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Abstract. Private set intersection (PSI) allows two mutually distrust-
ing parties each holding a private set of elements, to learn the inter-
section of their sets without revealing anything beyond the intersection.
Recent work (Badrinarayanan et al., PoPETS’22) initiates the study of
updatable PSI (UPSI), which allows the two parties to compute PSI on
a regular basis with sets that constantly get updated, where both the
computation and communication complexity only grow with the size of
the small updates and not the large entire sets. However, there are sev-
eral limitations of their presented protocols. First, they can only be used
to compute the plain PSI functionality and do not support extended
functionalities such as PSI-Cardinality and PSI-Sum. Second, they only
allow parties to add new elements to their existing set and do not sup-
port arbitrary deletion of elements. Finally, their addition-only protocols
either require both parties to learn the output or only achieve low com-
plexity in an amortized sense and incur linear worst-case complexity.

In this work, we address all the above limitations. In particular, we
study UPSI with semi-honest security in both the addition-only and
addition-deletion settings. We present new protocols for both settings
that support plain PSI as well as extended functionalities including PSI-
Cardinality and PSI-Sum, achieving one-sided output (which implies
two-sided output). In the addition-only setting, we also present a protocol
for a more general functionality Circuit-PSI that outputs secret shares
of the intersection. All of our protocols have worst-case computation and
communication complexity that only grow with the set updates instead
of the entire sets (except for a polylogarithmic factor). We implement our
new UPSI protocols and compare with the state-of-the-art protocols for
PSI and extended functionalities. Our protocols compare favorably when
the total set sizes are sufficiently large, the new updates are sufficiently
small, or in networks with low bandwidth.
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1 Introduction

Private Set Intersection (PSI) enables two distrusting parties, each holding a
private set of elements, to jointly compute the intersection of their sets with-
out revealing anything other than the intersection itself. Despite its simple
functionality, PSI and its related notions have found many real-world applica-
tions including online advertising measurement (deployed by Google Ads [6,35]),
secure password breach alert (deployed by Google Chrome [8], Microsoft Edge
[3], Apple iCloud Keychain [4], etc.), mobile private contact discovery (deployed
by Signal [9,37]), privacy-preserving contact tracing in a global pandemic
(jointly deployed by Google and Apple [5,17,56]). The last several decades
have witnessed enormous progress towards realizing PSI efficiently using var-
ious techniques achieving both semi-honest and malicious security [18,20,23–
26,31,39,45,47,51].

In many real-world applications such as aggregated ads measurement and
privacy-preserving contact tracing, PSI is performed on a regular (e.g., daily)
basis with updated sets, where the updates can be small when compared to the
entire sets. However, most of the existing work requires the two parties to perform
a fresh PSI protocol every time. A recent work by Badrinarayanan et al. [16]
initiates the study of updatable PSI (UPSI), which allows the two parties to
compute set intersections for sets that regularly get updated. Their work presents
protocols for updatable PSI where both the computation and communication
complexity only grow with the size of the updates and are independent of the
size of the entire sets (except for a logarithmic factor). As a result, these protocols
are orders of magnitudes faster than a fresh PSI protocol, especially when the
updates are significantly smaller than the entire sets. Nevertheless, there are
several limitations with the protocols in [16].

– Functionality: All the protocols presented in [16] are restricted to the plain
PSI functionality, crucially leveraging the fact that parties learn all the ele-
ments in the intersection. However, certain real-world applications require
more refined PSI functionalities that do not reveal the entire intersection but
instead only provide aggregated information about the intersection or enable
restricted computation on the data in the intersection. As two specific exam-
ples that model many applications such as online advertising measurement,
PSI-Cardinality allows two parties to jointly learn the cardinality (or size) of
their set intersection; PSI-Sum allows two parties, where one party addition-
ally holds a private integer value associated with each element in her set, to
jointly compute the sum of the associated integer values for all the elements
in the intersection (together with the cardinality of the intersection).

– Addition-Only: [16] mainly focuses on the addition-only setting, where both
parties can only add new elements to their existing old sets, and do not
support arbitrary deletion of elements from their sets. Note that they present
a protocol for UPSI with weak deletion, which allows the parties to refresh
their sets every t days, namely, they will add a set of elements to their sets
every day, and delete elements that were added to their sets t days ago.
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However, it does not support arbitrary deletion, and the daily computation
and communication complexity additionally grows with t.

– Tradeoffs of the Addition-Only Protocols: [16] presents two protocols
for addition-only UPSI, each with its own tradeoffs. In particular, one protocol
crucially requires both parties to learn the output (namely, two-sided UPSI),
which may not be applicable in certain applications such as password breach
alert. The other protocol allows a single party to learn the output (namely,
one-sided UPSI), but it only achieves low computation and communication
complexity in an amortized sense over many days; the worst-case complexity
can be as high as linear in the entire sets. Note that one-sided UPSI is a strictly
stronger functionality in the semi-honest setting (as considered in [16]) since
the output-receiving party can simply send the output to the other party so
as to achieve two-sided UPSI.

1.1 Our Results

In this work, we address all the aforementioned limitations by presenting new
UPSI protocols for extended functionalities, supporting both addition and dele-
tion of elements, achieving one-sided output and low worst-case complexity in
both computation and communication. All of our protocols are secure in the
semi-honest model, hence one-sided UPSI is a stronger functionality. In the set-
ting with both addition and deletion, we achieve a slightly more general function-
ality than PSI-Sum as defined in [35,41], where we do not reveal the cardinality
of the intersection along with the sum.

Besides the functionalities of plain PSI, PSI-Cardinality, and PSI-Sum that
we discussed above, we consider a more general functionality of Circuit-PSI [18,
20,44,51,54], where the two parties learn the cardinality of the intersection as
well as an additive secret share of each element in it. This functionality allows
the two parties to perform further computation over the shares afterwards.

Note that we only consider Circuit-PSI in the addition-only setting. The
challenge in achieving Circuit-PSI with both addition and deletion is as follows.
Intuitively speaking, when deleting elements from the intersection, the parties
must learn which existing secret shares to delete from the intersection (unless
the parties update their entire secret shared intersection, where the complexity
grows with the entire sets, which is undesirable). Given that they know when a
particular secret share (not the element itself) was added to the intersection, this
essentially reveals more information than what the ideal functionality outputs.
Crucially, note that in the case of plain PSI with addition and deletion, this is not
a problem since the ideal functionality’s output also reveals when a particular
element was added and deleted; and in the case of PSI-Cardinality or PSI-Sum,
parties only learn aggregated information and this challenge doesn’t arise in the
protocol design. We summarize our results in comparison with [16] in Table 1.

Experiments. We implement all our protocols and compare their performance
with the state-of-the-art protocols for PSI and extended functionalites [20,51].
As our communication grows with the size of the update and not the entire input
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Table 1. Summary of our results in comparison to [16], including functionality,
one-sided or two-sided output, support of addition and deletion of elements, and
computation and communication complexity. PSI-Sum† denotes the variant of
PSI-Sum that does not reveal the cardinality. N denotes the size of the entire sets
and Nd denotes the size of the d-th update. t denotes the number of updates when
parties refresh their sets in UPSI with weak deletion. O∗(·) denotes amortized
complexity. For UPSI with both addition and deletion, we present two variants,
one allowing each element to be added and deleted at most once, and the other
allowing arbitrary additions and deletions of the same element.

Protocol Functionality Output Addition/Deletion Comp. & Comm. Complexity

[16, ΠUPSI-add-two] PSI Two-Sided Addition-Only O(Nd)

[16, ΠUPSI-add-one] PSI One-Sided Addition-Only O∗(Nd · log N)

ΠUPSI-Addpsi PSI

One-Sided
Addition-Only O(Nd · log N)

Figure 5, ΠUPSI-Addca PSI-Cardinality

Figure 5, ΠUPSI-Addsum PSI-Sum

Figure 5, ΠUPSI-Addcircuit Circuit-PSI Secret Shared

[16, ΠUPSI-del] PSI Two-Sided Weak Deletion O(Nd · t)

Figure 10, ΠUPSI-Delpsi PSI

One-Sided Addition & Deletion
Single Deletion
O(Nd · log N)

Arbitrary Deletion
O(Nd · log2 N)

Figure 10, ΠUPSI-Delca PSI-Cardinality

Figure 10, ΠUPSI-Delsum PSI-Sum†

(except by a logarithmic factor), we demonstrate a significant improvement, up
to orders of magnitude, when the input sets grow sufficiently large with smaller
updates. Although our usage of public key operations dampens the asymptotic
impact on computation, in realistic WAN settings, our protocols are able to
outperform prior work in end-to-end running time. We also compare our new one-
sided addition-only UPSI protocol with [16] and show significant improvement
in worst-case complexity.

1.2 Technical Overview

We discuss the technical challenges and novelties in this work. We start with
addition-only UPSI. Let X,Y denote the old sets of the two parties P0, P1

respectively, and let Xd, Yd denote their new added sets on Day d. For simplicity,
assume |X| = |Y | = N and |Xd| = |Yd| = Nd.1 Recall that we are mostly inter-
ested in the scenario when the set updates are significantly smaller than the entire
sets, namely N � Nd. The parties have already learned I = X∩Y of the old sets,
and they would like to learn the updated intersection Id = (X ∪ Xd) ∩ (Y ∪ Yd).
We focus on one-sided UPSI, where only P0 learns the output.

Addition-Only UPSI with Extended Functionalities. Our starting point
is the one-sided addition-only UPSI protocol in [16]. They observe that it suffices
to learn the set difference Id \ I on each day, which, from P0’s perspective, can
be split into two disjoint sets, (Xd ∩ (Y ∪ Yd)) and (X ∩ Yd). They then develop
protocols to compute the two sets individually, with complexity growing only
1 Our constructions work for two sets with different sizes as well, which we elaborate

in Sect. 3 and Sect. 4.
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with Nd and not N . To compute UPSI-Cardinality, we similarly split |Id \I| into
|Xd ∩ (Y ∪ Yd)| and |X ∩ Yd|, and compute them individually. Note that this is
not sufficient since the individual cardinalities reveal more information than the
ideal functionality, which we will fix later.

