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Abstract: Process control and optimization have been
widely used to solve decision-making problems in chemical
engineering applications. However, identifying and tuning
the best solution algorithm is challenging and time-
consuming. Machine learning tools can be used to auto-
mate these steps by learning the behavior of a numerical
solver from data. In this paper, we discuss recent advances
in (i) the representation of decision-making problems for
machine learning tasks, (ii) algorithm selection, and (iii)
algorithm configuration for monolithic and decomposition-
based algorithms. Finally, we discuss open problems related
to the application of machine learning for accelerating
process optimization and control.

Keywords: process control; process optimization; machine
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1 Introduction

The design and operation of chemical processes depend on
decisions spanning a wide range of scales, from the molec-
ular up to the enterprise-wide, and constrained by multiple
physical and chemical phenomena (Daoutidis et al. 2018;
Grossmann 2012; Hanselman and Gounaris 2016; Pistiko-
poulos et al. 2021). Process control and optimizationmethods
provide a systematic framework to identify the best possible
decisions in designing and operating a process, subject to
constraints that emerge from physics or design and opera-
tional considerations. Over the last few decades, there have
been significant advances in both theory and algorithm
development regarding the control of nonlinear and

constrained process systems (Christofides et al. 2013; Daou-
tidis et al. 2023b; Ellis et al. 2014; McAllister and Rawlings
2022; Mesbah 2016; Shin et al. 2019), as well as the solution of
broad classes of optimization problems (Biegler 2024; Bou-
kouvala et al. 2016; Grossmann et al. 2016; Tawarmalani and
Sahinidis 2005; Wächter and Biegler 2006).

Despite these advances, control and optimization
problems that challenge the computational performance of
state-of-the-art algorithms continue to emerge. Some ex-
amples of application domains where such problems occur
include the real-time operation of chemical processes
interacting with renewable energy resources, the decar-
bonization of the energy sector, and the design of resilient,
sustainable and circular supply chain networks (National
Academies of Sciences Engineering and Medicine 2022). The
scale and complexity in these systems and the multiple
spatial and temporal scales that are often present make the
solution of the corresponding control and optimization
problems challenging. Different approaches have been fol-
lowed to improve the tractability of such problems. For
example, one can potentially reduce the computational
complexity by reformulating the problem (Liberti and Pan-
telides 2006; Raghunathan and Biegler 2003). However,
finding a suitable exact reformulation is generally not
possible. Data-driven approaches namely surrogate
and hybrid modeling, have also been developed to learn a
surrogate model with lower computational complexity
(Bhosekar and Ierapetritou 2018; Bradley et al. 2022; Cozad
et al. 2014; Misener and Biegler 2023; Sansana et al. 2021).
Although this approach has received significant attention,
the solution returned is (inherently) approximate.

An alternative approach is to accelerate the solution
process itself by (1) selecting a solution strategy (algorithm
selection) and (2) tuning it (algorithm configuration) such
that a desired performance function like solution time is
minimized. The acceleration is usually achieved by exploit-
ing some underlying property of the decision-making prob-
lem. An example is the case of structured decision-making
problems, where the structure can be used as the basis of
decomposition-based optimization algorithms, which are
usually faster than monolithic algorithms for large-scale
problems (Conejo et al. 2006). Although this approach does
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not compromise solution quality, selecting and tuning a so-
lution algorithm is nontrivial. Current state-of-the-art algo-
rithms or solvers, especially commercial ones, are complex
systems with many algorithmic steps, each one potentially
having a set of hyperparameters. Furthermore, the quanti-
tative effect of the problem formulation on the performance
of an algorithm, such as solution time, is not known a-priory,
i.e., the selection and tuning of the algorithm are black-box
optimization problems since the solution time or quality (for
local solvers) cannot be determined a-priory.

To this end, machine learning (ML) can be used to learn
the behavior of an algorithm for a class of decision-making
problems from data. ML has been widely used in chemical
engineering for modeling chemical and physical systems
and developing data-driven optimization and control algo-
rithms (Bhosekar and Ierapetritou 2018; Bradley et al. 2022;
Cozad et al. 2014; Daoutidis et al. 2023a; Sansana et al. 2021;
Schweidtmann et al. 2021; Tang and Daoutidis 2022). Usually,
data is used to learn a system’s chemical, physical, or control-
relevant properties. In the context of algorithm selection and
configuration, the data is used to learn the effect of the
problem formulation on the computational performance of
an algorithm.

The application of ML for accelerating an algorithm has
recently received significant attention in the operations
research and computer science communities and has shown
the potential for significant computational savings (Bengio
et al. 2021). This approach has received less attention in
the chemical engineering literature, where the emphasis has
been on improving the problem formulation and developing
new optimization algorithms with well-characterized opti-
mality properties. ML has been mainly used to analyze
the solution time for production scheduling optimiza-
tion problems (Kim and Maravelias 2022) and accelerate
decomposition-based algorithms for the solution of mixed
integer model predictive control (Mitrai and Daoutidis
2024a,d), supply chain optimization (Triantafyllou and
Papathanasiou 2024), and capacity expansion problems
(Allen et al. 2023). Decision-making problems that arise in
chemical engineering have certain features, such as
nonlinearity in the form of bilinear terms (flowrate multi-
plied by concentration) or exponentials with continuous
variables (e− E

RTc) and certain structure in the constraints,
such as tri-diagonal structure which arises in model pre-
dictive control applications. We posit that developing
ML-based methods for accelerating general-purpose solvers
as well as decomposition-based solution algorithms is a
fitting approach to improve the tractability of complex
decision-making problems in chemical engineering.

In this paper, we aim to review the algorithm selection
and configuration problems, review recent advances in

using ML to accelerate the solution of decision-making
problems and discuss open problems and future directions
for applying this approach to chemical engineering prob-
lems. In Section 2, we formally introduce the algorithm se-
lection and configuration problems. In Section 3, the
representation of an optimization problem in a format that
can be used as input to standard ML models is discussed. In
Sections 4–6, we present the application of ML for selecting
and tuning an algorithm, and finally, in Section 7, we discuss
open problems and opportunities related to the acceleration
of numerical algorithms using machine learning.

