), where y; € U for all j € [d].
— Compute

v = {H (/15 Bval(l,)] [Eval (68, 7))
b€ ful,. .. ba € [u] }
Y= (W) e - - (Ya)1ey))
— Update Y :=Y UY".

iti. Pad Y with dummy random strings such that |Y| = Np - u® and send it
to Alice.

(d) Alice does the following:

i. Write Sif) = UjcpuPreS— as disjoint union of w’ prefix sets (w is the
upper bound for w’).
—
ii. For each j € [w'], run INTSEARCH ({Iﬂ(()")}ne[,ﬁ],u,i,xj7 Y), with I being a
global variable.

4. [output] Alice outputs the intersection I.

Fig. 2. Protocol realizing Fs-psi (Fig. 1) using ibFSS in the For-hybrid model.

Computation Efficient Structure-Aware PSI 323

Proof. Bob is Corrupt. In the protocol, Bob learns only one of the key shares
from OT for each of the k independent ibFSS sharings. We can simulate Bob’s
view by invoking the ibFSS simulator (Definition 4) that takes as input the
security parameter k£ and (public information) a description of Alice’s set family
and nothing else about her private input.

Alice is Corrupt. First, we define the following useful functions, where each
function’s output {{0, 1}'}" is a vector of length x, where each component (string
length t) is the result of ibFSS evaluation:

E.(§) = (Eval(k(l) ")||...||Eva|(k,(k”),g'))

Bo(7) = (Eval(k§", 9l ... | Eval(k§”, 7))
A(§) = (Eval(k()) @ Eval(k\Y,)||...||Eva|(kg*””>,g)@Eval(k§”>,g))

The goal is to simulate (through a sequence of hybrids) Alice’s view from the
honest protocol execution independent of Bob’s input.

Hybrid 0. In the protocol execution, Alice’s view consists of N4 sets of values
from Bob, which can effectively be viewed as a single of set of values Y. We use
the fact that

Eval(k{"”, /) = Eval(k{",) = Eval(k{", /) & s © (Eval(k{”, /) & Eval (", 7))

where © denotes component wise multiplication (of single bit with ¢ bit string)
to rewrite the message Y as shown below:

y:{ (y ll6; Eval (6,)] ...

= {H (v £.()

{ <y||l Eo(y) ®s® Ay))

\Eva|(k£*”~),gjf)) b€ ful,. L € [ul,
y, = ((yl)eh LR (yd)gd)

i€ [Nal, 7= (v1,---,94) € S, }

i€[Nal,¥= (y1,---,Yd) GSB,}

Z} € [u],...,Lq € [u],
y' = ((y1)l, .-, (ya)la)
i€ [Nal, = (y1,-.-,vd) € SB,}

@3 € [u],...,fd € [u],
y' = ((y)l, - - -, (ya)la)

=Y1 UYs U Y30 Yy,

where we expand the terms as follows:

Nl s@® — PreS— o — (i J
€ [Nal, S, 7Uj€[w/] re w—j»,a: = (1, x%),
s -, j= PreS—:
Y1 =<H (y/H“ EO(ZI/)) Y (ylv‘ yYd) € "esmj m.SBa
e € flef|:ul, ..., Lq € [lzfl = ul,
y = ((y1)lr, .-, (ya)ea)
i € [Nal, = U]G PreS—» 17 = (1% zfl),
Yo = {0 (7l Bo) @ s © A@wN) | 7= W1 e P'esj 03, _ _
(01, €a) € [u]?, where €1 € [J2] — 1] V...V £ € [l — 1]},
y' = (Y1), - -+, (ya)la)

324 G. Garimella et al.

i € [Nal, y—(u1,~»<,yd)ESB\§f),
Ys = {H (/i Bow) @ s © AW)) foe sty € [,

v = (1)1, - - -, (va)la)

and Y, consists of dummy pseudorandom strings with length equal to the hash
outputs, such that |Y| = Np -u®. Recall that, Bob sends hash evaluations on all
prefix combinations of each of his inputs for every input S @ - U iefw] PreS— in
Alice’s private input. For Bob’s protocol message Y we get the following cases
for every set SS):

1. If Bob’s input § € PreS— and input prefix y_7 € PreS—.»: set Y7 includes hash

evaluation on prefix H(y/||i; E.(y')). The |bFSS scheme correctness guarantees
A(y’) = 0" when evaluated on an input 7’ in some prefix set 3 € PreS—>

that comprises one of Alice’s sets. Thus, we can simplify H(y/|i; Eo(y/) & s @
Al)) = H(i Eoly)).)

2. If Bob’s input y € PreSE and input prefix 3’ ¢ PreSE: set Y5 includes hash
evaluation on prefix H(y/||i; E.(y')). The ibFSS scheme correctness guarantees
A(y') consists of x components, where every component (string of length)
is non-zero, when evaluated on an input y_7 outside the prefix set.

3. If Bob’s input ¢ ¢ SE:) and input prefix g;’ : set Y3 includes hash evaluation on
prefix H(y/||i; E.(y')). Again, the ibFSS scheme correctness guarantees A(y’)
consists of kK components, where every component (string of length ¢) is non-
zero, when evaluated on an input y_7 outside every prefix set of SX).

Hybrid 1. In this hybrid, we replace all the hash outputs in Y5 and Y3 with
uniform strings of length A+1log|N4|+log |Ng|+log w+ dlogu as shown below:

Y =Y Ufht,o by} U ARG by} U Y,

where each h;, b} « {0, 1} H1og[Naltlog[Np[+logwtdlogu ar6 sampled uniformly.
This hybrid is indistinguishable from previous hybrid by the hamming correlation
robust property which states that hash values of the form H (y/||i;t; ®s©® A(y'))
are jointly pseudorandom, if they are never queried on repeated yj’ |li values and
A(y_7) has at least xk non-zero components. As previously discussed all the hash
outputs in Y5 and Y3 are computed on unique prefix concatenate with structure
index values and have non-zero A(;J’) evaluation with x non-zero components.

Simulator. Hybrid 1 defines a valid simulation in the ideal world computed just
using Alice’s input S4 and output S4 N Sp. Note that, the output can be used
to determine the cardinality of sets Y5, Y3 and Yj.

Correctness. Only Alice learns the output and our goal is to show that the
protocol satisfies correctness. It suffices to consider Alice’s simulated view since
it is indistinguishable from her view in the honest execution of the protocol.

Computation Efficient Structure-Aware PSI 325

For every input # € Sp N PreS— in the intersection (over all choices of
x

[NA],SS) = UjepuPreS—, o7 = (x1,...,27%)), ibFSS scheme guarantees

? :
[
27

S
A(f’) = 0" and the simulator includes the following hash values in the message
Goella)]ul,. .. ba € (|2 : ul }

to Alice:
{H (1 B} | 3 (@)1, ., (xa)la)

By the collision resistant hash property, Alice can uniquely compute and rec-
ognize hash values from Bob’s message and will correctly include every such
element I in the output.

What is the probability that Alice wrongly includes an element & € S4 \ Sp
in her output? This value is upper bounded by the probability that Alice finds

the hash output of prefix of Z in Bob’s message, that is, H (f’”z, Eo(a;’)) ey,
where ¥ € PreS_;,. By union bound, the probability that Alice finds a value

matching a specific prefix PreS; is |Y'| - 27718 [Nal—-log[Np|—logw—dlogu —
27)\710g|NA|7logw

Again, by the union bound over total number of prefixes,
the probability that Alice includes a wrong element & in her output is less than
w - [Ny| - 27 A legINal=logw — 9=A which is negligible.

5.2 Spatial Hashing

In the above construction, both parties compute ibFSS over the entire universe.
Improving upon this construction framework, Garimella et al. [39] introduced
a spatial hashing technique to reduce the input domain for better efficiency. In
this section, we present a new way of looking at spatial hashing, which relaxes
the restrictions on the structured sets and improves both computation and com-
munication costs.

Overview of Our Spatial Hashing Technique. We start with the same
setting as prior work [39,40], where Alice holds a union of d-dimensional ¢.-balls
of diameter §, namely every ball can be written as [z1, 21 +8) X -+ X [xg, 24+ 9).

We denote the ball as Ballz for its “left-bottom corner” Z = (z1,...,24). We
partition the entire universe ({0, 1}*)? into contiguous grid cells of side length J.
For each vertex in the partitioned space, namely ¢ = (01,09, . ..,04) where each

0; is a multiple of §, we define a mini-universe with origin ¢ and diameter 24.
That is, Univg := [01,01 +20) X ... [04, 04 + 2J). If all of Alice’s balls are disjoint
and have the same diameter J, then each Ballz corresponds to a distinct grid
cell, which is where 7 is located at. Let & be the “left-bottom corner” of that
grid cell, then it is guaranteed that Ballz C Univs. We can construct an ibFSS
for Ballz in the mini-universe Univgz with diameter 204.