Computing |Xd ∩ (Y ∪ Yd)|: We first briefly describe the approach in [16] to
computing Xd ∩ (Y ∪ Yd). Their key idea is to let P1 store an encrypted ver-
sion of her set on P0’s side; on each day, she updates this encrypted dataset
based only on her new input Yd. Here, they require a data structure that allows
P1 to obliviously update the dataset and P0 to obliviously query and compute
on the dataset. [16] constructs such an oblivious data structure via a binary
tree and uses additively homomorphic encryption to compute on encrypted data.
By carefully re-crafting the homomorphic operations on the encrypted data in
the oblivious data structure, we design a method that reveals only the number
of elements that are matched between Xd and the encrypted dataset (Y ∪ Yd).
This enables P0 to learn |Xd ∩ (Y ∪ Yd)|.
Computing |X ∩Yd|: We review the approach in [16] to computing X ∩Yd, which
leverages Diffie-Hellman-based PSI in [16]. Unfortunately, it does not extend to
updatable cardinality. To address this challenge, our idea is to compute |X ∩Yd|
symmetrically on P1’s side using the oblivious data structure. In particular, we
let P0 store an encrypted version of his set on P1’s side that supports efficient
and oblivious updates and queries. This way we can efficiently allow P1 to learn
|X ∩ Yd|.
Computing the Sum with One-Sided Output: There are two issues with our cur-
rent approach: first, individual cardinalities should not be revealed to the parties;
second, P1 should not learn anything about the output. At a high level, P0 learns
the cardinality |Xd∩(Y ∪Yd)| by decrypting a set of (homomorphically evaluated)
ciphertexts and counts the number of 0’s in them. This happens similarly for P1

to learn |X ∩Yd|. To fix the first issue, we develop a method to combine the two
sets of ciphertexts, re-randomize and shuffle all of them, and then decrypt them
at the end. The number of 0’s reveals only the sum of |Xd∩(Y ∪Yd)| and |X∩Yd|,
rather than individual values. To fix the second issue, we use a 2-out-of-2 thresh-
old encryption scheme. The parties will jointly decrypt all the ciphertexts only
after the random shuffling, and the decrypted results are revealed only to P0.
This protocol can be further extended to PSI-Sum and Circuit-PSI by attaching
a payload to each element and further leveraging additive homomorphism.

Worst-Case Logarithmic Complexity. The above construction relies heavily
on the oblivious data structure presented in [16]. A critical drawback of the data
structure is that it only achieves logarithmic complexity in an amortized sense,
namely the average complexity over many days is low. However, the worst-case
complexity can be as high as linear in the entire sets. In this work, we construct
a new oblivious data structure with worst-case logarithmic complexity.

Recall that in our UPSI construction, P1 store an encrypted version of her set,
maintained in an oblivious data structure, on P0’s side. There are two require-
ments on the data structure: first, for each new element y added to P1’s set, P1
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can update the encrypted dataset without leaking any information about y to
P0; second, for each new element x added to P0’s set, P0 can locally identify a
small set of encryptions in the P1’s set that are potential matches to x.

At a high level, our construction works as follows. The encrypted dataset is
maintained in a binary tree structure. Each element x identifies a designated,
(pseudo)random root-to-leaf path, computed by a pseudorandom function Fk(x)
with k known to both parties. As P1 updates the tree, she will maintain the
invariant that each element y always appears along its designated path. This
allows P0 to query for potential matches by collecting all elements in the appro-
priate path (i.e., potential matches to x will be found in the path designated by
Fk(x)). However, when a new element y is added to P1’s set, directly updating
the designated path of y in P0’s storage reveals information about y being added
to the tree. Therefore, we need a mechanism for P1 to add y to its designated path
in P0’s storage while hiding the path from P0. In [16], this is achieved through a
series of operations that update an entire level of the tree each time, resulting in
an amortized logarithmic complexity, while the worst-case complexity is linear
(when P1 updates the leaf level of the tree).

Our solution takes inspiration from the Path ORAM construction [55].
Instead of updating the designated path, P1 picks a random path each time, and
“pushes down” the elements along that path as much as possible. The access
pattern of tree updates consist of random paths, hence are oblivious to P0. Note
that Path ORAM has an additional logarithmic factor from tree recursions due
to limited registers. We can remove the tree recursions since we do not have this
restriction in UPSI, leading to a single logarithmic factor. We refer to Sect. 3 for
more details of our addition-only UPSI protocols.

Supporting Deletion. Our oblivious data structure is inspired by ORAM, but
the manner in which ORAM handles deletion (or modification) of memory con-
tent does not work for us. In Path ORAM, whenever x is accessed (or modified),
x will be re-allocated to a new, freshly sampled random designated path. How-
ever, as discussed above, the designated path of x in our construction is fixed
and known to both parties.

Our key idea is to keep the fixed designated path for the element and attach
a payload of +1 or −1 to indicate addition or deletion. Specifically, when y is
deleted from P1’s set, instead of deleting it from the data structure, she will
add another y to the data structure with a payload of −1 indicating deletion. In
other words, when y is added or deleted from P1’s set, she will add a new pair
of encryptions (Enc(y),Enc(+1)) or (Enc(y),Enc(−1)) to the designated path of
y. Recall that we can update the tree by accessing a random path, hence the
access pattern remains oblivious to P0. When x is added to P0’s set, P0 will still
identify all the encrypted pairs on the designated path of x as potential matches.
However, the crucial challenge is when y is not in the intersection, we need to
further hide from P0 whether y was never added to the dataset, or y was added
and then deleted (namely, (y,+1) and (y,−1) cancel out). To achieve this, we
design a special protocol that, for each pair, if the element is a match, then the
parties obtain a secret share of its corresponding payload (+1 or −1); otherwise
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they obtain a secret share of 0. Finally, they add up all these secret shares where
+1’s and −1’s are canceled out, revealing whether x is in the intersection.

There are several other challenges that arise in handling deletions. For
instance, we need to bound the maximum node size of the tree, especially when
there are unlimited, repeated elements being added to the same path. If we
restrict each element to being added and deleted at most once, the complexity
remains the same as in the addition-only protocols. A more nuanced analysis
shows that with unlimited additions and deletions, the complexity incurs only
an additional logarithmic factor. Another challenge arises in plain UPSI, when
P0 removes x and P1 adds y = x on the same day. After these updates, x is
not in the intersection, and it should be further hidden that it was added and
then deleted from the intersection. We refer to Sect. 4 for more details of how
to handle these challenges and the full description of our UPSI protocols with
both addition and deletion.

1.3 Related Work

There has been a long line of work towards realizing PSI efficiently using various
techniques including Diffie-Hellman-based [34,35,40], RSA-based [13,27], circuit-
based [33,46–48], oblivious transfer (OT)-based [21,28,39,44,49], fully homo-
morphic encryption (FHE)-based [22,23,25], and vector oblivious linear eval-
uation (VOLE)-based [18,26,31,51,54] approaches, achieving both semi-honest
and malicious security [18,22,24,42,45,51,53].

As discussed earlier, certain applications require PSI with extended function-
alities that do not reveal the entire intersection but rather enable restricted com-
putation on the elements in the intersection. PSI-Cardinality and PSI-Sum model
many applications such as aggregated ads measurement [35,41] and privacy-
preserving contact tracing [17,56]. More generally, Circuit PSI [18,20,33,47,51,
54] enables the two parties to learn secret shares of the set intersection, which
can be used to securely compute any function using generic secure two-party
computation protocols [32,58]. However, all these approaches study PSI or PSI
with extended functionalities in the standalone setting, which do not support
small updates to the sets beyond running a fresh protocol after each update.

To the best of our knowledge, [16] is the first work that formalizes and studies
PSI in the updatable setting, which we have extensively discussed above. Another
related work is [10], which studies delegatable PSI with small updates. Specifi-
cally, they allow multiple clients to outsource their (encrypted) private sets and
delegate PSI computation to a cloud server. Clients can perform efficient updates
on their outsourced sets where the computation and communication only grow
with their updates. However, both the computation and communication costs of
computing PSI still grow with size of the entire sets, and their protocol crucially
requires the existence of a server.

Concurrent and Independent Work. A concurrent and independent work by
Agarwal et al. [11] constructs a semi-honest secure UPSI protocol that supports
arbitrary addition and deletion of elements. Their construction, which builds
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UPSI from a new variant of structured encryption (StE), achieves worst-case
communication and computation complexity that grows linearly with the size of
the updates and poly-logarithmically with the size of the entire sets. Their frame-
work supports the plain PSI functionality with two-sided output, and focuses on
feasibility. In contrast, our work additionally achieves the extended functionali-
ties with one-sided output (which implies two-sided output), and demonstrates
concrete efficiency.

2 Preliminaries

Notation. We use λ, κ to denote the computational and statistical security
parameters, respectively. For an integer n ∈ N, [n] denotes the set {1, . . . , n}. A
2-out-of-2 additive secret share of a value x ∈ Zn is denoted as ([[x]]0, [[x]]1) where

[[x]]0
$←− Zn and [[x]]0 +[[x]]1 = x mod n. PPT stands for probabilistic polynomial

time. By
c≈ we mean two distributions are computationally indistinguishable.

Additively Homomorphic Encryption. An additively homomorphic encryp-
tion scheme is a public-key encryption sccheme that consists of a tuple of PPT
algorithms (KeyGen,Enc,Dec) over message space M with correctness, chosen-
plaintext attack (CPA) security, and linear homomorphism.

– (pk, sk) ← KeyGen(1λ): On input of the security parameter, output a public
key pk and a secret key sk.

– c ← Encpk(m): On input of a public key pk and a message m ∈ M, output a
ciphertext c.

– m/⊥ ← Decsk(c): On input of a secret key sk and a ciphertext c, output a
plaintext m or the symbol ⊥.

– Encpk(m0+m1) ← Encpk(m0)⊕Encpk(m1): On input two ciphertexts of m0,m1

encrypted under pk, output a ciphertext for their sum.
– Encpk(m0 · m1) ← m0 
 Encpk(m1): On input a plaintext message m0 and a

ciphertext of m1 encrypted under pk, output a ciphertext for their product.

Threshold Additively Homomorphic Encryption. A (2, 2)-threshold addi-
tively homomorphic encryption scheme consists of a tuple of PPT algorithms
(KeyGen,Enc,PartDec,FullDec) over message space M.

– (pk, sk0, sk1) ← KeyGen(1λ): On input of the security parameter, output a
public key pk and a pair of secret key shares sk0 and sk1.

– c ← Encpk(m): On input of a public key pk and a message m ∈ M, output a
ciphertext c.

– ĉ ← PartDecskb
(c): On input a secret key share skb (for b ∈ {0, 1}) and a

ciphertext c, output a partially decrypted ciphertext ĉ.
– m/⊥ ← FullDecskb

(ĉ): On input a secret key share skb (for b ∈ {0, 1}) and
a partially decrypted ciphertext ĉ by the other secret key sk1−b, output a
plaintext m or the symbol ⊥.
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The scheme satisfies correctness and CPA security even given a secret key share
skb for b ∈ {0, 1}. It also supports linear homomorphic operations ⊕ and 
.