2 The algorithm configuration and
selection problems

2.1 The algorithm selection problem

Consider a general decision-making problem

P(p) ≔minimize
x

f (x ; p)
subject to gi(x ; p) ≤ 0 ∀ i = 1,…,min

hj(x ; p) = 0 ∀ j = 1,…,meq

x ∈ RNc
x × Z

Nd
x ,

(1)

whereNc
x + Nd

x = N ,min +meq =M, and p are the parameters
of the problem (which can be both continuous and integer), x
are the decision variables and the objective f as well as the
constraints gi, hj can be convex (linear or nonlinear) or
nonconvex. The first question that arises during the solution
of a decision-making problem is which algorithm to select
for the solution of the problem. In general, finding or
developing an algorithm that performswell for any decision-
making problem is not possible (Hutter et al. 2014; Markót
and Schichl 2011; Smith-Miles and Lopes 2012). Thus, for a
given problem, one must find the most suitable algorithm or
solution strategy. This is formally known as the algorithm
selection problem and is stated as follows (Rice 1976):

Algorithm selection. Given an optimization problem P(p)
and a set of algorithms A = {a1,…, a|A |}, determine which
algorithm α* should be used to solve the problem such that a
desired performance function m :P × A →M is
optimized.

The performance functionm is ametric used to compare two
algorithms. Typical performance functions can be the
computational time or the solution quality for a given
computational budget. The choice of the performance
function depends on the application. For example, solution
time might be more important for an online application,
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whereas solution quality and feasibility might be better for a
design or safety-critical application.

Given a decision-making problem, the set of available
algorithms, and a performance function, algorithm selection
can be posed as an optimization problem as follows

α* ∈ argmin
α∈A

m(P(p), α). (2)

This problem is also known as per-instance algorithm
selection since it considers only a specific decision-making
problem. However, it can be easily extended to identify the
best algorithm for a class of decision-making problems
(Kerschke et al. 2019).

The algorithm selection problem is a black-box optimi-
zation problem since the performance function m is not
known explicitly, and evaluating an algorithm for a given
problem can require significant computational resources.
The standard approach to solving this problem relies on ML,
where data are used to approximate the performance
function, and the best algorithm is selected based on the
predictions of the learned model.

2.2 Algorithm configuration

Once an algorithm is selected, the next step is tuning of the
algorithm. Let’s consider the case where an algorithm αwith
parameters πα is available to solve a decision-making prob-
lem P(p) (Eq. (1)). We will refer to the parameters of the
algorithm πα as hyperparameters in order to distinguish
them from the parameters of the decision-making problem
p. The values of the hyperparameters πα, also known as
tuning or configuration, have a significant effect on the
computational performance of the algorithm. Usually, these
hyperparameters are selected by considering the average
performance of the algorithm over a set of instances. How-
ever, one can exploit specific features of a problemandfind a
tuning that is optimal for the specific instance. This problem
is formally known as the per-instance algorithm configura-
tion problem and is stated as follows (Eggensperger et al.
2019; Schede et al. 2022):

Algorithm configuration. Given a decision-making problem
P(p), and an algorithm α with hyperparameters πα ∈ Πα find
hyperparameters π*

α such that a performance function
mα

conf :P × Πα ↦M is optimized.

The algorithm configuration problemhas three components.
Thefirst is the decision-making problem P(p), which is given.
The second is the space of possible configurations Πα, which
is algorithm dependent. For example, in gradient descent

algorithms, a common hyperparameter is the step size (or
learning rate), which is a positive number, i.e., Πα = R+. The
last component is the performance function mα

conf , a metric
used to compare two configurations of the algorithm α for a
given problem. Similar to the algorithm selection problem,
based on the application considered, different performance
functions can be used such as solution time or solution
quality. These components lead to the following formulation
of the algorithm configuration problem

π*
α ∈ argmin

πα∈Πα

mα
conf(P, πα). (3)

The solution to the algorithm configuration problem is
challenging. First, the performance functionmα

conf is not known
explicitly, i.e., algorithm configuration is a black-box optimi-
zation problem. Also, evaluating the performance of a config-
uration for a given problem can be computationally expensive
for large-scale decision-making problems. Finally, the search
space of possible algorithm configurations can be very large.

The first approach to solving the algorithm configu-
ration problem is to rely on sampling-based black-box
optimization algorithms. Although this approach has been
extensively used in the literature (Chen et al. 2011; Hutter
et al. 2009, 2010, 2011; Liu et al. 2019), it can be slow for
online applications, where given a decision-making
problem, one must quickly find the best configuration of
the algorithm and implement it. In such cases, ML can be
used to learn (or approximate) offline either the perfor-
mance function mα

conf using a surrogate m̂α
conf or the solu-

tion of the algorithm configuration problem itself. Once
these models are learned, then they are used online to find
the best configuration.

2.3 Relation between algorithm selection
and configuration

The algorithm selection and configuration problems share
several characteristics. First, algorithm configuration can be
considered as a special case of algorithm selection. Specif-
ically, each configuration of an algorithm can be considered
as a different algorithm, and thus, identifying the best
possible configuration is equivalent to selecting the best al-
gorithm. This can be considered as a simultaneous algorithm
selection and configuration approach since one must
consider simultaneously all the possible combinations of
algorithms and configurations. In general, algorithm
configuration is usually more challenging than algorithm
selection since the search space is much larger. The algo-
rithm selection problem has one degree of freedom, the
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algorithm to be used, and the number of available algo-
rithms is usually small. However, in the algorithm configu-
ration problem, the degrees of freedom are equal to the
number of hyperparameters, and the possible number of
configurations can be very large.

Both problems can be solved either via black-box
optimization or ML-based approaches. In general, black-
box methods have been used for offline applications
where a solver is tuned to perform well on average for a
given set of instances. Black-box optimization methods
require a function evaluation, i.e., computing the perfor-
mance function m for a given problem. In the context of
algorithm selection and configuration, this translates to
solving the decision-making problem P(p) to optimality
and obtaining the value of the performance function. This
approach cannot be applied in an online setting where one
has to identify the best algorithm or tuning without solv-
ing the problem. In such cases, one must learn a surrogate
model from data offline and then use it for inference
online.