Recall that each ball corresponds to a unique origin o, which we refer to
as active origins with active mini-universes. We prepare an ibFSS key for each
ball Ballz in its corresponding mini-universe Univy. Then we pack them into
an oblivious-key value storage (OKVS) data structure [38], where the origin is
treated as the OKVS key, and the corresponding ibFSS key is treated as its value.

326 G. Garimella et al.

To check if a point % in Bob’s set is contained in any of Alice’s input balls,
we only need to check all the mini-universes that contains ¥, namely i € Univg
for origins & (there are 2¢ of them). Bob can probe the OKVS data structure to
obtain the ibFSS key for each relevant origin 0, and evaluate ibFSS on ¢ in the
corresponding mini-universe Univg. Thanks to our new OR observation, Bob can
simply send ibFSS evaluations for all the structures within any relevant origin &
back to Alice, without having to perform a sum transformation.

Illustrative Examples. We give a few examples in Fig.3 in 2-dimensional
space to illustrate our new spacial hashing techniques. A structured set S can
be assigned to an origin ¢ if S is completely contained in the mini-universe
with origin ¢ and diameter 2§, namely S C Univg. For instance, Fig. 3a shows
a mini-universe with origin zj, and 5:(41) C Univgz,. Therefore, the structured
set gf) in Fig.3b can be assigned to any of the four origins 2, Z3, Zg, 7. In
Fig. 3c, we consider 3 structured sets in Alice’s set. 5‘&1) can be assigned to 2i;

Sf) can be assigned to origins 25 or Zs; 51(43) can be assigned to any of the
four origins 25, 23, Zg, 27. In this example, we assign gg)7 522), 5543) to 21, Zg, 23,
respectively (highlighted in the figure). Alice generates an ibFSS key share for
each structured set and packs them into an OKVS, as shown in Fig. 3e. When
Bob evaluates at point ¢ (orange point in the figure), he needs to consider all the
mini-universes that contain ¥, namely Univz , Univg,, Univz, , Univz,. In our new
spatial hashing framework, Alice’s structured sets can overlap as long as every
bﬁ” can be assigned to a distinct origin 6 such that Si(j) C Univgs) . In another
example in Fig. 3d, we cannot find such a mapping.

What if There is no One-to-One Mapping? When it is impossible to find a
balls-to-origins mapping in spatial hashing (e.g., Fig. 3d), one potential solution
is to increase the number of structures that can be mapped to each universe, and
then perform multi-ball-multi-point sa-PSI for each universe. Another potential
solution is to have smaller grid cells and a larger universe size, so that Alice
can find a unique mapping. Both solutions would incur higher communication
and computation costs. The protocol can be adapted depending on the specific
application.

Extensions and Improvements Over Prior Work. First, we improve both
computation and communication costs of spatial hashing. In prior works [39,40],
Bob needs to perform an expensive sum transformation on the bFSS outputs.
This restricts their bFSS to strong bFSS that outputs a single bit, for which both
computation and communication costs grow exponentially in the dimension d.
In contract, we get rid of the sum transformation, hence allowing for weak bFSS
that outputs a bit string, with both computation and communication costs linear
in d.

Second, when constructing and evaluating our ibFSS in a mini-universe Univg,
we shift all the points by the origin 0. Specifically, for & = (z1,...,24) and
0 = (01,...,04), we consider Z.Shift(0) := (z1 — 01,...,24 — 04) in the mini-
universe with diameter 2. When Bob computes the hash value, we include the

Computation Efficient Structure-Aware PSI 327

Z5 Z6 Z7 28
7 B Z3 Z 73 Z
S C Uni b) §% can b d f the f
(a) S}’ C Univz, (b) S}’ can be mapped to any of the four
origins 52, 23, 267 57.
Z-L'i 514 515 Z-lfi 2-13 2-14 215 z-lli
Evaluation Point
11
Zo Z10 s Zia Zo Zio Zin Z12
Sa
gh] 50
ER
[g(?/
Zs 26 Z5 Ze 7 Z
5 J
B B 7 Zy E Z 7
(c) Mapping structured sets to distinct ori- (d) Impossible to find a mapping.
gins (highlighted arrows).

Dummy FSS: Dummy

Dummy FSS:

Univz, Univz,, Univz,,

Dummy FSS: 5(_12) FSS: Dummy FSS:

. 1

ot/ S s S U SO
Univz, Univz, Univz,
Al X .
SA) FSS: Dummy FSS:)
. . :
Q) S N
Univsz, Univsz, Univz,

(e) Bob’s evaluation on all mini-universes that contain .

Fig. 3. Our new spatial hashing techniques in 2-dimensional space.

328 G. Garimella et al.

Parameters:
— computational security parameter x and statistical security parameter A

— set family S with corresponding ((log(26), d, t)-ibFSS scheme (Share, Eval) (Defini-
tion 3)

— oblivious key-value store scheme (Encode, Decode) (Definition 1, Definition 2)

— oblivious transfer ideal functionality Fot

— £ OT instances such that Pr[Binomial(1 — 27%,¢) < k] < 27~ |Npl-d(1+loglog(25)

— hamming-correlation robust hash H with output length X\ + log |Na| + logw +
log |Ng| + d(1 + loglog(24))

Inputs:

— Alice has N4 structured sets Sa = |J gﬁf), where gif) €Ss.

— Bob has an unstructured set Sg C U? of size Ng.

iEN 4

Notation:
— For 6= (01,...,04q) Gud, Univg := [01,01 + 26) X -+ X [04, 04 + 20).
— For & = (z1,...,24),0= (01,...,04) € ue, Z.Shift(0) := (z1 — 01,...,%Zq — 04)-

— For S CU* and &= (01,...,04) € U, S.Shift(d) := {Z.Shift(d)|Z € S}.
Protocol:
1. For each i € [Na], Alice identifies a distinct origin &*) such that S_"X) C Univga) .
2. For each 7 € [¢], Alice does the following:
(a) For each i € [Na] compute (k{"", k") « Share(1%, 5 .Shift(5)).
(b) For b€ {0,1} encode KV « Encode({(V), k™), ..., (604, kN4,
3. Bob chooses a random string s + {0, 1}".
4. The parties invoke ¢ (parallel) instances of For. In the 7-th instance:
— Alice is the sender with input (KXV{, KV{");
— Bob is the receiver with choice bit s[n]. He obtains output KV = ICVE?T)]].
5. Bob initializes a set Y := () and does the following:
(a) For each element i € Sg, and for each origin Z where i € Univz:
i. Write ¢.Shift(2) = (y1,...,ya), where y; € [0,24) for all j € [d].
ii. For each n € [{], compute g .= Decode(ICVi"),E).
iii. Compute

v' = {H (7117 Eval (6,)]l [Eval (), 7))

01 € [log(20)), .., a € [log(20)] }
v = () - -5 (Ya)iey))
iv. Update Y ;=Y UY".

(b) Pad Y with dummy random strings such that |Y| = Np - (2 - log(26))? and
send it to Alice.

6. Alice initializes set I := (). For each set i € [N4a], Alice does the following:
(a) Write gf:).Shift(é(i)) = Ujelw,]PreSz—; as disjoint union of w’ prefix sets (w is
the upper bound for w').
(b) For each j € [w'], run INTSEARCH ({kéi’")}ne[g],log@é),E(i),;,Y), with [
being a global variable.

7. [output] Alice outputs the intersection I.

Fig. 4. Protocol realizing Fe.psi (Fig. 1) using spatial hashing techniques.

Computation Efficient Structure-Aware PSI 329

origin 0 as an index to avoid collisions. This shifting approach eliminates the
need for point functions in prior work [40]. On a minor note, we also improve on
the domain of the ibFSS (size of mini-universe) from 36 [40] to 20.

Finally, we can further relax the restrictions on Alice’s input balls. Instead
of requiring all the balls to be disjoint and have the same diameter, the only
requirement we need for our protocol to work is that every structured set gx)

can be assigned to a distinct origin %) such that S:(Z) C Univgs . In particular,
these balls can have different diameters and overlap with each other. In fact,
they don’t even have to be f.-balls with the same diameter in each dimension;
our construction works for any structured set with an ibFSS scheme. We state
the theorem below and defer its proof to the full version of the paper.