Re-randomization. A re-randomization algorithm c̃ ← ReRandpk(c) homomor-
phically adds an independently generated encryption of zero to c, resulting in a
ciphertext c̃ that is indistinguishable from a fresh ciphertext encrypting the same
message as c. We implicitly assume that each homomorphic operation is followed
by a re-randomization process. This is required in our protocols to ensure that
the randomness of the final ciphertext is independent of the randomness used
in the original ciphertexts. For the popular (threshold) additively homomorphic
encryption schemes such as exponential El Gamal encryption [29] and Paillier
encryption [43], a homomorphically evaluated ciphertext can be made statisti-
cally identical to a fresh ciphertext. We refer to [29,43] for formal definitions of
correctness and CPA security.

3 Addition-Only UPSI

3.1 Definition

In this section, we formalize the ideal functionality and security definition for
addition-only UPSI. Consider two parties P0 and P1 who wish to run PSI on
a daily basis with updated sets. In the addition-only setting, they each hold a
private set and add new elements to their respective sets each day. They want
to jointly compute their set intersection (or extended functionalities) on their
updated sets without revealing anything beyond that. We formalize addition-
only UPSI as a special case of secure two-party computation with a reactive
functionality defined in Fig. 1.

Fig. 1. Ideal functionalities for one-sided addition-only UPSI: FUPSI-Addpsi ,
FUPSI-Addca ,FUPSI-Addsum ,FUPSI-Addcircuit .
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Let X[D] = {X1, . . . , XD} and Y[D] = {Y1, . . . , YD} be the inputs for P0 and
P1 after D days, respectively. Let ViewΠ,D

b (X[D], Y[D]) and OutΠ,D
b (X[D], Y[D])

be the view and outputs of Pb (for b ∈ {0, 1}) in the protocol Π at the end of D
days, respectively. For a functionality F , let Fb be the output for Pb in the D
days. Note that F1 = ⊥ in all the functionalities except for FUPSI-Addcircuit .

Definition 1 (One-Sided Addition-Only UPSI). A protocol Π is semi-
honest secure with respect to ideal functionality F ∈ {FUPSI-Addpsi ,FUPSI-Addca ,FUPSI-Addsum ,FUPSI-Addcircuit} if there exists PPT simulators Sim0 and Sim1 such
that, for any D ∈ N

+ and any inputs (X[D], Y[D]),
(
ViewΠ,D

0 (X[D], Y[D]),OutΠ,D
1 (X[D], Y[D])

)

c≈
(
Sim0(1

λ, X[D], F0(X[D], Y[D])), F1(X[D], Y[D])
)

,
(
ViewΠ,D

1 (X[D], Y[D]),OutΠ,D
0 (X[D], Y[D])

)

c≈
(
Sim1(0

λ, Y[D], F1(X[D], Y[D])), F0(X[D], Y[D])
)

.

Notation. Let ΠAHE = (KeyGen,Enc,PartDec,FullDec) be a (2, 2)-threshold
additively homomorphic encryption scheme (see definition in Sect. 2) over plain-
text space Zq for a prime q. Without loss of generality we assume all the set
elements are in Zq (if not, we can apply a collision-resistant hash function
H : {0, 1}∗ → Zq on all the elements and perform PSI on the hash outputs). Let
F : {0, 1}λ × Zq → {0, 1}λ be a pseudorandom function (PRF). For a bit string
s ∈ {0, 1}n, let s[1:i] denote the prefix of s of length i (for i ∈ [n]).

Consider a binary tree data structure with tree height L and 2L leaves, let
� ∈ {0, 1, . . . , 2L−1} denote the �-th leaf node of the tree. Any leaf node � defines
a unique path from the root to the leaf. We use P(�) to denote such a path, and
P(�, k) to denote the node in P(�) at level k of the tree (for k ∈ {0, 1, . . . , L}).
Let σ denote the maximum tree node size and ρ denote the stash size of our
oblivious data structure.

3.2 Construction

In this section, we present our addition-only UPSI protocols. As briefly discussed
in Sect. 1.2, each party stores an encrypted version of its set on the other party’s
storage. We first describe our new oblivious data structure maintained in a binary
tree.

Oblivious Data Structure. Say P1 is the data owner, who stores her encrypted
set on P0’s side. Initially, the binary tree is empty with depth 0. Each node of
the tree has a maximum capacity of σ elements. As P1 adds new elements to
the tree, she will gradually increase the tree depth. Figure 2 illustrates a tree
of depth 3. Each element x is associated with a designated path computed by
Fk(x), where F is a pseudorandom function and k is a secret key known to both
parties. When a new element x is added to P1’s set, P1 will add x to the one of
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the nodes in the root-to-leaf path ending at leaf node Fk(x), but in an oblivious
way. In the example in Fig. 2, the designated path of x is Fk(x) = 001, and P1

will obliviously add x to one of the four nodes on the red path. To do so, P1

first adds x to the root node of the tree. Then she samples a random root-to-leaf
path � of the tree, and collects all the elements in that random path. For every
element x∗ in that random path (note that this includes x, because x was just
added to the root), P1 will “push down” x∗ along the random path � as much as
possible subject to the constraint that x∗ is still on its designated path Fk(x∗).
In the example, � = 011, and P1 considers all the elements on the blue path.
She can push x down one level since it overlaps with the red path. For another
element y, suppose Fk(y) = 011, then P1 can push it down to the leaf level. For
the element z, suppose Fk(z) = 010, then P1 cannot push it down further. Note
that this process is oblivious to P0 since the access pattern for any element is a
random path. In the example, the access pattern for x is a random path � that
is completely independent of x.

Fig. 2. Illustration of adding an element x to a tree with depth 3. (Color figure
online)

Some details were omitted in the above description for the sake of simplicity.
First, when pushing down element along the random path �, another constraint
is that no node exceeds the maximum capacity of σ. Second, if there are extra
elements that cannot fit into the maximum capacity of the random path, P1 puts
them into a stash, which has maximum capacity ρ. Both σ and ρ are defined
as part of the security parameters of the protocol. We present this subroutine
formally as UpdateTree in Fig. 3. This subroutine will also be used in our UPSI
with both addition and deletion protocols, with slight modifications (highlighted
in the figure). We discuss more details in Sect. 4.

Addition-Only UPSI-Cardinalty/Sum/Circuit-PSI. We now describe our
new addition-only UPSI protocols (Fig. 5). P0 maintains his elements x ∈ X in
an oblivious data structure consisting of a binary tree D0 and a stash S0. He
stores an encrypted version of it on P1’s side, denoted as ( ˜D0, ˜S0). Similarly,
P1 maintains her elements y ∈ Y in an oblivious data structure (D1,S1), and
stores an encrypted version ( ˜D1, ˜S1) on P0’s side. The encryption scheme is a
(2, 2)-threshold additively homomorphic encryption. Recall from Sect. 1.2 that
the set difference Id \ I on each day consists of two disjoint sets, (Xd ∩ Y ) and
((X ∪ Xd) ∩ Yd).
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Subroutine UpdateTree({xi}n
i=1, {pi}n

i=1, D, S, Fk(·),Encpk(·)):
1. Let N be the total number of elements (excluding dummy ones) in the tree D and

stash S after inserting {xi}n
i=1. Extend the tree depth to reach L = �log2 N� if

needed. Add empty nodes in the new levels of D.
2. For each element and payload pair (xi, pi) for i ∈ [n]:

(a) Uniformly sample a random leaf node �i
$←− {0, 1, . . . , 2L − 1} of the tree D.

(b) Remove all the elements from the path P(�i) of the tree D. Remove all the ele-
ments from the stash S. Combine all the removed elements (excluding dummy
ones) with (xi, pi) to get pathi. In the UPSI with addition and deletion pro-
tocols, if there are elements with opposite values, namely (z, p) and (z, −p),
then remove both from pathi.

(c) For k from L down to 0:
Consider the tree node P(�i, k) at level k, remove up to σ elements (z, p) from
pathi such that P(�i, k) = P(Fk(z)[1:L], k), and add these elements to the node
P(�i, k) of D.

(d) Replace the stash S with all the elements left in pathi. If there are more than
ρ elements left in pathi, abort.

(e) Pad every node in the path P(�i) with dummy elements to reach a size of σ.
Pad the stash S with dummy elements to reach a size of ρ.

3. For each i ∈ [n], gather all the elements in the path P(�i) and encrypt them to get

˜updatesi = {(Encpk(xj),Encpk(pj))}σ·L
j=1. Encrypt all elements in the stash S to get

S̃ = {(Encpk(xj),Encpk(pj))}ρ
j=1. Output ({( ˜updatesi, �i)}n

i=1, S̃)

Fig. 3. Subroutine UpdateTree that outputs a succinct update for the tree D
that does not reveal the elements being added.

Let’s first consider (Xd ∩ Y ). Intuitively speaking, P0 queries each xi ∈ Xd

in the encrypted tree of Y , namely ( ˜D1, ˜S1), to determine whether xi ∈ Y .
Specifically, for each xi ∈ Xd, P0 identifies a designated path � = Fk(xi) and
collects all the elements in the path � from ˜D1, together with all the elements
from ˜S1 (because xi could potentially have been put there as well). These are all
the candidate encryptions that could potentially match xi. This process is pre-
sented formally as a subroutine GetPath in Fig. 4. To compute PSI-Cardinality,

Fig. 4. Subroutine GetPath that outputs a collection of potential matching ele-
ments with x in the encrypted tree ˜D with stash ˜S organized according to the
pseudorandom function F .
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Initialization:
1. P0 and P1 jointly setup public and secret keys for a (2, 2)-threshold additively homomor-

phic encryption scheme (pk, sk0, sk1) ← KeyGen(1λ) where P0 receives (pk, sk0) and P1 receives
(pk, sk1). This can be done via a one-time secure two-party computation. The two parties agree

on a randomly sampled PRF key k
$←− {0, 1}λ.

2. P0 and P1 generate initial trees with only an empty root and stash: (D0, S0, ˜D1, ˜S1) and

( ˜D0, ˜S0, D1, S1), respectively.
3. Initialize C0 = 0 in ΠUPSI-Addca and ΠUPSI-Addcircuit , C0 = V0 = 0 in ΠUPSI-Addsum .

Day d: P0 and P1 hold (D0, S0, ˜D1, ˜S1) and ( ˜D0, ˜S0, D1, S1), respectively. Let L0 be the tree height

of D0 and ˜D0, and L1 be the tree height of D1 and ˜D1. Both parties update L0 and L1 as they update
the trees below. Let X, Y denote the two parties’ sets at the end of the previous day, respectively.
P0 holds a new input set Xd and P1 holds a new input set Yd. Let n = |Xd| and m = |Yd|. In
ΠUPSI-Addsum , P0 holds a value vi ∈ Zq associated with each element xi ∈ Xd.