Finally, the tasks of selecting and tuning an algorithm, as
presented in Sections 2.1 and 2.2, can be considered static
problems since they are solved only once. In general, algo-
rithm selection and configuration can be performed multi-
ple times when solving a decision-making problem, leading
to dynamic algorithm selection and configuration problems.
Consider, for example, branch and bound-based algorithms
where different solvers can be used at different nodes in the
tree (Markót and Schichl 2011) or even different solver tun-
ing. This difference (static or dynamic) motivates the adop-
tion of different solution strategies (see Figure 1). The static
case is a one-step decision-making problem since, given an
optimization problem (Eq. (1)), the ML model is used to
identify the best algorithm or tuning. On the contrary, the
dynamic case requires constant interaction between an
ML model and the algorithm. Given the decision-making
problem (Eq. (1)) and the state of the solution process, the
ML model determines the best configuration for the algo-
rithm; this is a multi-step decision-making problem. This
difference motivates the application of supervised and
reinforcement learning for algorithm selection and config-
uration as presented in the next sections.

3 Decision-making problems as
inputs to ML models

Let’s consider the case where an ML model m̂, such as a
feedforward neural network, is used to predict the solution
time t of a given algorithm a for an instance P(p),
i.e., t = m̂(P(p), α). A major limitation in developing such a
model is that the optimization problem in Eq. (1) cannot be
used as the input to standard ML models, such as a neural
network, decision tree, random forest, etc. A decision-
making problem cannot be considered as a tabular or
Euclidian data point since it has variables, constraints, and
an objective (or multiple ones in the case of multi-objective
problems). Also, the number of variables and constraints can
vary for different problems or instances. Therefore, a
transformation step is necessary to represent a decision-
making problem in a form that can be used as the input to an
ML model. This representation should (1) capture essential
information about the problem, (2) be amenable to use for
different problem sizes, i.e., varying number of variables
and constraints, (3) not be affected by the ordering of the
variables and constraints, and (4) be computed/constructed
efficiently.

3.1 Vectorial feature representation

The standard approach to achieve the above requirements is
to extract a set of easily computable features ν(P(p)) ∈
R

N features from the problem formulation and use them as in-
puts to anMLmodel (see Figure 2).Wewill refer to this as the
vectorial feature representation. Examples of these features
include the number of continuous and discrete variables, the
number of constraints, the number of nonconvex terms, the
convexity of the objective, etc.We refer the reader to (Hutter

Figure 1: High level overview of ML-based so-
lution approaches for algorithm selection and
configuration.

Figure 2: Vectorial feature representation of an optimization problem.
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et al. 2014; Schede et al. 2022; Smith-Miles and Lopes 2012) for
an extended list. Although this approach has been exten-
sively used to predict the solution time of mixed integer
optimization problems, it has two limitations. First, signifi-
cant effort and domain knowledge are required to identify
the most informative features for a given class of problems.
Secondly, the vectorial representation does not account for
the exact interaction pattern among the variables and
constraints.

3.2 Graph representation

An alternative approach to represent a decision-making
problem is a graph that can capture the interaction pattern
between the variables and constraints. A graph G is a
mathematical object that captures the interaction between a
set of objects called nodes or vertices. We define node i as vi
and V = {vi}Ni=1 the set of nodes. The interaction pattern is
captured via the edges E = {eij}i∈V , j∈V where eij = 1 if node i is
connected with node j. A graph can also be represented by
the adjacency matrix A ∈ RN×N where Aij = 1 if an edge exists
between node i and j, i.e., if eij = 1.

Three graphs can be used to represent a decision-
making problem (Allman et al. 2019). The first and most
generic one is the bipartite variable-constraint graph
G b(Vn,Vm, E) (|Vn| = n, |Vm| = m) with adjacency matrix
Ab. This graph has two sets of nodes, one representing the
constraints Vm and the other the variables Vn. The edges E
capture the presence of a variable in a constraint. The sec-
ond type of graph is a constraint graph G c(Vm, Em), where
the nodes Vm are the constraints of the problem and the
edges Em represent the variables that couple two constraints.
In this case, an edge between two nodes i and j can have a
weight wij ∈ Z+, which denotes the number of variables that
couple two constraints. The third type is the variable graph
G n(Vn, En) where the nodes Vn are the variables of the
problem, the edges Em represent whether two variables are
coupled by appearing together in one or more constraints,
and each edge has a weight that denotes the number of
constraints that couple two variables. An example of a var-
iable graph is presented in Figure 3.

The graph representation captures the structural
coupling between the constraint and the variables, i.e., the
presence or not of a variable in a constraint, as reflected in
the adjacency matrix, as well as the strength of interaction
captured via the edge weights. Such representations have
been used extensively for developing control architectures,
as well as implementing decomposition-based optimization
and control algorithms (Allman et al. 2019; Aykanat et al.

2004; Bergner et al. 2015; Ferris and Horn 1998; Jalving et al.
2022; Jogwar and Daoutidis 2017; Khaniyev et al. 2018;
Michelena and Papalambros 1997; Moharir et al. 2017; Rio-
Chanona et al. 2016; Shin et al. 2021; Tang et al. 2018; Wang
and Ralphs 2013).

Under this representation, a decision-making problem,
and in general a system of equations, is represented by a
graph G with adjacency matrix A. Note that the graph and
the adjacency matrices depend on the decision-making
problem P(p), i.e., G(P(p)) and A(P(p)).

3.3 Graph representation with nodal and
edge features

Although the graph representation captures the structure of
the problem, it does not account for the domain of the var-
iables and the functional form in which they appear in the
constraints. To achieve this, a set of features can be associ-
ated with each node and edge in the graph. For example, in
the bipartite graph representation, a set of featuresϕi

v can be

used for each variable i, ϕj
c for each constraint j, and ϕij

e for
an edge between variable i and constraint j. Concatenation of
these features form the feature matrices Fv, Fc, Fe, and a
decision-making problem (Eq. (1)) can be represented by
four matrices, the adjacency matrix A, the variable feature
matric Fv, the constraint feature matrix Fc, and the edge
feature matrix Fe (see Figure 4 for an example).

This representation has been extensively used forMixed
Integer Linear Programming problems (Ding et al. 2020;
Gasse et al. 2019; Gupta et al. 2020, 2022; Li et al. 2022; Liu et al.
2022; Nair et al. 2020; Paulus et al. 2022). Some examples of
features include the domain of the variables for the variable
nodes, the type of constraint (equality or inequality) for the
constraint nodes, and the coefficient of a variable in an edge
for the edges. The ability of this representation to distinguish

Figure 3: Graph representation of an optimization problem.
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between different optimization problems has been proven
rigorously for specific classes of LP and MILP problems and
for specific tasks such as predicting optimal solution and
feasibility (Chen et al. 2022a,b).