Theorem 2. Given a two-party (log(20),d,t)-ibFSS scheme with pseudoran-
dom keys for a family of sets S C 24 x ... x 2" where U = 25 and every set
in S is disjoint union of at most w preﬁx sets, an oblivious key-value store
scheme (Encode, Decode), and a Hamming-correlation robust hash H: {0,1}* —
{0, 1}AtHlog [Nal+log wlog [N |+d(1+log1og(20)) ' the protocol in Fig. 4 realizes Feaps
(Fig. 1) in the For-hybrid model secure in the presence of semi-honest adver-
saries.

6 ibFSS for d-Dimensional ¢..-Balls

In this section, we present a construction an ibFSS for d-dimensional balls with
lso-norm. Looking ahead, we will instantiate our structure-aware PSI proto-
cols with it and analyze our computation and communication costs in Sect. 7.
What we need for d-dimensional ¢..-balls is a weak incremental Boolean Dis-
tributed Comparison Function (u,d, t)-ibDCF. It is an instance of (u,d,t)-ibFSS
for the specific set family of d-dimensional ¢,,-balls. We formalize the definition
in Sect. 6.1 and give a construction in Sect. 6.2.

6.1 ibDCF Definition

We consider (u, d,t)-ibFSS for the set family of d-dimensional intervals §|NT =
(Sim’ﬁl) X - X S((iad’ﬁd)) represented by interval tuples ((ay, £1), ..., (@d, B4)),
where a; € {0,1}" is a partition point and §; € {0,1} is an indicator of left
or right interval. Specifically, for every i € [d], the set is either a left interval
Si(a“o) ={z |z <, v€{0,1}"} or a right interval Si(a“l) ={z|xz>aw; z €
{0,1}*}. We define the syntax below and the security requirement follows from
(u, d,t)-ibFSS (Definition 4).

Definition 5. [(u,d,t)-ibDCF: Syntax] A (two-party) d-dimensional weak incre-
mental Boolean distributed comparison function scheme (u,d,t)-ibDCF for the
family of d-dimensional interval sets over the universe ({0,1}*)? consists of a
pair of algorithms (Share, Eval) with the following syntax:

330 G. Garimella et al.

— (ko, k1) < Share(1*, ((a1,51), ..., (g, Ba)): The randomized share function
takes as input the security parameter k and the description of a d-dimensional
interval, namely a set of partition points and bits (one for each dimension),
where a; € {0,1}" and B; € {0,1}, and outputs two key shares.

— Yidx < Eval(idx, kigx,): The deterministic evaluation function takes as input
a party index idx € {0,1}, the corresponding key share kigx, and input & =
(z1,...,2q) where each x; € J;_, {0, 1}, It outputs a string yia € {0,1}".

Handling Two-Sided Intervals. While the above definition only considers
single-sided intervals in each dimension, we can use it to handle two-sided inter-
vals in a generic manner. Specifically, a two-dimensional (u,2,t)-ibDCF for the
set family Sy nT = (SgL’O) X SéR’l)) € 24 % 2¥ can be used as a single-dimensional
ibDCF for a two-sided interval (L, R) if evaluating on Z = (x,x) with the same
input in both dimensions.

Similarly, a 2d-dimensional (u,2d,t)-ibDCF for the set family Sogant =
(Sng’O) X SéRl’l) X e X Sési’f) X Séde’l)) € 24 x ... x 2" can be used as an

(2d)
ibDCF for a d-dimensional ¢ -ball (L1, R1) X -+ X (Lg4, Rg) if evaluating on
Z = (x1,21,...,%4,2q) with the same input along each of the d dimensions of

the ball.

6.2 ibDCF Constructions

We first give a construction for a single-dimensional (u, 1, 1)-ibDCF for left-sided
intervals in Fig. 6. Our construction builds upon the optimized Distributed Point
Function (DPF) construction from [19] with the addition of an extra variable. For
a left-sided interval {z | © < o, = € {0,1}"}, we consider the DPF construction
for the point function f(z) = 1 if x = a and f(z) = 0 otherwise. At a high
level, in the GGM-tree based DPF construction [19], each node in the binary
tree consists of a PRG seed and an additional output bit. They focus on the
critical path along o and keep the invariant that the output bit is a secret share
of 1 on the critical path and secret share of 0 off the critical path.

In our construction, we use their output bit (¢) as an indicator bit of whether
we are on or off the critical path, and add another bit (y) as the output bit. We
leverage the indicator bit and keep the following invariants: (1) if we are on the
critical path, then the output bit is a secret share of 1; (2) if we deviate to the
right of the critical path (namely al) = 0), then the output bit remains a secret
share of 1; (3) if we deviate to the left of the critical path (namely o) = 1),
then the output bit becomes a secret share of 0; and (4) once we deviate from
the critical path, the output remains a secret share of the same bit for the rest
of the subtree (1 if deviating to the right and 0 if deviating to the left). The
additional output bit y is highlighted in blue in the construction (Fig.6).2 We

2 Note that similar ideas were presented in [7] in to construct DCF from iDPF, where
there are also evaluation values at each node (v;) in their construction (Algorithm 7).

Computation Efficient Structure-Aware PSI 331

¥ n o« n
dododed

Fig. 5. Incremental DCF for a single-dimensional left-sided interval {z | z < «, = €
{0,1}*}. (Color figure online)

illustrate these invariants in Fig.5. Specifically, for all the nodes highlighted in
light orange, the parties obtain secret shares of 0; for all the nodes highlighted
in blue and light blue, the parties obtain secret shares of 1.

Note that we present a construction for left-sided intervals. It is straightfor-
ward to construct an analogous scheme for right-sided intervals, and we omit
the details here. We state the theorem below and defer its security proof to the
full version of the paper.

Theorem 3. Given a pseudorandom generator G : {0,1}* — {0,1}2(5%2) | the
construction (Share, Eval) in Fig. 6 is a secure (u,1,1)-ibDCF scheme (Definition
5) for the family of single-dimensional one-sided intervals, with key size |ko| =
|k1] = u- (k +4) + K bits and output size |yo| = |y1| = 1.

Next we present our construction for a d-dimensional (u, d, d)-ibDCF scheme
in Fig.7, where we adapt the concat technique from prior work [39]. We state
the theorem below and defer its proof to the full version of the paper.

Theorem 4. Given a single-dimensional (u,1,1)-ibDCF scheme, the construc-
tion (Share®, Eval®) in Fig. 7 is a secure (u,d, d)-ibDCF scheme (Definition 5) for
the family of d-dimensional intervals, with key size |ko| = k1| = d-(u- (k+4)+k)
bits and output size |yo| = |y1| = d.

7 Instantiation and Evaluation

We instantiate our sa-PSI protocols with d-dimensional balls with ¢..-norm using
the ibDCF presented in Sect. 6, and analyze the computation and communication

However, outputting these values doesn’t immediately work for us because we need
the critical path to output a secret share of 1 (instead of 0 in their construction).
Another critical difference is that v; in [7] remains unchanged when z; = 1, whereas
our construction generates fresh randomness for each node, resulting in fresh secret
shares at each node and achieving slightly stronger security guarantees that are
essential in our sa-PSl protocols.

332 G. Garimella et al.

(u,1,1)-ibDCF (Share, Eval):

Parameters: Let G : {0,1}" — {0,1}2**? be a pseudorandom generator.

Share(1”, (a, 8 = 0)):
Let @ = aMa® ... a(» € {0,1}" be the bit decomposition.
Sample 5(0> «~ {0, 1}" and 5(0) < {0, 1} uniformly at random.
Assign to) =0 and t =1
for i=1toudo
Hto i || st 8 |ud < G(sg ™) and sEl[eF[yf || s e8|y < G(s{™)
lf a® =0 then
sow = sh B st
thy =té ot @1 and t&y, =t @ tf
yow = yo ®yr and ylw = yo O yi'
CWW = sow Htléw ||tgw HZ/%‘W Hygw
Sz(;i) =st® tgi_” -scew for b=0,1
) = tF @t tLy for b=0,1
else
scw = sp @ st
thw =th oth and t&,, =t ot o1
?/cLJW = ?/(]f S ylL @ 1 and y&v = y? ® yf?
cw = SCWHtéW“thHy(L?VVHng’
sl(f) = sf [téi_l) -scw for b=0,1
) =t @tV 48y for b=0,1
Let ky = s |CWDCW @[... |lew ()
return (ko, k1)

Eval(1%,b, kp, x):

Parse ky = sO)|CWD| .. |[CW™ and & = 2 2@ .. 2®

Assign t(© = b. Assign y©) = b.

for i =1to /¢ do
Parse CW = SCWHtéWHthHy(LIW’H?/gW
T = G() e (0 - [sow [téw lvéw Isow [1E&w lyEw])
Parse 7 = sLHtLHyL I sRHtRHU € {0 1}2(+2)
Update y* = y* ";by’ R and y® =y Ekyl D
1fxz_0then s = b) = () — o
else s = st () = ¢ y(i> =B

return y<)

Fig. 6. Construction of a single-dimensional Incremental Boolean Distributed Com-

parison Function (u, 1,1)-ibDCF for left-sided intervals.

improvements over prior work [39,40]. Since our protocol is semi-honest secure,
we mainly compare with the semi-honest work [39]. Note that [40] follows the
same construction framework as [39] for the most part while focusing on achiev-
ing malicious security, except that [40] also introduces a new spatial hashing
technique that improves upon the semi-honest construction. Hence we compare

our work with both spatial hashing constructions.