1. P0 defines a payload for each element xi ∈ Xd depending on the functionality: pi = xi in
ΠUPSI-Addcircuit , pi = vi in ΠUPSI-Addsum , and no payload is needed in ΠUPSI-Addca .

2. Xd tree update. P0 computes m1 = ({(ũpdatesi, �i)}n
i=1, ˜S′

0) ← UpdateTree(Xd,
{pi}n

i=1, D0, S0, Fk(·), Encpk(·)), and sends it to P1, who then replaces each path P(�i) with

ũpdatesi in ˜D0, and replaces ˜S0 with ˜S′
0. Both parties update L0 if needed.

3. Candidates for Xd ∩ Y . For each xi ∈ Xd, P0 computes {Encpk(yi,j)}σ·L1+ρ
j=1 ← GetPath( ˜D1,

˜S1, Fk(·), xi), homomorphically subtracts xi, and attaches an encryption of pi to get ˜pathi =

{(Encpk(yi,j − xi), Encpk(pi))}σ·L1+ρ
j=1 . Then P0 sends m2 = { ˜pathi}n

i=1 to P1.

4. Candidates for (X ∪ Xd ) ∩ Yd . For each yj ∈ Yd, P1 computes {(Encpk(xj,i),

Encpk(pi))}σ·L0+ρ
i=1 ← GetPath( ˜D0, ˜S0, Fk(·), yj), and homomorphically subtracts yj to get

˜pathj = {(Encpk(xj,i − yj), Encpk(pi))}σ·L0+ρ
i=1 .

5. Combining candidates. P1 combines { ˜pathj}m
j=1 with { ˜pathi}n

i=1 received from P0, randomly

samples a mask αk
$←− Zq for each element in the combined set, and samples a random permu-

tation π over [Γ ] where Γ = σ · (n · L1 + m · L0) + ρ · (n + m). Compute and send the following
to P0:

m3 = π
(

{(PartDecsk1 (αk � Encpk(ak − bk)),ReRandpk(Encpk(pk)))}Γ
k=1

)

.

6. Output generation. P0 fully decrypts the first element in each tuple of m3 to get αk(ak −bk).
Let K = {k | αk(ak − bk) = 0}.

– In ΠUPSI-Addca , P0 outputs Cd = Cd−1 + |K|.
– In ΠUPSI-Addsum , P0 computes m4 =

⊕

k∈K Encpk(pk) and sends it to P1. P1 responds to

P0 with m′
4 = PartDecsk1 (m4). P0 fully decrypts it to get V = FullDecsk0 (m′

4), and outputs
Vd = Vd−1 + V .

– In ΠUPSI-Addcircuit , P0 samples a random share [[zk]]0
$←− Zq for all k ∈ K, outputs

Cd = Cd−1 + |K| and an updated share set with new random shares {[[zk]]0}k∈K . Addi-
tionally, P0 computes and sends the following to P1:

m4 = {PartDecsk0 (Encpk(pk) ⊕ Encpk(−[[zk]]0))}k∈K .

P1 fully decrypts m4 using sk1 to get its shares {[[zk]]1}k∈K , and outputs Cd = Cd−1 + |K|
and an updated share set with new random shares {[[zk]]1}k∈K .

7. Yd tree update. P1 computes m5 = ({(ũpdatesj , �j)}m
j=1, ˜S′

1) ← UpdateTree(Yd,

⊥, D1, S1, Fk(·), Encpk(·)), and sends it to P0, who then replaces each path P(�j) with ũpdatesj
in ˜D1, and replaces ˜S1 with ˜S′

1. Both parties update L1 if needed.

Fig. 5. Protocols ΠUPSI-Addca ,ΠUPSI-Addsum ,ΠUPSI-Addcircuit for one-sided addition-
only UPSI functionalities FUPSI-Addca ,FUPSI-Addsum ,FUPSI-Addcircuit , respectively, with
the differences among the three protocols highlighted.

P0 homomorphically subtracts xi from each candidate encryption, so it becomes
an encryption of zero iff it is a match. This is presented as Step 3 in Fig. 5.
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Symmetrically, for ((X ∪Xd)∩Yd), P1 queries each yj ∈ Yd in the encrypted
tree of (X∪Xd), namely ( ˜D0, ˜S0). Note that ( ˜D0, ˜S0) needs to be first updated to
contain Xd. In the protocol in Fig. 4, P0 adds Xd to the oblivious data structure
in Step 3. Then P1 collects all the candidate encryptions for each yj ∈ Yd and
homomorphically subtracts yj from them, as presented in Step 4.

In Step 5, P1 combines all the candidate encryptions and homomorphically
multiplies each one by a random scalar, so that a candidate encryption remains
zero if it is a match, or random otherwise.2 She then randomly shuffles all the
candidate encryptions, partially decrypts them, and sends to P0, who can then
fully decrypt them and count the number of zeros.

Finally, P1 adds Yd to her oblivious data structure in Step 7. It is important
to note that the order of tree updates for Xd and Yd is critical in the protocol.
In particular, the tree update for ( ˜D1, ˜S1) can only occur after Step 3 to prevent
doubly counting in PSI-Cardinality.

We can extend the protocol to PSI-Sum and Circuit-PSI by attaching a pay-
load to each element and leveraging additive homomorphism on these payloads.

Addition-Only Plain UPSI. For addition-only plain UPSI FUPSI-Addpsi , we
don’t have to store two trees. Instead, we can simply plug our new oblivious
data structure into the addition-only UPSI protocol [16, ΠUPSI-add-one] to achieve
better concrete efficiency than the two-tree solution and much lower worst-case
complexity than [16]. We present the protocol ΠUPSI-Addpsi in the full version of
our paper [15].

3.3 Complexity, Correctness and Security

On each day d, let the entire set sizes of the two parties be N and M , respectively.
Let the update set sizes be n and m, respectively. Then both the computation
and communication complexity are O(n log M +m log N), assuming σ and ρ are
both O(1). We state the theorem below and defer its proof to the full version of
our paper [15].

Theorem 1. Assuming Π is a secure (2, 2)-threshold additively homomorphic
encryption scheme, F is a pseudorandom function, the protocols ΠUPSI-Addca ,
ΠUPSI-Addsum ,ΠUPSI-Addcircuit (Fig. 5) securely realize the ideal functionalities
FUPSI-Addca ,FUPSI-Addsum , FUPSI-Addcircuit (Fig. 1), respectively, against semi-honest
adversaries.

4 UPSI with Addition and Deletion

4.1 Definition

Let X[D] = {(X+
1 ,X−

1 ), . . . , (X+
D ,X−

D)} and Y[D] = {(Y +
1 , Y −

1 ), . . . , (Y +
D , Y −

D )}
be the inputs for P0 and P1 after D days, respectively. Here, X+

d denotes the

2 Note that this holds because the plaintext space for the encryption scheme is Zq for
a prime q.
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elements to be added to P0’s set on day d, and X−
d denotes the elements to be

deleted from P0’s set on day d; similarly, Y +
d and Y −

d denote the elements to be
added and deleted, respectively, for P1 on day d. The ideal functionalities are
defined in Fig. 6. Note that for FUPSI-Delsum , we achieve a slightly more general
functionality than PSI-Sum as defined in [35,41] (which is the definition used in
our addition-only protocol) in that our functionality does not have to reveal the
cardinality Cd along with Vd. Let F0 be the output for P0 for all functionalities.
Note that we don’t consider the Circuit-PSI functionality in this setting, so P1

has no output in the definition.

Fig. 6. Ideal functionalities for one-sided UPSI with both addition and deletion:
FUPSI-Delpsi , FUPSI-Delca , and FUPSI-Delsum .

Definition 2 (One-Sided UPSI with Addition and Deletion). A protocol
Π is semi-honest secure with respect to ideal functionality F ∈ {FUPSI-Delpsi ,
FUPSI-Delca ,FUPSI-Delsum} if there exist PPT simulators Sim0 and Sim1 such that,
for any D ∈ N

+ and any inputs (X[D], Y[D]),
(

ViewΠ,D
0 (X[D], Y[D])

)

c≈ (

Sim0(1λ,X[D],F0(X[D], Y[D]))
)

,
(

ViewΠ,D
1 (X[D], Y[D]),Out

Π,D
0 (X[D], Y[D])

)

c≈ (

Sim1(1λ, Y[D]),F0(X[D], Y[D])
)

.

Notation. We use the same notation as in Sect. 3, except that instead of a
(2, 2)-threshold additively homomorphic encryption scheme, we use a plain addi-
tively homomorphic encryption scheme Π = (KeyGen,Enc,Dec) (see definition
in Sect. 2) over plaintext space Zq.
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4.2 Construction

In this section, we present our UPSI protocols with both addition and deletion.
The oblivious data structure presented in Sect. 3.2 only supports adding new
elements to the tree. We first discuss how to extend the construction to also
allow for deletion of elements from the tree.

Oblivious Data Structure with Deletion. Recall that each element x is
associated with a designated path Fk(x). When P1 adds a new element x to
the tree, she will first add x to the root node of the tree. Then she samples
a random path of the tree and pushes down elements along that random path
as much as possible. To support deletion, P1 first attaches a payload p to each
element x. When x is added to P1’s set, she sets p = +1; when x is deleted from
her set, she sets p = −1. Whenever an element x is added or deleted from her
set, P1 adds a new pair (x, p) to the tree following the exact same approach as
described in UpdateTree (Fig. 3). The only minor difference is that when pushing
down elements along the random path, if both (x,+1) and (x,−1) appear in that
path, P1 removes both of them from the tree.

This modified UpdateTree process remains oblivious to P0 because the access
pattern for addition or deletion of elements continues to be a random path
together with the stash. Note that since additions and deletions of the same
element have the same designated path, there is a higher probability of stash
overflow if we use the same parameters of maximum node capacity σ and maxi-
mum stash capacity ρ as in the addition-only setting, hence we need to increase
both parameters for our new protocols. We discuss the parameter implications
in the security proofs in the full version of our paper [15].

Computation on Encrypted Tree. To compute on the encrypted tree, we take
a different approach from the addition-only protocols. When P0 queries an ele-
ment x in the encrypted tree of Y , namely ( ˜D1, ˜S1), he can still identify the des-
ignated path � = Fk(x) and collect all the candidate encryptions using GetPath
(Fig. 4). However, there could be both (Enc(x),Enc(+1)) and (Enc(x),Enc(−1))
among these candidates. In case x was added and then deleted from tree, it
should be indistinguishable to P0 from the case where x was never added to
the tree. We construct a subprotocol ΠCombinePath (Fig. 7) for the two parties to
jointly learn a secret share of whether x is in the path, namely the sum of the
associated payloads p for all the (Enc(x),Enc(p)) pairs.