Remark 3.1. The representations presented in this section
can be used as inputs to a surrogate model that predicts the
computational performance of an algorithm. To this end, the
following question arises: Which representation should be
used? The chosen representation should be able to represent
the key characteristics of a problem that affect the compu-
tational performance of a solver. Furthermore, the selection
of the representation will determine the class of ML models
that can be used. The vectorial representation can be used
with interpretable models, such as decision trees and linear
regression, as well as noninterpretable models, such as
neural networks, random forests, gaussian processes, etc.
The graph representation requires geometric deep learning
models (Bronstein et al. 2017, 2021), such as graph neural
networks, which are not inherently interpretable. This se-
lection affects our ability to understand the computational
performance of a solver (see Section 7.2 for a detailed dis-
cussion on this).

4 Learning to select a solution
strategy

Given the aforementioned representations,first, we focus on
the application of ML techniques for algorithm selection.
One approach relies on regression to predict the value of the
performance function for a given problem and then select
the best algorithm. For each available algorithm α, data are
generated to approximate the performance functionmαwith

a surrogate m̂α where the input is a representation of the
decision-making problem and the label is the value of the
performance function of algorithm α. In this data generation
process, the tuning of each algorithm α can either be the
default one or the best possible one for the given instance.
This approach has mainly exploited the vectorial feature
representation of a decision-making problem (Hutter et al.
2014; Leyton-Brown et al. 2009) to predict the solution time of
algorithms using neural networks (Eggensperger et al. 2017;
Smith-Miles and Hemert 2011), decision trees (Smith-Miles
and Hemert 2011), Gaussian processes (Bartz-Beielstein and
Markon 2004), and sparse polynomial regression (Huang
et al. 2010). Some applications include determining if dy-
namic programming or branch and search should be used
for solving a knapsack problem (Hall and Posner 2007) and
selecting a heuristic for constraint programming (Allen and
Minton 1996).

An alternative approach is to approximate the solution
of the algorithm selection problem itself, i.e., approximate
the mappingC between the decision-making problem P(p)
and the best algorithm with a surrogate one Ĉ ,
i.e., α* = Ĉ (P(p)). In this approach, the output of the
approximate map Ĉ is one of the available algorithms.
Thus, the algorithm selection problem can be posed as a
multi-class classification problem where a classifier will
predict the solver that has the highest probability of being
the solution to the algorithm selection problem. This
approach has been used to determine the best solution
strategy for traveling salesman problems (Pihera and
Musliu 2014), select local nonlinear solver during branch
and bound for mixed integer nonlinear optimization
problems (Markót and Schichl 2011), determine whether
Dantzig–Wolfe decomposition should be used for the so-
lution of mixed integer linear optimization problems

Figure 4: Graph representation with features of
a mixed integer linear optimization problem.
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(Kruber et al. 2017), determine whether a convex mixed
integer nonlinear optimization should be solved with
branch and bound or the outer approximation algorithm
(Mitrai and Daoutidis 2024c), and determine whether a
mixed integer quadratic optimization problem should be
linearized or not (Bonami et al. 2022).

Yet another solution approach is based on case-based
reasoning, an artificial intelligence approach where a task is
solved based on the solution of other similar tasks (Kolodner
1992). In the context of algorithm selection, for a given
problem, an algorithm α is selected based on its performance
in similar instances. Case-based reasoning has been used to
select whether a constraint programming or mixed integer
programming approach should be used to solve a bid eval-
uation problem in combinatorial auctions using as features
some properties of the graph representation of the problem,
such as graph density, node degree, etc. (Guerri and Milano
2004).

5 Learning to configure an
algorithm

The problem of learning to configure an algorithm has
received significant attention from the operations
research, computer science, and ML/AI communities. We
hereby focus only on the acceleration of optimization al-
gorithms for the solution of linear, mixed integer linear,
and mixed integer nonlinear optimization problems. A
decision-making problem can be solved either mono-
lithically, where an algorithm considers all the variables
simultaneously, or using a decomposition-based algo-
rithm, where the problem is decomposed into a number of
subproblems that are solved iteratively. Given the
different nature of monolithic and decomposition-based
algorithms, different algorithm configuration tasks arise.
Thus, we consider the configuration of these algorithms
separately.

5.1 Configuring monolithic solvers

5.1.1 Initialization

Initialization of an optimization algorithm is not usually
considered a hyperparameter, yet it can have a significant
effect on its computational performance. Usually, intuition
and heuristics are used to identify a good feasible solution.
However, the development of such initialization approaches
is time consuming.

ML has been used to predict the optimal solution of a
class of decision-making problems and use the prediction
either as an initial guess or to fix some of the variables of the
problem. This approach relies on input–output data

D = P(pi), x*i{ }Ndata

i=1 , where the features are some represen-
tation of the decision making problem, as discussed in Sec-
tion 3, and the label is the optimal solution x*i or part thereof.
Given such data sets, supervised learning is used to train
regression and classification models. Usually, regression is
used for predicting the values of continuous variables,
whereas classification is used for integer variables. This
approach has been extensively used to accelerate the solu-
tion of decision making problems which are solved repeat-
edly online. Typical examples include model predictive
control (MPC), where ML models predict the control action
(Kumar et al. 2021; Vaupel et al. 2020), the values of the
integer variables (Cauligi et al. 2022; Masti et al. 2020; Russo
et al. 2023; Zhu and Martius 2020) (for mixed integer MPC),
active constraints (Bertsimas and Stellato 2022; Cauligi et al.
2021; Klaučo et al. 2019; Misra et al. 2022), optimal power flow
problems (Park and Van Hentenryck 2023), and facility
location problems (Triantafyllou and Papathanasiou 2024).

An alternative approach is to approximate the iterative
nature of optimization algorithms via ML models,
i.e., emulate the evolution of the variables’ values during the
solution process. This approach has been used to emulate
interior point solvers for predicting the solution of optimal
power flow problems (Baker 2022) using the feature repre-
sentation and general linear optimization problems (Qian
et al. 2024) using the graph representation of the problem
with features. These initialization approaches are based on
the assumption that an initial guess close to the optimal
solution will reduce the computational time. The main lim-
itation of these initialization approaches is that the predic-
tion is not necessarily feasible. Therefore, a feasibility
restoration step is required to construct a feasible solution
(Chen et al. 2024; Kotary et al. 2021). Alternatively, one can
develop/compute rigorous bounds on the output of the ML
model (Hertneck et al. 2018; Paulson and Mesbah 2020) to
guarantee constraint satisfaction.