Computation Efficient Structure-Aware PSI 333

(u,d,d)-ibDCF (Share*, Eval):

Parameters: Let (Share, Eval) be a single-dimensional (u, 1, 1)-ibDCF scheme.

Share*(l*’", ((0117 61), ey (ad, ﬁd)))
for i=1toddo
(K&, ki) < Share(1%, (a, B:))
ko= (kb,..., k&) and k1 = (ki,..., k%)
return (ko, k1)

Eval” (b, ky = (kév) kg)wz = (1'1, ce :‘Td)):
return (Eval(b, ki, z1) || ... || Eval(b, k¢, z4))

Fig.7. Construction of Incremental Boolean Distributed Comparison Function
(u, d, d)-ibDCF for d-dimensional intervals with output length d.

7.1 Single Ball with Single Point

We start our comparison with the setting where Alice holds a single ball with
{s-norm as the distance metric in the d-dimensional universe ({0,1}*)%, and
Bob holds a single point. The computation cost of the protocol can be broken
down into three parts: (1) Alice generates all the FSS keys, (2) Bob evaluates all
the FSS on his inputs and computes hash values, and (3) Alice identifies the set
intersection from the hash values received from Bob. Our unit of computation
cost is one PRG or hash operation.

The communication cost can be broken down into two parts: (1) oblivious
transfer where Alice is the OT sender with FSS keys and Bob is the OT receiver
with random choice bits, and (2) the hash values sent from Bob to Alice. The
computation and communication costs are summarized in Table 1. Note that
all the computation only involves efficient symmetric-key operations such as
PRGs (which can be instantiated with AES) and hash functions (which can
be instantiated with e.g., SHA256). There is also computation cost from OT
on both parties, but we can leverage the efficient OT extension [46], and the
computation cost is dominated by the FSS key generation and evaluation, so we
omit this cost from the table.

Cells in green indicate that our protocol achieves better complexity, and
those in grey indicate that our protocol requires higher overhead. Our main
improvement over prior work is Alice’s computation cost to identify the set
intersection. In particular, prior work requires Alice to compute hash values
(i.e., perform FSS evaluations) on every element in her set, which could poten-
tially be exponentially large, namely |S4| is upper bounded by 2%, In our work,
by leveraging our new ibFSS construction for d-dimensional /., balls, Alice only
needs to compute hash values for up to u¢ prefixes. In case there is a match, she
can perform an efficient search for Bob’s element in time u - d - £o1. To enable
Alice to perform such a search, we require Bob to compute hash values for all
combinations of his prefixes, hence introducing a computation and communica-

334 G. Garimella et al.

Table 1. Summary of computation and communication costs for the setting where
Alice holds a single £ ball in the d-dimensional universe ({0,1}*)% and Bob holds a
single point in the universe. hou = O() is the output length of the final hash function.
Lot = O(k) is the number of OTs. |S4| is upper bounded by 2“°%.

Comp. & Comm. Costs [39] Ours
Alice FSS O(u-d-Lot) O(u-d-Lor)
Comp. Intersection | O(min(|Sa |- u,2%) -d-for) O(u® +u-d- for)
Bob’s Eval O(u-d- lot) O(u +wu-d-Lor)
Comm. oT O(k-u-d-Lot) ‘ O(k-u-d-Lot)
(bits) Bob’s Hashes O(hout) Ou? - hout)

tion overhead of u? on Bob’s side. Text in red highlights our difference from
prior work that attributes to our new ibFSS technique.

7.2 Multiple (Overlapping) Balls with Multiple Points

Next, we consider the setting where Alice holds N4 balls with f.-norm as the
distance metric in the d-dimensional universe ({0,1}*)?, and Bob holds Np
points in the universe. The computation and communication costs can be broken
down in a similar way as above, which is summarized in Table 2.

Table 2. Summary of computation and communication costs for the setting where
Alice holds N4 number of £, balls in the d-dimensional universe ({0,1}*)¢ and Bob
holds Np points in the universe. hoit = O(A) is the output length of the final hash
function. £or = O(k) is the number of OTs. |S4| is upper bounded by 2*¢. Prior
work [39,40] only allows Alice to hold disjoint balls while our protocol also supports
overlapping balls.

Comp. & Comm. Costs [39,40] Ours
Alice FSS O(NA "ud 'KOT) O(NA U . d-fo'r)
Comp. Intersection | O(|Sa|- Na -u? -Lot) | O(Na -u? + Ng-u -d - lor)
Bob’s Eval O(Na-Np-u®-Llor) | O(Na-Np-(u’ +u-d-for))
Comm. oT O(k-Na-u? - for) O(k-Na-u-d-Lor)
(bits) | Bob’s Hashes O(N5 - how) O(Ng - Na - u? - how)

Besides the improvement from ibFSS (which is highlighted in red), we have
several new contributions in this setting. The way that prior work deals with mul-
tiple balls is via a sum transformation to combine multiple F'SS into a single one
that achieves the OR functionality. Since their sum transformation only works
for F'SS that outputs a single bit, they have to use strong FSS for d-dimensional
balls [18], incurring an overhead of u? in both computation and communication

Computation Efficient Structure-Aware PSI 335

for every ball and every FSS evaluation. By utilizing our new observation for the
OR functionality in PSI, we no longer need the sum transformation, allowing for
the usage of weak FSS that outputs multiple bits for each ball. This reduces the
exponential overhead (u?) down to linear in the dimension (u-d). Moreover, the
sum transformation in prior work only works for disjoint balls. We eliminate this
restriction in our protocol and allow for overlapping balls as well. We highlight
our difference from prior work in blue in the table.

7.3 Spatial Hashing

In this section, we analyze the multi-ball-multi-point protocols using the spatial
hashing technique [39]. In particular, Alice holds N4 number £.-balls of diam-
eter § in the d-dimensional universe ({0,1}%)¢, and Bob holds Np points. Note
that prior work [39,40] additionally considers more restricted settings where the
balls are not only disjoint, but are guaranteed to be far apart (> 46 [39] or
> 8§ [40] in distance), which we do not compare with. In fact, our protocol
works for a more relaxed setting where Alice’s balls do not have the same diam-
eter, and they can even overlap. The computation and communication costs can
be broken down in a similar way as above, which is summarized in Table 3. All
three constructions require an OKVS [14,38,61], typically with linear overhead
(and small constants) in the number of keys, so we ignore this overhead.

Table 3. Summary of computation and communication costs for spatial hashing. hout =
O(A) is the output length of the final hash function. for = O(k) is the number of OTs.
|S4| is upper bounded by 2*"?. Prior work [39,40] only allows Alice to hold disjoint
balls with fized diameter § while our protocol also supports overlapping balls with
different diameters.