Specifically, for each candidate encryption (Enc(yi),Enc(pi)), P0 first homo-
morphically computes Enc(yi −x+αi) for a randomly sampled αi and sends it to
P1, which can then be decrypted by P1 to γi. Note that αi = γi iff yi = x. Next,
our goal is to design a special equality testing protocol such that if αi = γi (i.e.,
yi = x), then the two parties obtain a secret share of pi, otherwise they obtain
a secret share of 0. To do so, P0 homomorphically computes two ciphertexts
mi,0 = Enc(pi − βi) and mi,0 = Enc(−βi) for a randomly sampled βi. Then the
two parties invoke a special secure two-party computation protocol with func-
tionality Flookup (Fig. 8). The functionality Flookup takes (αi,mi,0,mi,1) from P0

and γi from P1 as input. If αi = γi, then Flookup outputs mi,0 to P1; otherwise it
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Subprotocol ΠCombinePath((x, p, p̃ath), sk)

Public Parameters: a public key pk for the additively homomorphic encryption
scheme Π, and k as the number of pairs in p̃ath.

Inputs: An Initiator inputs an element x, an associated payload p, and a potential
matching elements in an encrypted collection p̃ath = {(Encpk(yi),Encpk(qi))}k

i=1. A
Responder inputs the secret key sk corresponding to pk.

Output: Initiator and Responder receive a secret share of
∑

i∈[k]:x=yi
(p · qi) over Zq.

1. For each i ∈ [k], Initiator samples random masks αi, βi
$←− Zq and homomorphically

computes the following:

reqi = (Encpk(yi) ⊕ Encpk(αi − x))

mi,0 = p � Encpk(qi) ⊕ Encpk(−βi)

mi,1 = Encpk(−βi)

2. Initiator sends the request set {reqi}k
i=1 to Responder.

3. Responder decrypts each request with sk to get {γi}k
i=1.

4. For all i ∈ [k], both parties invoke Flookup, where Initiator inputs (αi, mi,0, mi,1)
as Sender and Responder inputs γi as Receiver, from which Responder receives mi.
Responder then sets [[ri]]1 = Decsk(mi). Initiator sets [[ri]]0 = βi.

5. Each party Pb (b ∈ {0, 1}) outputs
∑k

i=1[[ri]]b.

Fig. 7. Subprotocol ΠCombinePath required for UPSI with addition and deletion.

Fig. 8. Ideal functionality Flookup required for the subprotocol ΠCombinePath.

outputs mi,1 to P1. Therefore, if αi = γi, then P1 obtains Enc(pi −βi), which can
be decrypted to pi −βi, thereby forming a secret share of pi with the other share
βi held by P0. If αi �= γi, then P1 obtains a Enc(−βi), which can be decrypted to
−βi, forming a secret share of 0 with P0’s share βi. As a result, the two parties
obtain a secret share of pi if yi = x, or a secret share of 0 otherwise. Finally, the
two parties sum up all the secret shares to obtain a secret share of

∑

yi=x pi.
We present our subprotocol ΠCombinePath in Fig. 7 and defer its correctness and

security proofs to the full version of our paper [15]. The functionality Flookup can
be instantiated with a generic secure two-party computation protocol [32,58].
We present a more efficient realization utilizing oblivious transfer (OT) and the
efficient OT extension [12,36] in Sect. 5.

UPSI-Cardinalty/Sum with Addition and Deletion. Next, we describe
our new UPSI protocols with both addition and deletion for PSI-Cardinality
and PSI-Sum, presented in Fig. 9. To compute PSI-Cardinality, we follow the
similar framework as in the addition-only protocols (Fig. 5).
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Initialization:
1. P0 and P1 independently generate key pairs for an additive homomorphic encryp-

tion scheme (pk0, sk0) ← KeyGen(1λ) and (pk1, sk1) ← KeyGen(1λ) and share the

public keys. Both parties agree on a randomly sampled PRF key k
$←− {0, 1}λ.

2. P0 and P1 generate initial trees with only an empty root and stash: (D0, S0, D̃1, S̃1)

and (D̃0, S̃0, D1, S1), respectively. Initialize Out0 = 0.

Day d : P0 and P1 hold (D0, S0, D̃1, S̃1) and (D̃0, S̃0, D1, S1), respectively. Let L0 and

L1 be the heights of D0 (and D̃0), and D1 (and D̃1) respectively. Both parties update
L0 and L1 as they update the trees below. Let X, Y denote the two parties’ sets at the
end of the previous day.
P0 and P1 have new input sets X+

d , Y +
d which include elements they are adding to their

set and X−
d , Y −

d of elements they are deleting. Denote n = |X+
d ∪X−

d |, m = |Y +
d ∪Y −

d |.
In ΠUPSI-Delsum , P0 holds a value vi ∈ Zq associated with each element xi ∈ X+

d ∪ X−
d .

1. P0 defines a payload for each element xi ∈ X+
d ∪ X−

d depending on the function-
ality:

pi :=

{
(−1)(xi∈X−

d
) for ΠUPSI-Delca

(−1)(xi∈X−
d

) · vi for ΠUPSI-Delsum

P1 defines a payload for each element yi ∈ Y +
d ∪ Y −

d : qj := (−1)(yj∈Y −
d

).

2. X+
d ∪ X−

d tree update. P0 sends ({( ˜updatesi, �i)}n
i=1, S̃ ′

0) ← UpdateTree(X+
d ∪

X−
d , {pi}n

i=1, D0, S0, Fk(·),Encpk0(·)) to P1. P1 replaces each path P(�i) with

˜updatesi in D̃0, and replaces S̃0 with S̃ ′
0.

3. Secret shares for new elements of X . For all xi ∈ (X+
d ∪X−

d ), run ΠCombinePath

with P0 as Initiator inputting (xi, pi, p̃athi ← GetPath(D̃1, S̃1, Fk(·), xi), pk1) and
P1 as Responder inputting sk1 corresponding to pk1. They receive secret shares
[[zx,i]]0 and [[zx,i]]1, respectively.

4. Secret shares for new elements of Y . For all yj ∈ (Y +
d ∪ Y −

d ), run
ΠCombinePath with P0 as Responder inputting sk0 corresponding to pk0) and P1

as Initiator inputting (yj , qj , pathj ← GetPath(D̃0, S̃0, Fk(·), yj), pk0). They receive
secret shares [[zy,j ]]0 and [[zy,j ]]1, respectively.

5. Y +
d ∪ Y −

d tree update. P1 sends ({( ˜updatesj , �j)}m
j=1, S̃ ′

1) ← UpdateTree(Y +
d ∪

Y −
d , {qj}m

j=1, D1, S1, Fk(·),Encpk1(·)) to P0. P0 replaces each path P(�j) with

˜updatesj in D̃1, and replaces S̃1 with S̃ ′
1.

6. Combine all the shares. For b ∈ {0, 1}, Pb computes [[zd]]b :=
∑n

i=1[[zx,i]]b +∑m
j=1[[zy,j ]]b.

7. Output generation: P1 sends [[zd]]1 to P0, who then computes Outd := Outd−1

+ [[zd]]0 + [[zd]]1.
P0 outputs Outd for both ΠUPSI-Delca and ΠUPSI-Delsum .

Fig. 9. Protocols ΠUPSI-Delca and ΠUPSI-Delsum for one-side UPSI with both addi-
tion and deletion functionalities FUPSI-Delca and ΠUPSI-Delsum , respectively, with
differences between the two protocols highlighted.

In Step 1, if the element xi is deleted from the set, the payload pi should be
−1 for ΠUPSI-Delca , and −vi for ΠUPSI-Delsum . If the element xi is added to the set,
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the payload pi should be +1 for ΠUPSI-Delca , and vi for ΠUPSI-Delsum . In Step 2, P0

adds all the elements in X+
d ∪ X−

d to his tree using the oblivious data structure
with deletion. In Step 3, P0 queries each element xi ∈ X+

d ∪X−
d in the encrypted

tree of Y . For an element xi ∈ X+
d to be added to the set, the two parties run

ΠCombinePath to get a secret share of whether xi ∈ Y . For an element xi ∈ X−
d

to be deleted from the set, they need to slightly modify ΠCombinePath to get a
secret share of (−1) · (whether xi ∈ Y ). This means xi was in the intersection
but deleted from P0’s set in this step, so PSI-Cardinality is decreased by 1. In
our protocol for ΠCombinePath (Fig. 7), P0 inputs an additional value (+1 or −1)
to be multiplied with the result, which is done homomorphically in the protocol.
Symmetrically, P1 queries each element yj ∈ X+

d ∪ X−
d in the encrypted tree of

(X ∪ X+
d ) \ X−

d in Step 4. After this, P1 adds all the elements in Y +
d ∪ Y −

d to
her tree in Step 5 (recall that it must occur after Step 3).

Finally, the two parties add up all the secret shares in Step 6 and reveal
the output in Step 7. This protocol can be naturally extended to PSI-Sum if
P0 attaches payloads of value +vi or −vi for each element xi in UpdateTree and
ΠCombinePath. It is worth noting that parties only aggregate their secret shares at
the end of the protocol, hence our PSI-Sum protocol does not have to reveal the
cardinality of the intersection, which may be useful in certain applications.

Plain UPSI with Addition and Deletion. Interestingly, achieving plain
UPSI is more challenging than PSI-Cardinality and PSI-Sum with addition and
deletion. As briefly discussed in Sect. 1.2, one issue comes from the scenario
when an element x is added by one party while being deleted by the other
party on the same day. In our UPSI-Cardinality/Sum protocols, while adding
and deleting x from the intersection both occur on the same day, their effect on
the output cancels out when their secret shares are combined. However, in plain
UPSI, parties need to learn the exact elements to be added or deleted. Revealing
that x was first added and then deleted from the intersection on the same day
discloses more information than the ideal functionality.