5.1.2 ML for preprocessing

Another key component of modern optimization solvers is
preprocessing, a set of techniques used to reformulate the
optimization problem and usually strengthen its relaxation
(Achterberg et al. 2020). An example of a preprocessing
procedure is bound tightening, where given a decision-
making problem, the bounds of the variables are updated
based on optimality and feasibility arguments. The former is
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known as optimality based bound tightening (OBBT), where
given a decision-making problem, first the problem is con-
vexified, and then the maximum and minimum value that a
variable can take is found. This approach has been shown to
lead to a reduction in solution time; however, it requires the
solution of two optimization problems for each variable. ML
has been used to determine the variables for which OBBT
should be applied (Cengil et al. 2022). This approach has been
applied to the solution of optimal power flow problems
where the ML model takes as input a vectorial representa-
tion of the parameters of the optimization problem and
predicts the variables for which application of OBBT leads to
the best bound. Finally, we note that a similar approach has
been developed for the case of feasibility based bound
tightening (FBBT) (Nannicini et al. 2011) where the goal is to
compute updated (tighter) bounds for all the variables while
satisfying the constraints.

5.1.3 ML for branch and bound

Branch and bound is the backbone of mixed-integer opti-
mization solvers. In this approach, given a mixed-integer
linear optimization problem of the form

minimize
x,y

c⊤1 x + c⊤2 y

subject to A1x + A2y ≤ b
x ∈ {0, 1}Nd , y ∈ RNc ,

(4)

branch and bound starts by solving the continuous relaxa-
tion, i.e., setting x ∈ [0, 1]Nd in Eq. (4). The solution to this
problem is usually fractional, i.e., the values of the x vari-
ables are not integers. In this case, first, a variable xi is
selected, and two new problems are created: one where xi is
fixed to zero and one where xi is fixed to one (see Figure 5).
The procedure of selecting a variable to branch is known as
variable selection. Once these two problems are generated,
one has to select which one to solve (node P1, P3 or P4 in
Figure 5); this is known as node selection. Overall, the vari-
able and node selection strategies determine the

computational efficiency of the branch and bound algorithm
(Lodi and Zarpellon 2017). Different variable selection rules
have been proposed. A typical example is strong branching,
where both branches corresponding to xi = 0 and xi = 1 are
solved for each and every variable xi with fractional value,
and the one providing the best bound is selected. Although
this approach leads to smaller branch and bound trees,
i.e., fewer nodes are explored, it is computationally expen-
sive. Identifying the best variable and node strategy is an
algorithm configuration problem.

Several ML-based approaches have recently been pro-
posed to automate and reduce the computational effort
related to making optimal decisions during the branch and
bound solution process for mixed integer linear optimiza-
tion problems (Lodi and Zarpellon 2017). For variable
selection, most approaches rely on the concept of imitation
learning, where anMLmodel tries to copy the behavior of an
expert, such as strong branching for the case of variable
selection. This approach relies either on the vectorial rep-
resentation of the problem (Alvarez et al. 2017; Khalil et al.
2016) or the graph representation with features (Gasse et al.
2019). An alternative approach is to exploit the sequential
nature of variable selection and use reinforcement learning
to find the variable to branch (Etheve et al. 2020; Huang et al.
2022; Parsonson et al. 2023; Scavuzzo et al. 2022). Finally,
based on the relation between algorithm configuration and
selection, the selection of a branching strategy has also been
posed as an algorithm selection task formixed integer linear
problems (Di Liberto et al. 2016) and for spatial branching for
polynomial optimization problems (Ghaddar et al. 2023).

Regarding node selection, two approaches have been
proposed. In the first, node selection is posed as a Markov
decision process and a policy is learned to determine which
node to solve using imitation learning (He et al. 2014; Labassi
et al. 2022). The alternative is to pose node selection as a
multiarm bandit problem, where given a set of options, one
must select an option that will lead to the highest reward. In
the context of node selection, the options correspond to the
available nodes to explore, and the reward can be either the
solution time or the size of the branch and bound tree to be
explored (Sabharwal et al. 2012).

5.1.4 ML for cutting planes

An important component of mixed-integer optimization al-
gorithms/solvers is cutting planes (Dey and Molinaro 2018).
These are usually linear inequalities that reduce the search
space without affecting optimality. However, selecting
which cutting plane to add is nontrivial since multiple types
of cutting planes can be generated, and different numbers of
cutting planes can be added during branch and bound.

Figure 5: Branch and bound tree for a mixed integer linear optimization
problem with two binary variables.
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Mixed-integer optimization solvers create a pool of cuts and
add them based on heuristics.

Similar to learning to branch, ML can be used to
select which cuts to add. These approaches usually learn a
model that approximates the outcome of an expert, i.e., a
rule or heuristic, that identifies the best possible cut
(Baltean-Lugojan et al. 2019; Marousi and Kokossis 2022;
Paulus et al. 2022). The addition of cutting planes can also be
considered as a multistep process since cuts can be added to
the root node as well as the other nodes that are explored
during branch and bound. This has been considered in
(Berthold et al. 2022), where a regression model is used to
determine whether using local cuts at a node of the branch
and bound tree can lead to a reduction in solution time. The
alternative is to rely on reinforcement learning to determine
which cuts to add in each node of the branch and bound tree
(Tang et al. 2020; Wang et al. 2023).

5.2 Configuring all the parameters of a
solver simultaneously

The ML approaches for algorithm configuration consider a
specific aspect of the algorithm. One could consider all the
parameters of a solver simultaneously. In this case, super-
vised, unsupervised, and reinforcement learning can be
potentially used to identify the best configuration. Such

approaches have been proposed for tuning mixed integer
optimization solvers (Bartz-Beielstein and Markon 2004; Hut-
ter et al. 2006, 2009, 2010; Iommazzo et al. 2020; Xu et al. 2011).