Comp. & Comm. Costs [39] [40] Ours
Alice‘ FSS O(Na - (41o0g 5)" -Lot) O(Na-u-d-(log 6)'1 -Lot) O(Na -logé - d-lor)
Comp. ‘ Intersection | O(|Sa|- (21ogd)? - bor) |O(|Sa|-u-d-(21ogd)? - Lor) | O(Na - (log) + Np -logé - d - Lot)
Bob’s Eval O(Ng - (2log 8)? - lor) | O(Np-u-d-(2logd)? lor) | O(Ng 2% ((log6)? +logé - d - Lot)
Comm. oT O(k-Na-(41og 8)? - lor) | O(k - Na-u - d - (log §)* - lor) O(k-Na-logéd - d-lor)
(bits) | Bob’s Hashes O(Np - how) O(N5 - how) O(Ng - (21og 8)¢ - hou)

In addition to the improvements from ibFSS (highlighted in red) and those
from the new OR observation (highlighted in blue), we introduce new techniques
to improve upon spatial hashing, which may be of independent interest. The
spatial hashing technique is introduced in [39] and improved in [40]. In [39],
they consider all the active grids that overlap with at least one ball. Each active
grid may contain up to 2¢ union of disjoint balls, so this problem is reduced to
the multi-ball-multi-point setting. Therefore, they need to use the expensive sum
transformation on strong FSS, inheriting the (log§)? overhead and introducing

336 G. Garimella et al.

Table 4. Suppose Alice has N4 = 300 balls with fixed diameter 6 = 32 and Bob has a
collection of N = 10° points in d = {2, 3,5} dimensional space over U = {0,1}",u =
32. Let computational security parameter k = 128 and statistical security parameter
A = 40. We estimate the computation and communication cost of our new, spatial
hashing technique and compare against the previous best construction [40]. Our unit
of computation cost is one PRG or hash operation. K, M, B, T, Q stand for thousand,
million, billion, trillion, quadrillion respectively in computation units. For example, 1K
means 1000 AES/SHA256 calls.

Comp. & Comm. Costs d=2 d=3 d=5
[40] Ours [40] Ours [40] Ours
Comp. (PRGs, SHA256) | Alice | FSS 86M 840K 516M | 1.3M 13.8B | 2.1M
Intersection | 352B 2.8B 135T 4.2B 1478Q | 7.0B
Bob’s Eval 1.2T 11.3B 13.8T 34.6B 1468T | 324B
Comm. oT 1.3GB |12.5MB | 7.7GB |18.8MB | 205GB | 31.3MB
Bob’s Hashes 4.7TMB | 477TMB | 4.77TMB | 4.77GB | 4.77MB | 477GB

a new 2¢ overhead as the maximum number of balls per grid. Additionally,
each ball may overlap with up to 2¢ grids, hence the total number of active
grids is upper bounded by N, - 2¢, introducing another 2¢ overhead in FSS key
generation. The follow-up work [40] improves the spatial hashing technique by
mapping every ball into a unique grid, hence reducing the number of active
grids. However, for each point in Bob’s set, he needs to evaluate FSS for all the
adjacent grids and perform the sum transformation, which still requires strong
FSS and the (log 6)¢ overhead. Moreover, they apply a distributed point function
(DPF) to reduce the domain from the universe to the grid, introducing another
overhead of u - d.

In our work, we also map every ball into a unique grid, but Bob does not need
to perform the sum transformation on adjacent cells. Instead, we can leverage
our new OR observation and achieve a log d-d overhead similar to the multi-ball-
multi-point protocol. Additionally, we eliminate the usage of DPF by shifting
both the balls and points to their corresponding mini-universe, saving another
factor of u - d. Finally, we relax our restriction on Alice’s balls in that they can
overlap and have different diameters. The only remaining restriction is that every
ball can be mapped to a distinct grid that fully contains this ball. We highlight
our difference from prior work in brown in the table.

To illustrate our improvement, we estimate the concrete computational and
communication costs for specific settings in Table 4 comparing our protocol with
the previous best spatial hashing technique [40]. Alice’s computation cost is
improved by 125 — 211Mx, and Bob’s computation cost is improved by 106 —
4,531 x. In term of communication, we achieve lower communication cost in OT
(104 — 6,550x) while incurring higher communication overhead in Bob’s hashes
(100 — 100K x). The overhead can outweigh the OT savings in certain scenarios.

Computation Efficient Structure-Aware PSI 337

For instance, when d = 5, the total communication cost of [40] is 205GB while
ours is 477GB. However, the total computation cost of [40] is 1478(Q while ours
is 331B, showing a 4.5 million times improvement.

Concretely, we can estimate for the ride sharing application setting where
Alice (passengers) has Ny = 300 balls with fixed diameter § = 32 wants to
be matched with Bob (drivers) Np = 300 in a two-dimensional space over
U = {0,1}* for u = 32. In our protocol (respectively, in prior work [40]), the
computation cost of Alice generating FSS is 840K (86M), Alice computing inter-
section is 848K (352B), Bob evaluating F'SS is 3.3M (344M); the communication
cost of OT is 12.8MB (1.28GB), Bob’s hashes is 146KB (1.46KB). Our proto-
col outperforms prior work by orders of magnitudes in both computation and
communication. .

8 Extending Functionality

In this section, we present a construction for sa-PSI where Bob learns the output
(Sect. 8.1). With a slight modification, we construct protocols that allow Alice
(or Bob) to learn structure-aware PSI cardinality or PSI with associated sum
(Sect. 8.2). One difference from prior constructions is that we only allow Alice’s
structured set to be a union of disjoint sets.

8.1 sa-PSl with Bob Learning Output

Construction Overview. Following the syntax from spatial hashing, both par-
ties prepare their inputs. In Step 1, Alice assigns each of her structures to a
distinct origin and prepares a set X of all prefix values along with the origin as
an identifier. In Step 2, Bob computes a set Y for each input ¢, which consists of
all prefixes associated with every origin that contains the input. If ¥ € S4 N Sp,
then there is exactly one matching value (corresponding to Alice’s prefix and
origin), namely | X NY| = 1, which must be accounted for while computing PSI
cardinality between X and Y. If 5 ¢ S4 NS, then there is no matching value,
hence |X NY| = 0. Alice and Bob can use a Fpsi.ca ideal functionality, for each
set Y, for Bob to learn | X NY|. If Bob learns that the cardinality is 1 then he
includes the input ¥ in intersections, if cardinality is 0 then he does not include it
in the intersection. We define the ideal functionality for sa-PSI| where Bob learns
the output in Fig. 8. Note that a difference from Fig. 1 is that Alice’s structured
sets are disjoint. We present our protocol in Fig. 9, state the theorem below and
defer its security proof to the full version of the paper.

Theorem 5. The protocol in Fig. 9 securely realizes Fsapsi (Fig.8) in the
Fpsi.ca-hybrid model in the presence of semi-honest adversaries.

338 G. Garimella et al.

Parameters: A family of sets S C 2“ x - -+ x 2" where I = {0, 1}*. Number of Alice’s
N———

d
structured sets N4 and size of Bob’s set Ng.

Functionality:) _)
1. Receive input Sa4 = UiENA gx), where 5’&2} € S and Sa is a disjoint union of
structured sets (or a concise representation of S4) from Alice.
2. Receive input Sg C U of size Np from Bob.
3. [output] Send Sa N S to Bob.

Fig. 8. Ideal functionality Fs,-ps for structure-aware PSI, where Bob learns the output.

Parameters:
— private set intersection cardinality ideal functionality Fpsi.ca

Inputs:
— Alice has N4 structured sets Sa = UieNA §X), where §X> € S and the structured
sets in Sa are disjoint.
— Bob has an unstructured set Sp C U? of size Ng.
Protocol:
1. Alice initializes X := () and does the following: _
(a) Identify a distinct origin 6 for each i € [Na] such that SX) C Univy).
(b) For each i € [Nal:
. RO N o
i. Write S, Shift(6)) = UjE[w
(w is the upper bound for w').
— .
ii. Update set X := X U{(z’]|6) | j € [w']}.
(¢) Pad X with dummy random strings such that |X| = Na - w.

2. Bob initializes I := () and does the following:
(a) For each element i € Sp, and for each origin Z where ¥ € Univz:
i. Write y.Shift(2) = (y1,-..,ya), where y; € [0,26) for all j € [d].

ii. Compute

/PreS— as disjoint union of w’ prefix sets
x

v {@m

(b) Bob sends set Y and Alice sends X to ideal functionality Fpsi.ca.
(c) Bob receives output ent from Fpsi.ca. Update set I = I U {g} if ent = 1.
3. [output] Bob outputs the intersection I.

bLoe [log(26)],...,£q € [log(2)] }
Y= ((W)meen)s - -5 (Wd)ieg))

Fig. 9. Protocol realizing Fs,.psi (Fig.8), where Bob learns the output S4 N Sp.

Cost Analysis. For the set family S as disjoint union of N4 balls with diameter
< 4 in £ norm, Alice and Bob run Npg instances of Fpsi.ca, between sets of size
ny = Na-w = Ny - (log(20))? and ny = (2log(26))%. If we instantiate Fpsi.ca
with a semi-honest construction with linear computation and communication in
set sizes [22,37,42,45,49,57,64], then we achieve sa-PSl for Bob to learn output
with communication and computation costs O(Np - (n1 + ng)), which is < |S4|.