To address this issue, we carefully arranged the sequence of the addition and
deletion operations, as presented in Fig. 10, such that deletions are dealt with in
Step 1 before additions in Step 2. In other words, if x is deleted by P0 while being
added by P1 on the same day, it will be first deleted from P0’s tree, so that it
won’t appear in the intersection when P1 queries x in the encrypted tree. Since
additions and deletions are done separately, both parties need to know |X−

d |,
|X+

d |, |Y −
d |, |Y +

d | on each day. This is different from UPSI-Cardinality/Sum
where they only know |X−

d ∪ X+
d | and |Y −

d ∪ Y +
d |, as reflected in the ideal

functionalities (Fig. 6).
Furthermore, unlike UPSI-Cardinality/Sum where parties sum up all the

secret shared results at the end of the protocol, they need to learn the results
for each individual element in plain UPSI. However, they cannot reveal directly
these results because doing so may disclose more information than the ideal
functionality. Specifically, if an element x is deleted from both sets on the same
day (hence deleted from the intersection), our protocol ensures that the deleted
x only appears once in either Step 1b or Step 1c, but it should be hidden from
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Initialization:
1. P0 and P1 independently generate key pairs for an additive homomorphic encryption scheme

(pk0, sk0) ← KeyGen(1λ) and (pk1, sk1) ← KeyGen(1λ) and share the public keys. Both parties

agree on a randomly sampled PRF key k
$←− {0, 1}λ.

2. P0 and P1 generate initial trees with only an empty root and stash: (D0, S0, ˜D1, ˜S1) and

( ˜D0, ˜S0, D1, S1), respectively. Initialize I0 = ∅.

Day d: P0 and P1 hold (D0, S0, ˜D1, ˜S1) and ( ˜D0, ˜S0, D1, S1), respectively. Let L0 and L1 be the

heights of D0 (and ˜D0), and D1 (and ˜D1) respectively. Both parties update L0 and L1 as they
update the trees below. Let X, Y denote the two parties’ sets at the end of the previous day.
P0 and P1 have new input sets X+

d , Y +
d which include elements they are adding to their set and

X−
d , Y −

d of elements they are deleting. Denote n− = |X−
d |, n+ = |X+

d |, m− = |Y −
d |, m+ = |Y +

d |.
1. Deletion:

(a) X
−
d tree update. P0 sends ({(ũpdatesi, �i)}n−

i=1, ˜S′
0) ← UpdateTree(X−

d , {−xi : xi ∈
X−

d }n−
i=1, D0, S0, Fk(·), Encpk0 (·)) to P1. P1 replaces each path P(�i) with ũpdatesi in ˜D0,

and replaces ˜S0 with ˜S′
0.

(b) Secret shares for X
−
d ∩ Y . For all xi ∈ X−

d , run ΠCombinePath with P0 as Initiator inputting

(xi, −1, ˜pathi ← GetPath( ˜D1, ˜S1, Fk(·), xi)) and P1 as Responder inputting sk1 correspond-

ing to pk1. They receive secret shares [[z−
x,i]]0 and [[z−

x,i]]1, respectively, where z−
x,i = −xi

if xi ∈ D1 ∪ S1 and 0 otherwise.

(c) Secret shares for
(

X \ X
−
d

)

∩ Y
−
d . For all yj ∈ Y −

d , run ΠCombinePath with P0 as

Responder inputting sk0 corresponding to pk1 and P1 as Initiator inputting (yj , −1, ˜pathj ←
GetPath( ˜D0, ˜S0, Fk(·), yj)). They receive secret shares [[z−

y,j ]]0 and [[z−
y,j ]]1, respectively,

where z−
y,j = −yj if yj ∈ D0 ∪ S0 and 0 otherwise.

(d) Y
−
d tree update. P1 sends ({(ũpdatesj , �j)}m−

j=1 , ˜S′
1) ← UpdateTree(Y −

d , {−yj : yj ∈
Y −

d }m−
j=1 , D1, S1, Fk(·), Encpk1 (·)) to P0. P0 replaces each path P(�j) with ũpdatesj in ˜D1,

and replaces ˜S1 with ˜S′
1.

2. Addition:

(a) X
+
d tree update. P0 sends ({(ũpdatesi, �i)}n+

i=1, ˜S′
0) ← UpdateTree(X+

d , {xi : xi ∈
X+

d }n+
i=1, D0, S0, Fk(·), Encpk0 (·)) to P1. P1 replaces each path P(�i) with ũpdatesi in ˜D0,

and replaces ˜S0 with ˜S′
0.

(b) Secret shares for X
+
d ∩

(

Y \ Y
−
d

)

. For all xi ∈ X+
d , run ΠCombinePath with P0 as

Initiator inputting (xi, 1, ˜pathi ← GetPath( ˜D1, ˜S1, Fk(·), xi)) and P1 as Responder inputting

sk1 corresponding to pk1. They receive secret shares [[z+
x,i]]0 and [[z+

x,i]]1, respectively, where

z+
x,i = xi if xi ∈ D1 ∪ S1 and 0 otherwise.

(c) Secret shares for
(

X ∪ X
+
d \ X

−
d

)

∩ Y
+
d . For all yj ∈ Y +

d , run ΠCombinePath with P0 as

Responder inputting sk0 corresponding to pk0 and P1 as Initiator inputting (yj , 1, ˜pathj ←
GetPath( ˜D0, ˜S0, Fk(·), yj)). They receive secret shares [[z+

y,j ]]0 and [[z+
y,j ]]1, respectively,

where z+
y,j = yj if yj ∈ D0 ∪ S0 and 0 otherwise.

(d) Y
+
d tree update. P1 sends ({(ũpdatesj , �j)}m−

j=1 , ˜S′
1) ← UpdateTree(Y +

d , {yj : yj ∈
Y +

d }m+
j=1, D1, S1, Fk(·), Encpk1 (·)) to P0. P0 replaces each path P(�j) with ũpdatesj in ˜D1,

and replaces ˜S1 with ˜S′
1.

3. Output Generation:
(a) Let {[[zi]]0}Γ

i=1 and {[[zi]]1}Γ
i=1 be the shares received by P0 and P1 above, where Γ =

n− + m− + n+ + m+. P0 sends {Encpk0 ([[zi]]0)}Γ
i=1 to P1.

(b) P1 samples a random permutation π over [Γ ]. P1 samples a random mask αi
$←− Zq for

each i ∈ [Γ ] and homomorphically adds them to the encryptions received from P0. P1

sends the following to P0: π
(

{

(Encpk0 ([[zi]]0) ⊕ Encpk0 (αi)), [[zi]]1 − αi)
}Γ

i=1

)

.

(c) P0 decrypts the first element in each pair using sk0, and adds up each pair of shares to

learn the shuffled set {zj}Γ
j=1.

Output Id := Id−1 ∪ {zj |zj > 0} \ {−zj |zj < 0}.

Fig. 10. Protocol ΠUPSI-Delpsi for one-sided UPSI with addition and deletion func-
tionality FUPSI-Delpsi .
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the parties whether the other party also deleted x on that day. To achieve this,
the parties re-randomize and shuffle the results in Step 3.

4.3 Complexity, Correctness and Security

UPSI-Cardinalty/Sum with Addition and Deletion. Our protocols for
ΠUPSI-Delca and ΠUPSI-Delsum are presented in Fig. 9. On each day d, let N,M be
the total number of additions and deletions of the two parties, respectively. Let
the update set sizes be n and m, respectively. Then both the computation and
communication complexity are O(n · (σ · log M + ρ) + m · (σ · log N + ρ)). We
state the theorem below and defer its proof to the full version of our paper [15].

Theorem 2. Assuming Π is a secure additively homomorphic encryption
scheme, F is a pseudorandom function, the protocols ΠUPSI-Delca ,ΠUPSI-Delsum pre-
sented in Fig. 9 securely realize the ideal functionalities FUPSI-Delca ,FUPSI-Delsum

defined in Fig. 6, respectively, against semi-honest adversaries.

Plain UPSI with Addition and Deletion. We present our protocol
ΠUPSI-Delpsi in Fig. 10. On each day d, let N,M be the total number of addi-
tions and deletions of the two parties, respectively. Let the update set sizes be n
and m, respectively. Then both the computation and communication complexity
are O(n · (σ · log M + ρ) + m · (σ · log N + ρ)). We state the theorem below and
defer its proof to the full version of our paper [15].

Theorem 3. Assuming Π is a secure additively homomorphic encryption
scheme, F is a pseudorandom function, the protocol ΠUPSI-Delpsi presented in
Fig. 10 securely realizes the ideal functionalities FUPSI-Delpsi defined in Fig. 6
against semi-honest adversaries.

5 Implementation Details and Optimizations

In this section, we discuss instantiations of the building blocks in our UPSI
protocols and optimizations to further improve the concrete efficiency.

Encryption Schemes. In the addition-only UPSI protocols ΠUPSI-Addca and
ΠUPSI-Addsum , we instantiate the (2, 2)-threshold additively homomorphic encryp-
tion scheme with exponential El Gamal encryption [29] to take advantage of effi-
cient elliptic curve operations. Recall that in this scheme, Enc(m) = (gr, hr ·gm)
where the public key consists of a group generator g and a random group ele-
ment h = gs with a secret key s. In the (2, 2)-threshold scheme, sk0 and sk1

form an additive secret share of s. Decryption of exponential El Gamal requires
computing the discrete logarithm of a group element gm, which is possible for
a bounded message space. In all our addition-only UPSI protocols presented in
Fig. 5, decryption occurs in Step 6. Observe that P0 does not have to fully decrypt
the first element in each tuple of m3; instead, it is sufficient to check whether
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the decrypted message is 0 or not. In particular, given a partially decrypted
ciphertext ĉ = (a, b), P0 can determine if the encrypted message is 0 by checking
if b = ask0 , without performing discrete logarithm. In ΠUPSI-Addsum , P0 needs to
fully decrypt m′

4, where the underlying message can be bounded by the maxi-
mum sum of associated values.

In ΠUPSI-Addcircuit , while exponential El Gamal can still be used for the first
ciphertext in m3, the (masked) payload messages are distributed uniformly over
the entire plaintext space, hence the payload messages are encrypted using (2, 2)-
threshold Paillier encryption [43] instead.

In our protocols with both addition and deletion presented in Sect. 4
(ΠUPSI-Delpsi in Fig. 10 and ΠUPSI-Delca ,ΠUPSI-Delsum in Fig. 9), El Gamal cannot
be utilized because all the ciphertexts are encrypting secret shares that are dis-
tributed across the message space. Instead, the additively homomorphic encryp-
tion scheme is instantiated with Paillier. This has an impact on the computation
time, as can be seen in Sect. 6.