This approach can in principle exploit synergies between
different parts of analgorithmor a solver.However, it leads to
a significant increase in the complexity of the configuration
and, subsequently, learning tasks. Furthermore, new archi-
tectures might be necessary to capture detailed information
about the decision-making problem and the algorithm. For
example, the graph representation with features and graph
neural networks can guide the variable selection search
during branch and bound. The algorithm, however, is usually
represented as a vector, and each entry denotes the value of a
hyperparameter. Therefore, new architectures and repre-
sentations might be necessary to simultaneously capture in-
formation about the problem formulation and the algorithm
configuration. Finally, we note that these ML-based ap-
proaches usually cannot provide guarantees regarding the
performance of a solver or a configuration. This has moti-
vated systematic analysis and design of numerical algorithms
using data-driven (Balcan et al. 2024; Dietrich et al. 2020;
Doncevic et al. 2024; Sambharya and Stellato 2024) and
mathematical programming approaches (Das Gupta et al.
2024;Drori andTeboulle 2014;Mitsos et al. 2018). A listwith the
application of different ML approaches and the associated
references for algorithm selection and configuration can be
found in Table 1.

Table : Algorithm selection and configuration for different classes of optimization problems.

Task Optimization problem class

Continuous (linear and
nonlinear)

Mixed integer linear Mixed integer
nonlinear

Algorithm selection Markót and Schichl () Guerri and Milano (), Hall and Posner (),
Leyton-Brown et al. (), Smith-Miles and Hemert
(), Pihera and Musliu (), and Kruber et al.
()

Bonami et al. ()
and Mitrai and Daou-
tidis (c)

Algorithm
configuration

Initialization Vaupel et al. (), Kumar et al.
(), Baker (), Park and Van
Hentenryck (), and Qian et al.
()

Masti et al. (), Zhu and Martius (), Cauligi
et al. (), Russo et al. (), Klaučo et al. (),
Cauligi et al. (), Misra et al. (), Bertsimas and
Stellato (), and Triantafyllou and Papathanasiou
()

Preprocessing Cengil et al. () Nannicini et al. ()
Branching
priority

Ghaddar et al. () Khalil et al. (), Alvarez et al. (), Gasse et al.
(), Etheve et al. (), Scavuzzo et al. (),
Huang et al. (), and Parsonson et al. ()

Node selection He et al. (), Labassi et al. (), and Sabharwal
et al. ()

Cutting planes Paulus et al. (), Baltean-Lugojan et al. (),
Marousi and Kokossis (), Berthold et al. (),
Tang et al. (), and Wang et al. ()

Multiple
parameters

Chen et al. () Hutter et al. (), Hutter et al. (),
Bartz-Beielstein and Markon (), Xu et al. (),
Hutter et al. (), and Iommazzo et al. ()

Liu et al. ()
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6 Learning to configure
decomposition-based algorithms

Decomposition-based optimization algorithms have been
extensively used to solve large-scale decision-making
problems. Unlike monolithic approaches where all the
variables are considered simultaneously, decomposition-
based algorithms decompose the variables (and con-
straints) into a number of subproblems that are solved
repeatedly. Most decomposition-based algorithms can be
classified either as distributed or hierarchical. The main
difference lies in the sequence upon which the sub-
problems are solved. In distributed algorithms, all the
subproblems are solved in parallel and are coordinated via
dual information, whereas in hierarchical algorithms, the
subproblems are solved sequentially and are coordinated
either via dual information or cuts (for the case of cutting
plane-based algorithms). In general, the solution of a
decision-making problem with a decomposition-based al-
gorithm has three steps: (1) problem decomposition, (2)
selection of coordination scheme, and (3) configuration.
These steps can be considered as hyperparameters of a
decomposition-based algorithm; therefore, several algo-
rithm configuration problems must be solved prior to the
implementation of decomposition-based algorithms. A list
with the various ML-based approaches and corresponding
references for accelerating decomposition-based algo-
rithms can be found in Table 2.

6.1 Learning the structure of an
optimization problem

The decomposition of an optimization problem is the basis
for the application of a decomposition-based optimization

algorithm and can have a significant effect on the compu-
tational performance of the algorithm. Traditionally, a
decomposition was obtained using intuition about the
coupling (structure) among the variables and constraints.
Although this approach has been applied extensively, iden-
tifying the underlying structure of a problem is time-
consuming and may not even be possible using only
intuition.

Several automated structure detection methods have
been proposed in the literature. These approaches rely on
the graph representation of an optimization problem as
represented in Section 3.2. Given the graph of a decision-
making problem, graph partitioning algorithms are used
to decompose the graph, i.e., the decision-making prob-
lem, into a number of subproblems. Typical algorithms
include hypergraph partitioning (Aykanat et al. 2004;
Ferris and Horn 1998; Jalving et al. 2022; Michelena and
Papalambros 1997; Wang and Ralphs 2013) and commu-
nity detection (Allman et al. 2019; Bergner et al. 2015;
Khaniyev et al. 2018; Mitrai and Daoutidis 2020; Rio-
Chanona et al. 2016; Tang et al. 2018). These graph parti-
tioning methods usually make a-priory assumptions
about the number of subproblems and the interaction
patterns among them. To overcome these limitations, we
have recently proposed the application of stochastic block
modeling and Bayesian inference for estimating the
structure of an optimization problem (Mitrai and Daou-
tidis 2021; Mitrai et al. 2022). This approach assumes that
the graph of an optimization problem is generated by a
probabilistic model with parameters b that capture in-
formation about the partition of the nodes into blocks and
ω which captures interaction pattern between the blocks.
The parameter b is a vector where the ith entry denotes
the block membership of node i in the partition of the
graph. For the variable graph, this parameter denotes
the block membership of each variable, whereas in the

Table : Algorithm selection and configuration for decomposition-based optimization algorithms.

Task Decomposition-based algorithm

Benders and generalized
Benders
decomposition

Column generation Lagrangean decomposition

Structure detection Michelena and Papalambros (), Wang and Ralphs (), Ferris and Horn (), Aykanat et al. (), Jalving et al.
(), Bergner et al. (), Khaniyev et al. (), Tang et al. (), Allman et al. (), Rio-Chanona et al. (), Mitrai
and Daoutidis (), Mitrai et al. (), Mitrai and Daoutidis (), Tang et al. (), and Basso et al. ()

Initialization Mitrai and Daoutidis (b,c) Demelas et al. () and Biagioni et al.
()

Coordination via cutting
planes

Jia and Shen () and Lee et al.
()

Morabit et al. () and Chi et al.
()
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constraint graph, the block membership of each
constraint. Given the graph of a decision-making prob-
lem, the parameters b are estimated or ‘learned’ via
Bayesian inference. The estimated structure can be used
as the basis for the application of distributed and hier-
archical decomposition-based algorithms.