Computation Efficient Structure-Aware PSI 339

Parameters: a family of sets S C 2% x - -+ x 2" where U = {0, 1}". Number of Alice’s
—_——

d
structured sets N4 and size of Bob’s set Ng.

Functionality:) _ v
1. Receive input Sa = UiENA gx), where 5"? € S and Sa is a disjoint union of
structured sets (or a concise representation of S4) from Alice.
2. Receive input Sg C U of size Np from Bob.
3. [output] Send output |[Sa N Sp| to Alice (or Bob).

Fig. 10. Ideal functionality Fsa.psi.ca for structure-aware PSI cardinality.

8.2 Structure-Aware PSI Cardinality/Sum

Construction Overview. The above principle can be extended to allow Alice
(or Bob) to learn structure-aware PSI cardinality |S4 N Sp|, except that we
accumulate over all the Y sets computed for each of Bob’s input. It could be
the case that two different inputs have overlapping prefixes within the same
origin (for example, points which are “close” to each other). In our protocol, Bob
computes a multi-set with an associated cnt, indicating the number of inputs that
any given prefix is associated with. After this, Alice and Bob can use Fpsi.sum,
to learn the cardinality. We define the ideal functionality in Fig. 10 and present
our construction in Fig. 11. We state the theorem below and defer its proof to
the full version of the paper.

Theorem 6. The protocol in Fig. 11 securely realizes Feapsi.ca (Fig. 10) in the
Fpsi-sum-hybrid model, secure in the presence of semi-honest adversaries.

Cost Analysis. For the set family S as disjoint union of N4 balls of diameter
< 0 in fo, norm, Alice and Bob run an instance of Fps.sum between sets of size
n1 = Na-w= Nga-(log(20))? and ny = |Sp|-(2-log(26))?. If we realize Fpsi.sum
with a semi-honest construction with linear computation and communication
in set sizes [22,42,49,57,64], then we achieve sa-PSI-CA with communication
and computation costs of O(ny + ng), which is < |S4|. Note that we require
the protocol to only reveal the associated sum, while hiding the intersection
cardinality.

Structure-Aware PSI-Sum. The construction in Fig. 11 can be extended to
realize structure-aware PSI with associated sum, when Bob’s inputs have asso-
ciated values. The only change is that the associated value cnt, for any prefix
y_;||£’ in origin 7 in set Y,,, is the sum of Bob’s associated values for all inputs
that share the prefix 3.

340 G. Garimella et al.

Notation: We denote a set of elements as X and a set where every element has an
associated value as X, = {(z,v) | z € X,val(z) = v}.
Parameters:

— private set intersection with associated sum ideal functionality Fpsi-sum

Inputs:
— Alice has N4 structured sets S4 = UieNA §(Ai), where 5'? € S and sets in S4 are
non-overlapping.

— Bob has an unstructured set Sg C U? of size Ng.

Protocol:
1. Alice initializes X := () and does the following:
(a) Identify a distinct origin 6 for each i € [Na] such that 5'1(:) C Univy).
(b) For each i € [Na]:
i. Write SY.shift(6™) = U, .,
(w is the upper bound for w').
ii. Update set X := X U {(x_f>||6m) | 7€ W]}
(¢) Pad X with dummy random strings such that |X| = Na - w.
2. Bob initializes a set with associated value Y, := () and does the following:
(a) For each element 3 € Sp, and for each origin Z where ¥ € Univz:
i. Write ¢.Shift(Z) = (y1,...,ya), where y; € [0,29) for all j € [d].
ii. Compute

,]PreSﬂj as disjoint union of w’ prefix sets
xT

v ={@m

b€ [log(20)],...,4q € [log(25)] }
v = ((w)pees -5 (Wa)peeq))

iii. For each (y'||2) € Y': if (¥/[|Z) ¢ Y then Y, = Y, U {(¢¥'||Z,1)}, else for
(y'||Z, ent) € Y, update cnt = cnt + 1.
(b) Pad Y, with dummy random strings and values such that |Y,| = Np - (2 -
log(25))d.
3. Alice sends X and Bob sends Y, to Fpsi.sum-
— Alice learns output: functionality Fpsisum returns output to Alice.

— Bob learns output: functionality Fpsi.sum returns output to Bob.

Fig. 11. Protocol realizing Fs,.psi.ca (Fig. 10) in the Fpsi.sum-hybrid model.

Acknowledgments. This project is supported in part by the NSF CNS Award
2247352, Brown DSI Seed Grant, Meta Research Award, Google Research Scholar
Award, and Amazon Research Award.

References

1. Password Monitor: Safeguarding passwords in Microsoft Edge. https://www.
microsoft.com/en-us/research/blog/password-monitor-safeguarding-passwords-
in-microsoft-edge/

2. Password Monitoring — Apple Platform Security. https://support.apple.com/en-
al/guide/security /sec78e79fc3b/web

https://www.microsoft.com/en-us/research/blog/password-monitor-safeguarding-passwords-in-microsoft-edge/
https://www.microsoft.com/en-us/research/blog/password-monitor-safeguarding-passwords-in-microsoft-edge/
https://www.microsoft.com/en-us/research/blog/password-monitor-safeguarding-passwords-in-microsoft-edge/
https://support.apple.com/en-al/guide/security/sec78e79fc3b/web
https://support.apple.com/en-al/guide/security/sec78e79fc3b/web

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Computation Efficient Structure-Aware PSI 341

Privacy-Preserving Contact Tracing. https://covid19.apple.com/contacttracing
Private Intersection-Sum Protocols with Applications to Attributing Aggregate Ad
Conversions. https://research.google/pubs/pub51026/

Protect your accounts from data breaches with Password Checkup. https://
security.googleblog.com/2019/02/protect-your-accounts-from-data.html
Technology preview: Private contact discovery for Signal. https://signal.org/blog/
private-contact-discovery/

Agarwal, A., Peceny, S., Raykova, M., Schoppmann, P., Seth, K.: Communication
efficient secure logistic regression. Cryptology ePrint Archive, Report 2022/866
(2022). https://eprint.iacr.org/2022/866

Alamati, N., Branco, P., Déttling, N., Garg, S., Hajiabadi, M., Pu, S.: Laconic
private set intersection and applications. In: Nissim, K., Waters, B. (eds.) TCC
2021, Part I11. LNCS, vol. 13044, pp. 94-125. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-90456-2_4

Ali, A. et al.: Communication-computation trade-offs in PIR. In: Bailey, M., Green-
stadt, R. (eds.) USENIX Security 2021, pp. 1811-1828. USENIX Association (2021)
Aranha, D.F.; Lin, C., Orlandi, C., Simkin, M.: Laconic private set-intersection
from pairings. In: Yin, H., Stavrou, A., Cremers, C., Shi, E. (eds.) ACM CCS
2022, pp. 111-124. ACM Press (2022)

Ateniese, G., De Cristofaro, E., Tsudik, G.: (If) size matters: size-hiding private
set intersection. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC
2011. LNCS, vol. 6571, pp. 156-173. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-19379-8_10

Ateniese, G., Kirsch, J., Blanton, M.: Secret handshakes with dynamic and fuzzy
matching. In: NDSS, vol. 7, pp. 43-54 (2007)

Berke, A., Bakker, M., Vepakomma, P., Raskar, R., Larson, K., Pentland, A.:
Assessing disease exposure risk with location histories and protecting privacy: a
cryptographic approach in response to a global pandemic. CoRR, abs/2003.14412
(2020)

Bienstock, A., Patel, S., Seo, J.Y., Yeo, K.: Near-optimal oblivious key-value stores
for efficient psi, PSU and volume-hiding multi-maps. In: Calandrino, J.A., Tron-
coso, C. (eds.) 32nd USENIX Security Symposium, USENIX Security 2023, Ana-
heim, CA, USA, 9-11 August 2023. USENIX Association (2023)

Boneh, D., Boyle, E., Corrigan-Gibbs, H., Gilboa, N., Ishai, Y.: Lightweight tech-
niques for private heavy hitters. In: 2021 IEEE Symposium on Security and Privacy,
pp. 762-776. IEEE Computer Society Press (2021)

Boyle, E.; et al.: Function secret sharing for mixed-mode and fixed-point secure
computation. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021, Part
II. LNCS, vol. 12697, pp. 871-900. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-77886-6_30

Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing. In: Oswald, E., Fischlin,
M. (eds.) EUROCRYPT 2015, Part II. LNCS, vol. 9057, pp. 337-367. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6_12

Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing: improvements and exten-
sions. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S.
(eds.) ACM CCS 2016, pp. 1292-1303. ACM Press (2016)

Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing: improvements and exten-
sions. Cryptology ePrint Archive, Report 2018/707 (2018). https://eprint.iacr.org/
2018/707

https://covid19.apple.com/contacttracing
https://research.google/pubs/pub51026/
https://security.googleblog.com/2019/02/protect-your-accounts-from-data.html
https://security.googleblog.com/2019/02/protect-your-accounts-from-data.html
https://signal.org/blog/private-contact-discovery/
https://signal.org/blog/private-contact-discovery/
https://eprint.iacr.org/2022/866
https://doi.org/10.1007/978-3-030-90456-2_4
https://doi.org/10.1007/978-3-030-90456-2_4
https://doi.org/10.1007/978-3-642-19379-8_10
https://doi.org/10.1007/978-3-642-19379-8_10
https://doi.org/10.1007/978-3-030-77886-6_30
https://doi.org/10.1007/978-3-030-77886-6_30
https://doi.org/10.1007/978-3-662-46803-6_12
https://eprint.iacr.org/2018/707
https://eprint.iacr.org/2018/707

342

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

G. Garimella et al.

Boyle, E., Gilboa, N., Ishai, Y., Kolobov, V.I.: Programmable distributed point
functions. In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022, Part IV. LNCS, vol.
13510, pp. 121-151. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-
031-15985-5_5

Chakraborti, A., Fanti, G., Reiter, M.K.: Distance-aware private set intersection
2021

(Chan()lran, N., Gupta, D., Shah, A.: Circuit-PSI with linear complexity via relaxed
batch OPPRF. PoPETs 2022(1), 353-372 (2022)

Chase, M., Miao, P.: Private set intersection in the internet setting from lightweight
oblivious PRF. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020, Part III.
LNCS, vol. 12172, pp. 34-63. Springer, Cham (2020). https://doi.org/10.1007 /978~
3-030-56877-1_2

Chen, H., Huang, Z., Laine, K., Rindal, P.: Labeled PSI from fully homomorphic
encryption with malicious security. In: Lie, D., Mannan, M., Backes, M., Wang, X.
(eds.) ACM CCS 2018, pp. 1223-1237. ACM Press (2018)

Chen, H., Laine, K., Rindal, P.: Fast private set intersection from homomorphic
encryption. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM
CCS 2017, pp. 1243-1255. ACM Press (2017)

Chongchitmate, W., Ishai, Y., Lu, S., Ostrovsky, R.: PSI from ring-OLE. In: Yin,
H., Stavrou, A., Cremers, C., Shi, E. (eds.) ACM CCS 2022, pp. 531-545. ACM
Press (2022)

Cong, K., et al.: Labeled PSI from homomorphic encryption with reduced com-
putation and communication. In: Vigna, G., Shi, E. (eds.) ACM CCS 2021, pp.
1135-1150. ACM Press (2021)

Couteau, G., Rindal, P., Raghuraman, S.: Silver: silent VOLE and oblivious trans-
fer from hardness of decoding structured LDPC codes. In: Malkin, T., Peikert, C.
(eds.) CRYPTO 2021, Part ITII. LNCS, vol. 12827, pp. 502-534. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-84252-9_17

Dachman-Soled, D., Malkin, T., Raykova, M., Yung, M.: Secure efficient multiparty
computing of multivariate polynomials and applications. In: Lopez, J., Tsudik, G.
(eds.) ACNS 2011. LNCS, vol. 6715, pp. 130-146. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-21554-4_8

De Cristofaro, E., Tsudik, G.: Practical private set intersection protocols with lin-
ear complexity. In: Sion, R. (ed.) FC 2010. LNCS, vol. 6052, pp. 143-159. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-14577-3_13

Dong, C., Chen, L., Wen, Z.: When private set intersection meets big data: an
efficient and scalable protocol. In: Sadeghi, A.-R., Gligor, V.D., Yung, M. (eds.)
ACM CCS 2013, pp. 789-800. ACM Press (2013)

Déttling, N., Kolonelos, D., Lai, R.W., Lin, C., Malavolta, G., Rahimi, A.: Efficient
laconic cryptography from learning with errors. In: Hazay, C., Stam, M. (eds.)
EUROCRYPT 2023, Part I11. LNCS, vol. 14006, pp. 417-446. Springer, Heidelberg
(2023). https://doi.org/10.1007/978-3-031-30620-4_14

ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Trans. Inf. Theory 31(4), 469-472 (1985)

Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private matching and set inter-
section. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol.
3027, pp. 1-19. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-
24676-3_1

Gao, J., Wong, T., Selim, B., Wang, C.: VOMA: a privacy-preserving matching
mechanism design for community ride-sharing. IEEE Trans. Intell. Transp. Syst.
23(12), 23963-23975 (2022)

https://doi.org/10.1007/978-3-031-15985-5_5
https://doi.org/10.1007/978-3-031-15985-5_5
https://doi.org/10.1007/978-3-030-56877-1_2
https://doi.org/10.1007/978-3-030-56877-1_2
https://doi.org/10.1007/978-3-030-84252-9_17
https://doi.org/10.1007/978-3-642-21554-4_8
https://doi.org/10.1007/978-3-642-14577-3_13
https://doi.org/10.1007/978-3-031-30620-4_14
https://doi.org/10.1007/978-3-540-24676-3_1
https://doi.org/10.1007/978-3-540-24676-3_1

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

Computation Efficient Structure-Aware PSI 343

Garg, S., Hajiabadi, M., Miao, P., Murphy, A.: Laconic branching programs from
the Diffie-Hellman assumption. In: Tang, Q., Teague, V. (eds.) PKC 2024, Part II.
LNCS, vol. 14603, pp. 323-355. Springer, Heidelberg (2024). https://doi.org/10.
1007/978-3-031-57725-3_11

Garimella, G., Mohassel, P., Rosulek, M., Sadeghian, S., Singh, J.: Private set oper-
ations from oblivious switching. In: Garay, J.A. (ed.) PKC 2021, Part II. LNCS,
vol. 12711, pp. 591-617. Springer, Cham (2021). https://doi.org/10.1007/978-3-
030-75248-4_21

Garimella, G., Pinkas, B., Rosulek, M., Trieu, N., Yanai, A.: Oblivious key-value
stores and amplification for private set intersection. In: Malkin, T., Peikert, C.
(eds.) CRYPTO 2021, Part II. LNCS, vol. 12826, pp. 395-425. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-84245-1_14

Garimella, G., Rosulek, M., Singh, J.: Structure-aware private set intersection,
with applications to fuzzy matching. In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO
2022, Part I. LNCS, vol. 13507, pp. 323-352. Springer, Heidelberg (2022). https://
doi.org/10.1007/978-3-031-15802-5_12

Garimella, G., Rosulek, M., Singh, J.: Malicious secure, structure-aware private
set intersection. In: Handschuh, H., Lysyanskaya, A. (eds.) CRYPTO 2023, Part
I. LNCS, vol. 14081, pp. 577-610. Springer, Heidelberg (2023). https://doi.org/10.
1007/978-3-031-38557-5_19

Ghosh, S., Simkin, M.: The communication complexity of threshold private set
intersection. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part II.
LNCS, vol. 11693, pp. 3-29. Springer, Cham (2019). https://doi.org/10.1007/978-
3-030-26951-7_1

Han, K., Moon, D., Son, Y.: Improved circuit-based PSI via equality preserving
compression. Cryptology ePrint Archive, Report 2021/1440 (2021). https://eprint.
iacr.org/2021/1440

Huang, Y., Evans, D., Katz, J.: Private set intersection: are garbled circuits better
than custom protocols? In: NDSS 2012. The Internet Society (2012)

Huberman, B.A., Franklin, M., Hogg, T.: Enhancing privacy and trust in electronic
communities. In: Feldman, S.I., Wellman, M.P. (eds.) Proceedings of the First ACM
Conference on Electronic Commerce (EC 1999), Denver, CO, USA, 3-5 November
1999, pp. 78-86. ACM (1999)

Ion, M., et al.: On deploying secure computing: private intersection-sum-with-
cardinality. In: IEEE European Symposium on Security and Privacy, EuroS&P
2020, Genoa, Italy, 7-11 September 2020, pp. 370-389. IEEE (2020)

Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers effi-
ciently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145-161. Springer,
Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4_9

Jarecki, S., Liu, X.: Fast secure computation of set intersection. In: Garay, J.A.,
De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 418-435. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-15317-4_26