Paillier Modulus Switching. Using Paillier in the deletion protocols intro-
duces an additional technical challenge. Recall that the plaintext space in Pail-
lier encryption is Zn for a public key n, which is different for P0’s and P1’s keys.
During our deletion protocols, parties perform ΠCombinePath for both pk0 = n0

(P0’s public key) and pk1 = n1 (P1’s public key) to get secret shares in both Zn0

and Zn1 . We discuss how to combine these secret shares over different moduli.
Let � be the maximum bit length required to represent a set element or

associated value. Recall that if set elements are of arbitrary length, we can apply
a hash function on all the elements and perform PSI on the hash outputs. In
our evaluation section, each party holds at most 222 elements, hence there are
at most 223 total elements. If we model the hash function as a random oracle, to
ensure collision probability lower than 2−κ for statistically security parameter
κ = 40, it is safe to bound � = 85. Let n be a Paillier public key and L be the
bit length of n, which is typically 1536 or 2048.

Consider a value r ∈ Z2� being secret shared as [[r]]0, [[r]]1 ∈ Zn. We
will convert this secret share into another secret share of r in Z2� . First, the
integer summation of [[r]]0 + [[r]]1 is either r or r + n, and the probability
Pr [[[r]]0 + [[r]]1 = r] ≤ Pr [[[r]]0 ≤ r] ≤ 2�−L � 2−κ. Therefore, with overwhelm-
ing probability [[r]]0 + [[r]]1 = r + n. Let s0 = [[r]]0 and s1 = [[r]]1 − n, then
s0 + s1 = r, where s0 > 0 and s1 < 0 as integers. If we represent s1 in two’s
complement format, then the lowest � bits of s0 + s1 should be r and the higher
order bits should all be 0. Therefore, we can take the � lowest order bits of s0

and s1 (in two’s complement format) to form a secret share of r in Z2� . Given
that the original secret shares [[r]]0, [[r]]1 ∈ Zn are distributed randomly over Zn,
the new shares are statistically close to a uniform distribution over Z2� because
� � L.

Realizing Flookup. While Flookup can be instantiated with a generic secure two-
party computation (2PC) protocol [32,58], we construct a protocol that achieves
better concrete efficiency, leveraging oblivious transfer (OT) and the efficient
OT extension [12,36]. Let (a,m0,m1) and b be the inputs to Flookup where m0 is
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output when a = b and m1 otherwise. Before comparison, both parties compute
a hash function H : Zq → {0, 1}�gc on their inputs a and b. The parties then
run a garbled-circuit based equality testing to compute a binary secret share
[[c]] ∈ {0, 1} of H(a) ?= H(b). Then two parties run an OT protocol where Sender
inputs two messages (m1−[[c]]0 ,m[[c]]0) and Receiver inputs a choice bit [[c]]1. If
a = b, then [[c]]0 �= [[c]]1, in which case Receiver will receive m0, as desired in
Flookup; if a �= b, then [[c]]0 = [[c]]1 with overwhelming probability (see analysis
below), and the Responder will receive m1.

In this approach, we need the guarantee that if a �= b, then H(a) �= H(b) with
overwhelming probability, hence �gc should be sufficiently large. On the other
hand, the size of the equality testing circuit grows with �gc, so we want to choose
the smallest �gc such that the probability of a failure (i.e., that H(a) = H(b) for
a �= b) over the entire protocol is less than 2−κ. In all the benchmarks presented
in Sect. 6, there are at most 223 elements held by both parties, and each element
is compared against at most 29 elements in ΠCombinePath. Hence the total number
of Flookup invocations is bounded by 223 ·29 = 232. The overall failure probability
is no greater than 232 · 2−�gc , and we want to ensure statistical security, namely
232 · 2−�gc ≤ 2−κ for κ = 40. Therefore, we set �gc ≈ 32 + 40 = 72.

6 Evaluation

6.1 Experimental Setup

We implement all of our UPSI protocols in C++ and report their performance in
this section. We use the crypto library as part of Google’s open-sourced Private
Join and Compute project [7] for El Gamal and Paillier encryptions, Google’s
gRPC [2] for networking, and emp-tool [57] for instantiations of garbled circuits
and oblivious transfer (including OT extension). Benchmarks are run on a Google
Cloud [1] c2-standard-16 virtual machine with 64 GB of RAM. Each party is
executed on a single thread and communicate over localhost. The Linux tc
command is used to simulate the various network settings. We simulate the LAN
connection with 0.2 ms RTT network latency and 1Gbps network bandwidth. For
WAN connection, we set the RTT latency to be 80 ms and test on various network
bandwidths including 200 Mbps, 50 Mbps, and 5 Mbps. Our implementation is
available on GitHub: https://github.com/ruidazeng/upsi-revisited.

Addition-Only UPSI. To demonstrate the updatable property of our proto-
cols, we consider the setting where both parties begin with an empty set to
which Nd elements are added each day. Our benchmarks represent the perfor-
mance of the protocols on day ( N

Nd
) where the size of each party’s set reaches

N .
We compare our plain UPSI protocols with the state-of-the-art semi-honest

PSI protocol [51] (RR22), and compare our UPSI for extended functionalities
(PSI-Cardinality, PSI-Sum, and Circuit-PSI) with the state-of-the-art Circuit-
PSI [20] (CGS22) and [51] (RR22), where, on day ( N

Nd
), the parties run PSI

or Circuit-PSI on their full input sets of size N . Note that the Circuit-PSI

https://github.com/ruidazeng/upsi-revisited
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protocols [20,51] are also state-of-the-art for computing PSI-Cardinality or PSI-
Sum, with slight modifications to their protocols. In our comparison, we assume
these modifications do not incur extra overhead in their performance. We also
compare our addition-only plain UPSI with [16] to demonstrate the improvement
of worst-case complexity by plugging in our new oblivious data structure.

We don’t compare with the protocols specifically designed for PSI-Cardinality
or PSI-Sum [30,35] because these protocols are outperformed by [20,51]. A more
recent work [18] improves PSI and Circuit-PSI communication by 12% compared
to [51], but we don’t compare with it for three reasons: (1) their construction is
built on the Silver codes [26], which turns out to be insecure [52], (2) their source
code is not available online, and (3) even if their construction is instantiated
with secure codes, from our comparison with the other works, we expect our
protocols to perform better in certain settings as well. Note that [51] is also
instantiated with the insecure Silver codes, but their open-sourced library [50]
supports instantiating the construction with the state-of-the-art OT extension
from expand-accumulate codes [19], which is what we compare with.

UPSI with Addition and Deletion. In the setting with both addition and
deletion, standalone PSI protocols need only compute over elements that remain
in the input sets. In the extreme case where the every element is added and then
soon deleted, the input sets remain small and so the standalone PSI protocols
would likely be optimal. Alternatively, if the input sets are growing at a steady
rate, then our constructions may be best. These caveats should be understood
and application-specific context would play a role in choosing a solution.

In our benchmarks, we assume roughly 3/4 set operations are additions and
1/4 are deletions. We further assume that each element can only be added and
deleted at most once in each party’s set (i.e., an element cannot be re-added
once it has been deleted). In this case, the computation and communication
complexity of our protocols are O(Nd · log N).

Choice of N and Nd. In all of our experiments, we chose the values for N and
Nd that would best demonstrate the turning point where we become competitive.
Our protocols have more advantages when increasing the gap between N and
Nd. As N increases (e.g., for billion-sized sets [14,38]), we expect our protocol
to be dominant for more network settings and larger Nd values. In all of our
comparison tables, cells in green indicate the state-of-the-art performance, and

those in blue indicate that our protocols perform better.

Concrete Parameters. We set the computational security parameter λ = 128
and the statistical security parameter κ = 40. Following the analysis in [55], we
set the maximum tree node capacity σ = 4 and the maximum stash capacity
ρ = 89 to achieve failure probability of 2−80 for inserting a single element into
the tree. Even with our largest set size of 222, the combined failure probability
is bounded well below 2−κ. In protocols with addition and deletion, we allow
parties to add and delete each element at most once, and so we double both our
node size (to σ = 8) and stash size (to ρ = 178), and we defer the analysis to
the full version of our paper [15]. To enable P0 to efficiently decrypt m′

4 in Step
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6 of ΠUPSI-Addsum (Fig. 5) with exponential El Gamal encryption, we bound the
PSI-Sum maximum value to be at most 10,000. Larger sums can either utilize
extra storage with a lookup table or switch to using Paillier encryption.

6.2 Addition-Only UPSI with Extended Functionalities

We compare our addition-only UPSI for extended functions (PSI-Cardinality,
PSI-Sum, and Circuit-PSI) with [51] (RR22) and [20] (CGS22) in Table 2 with
total set sizes ranging from 218 to 222 and update sizes from 26 to 210. Our com-
putation and communication complexity grows logarithmically with the total
set size and linearly with the update size Nd, so our protocols are more com-
petitive in larger input sizes and smaller update sizes. Note that [20] (CGS22)
presents two constructions (C-PSI1 and C-PSI2) with different trade offs between
computation and communication, but for all the parameters we choose, C-PSI2
outperforms C-PSI1 in all aspects. We were unable to run CGS22 with input size
of 222, so we use the communication cost and running time under LAN reported
in their paper [20], and estimate the running time in the WAN settings.

Communication: Since our communication grows linearly with Nd and only
logarithmically with N , our protocols have a communication advantage in set-
tings where Nd � N . For N = 218, our communication has an improvement of
2.2−13× when Nd = 26 in all functionalities, and when Nd = 28, ΠUPSI-Addca and
ΠUPSI-Addsum have an advantage 1.8 − 3.4×. For N = 220, our protocols outper-
form RR22 by 2.2 − 50× depending on the functionality and update size, with
only ΠUPSI-Addcircuit at Nd = 210 not showing an improvement. When N = 222,
that improvement extends to all settings and increases to a factor of 2.2−200×.

Computation: Our computational complexity also grows linearly with Nd and
logarithmically with N . Despite this, our computation times do not reflect this
asymptotic improvement as clearly, which stems from our usage of costly public
key operations. As a result, we show better performance only when N is suffi-
ciently large. In the LAN setting with N = 220, Nd = 26, our ΠUPSI-Addca and
ΠUPSI-Addsum are faster by 3.2× and 2.1×, respectively. By N = 222, Nd = 26 −28,
our ΠUPSI-Addca ,ΠUPSI-Addsum protocols outperform CGS22 by 1.4 − 15×.

End to End: Given these communication and computation trade offs, our
protocols perform best with more realistic network configurations with lower
network bandwidth. At N = 218, we begin to have competitive runtimes for
ΠUPSI-Addca and ΠUPSI-Addsum in the smaller update size Nd = 26. By N = 222

and Nd = 26, our protocols outperform in all network settings by 15 − 76× for
ΠUPSI-Addca , 11 − 46× for ΠUPSI-Addsum , and 1.8 − 9.4× for ΠUPSI-Addcircuit .