Finally, we note that regarding problem decomposi-
tion, the aforementioned approaches rely on the
assumption that decomposing a decision-making problem
based on the underlying structure leads to good compu-
tational performance. Although this has been shown to be
a good assumption for a large class of problems (Basso
et al. 2020; Tang et al. 2018), it is not guaranteed that a
structure-based decomposition is the best possible one. An
example is the case of the solution of two-stage stochastic
optimization problems using Benders decomposition.
Traditionally, the original problem is decomposed into a
master problem, which considers the first stage decisions
and a set of independent subproblems, each one repre-
senting a scenario. Recently it has been shown that adding
some scenarios (or subproblems) to the master problem
can lead to a reduction in the solution time (Crainic et al.
2021). In general, finding the best possible decomposition
is an open problem.

6.2 Learning to warm-start decomposition-
based optimization algorithms

Similar to the initialization of monolithic algorithms, the
initialization of a decomposition-based algorithm can
significantly affect its computational performance. Howev-
er, predicting only the values of the variables is not enough
since it does not account for the coordination aspect of a
decomposition-based algorithm.

6.2.1 Initialization of distributed algorithms

For distributed-based algorithms, the coordination is ach-
ieved using Lagrangean multipliers. Therefore, an initiali-
zation requires an estimate of the values of the variables
of the problem as well as the Lagrangean multipliers. This
increases the complexity of the learning task compared to
the initialization of monolithic solvers. This approach has
been used to initialize the Lagrangean relaxation algorithm
(a distributed decomposition-based algorithm) to solve
network design and facility location problems (Demelas et al.
2023). This is achieved using an encoder–decoder architec-
ture, where the input is the graph representation of the

problem with features and the solution of the linear relax-
ation, and the output is an estimate of the multipliers. A
similar approach has been developed for accelerating the
alternating directionmethods ofmultipliers (ADMM) using a
recurrent neural network to predict the values of the
Lagrangean multipliers and the complicating variables for
the solution of optimal power flow problems (Biagioni et al.
2020).

6.2.2 Cutting plane-based hierarchical decomposition
algorithms

Initialization is more challenging for cutting plane-based
decomposition algorithms. In these methods, a decision-
making problem is usually decomposed into a master
problem, which contains all the integer variables and
potentially some continuous, and a subproblem, which
considers only continuous variables. The solution of the
subproblem depends on the values of the variables of the
master problem, which are called complicating variables.
Themaster problemand subproblemare solved sequentially
and are coordinated via cutting planes, i.e., linear in-
equalities that inform themaster problem about the effect of
the complicating variables on the subproblem. Usually, in
the first iteration, themaster problem is solved without cuts;
the cuts are added iteratively based on the solution of the
master problem. Adding an initial set of cuts can lead to
better bounds and, thus, convergence in fewer iterations.
However, similar to the cutting plane methods for branch
and bround, determining which cuts to add as a warm start
for decomposition-based methods is nontrivial. First, the
number of potential cuts can be very large, and selecting
which ones to add is a complex combinatorial problem. The
second issue is related to the validity of the cuts for different
instances. For cases where the parameters of the subprob-
lem do not change, the cuts can be evaluated only once and
added to themaster problem every time a new instancemust
be solved. However, if the parameters of the subproblem
change, then the previously evaluated cuts are not valid.
Thus, one has to evaluate them, i.e., solve the subproblem,
before adding them to the master problem.

In recent work, we have proposed several ML-based
approaches to learn to initialize Benders decomposition by
adding an initial set of cuts in the master problem for the
solution ofmixed integermodel predictive control problems.
For cases where the parameters of the subproblem do not
change, and the complicating variables are continuous, we
posed the cut selection problem as an algorithm configura-
tion problem (Mitrai and Daoutidis 2024d). The number of
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cuts corresponds to the number of points used to discretize
the domain of the complicating variables, and the perfor-
mance functionwas the solution time,whichwas learned via
active and supervised learning.

For the casewhere the parameters of the subproblemdo
not change, and the complicating variables are both discrete
and continuous, the cut selection process has two steps. First,
an ML-based branch and check Benders decomposition
algorithm is used to obtain an approximate integer feasible
solution and a set of integer feasible solutions, which are
explored during branch and check (Mitrai and Daoutidis
2024a). The cuts related to these integer feasible solutions are
added to the master problem, and then Benders decompo-
sition is implemented to obtain the solution of the problem
(Mitrai and Daoutidis 2024b). The integer feasible solutions
guide the selection of the cuts to be added to the master
problem. Finally, in the most generic case where the
parameters of the subproblem change and the complicating
variables are both continuous and discrete, a similar
approach can be followed, where first, a set of integer
feasible solutions is obtained by the ML-based branch and
check. However, since the parameters of the subproblem
change, the cuts related to these integer feasible solutions
are first evaluated by solving the subproblem and then
added to the master problem.

6.3 Learning to coordinate cutting plane-
based decomposition algorithms

Once a decomposition is decided and an initialization is
selected, the next step is the implementation of the algo-
rithm. As discussed in Sections 6.2.2, for cutting plane-based
algorithms, the steps are (1) solve the master problem and
obtain the values of the complicating variables, (2) solve the
subproblem, and (3) incorporate in the master problem in-
formation on the subproblems in the form of cuts. These
three steps are repeated until the algorithm converges.
Selecting which cutting planes to add during the solution
process is an algorithm configuration problem.

In certain classes of problems, multiple subproblems
can exist, and in each iteration, multiple cuts can be gener-
ated and added to the master problem. Although this
strategy seems reasonable at first since a cut contains in-
formation about the subproblem, it can also significantly
increase the computational complexity of the master prob-
lem. This has led to the development of ML-based architec-
tures to determine which cuts to generate and add to the
master problem during the solution. Two approaches have
been developed to achieve this.

