
Advancing Muscle Monitoring and Intervention:

Wearable Ultrasound for Tremor Frequency

Measurement and Real-Time Tissue Displacement

Analysis
*Note: Sub-titles are not captured in Xplore and should not be used

Xiangming Xue

Joint Department of

Biomedical Engineering

North Carolina State University

Raleigh, NC, USA

xxue5@ncsu.edu

Sunho Moon

Department of Mechanical

and Aerospace Engineering

North Carolina State University

Raleigh, NC, USA

smoon4@ncsu.edu

Vidisha Ganesh

Joint Department of

Biomedical Engineering

North Carolina State University

Raleigh, NC, USA

vganesh3@ncsu.edu

Qianqian Cai

Department of Mechanical

and Aerospace Engineering

North Carolina

State University

Raleigh, NC, USA

qcai2@ncsu.edu

Akshar Patel

Joint Department of

Biomedical Engineering

North Carolina

State University

Raleigh, NC, USA

ampate24@ncsu.edu

Nitin Sharma

Joint Department of

Biomedical Engineering

North Carolina

State University

Raleigh, NC, USA

nsharm23@ncsu.edu

Xiaoning Jiang

Department of Mechanical

and Aerospace Engineering

North Carolina

State University

Raleigh, NC, USA

xjiang5@ncsu.edu

Abstract—Precise monitoring of tremor frequency and tissue
displacement (TD) is essential for developing effective non-
invasive tremor suppression methods. This study presents a
wearable ultrasound (WUS) array designed for continuous, real-
time muscle monitoring. The WUS features a 32-element, 1-3
PZT-5H composite array with a center frequency of 7.22 MHz
and a -6 dB fractional bandwidth of 52.74 %, optimized for
capturing high-resolution ultrasound signals from target muscles
like the flexor carpi radialis (FCR). Experiments with Parkinson’s
disease (PD) patients for tremor frequency detection and TD
measurements demonstrated that the WUS system accurately
identified tremor frequencies and tracked muscle displacement.
These results suggest that WUS can provide a reliable, non-
invasive alternative to commercial ultrasound systems, offering
continuous muscle monitoring for improved tremor management
and intervention strategies.

Index Terms—ultrasound transducers, wearable transducers,
muscle activities detection, functional electrical stimulation,
tremor management, machine learning

I. INTRODUCTION

Tremors, characterized by involuntary muscle oscillations,

particularly in the hands and arms, affect more than 11

million individuals in the United States [1]. These involun-

tary movements significantly impair daily activities. Current
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interventions for tremor management include pharmacological

treatments, neurosurgical procedures, and external assistive

devices. However, each approach has inherent drawbacks:

medications often lead to adverse side effects, surgical in-

terventions are invasive and costly, and external devices are

frequently limited by their size, weight, and lack of portability.

Recent research has demonstrated that both functional electri-

cal stimulation (FES) [2] and afferent stimulation (AS) [3]

can be effective alternatives for tremor suppression, without

the limitations associated with traditional methods. Unlike

FES, which targets muscle activation, AS specifically engages

afferent neural pathways using lower stimulation intensities.

This reduced intensity makes AS less likely to induce muscle

fatigue, presenting it as a more promising and sustainable

approach for tremor management. However, the efficacy of

AS in tremor suppression remains inconsistent across different

studies and clinical applications. A major challenge lies in the

absence of a standardized approach to AS strategies, making

it difficult to optimize treatment protocols. This variability

highlights the need for precise sensing technologies that can

accurately capture tremor dynamics and provide real-time

feedback for closed-loop control systems [4]. Effective tremor

suppression necessitates continuous monitoring of both tremor

frequency and target muscle tissue displacement. Tremor fre-

quency is crucial for determining the optimal timing of AS in-



terventions, while precise measurement of tissue displacement

provides valuable insights into muscle movement dynamics,

facilitating accurate modeling for AS. This real-time data is

essential for informing and adjusting stimulation parameters

to achieve optimal therapeutic outcomes.

Commonly employed techniques, such as inertial measure-

ment units (IMUs) and electromyography (EMG), present

significant drawbacks. IMUs primarily capture limb displace-

ment, offering limited information on muscle-specific tremor

frequency, while EMGs suffer from interference when record-

ing in the presence of active afferent stimulation, necessitating

interruptions in AS delivery during data acquisition. Ultra-

sound (US) imaging has emerged as a promising alternative

due to its ability to provide direct, real-time visualization of

muscle activity without the interference issues that hamper

EMG. However, traditional US probes are rigid and bulky,

making them impractical for wearable applications that require

continuous, unobtrusive monitoring during movement.

However, conventional US probes are rigid and cumber-

some, making them unsuitable for wearable applications that

require continuous, unobtrusive monitoring during movement.