Kales, D., Rechberger, C., Schneider, T., Senker, M., Weinert, C.: Mobile private
contact discovery at scale. In: Heninger, N., Traynor, P. (eds.) USENIX Security
2019, pp. 1447-1464. USENIX Association (2019)

Karakog, F., Kiipgii, A.: Linear complexity private set intersection for secure two-
party protocols. In: Krenn, S., Shulman, H., Vaudenay, S. (eds.) CANS 2020. LNCS,
vol. 12579, pp. 409-429. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-65411-5_20

https://doi.org/10.1007/978-3-031-57725-3_11
https://doi.org/10.1007/978-3-031-57725-3_11
https://doi.org/10.1007/978-3-030-75248-4_21
https://doi.org/10.1007/978-3-030-75248-4_21
https://doi.org/10.1007/978-3-030-84245-1_14
https://doi.org/10.1007/978-3-031-15802-5_12
https://doi.org/10.1007/978-3-031-15802-5_12
https://doi.org/10.1007/978-3-031-38557-5_19
https://doi.org/10.1007/978-3-031-38557-5_19
https://doi.org/10.1007/978-3-030-26951-7_1
https://doi.org/10.1007/978-3-030-26951-7_1
https://eprint.iacr.org/2021/1440
https://eprint.iacr.org/2021/1440
https://doi.org/10.1007/978-3-540-45146-4_9
https://doi.org/10.1007/978-3-642-15317-4_26
https://doi.org/10.1007/978-3-030-65411-5_20
https://doi.org/10.1007/978-3-030-65411-5_20

344

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

G. Garimella et al.

Kissner, L., Song, D.: Privacy-preserving set operations. In: Shoup, V. (ed.)
CRYPTO 2005. LNCS, vol. 3621, pp. 241-257. Springer, Heidelberg (2005).
https://doi.org/10.1007/11535218_15

Kolesnikov, V., Kumaresan, R., Rosulek, M., Trieu, N.: Efficient batched oblivious
PRF with applications to private set intersection. In: Weippl, E.R., Katzenbeisser,
S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM CCS 2016, pp. 818-829. ACM
Press (2016)

Miao, P., Patel, S., Raykova, M., Seth, K., Yung, M.: Two-sided malicious security
for private intersection-sum with cardinality. In: Micciancio, D., Ristenpart, T.
(eds.) CRYPTO 2020. LNCS, vol. 12172, pp. 3-33. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-56877-1_1

Orru, M., Orsini, E., Scholl, P.: Actively secure 1-out-of-N OT extension with
application to private set intersection. In: Handschuh, H. (ed.) CT-RSA 2017.
LNCS, vol. 10159, pp. 381-396. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-52153-4_22

Pinkas, B., Rosulek, M., Trieu, N., Yanai, A.: SpOT-light: lightweight private set
intersection from sparse OT extension. In: Boldyreva, A., Micciancio, D. (eds.)
CRYPTO 2019. LNCS, vol. 11694, pp. 401-431. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-26954-8_13

Pinkas, B., Rosulek, M., Trieu, N., Yanai, A.: PSI from PaXoS: fast, malicious
private set intersection. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020.
LNCS, vol. 12106, pp. 739-767. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-45724-2_25

Pinkas, B., Schneider, T., Segev, G., Zohner, M.: Phasing: private set intersection
using permutation-based hashing. In: Jung, J., Holz, T. (eds.) USENIX Security
2015, pp. 515-530. USENIX Association (2015)

Pinkas, B., Schneider, T., Tkachenko, O., Yanai, A.: Efficient circuit-based PSI
with linear communication. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019.
LNCS, vol. 11478, pp. 122-153. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-17659-4_5

Pinkas, B., Schneider, T., Weinert, C., Wieder, U.: Efficient circuit-based PSI via
cuckoo hashing. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part III.
LNCS, vol. 10822, pp. 125-157. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-78372-75

Pinkas, B., Schneider, T., Zohner, M.: Faster private set intersection based on OT
extension. In: Fu, K., Jung, J. (eds.) USENIX Security 2014, pp. 797-812. USENIX
Association (2014)

Rabin, M.O.: How to exchange secrets with oblivious transfer. Cryptology ePrint
Archive (2005)

Raghuraman, S., Rindal, P.: Blazing fast PSI from improved OKVS and subfield
VOLE. In: Yin, H., Stavrou, A., Cremers, C., Shi, E. (eds.) ACM CCS 2022, pp.
2505-2517. ACM Press (2022)

Ramezanian, S., Akman, G., Damir, M.T., Niemi, V.: Lightweight privacy-
preserving ride-sharing protocols for autonomous cars. In: Briicher, B., Krauf,
C., Fritz, M., Hof, H.-J., Wasenmiiller, O. (eds.) Computer Science in Cars Sym-
posium, CSCS 2022, Ingolstadt, Germany, 8 December 2022, pp. 11:1-11:11. ACM
(2022)

Rindal, P., Rosulek, M.: Improved private set intersection against malicious adver-
saries. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10210,
pp. 235-259. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56620-7_9

https://doi.org/10.1007/11535218_15
https://doi.org/10.1007/978-3-030-56877-1_1
https://doi.org/10.1007/978-3-030-56877-1_1
https://doi.org/10.1007/978-3-319-52153-4_22
https://doi.org/10.1007/978-3-319-52153-4_22
https://doi.org/10.1007/978-3-030-26954-8_13
https://doi.org/10.1007/978-3-030-26954-8_13
https://doi.org/10.1007/978-3-030-45724-2_25
https://doi.org/10.1007/978-3-030-45724-2_25
https://doi.org/10.1007/978-3-030-17659-4_5
https://doi.org/10.1007/978-3-030-17659-4_5
https://doi.org/10.1007/978-3-319-78372-7_5
https://doi.org/10.1007/978-3-319-78372-7_5
https://doi.org/10.1007/978-3-319-56620-7_9

64.

65.

66.

67.

68.

69.

70.

Computation Efficient Structure-Aware PSI 345

Rindal, P., Schoppmann, P.: VOLE-PSI: fast OPRF and circuit-PSI from vector-
OLE. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021, Part II. LNCS,
vol. 12697, pp. 901-930. Springer, Cham (2021). https://doi.org/10.1007/978-3-
030-77886-6-31

Trieu, N., Shehata, K., Saxena, P., Shokri, R., Song, D.: Epione: lightweight contact
tracing with strong privacy. IEEE Data Eng. Bull. 43(2), 95-107 (2020)

Uzun, E., Chung, S.P., Kolesnikov, V., Boldyreva, A., Lee, W.: Fuzzy labeled
private set intersection with applications to private real-time biometric search. In:
Bailey, M., Greenstadt, R. (eds.) USENIX Security 2021, pp. 911-928. USENIX
Association (2021)

van Baarsen, A., Pu, S.: Fuzzy private set intersection with large hyperballs. In:
Joye, M., Leander, G. (eds.) EUROCRYPT 2024, Part V. LNCS, vol. 14655, pp.
340-369. Springer, Cham (2024). https://doi.org/10.1007/978-3-031-58740-5_12
Wang, X.A., Xhafa, F., Luo, X., Zhang, S., Ding, Y.: A privacy-preserving fuzzy
interest matching protocol for friends finding in social networks. Soft Comput.
22(8), 2517-2526 (2018)

Wen, Y., Gong, Z.: Private mutual authentications with fuzzy matching. Int. J.
High Perform. Syst. Archit. 5(1), 3-12 (2014)

Zhang, E., Chang, J., Li, Yu.: Efficient threshold private set intersection. IEEE
Access 9, 6560-6570 (2021)

https://doi.org/10.1007/978-3-030-77886-6_31
https://doi.org/10.1007/978-3-030-77886-6_31
https://doi.org/10.1007/978-3-031-58740-5_12

	Computation Efficient Structure-Aware PSI from Incremental Function Secret Sharing
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work

	2 Technical Overview
	3 Preliminaries
	4 Incremental Boolean Function Secret Sharing
	5 sa-PSI with Alice Learning Output
	5.1 Multiple (Overlapping) Balls with Multiple Points
	5.2 Spatial Hashing

	6 ibFSS for d-Dimensional -Balls
	6.1 ibDCF Definition
	6.2 ibDCF Constructions

	7 Instantiation and Evaluation
	7.1 Single Ball with Single Point
	7.2 Multiple (Overlapping) Balls with Multiple Points
	7.3 Spatial Hashing

	8 Extending Functionality
	8.1 sa-PSI with Bob Learning Output
	8.2 Structure-Aware PSI Cardinality/Sum

	References