In the first, a classifier is used to predict whether a cut
is valuable and should be added to the master problem.
Different metrics are proposed to deem a cut valuable. The
most commonly used one is the improvement in the
bounds. This approach has been applied for the solution of
two-stage stochastic optimization problems using Benders
and generalized Benders decomposition (Jia and Shen
2021; Lee et al. 2020) as well as the solution of multistage
stochastic optimization problems (Borozan et al. 2023). We
note that a similar approach has been proposed for col-
umn generation where an ML model predicts if a column
can lead to improvements in the bounds (Morabit et al.
2021).

The second approach exploits the iterative nature of
decomposition-based algorithms and poses the cut selection
problem as a reinforcement learning problem (Chi et al.
2022). Specifically, the solution of a decision-making problem
with a decomposition-based algorithm is modeled as a
Markov decision process, and the goal is to train a rein-
forcement learning agent which given a candidate set of cuts
(obtained from the solution of the master problem) selects
the cuts that should be added such that the number of steps
(iterations) required to solve the problem is minimized.

7 Open problems and conclusions

In this section, we discuss open problems and new oppor-
tunities for applying ML to enhance the computational
performance of algorithms for executing computational
tasks in chemical engineering.

7.1 Application to general numerical tasks

The concepts discussed in this paper, as well as theML-based
solution strategies, can be applied to generic computational
tasks that arise in chemical engineering. Typical examples
include steady-state and dynamic process simulation. In
such cases, one must solve a system of equations using an
iterative numerical algorithm that has hyperparameters.
Hence, algorithm selection and configuration approaches
can be used to select the best simulation algorithm and tune
it for the specific computational task. Some examples include
the tuning of the successive over-relaxation algorithm for
the solution of linear systems of equations (Khodak et al.
2023), selecting solvers for the solution of linear systems of
equations (Bhowmick et al. 2009; Demmel et al. 2005;
Dufrechou et al. 2021) and for the solution of initial value
problems (Kamel et al. 1993). These results show that ML, in
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tandem with appropriate representations, might be able to
accelerate process simulation, especially for large-scale and
nonlinear systems, which are common in chemical engi-
neering applications.

7.2 Can ML generate new insights?

All the aforementioned ML-based algorithm selection and
configuration approaches answer the question of which al-
gorithm to use and how to tune it. The next question is why is
an algorithm (or configuration) able to solve a given problem
instance efficiently? In other words, can ML generate new
insights regarding the efficiency of a given algorithm for a
class of decision-making problems? This question is relevant
not only in the context of optimization algorithms but for the
execution of numerical tasks in general (Kotthoff 2016). An
approach to understanding the difficulty of solving a prob-
lem is to approximate the performance functions with
interpretable models, such as decision trees, linear regres-
sion, and symbolic regression. However, these models usu-
ally have low accuracy, and more accurate models usually
rely on deep learning (graph neural networks, feedforward
neural networks, etc.), which is not inherently interpretable.
This necessitates the utilization of explainable artificial in-
telligence tools for analyzing the outputs of deep learning
models and potentially developing new interpretable deep
learning architectures (Li et al. 2018; Rudin 2019). Overall,
explaining and understanding the computational perfor-
mance of an algorithm for a given decision-making problem
is an open research problem.

7.3 Data availability

The data generation process is usually the most time
consuming step in the development of an automated algo-
rithm selection or configuration framework since a large
number of decision-making problems must be solved, usu-
ally to optimality. Although parallel computing can be used
to generate such datasets, this still requires significant
computational resources. This computational cost can be
potentially reduced using active, semi-, self-, and transfer
learning approaches.

Active learning is a commonly used approach for cases
where obtaining the labels of a data point is expensive
(Settles 2009). This approach has been used to learn to
initialize generalized Benders decomposition for the solu-
tion of mixed-integer model predictive control problems
(Mitrai and Daoutidis 2024d). In this setting, a pool of data
points is available, but only the features are known (e.g.,

some representation of the decision-making problems and
the tuning) and obtaining the label requires the solution of
the decision-making problem. The selection of the data point
to be labeled is guided by the uncertainty of the prediction,
i.e., we label the data point (combination of decision-making
problem and tuning) for which the prediction of the solution
time is the least certain. This approach still requires the
labeling of data points.

Semi-supervised learning uses simultaneously labeled
(usually few) and unlabeled data to train an ML model
(Van Engelen and Hoos 2020). An example is wrapper
methods where a first model is trained using the labeled
data (initial training set). The model is subsequently used
to general pseudo-labels for the unlabeled data which are
added to the training data set and the model is retrained.
Self-supervised learning uses the available unlabeled data
to learn representations that can be useful for subsequent
tasks such as classification and regression. Finally, trans-
fer learning can be used to reduce the size of the training
dataset by exploiting ML models trained for similar
tasks (Weiss et al. 2016), such as branching in mixed
integer linear and mixed integer nonlinear optimization
problems.

7.4 Generative artificial intelligence

All the ML-based methods discussed so far are based on
predictive machine learning/artificial intelligence tech-
niques, namely supervised, unsupervised, and reinforce-
ment learning. Recently generative artificial intelligence has
made significant progress in developing AI-based systems
capable of generating new content, such as video, image, and
text. Given this remarkable progress, it is natural to wonder
whether generative AI can be used to accelerate the solution
of a decision-making problem.

The first application of generative AI is problem
formulation from a natural language description of a
decision-making problem. Preliminary results show that
large language models (LLMs) can successfully formulate
an optimization problemwhen the number of parameters,
variables, and constraints is small (Ramamonjison
et al. 2022, 2023). The natural language description has also
been used to analyze infeasibility in a decision-making
problem by making the LLM model interact with an opti-
mization solver (Chen et al. 2023). LLMs have also
been used to learn or discover new algorithms
(Romera-Paredes et al. 2024) by coupling an LLM with a
genetic programming framework, where the LLM pro-
vides new candidate algorithms which are evaluated and
subsequently mutated by the LLM. The last application is
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that of generating optimization instances. This is achieved
using the graph representation, with node and edge fea-
tures, of a decision-making problem and developing a
model that generates new graphs, i.e., optimization
problems (Geng et al. 2024).

Overall, generative AI can be conceptually used
for problem formulation, explaining the solution of a
computational task, discovering new algorithms, and refor-
mulating a decision-making problem. However, the capability
of current transformer-based deep learning architectures
(both ones depending on natural language and graph-based) to
perform these tasks is an open problem.
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