6.3 UPSI-Cardinality/Sum with Addition and Deletion

Our performance for ΠUPSI-Delca and ΠUPSI-Delsum in comparison with [20,51] is
presented in Table 3. Since the two protocols are implemented in the same way
except that P0’s inputting payloads are different, they have close experimental
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Table 2. Communication cost (in MB) and running time (in seconds) com-
paring our addition-only UPSI protocols to prior work. * indicates estimated
communication and running time.

N Nd Protocol Comm. (MB)
Total Running Time (s)

LAN 200Mbps 50Mbps 5Mbps

218

−
RR22 37.1 7.76 10.7 13.8 64.4

CGS22 (C-PSI1) 548 7.90 36.9 106 968

CGS22 (C-PSI2) 353 6.32 29.4 70.6 619

26

ΠUPSI-Addca

2.83 7.12 7.59 7.87 11.8

28 11.0 27.6 28.6 30.2 45.6

210 42.6 108 110 115 177

26

ΠUPSI-Addsum

5.35 11.0 11.8 12.5 20.1

28 22.3 45.9 47.2 49.3 82.0

210 87.1 178 184 195 321

26

ΠUPSI-Addcircuit

17.1 81.7 83.1 85.3 110

28 67.0 318 327 330 427

210 248 1171 1182 1214 1570

220

−
RR22 149 31.1 38.4 51.9 258

CGS22 (C-PSI1) 2190 31.0 135 414 3771

CGS22 (C-PSI2) 1408 24.3 92.8 268 3872

26

ΠUPSI-Addca

3.03 7.59 8.14 8.46 12.6

28 11.8 29.6 30.6 32.0 48.7

210 45.7 116 121 127 194

26

ΠUPSI-Addsum

5.70 11.8 12.5 13.1 21.5

28 22.3 45.9 47.2 49.3 82.0

210 87.1 178 184 195 321

26

ΠUPSI-Addcircuit

17.1 81.7 83.1 85.3 110

28 67.0 318 327 330 427

210 264 1251 1263 1295 1674

222

−
RR22 606 125 159 214 1086

CGS22 (C-PSI1) 6667* 93.0* 126* 226* 1426*

CGS22 (C-PSI2) 4435* 77.9* 100* 167* 965*

26

ΠUPSI-Addca

3.22 8.09 9.02 9.33 14.3

28 12.6 31.6 32.7 34.2 52.7

210 48.9 123 127 133 205

26

ΠUPSI-Addsum

6.04 12.5 13.3 14.1 23.6

28 23.6 48.8 50.3 53.3 88.6

210 92.7 191 197 209 342

26

ΠUPSI-Addcircuit

18.1 86.6 88.4 90.2 116

28 71.1 339 343 352 454

210 280 1348 1341 1376 1780
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results. We combine them in the table. This protocol is more expensive than
the addition-only ones, so we set smaller update sizes of Nd = 24, 25, 26 to
demonstrate the turning point where our protocols start to perform better. Our
experiments for input size N = 222 are run on a Google Cloud c2-standard-30
virtual machine with 120 GB of RAM as we run out of 64 GB memory.

Table 3. Communication cost (in MB) and running time (in seconds) of our
protocols for UPSI-Cardinality and UPSI-Sum with addition and deletion in
comparison with prior work. * indicates estimated communication and running
time.

N Nd Protocol Comm. (MB)
Total Running Time (s)

LAN 200Mbps 50Mbps 5Mbps

220

−
RR22 149 31.1 38.4 51.9 258

CGS22 (C-PSI1) 2190 31.0 135 414 3771

CGS22 (C-PSI2) 1408 24.3 92.8 415 3872

24

ΠUPSI-Delca

ΠUPSI-Delsum

58.5 96.1 101 106 179

25 116 190 198 212 362

26 231 364 375 402 723

222

−
RR22 606 125 159 214 1086

CGS22 (C-PSI1) 6667* 93.0* 126* 226* 1426*

CGS22 (C-PSI2) 4435* 77.9* 100* 167* 965*

24

ΠUPSI-Delca

ΠUPSI-Delsum

61.4 103 107 113 191

25 122 203 210 223 383

26 243 385 399 429 765

Communication: Our communication complexity is O(Nd · log N), but the
improvements are not as stark, for two reasons: (1) the increased stash and node
sizes required, and (2) in addition to exchanging ciphertexts, the parties also
perform OT and garbled circuits. Despite this, our protocol still achieves lower
communication overhead in most settings. At N = 220, our communication has
an improvement of 1.3 − 2.5× when Nd ≤ 25. By N = 222, our communication
has an improvement of 2.5 − 9.9× for all update sizes.

Computation: Our performance under LAN is again dominated by public key
operations, but, unlike in the addition-only protocols, does not benefit from the
efficient El Gamal instantiations. Our computation has the same growth rate as
communication, and so we expect our performance to eventually beat CGS22
when N is sufficiently large.

End to End: As shown in Table 3, the end to end running time of our protocol
begins to outperform RR22 and CGS22 at 5 Mbps when N = 220, Nd = 24 by
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1.4×. By N = 222, we show an improvement of 1.3 − 5.1× at 5 Mbps for all
update sizes, and an improvement of 1.5× at 50 Mbps for Nd = 24.

6.4 UPSI for Plain PSI

We compare our plain UPSI protocols with [51] (RR22) in Table 4. We evaluate
two constructions in RR22 with different encoding sizes of 1.28n and 1.23n,
which have different trade offs in computation and communication, denoted as
fast and small respectively in the table. Note that our addition-only plain
UPSI (Fig. 5) contains only one encrypted tree, hence it is more efficient than
our other addition-only protocols. To best demonstrate our turning point, we
use Nd = 24, 26, 28, 210 for ΠUPSI-Addpsi and Nd = 24, 25, 26 for ΠUPSI-Delpsi

Table 4. Communication cost (in MB) and running time (in seconds) of our
protocols for plain UPSI in comparison with prior work.

N Nd Protocol Comm. (MB)
Total Running Time (s)

LAN 200Mbps 50Mbps 5Mbps

220

− RR22 (fast) 34.3 0.73 3.09 7.10 55.9

RR22 (small) 32.1 1.00 3.21 6.97 52.8

24

ΠUPSI-Addpsi

0.50 1.41 1.84 1.89 2.48

26 1.95 5.54 6.11 6.30 8.88

28 7.57 21.6 22.8 23.5 34.1

210 29.6 84.9 87.5 90.8 133

24

ΠUPSI-Delpsi

58.7 98.6 103 109 181

25 117 195 203 215 369

26 231 370 384 410 729

222

− RR22 (fast) 138 3.45 11.3 27.7 227

RR2 (small) 129 4.81 12.2 27.6 214

24

ΠUPSI-Addpsi

0.53 1.49 1.93 1.97 2.57

26 2.06 5.89 6.48 6.67 9.51

28 8.03 22.9 24.1 24.9 36.2

210 31.5 89.9 92.8 96.2 141

24

ΠUPSI-Delpsi

61.6 105 109 115 194

25 122 208 214 228 388

26 243 396 412 437 776

Communication: Similarly as in our other protocols, our communication com-
plexity in both ΠUPSI-Addpsi and ΠUPSI-Delpsi are O(Nd · log N). The communication
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cost of ΠUPSI-Addpsi outperforms RR22 by 1.1−240× in all settings, whereas that
of ΠUPSI-Delpsi only beats RR22 by 1.1 − 2.1× with N = 222 and Nd = 24, 25.

Computation: Our computation complexity is similar to communication, lead-
ing to better performance when N is sufficiently large. Our addition-only proto-
col starts to outperforms RR22 when N = 222 and Nd = 24.

End to End: As the communication and computation discussed above, our
protocols are more competitive with larger input sizes, smaller updates, and in
networks with lower bandwidths. By N = 222 and Nd = 24, ΠUPSI-Addpsi achieves
an improvement of 2.3 − 88× in all network settings. It outperforms RR22 by
1.5× even when the update size grows to 210.

6.5 Worst-Case Logarithmic Complexity

We compare our one-sided addition-only plain UPSI protocol ΠUPSI-Addpsi with
that of [16] (BMX22). While BMX22 has amortized complexity of O(Nd · log N),
their worst-case complexity is O(N) when they update the leaf level of the tree.
By plugging in our new oblivious data structure, we significantly reduce the
worst-case complexity to O(Nd · log N). The worst-case performance (Max) and
amortized performance (Avg) are presented in Table 5 with N = 218, 220 and
Nd = 26, 28, 210. To analyze the amortized cost of BMX22, we start with two
sets each of size N . Then, on every new day, both parties add a new set of size

Table 5. Communication cost (in MB) and running time (in seconds) compar-
ing our addition-only plain UPSI protocol to the worst-case and average-case
performance of [16].

N Nd Protocol

Comm.(MB) Total Running Time(s)

Max Avg
LAN 200Mbps 50Mbps 5Mbps

Max Avg Max Avg Max Avg Max Avg

218

26 BMX22 120 1.09 79.6 4.30 85.9 4.53 100 4.59 272 5.88

ΠUPSI-Addpsi 1.82 5.17 6.24 6.31 8.70

28 BMX22 121 3.74 77.9 14.7 84.2 15.1 98.3 15.5 268 20.3

ΠUPSI-Addpsi 7.08 20.2 21.8 22.6 32.4

210 BMX22 122 12.5 86.4 49.0 87.7 49.9 95.1 51.3 268 67.2

ΠUPSI-Addpsi 27.7 79.4 81.5 84.7 124

220

26 BMX22 480 1.25 321 4.92 350 5.17 403 5.24 1090 6.76

ΠUPSI-Addpsi 1.95 5.54 6.11 6.30 8.88

28 BMX22 481 4.37 319 17.2 344 17.6 401 18.1 1090 23.7

ΠUPSI-Addpsi 7.57 21.6 22.8 23.5 34.1

210 BMX22 482 15.0 312 58.9 337 59.9 394 61.4 1090 81.1

ΠUPSI-Addpsi 29.6 84.9 87.5 90.8 133
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Nd to their existing sets and run the UPSI protocol. We repeat this process
over a period of several days ( N

Nd
) until the total set size of each party reaches

2N . We report the amortized cost over these N
Nd

days.

Comparison. As shown in Table 5, our communication cost is comparable to
BMX22’s average-case while outperforming their worst-case by 4.4−246× in all
settings since their worst-case communication grows linearly with N . Similarly,
our computation cost is comparable to their average-case while outperforming
their worst-case by 1.1 − 58× in the LAN setting. As a result, the end to end
running time of our protocol outperforms BMX22’s worst-case in all settings by
1.1 − 123×, while having 1.1 − 1.8× overhead compared to their average-case.
Concerning the worst-case performance, our protocol has more advantages in
larger input sizes and smaller updates.
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