Thus, there is a critical need to develop wearable, non-invasive

sensing technologies, such as wearable ultrasound (WUS) sys-

tems, that can provide detailed insights into muscle dynamics

and facilitate the design of more effective AS strategies for

tremor management. The objective of this study is to assess

the feasibility of using a WUS array for tremor monitoring

and suppression. Specifically, we aim to validate the WUS

array’s capability to accurately identify tremor frequency and

TD, both of which are essential parameters for closed-loop

tremor suppression systems. To our knowledge, this is the first

study to investigate the application of WUS technology in this

context.

The key contributions of this work are: (1) the development

and validation of a novel WUS array; (2) identification of

tremor frequency in Parkinson’s disease (PD) and essential

tremor (ET) using IMU, commercial B-mode US, and A-

mode US with WUS, to demonstrate the potential of wearable

US for tremor frequency identification; and (3) acquisition of

flexor carpi radialis (FCR) muscle TD using the WUS array

combined with a machine learning model.

II. MATERIALS AND METHODS

A. Transducer design and fabrication

We selected a center frequency of 7.5 MHz to achieve

the necessary penetration depth for monitoring arm muscle

activity. Each element of the linear ultrasound transducer array

is composed of a piezoelectric composite, with PZT-5H as the

active pillar material and epoxy serving as the passive filler.

To minimize the effects of grating lobes and ensure optimal

image quality, the array was designed with a pitch of 0.16 mm,

which is less than the wavelength in water. The kerf width

was set at 0.03 mm. The array’s elevational aperture measures

5.5 mm, while the azimuthal aperture is 10.2 mm. A quarter-

wavelength matching layer was implemented to match the

acoustic impedance between human tissue and the transducer

array. Alumina powder (particle size: 0.05 m) mixed with

epoxy was used for the matching layer, and a 0.5 mm-thick

backing layer made from E-solder 3022 was applied.

To fabricate the 1-3 piezoelectric composite, a dicing-

and-filling method was employed using a dicing machine

(DAD322, DISCO, Japan) with a 30 m-thick blade to create

kerfs at a 160 m pitch. Once the 1-3 composite was formed, the

kerfs were filled with an epoxy solution. After curing, Cr/Au

electrodes, with thicknesses of 50 nm and 200 nm, respec-

tively, were deposited on both sides of the composite using an

electron beam evaporator (Thermionics, US). The composite

was then diced again at a 160 µm pitch to form the individual

elements of the linear array, each measuring 130 µm by 5.5

mm. A custom flexible printed circuit (FPC) was bonded to

each array element using an epoxy adhesive (EpoTek 301,

Epoxy Technology). The FPC was then connected to a PCB

converter board for integration with the Verasonics system.

The structure and photographs of the WUS are shown in

Figure 1.

Fig. 1. Structure and Photographs of the WUS Array

B. Transducer characterizations

The performance of the proposed transducer was evaluated

using pulse-echo and electrical impedance testing. A pulse-

echo test was conducted to assess the bandwidth and center

frequency of all 32 elements of the WUS array. Each element

was excited using a pulser-receiver unit (5900 PR, Olympus,

WA, USA) with a pulse repetition frequency (PRF) of 200

Hz and a pulse energy of 1 µJ. The echo signals were

captured through a bandpass filter ranging from 3 to 20 MHz,

with a steel bar serving as the reflector. The resulting radio-

frequency (RF) signals were recorded using an oscilloscope

(DSO7104B, Agilent Technologies, Santa Clara, CA, USA).

From the captured pulse-echo signals, the bandwidth and

center frequency of the fabricated elements were determined.

Additionally, the electrical impedance, capacitance, and loss

for each element were measured using an impedance analyzer

(4294A, Keysight Technologies, Santa Rosa, CA, USA).



C. Experimental Setup for Tremor frequency and tissue dis-

placement monitoring

1) Subjects: The experimental protocol was reviewed and

approved by the Institutional Review Board (IRB) at North

Carolina State University. Two subjects, one diagnosed with

PD and the other with ET, were recruited for the study.

Informed consent was obtained from all participants prior to

the commencement of any experimental procedures.

2) Experimental protocols: The subjects were seated com-

fortably in a chair. A linear US transducer (L7.5SC Prodigy

Probe, S-Sharp, Taiwan) connected to a US imaging system

(Prodigy, S-Sharp, Taiwan), along with the WUS array linked

to the Verasonics US system (Vantage 256, Kirkland, USA),

were affixed to the participants’ forearm, targeting the FCR

muscle. Additionally, IMU sensors (Yost Labs Inc., USA) were

attached to their hands. The participants were instructed to

perform a cup-holding task for 1 minute. B-mode US from

the commercial system, IMU signals, and radiofrequency (RF)

US signals from the WUS array were recorded and synchro-

nized using a real-time system (Real-Time Target Machine,

Speedgoat, Liebefeld, Switzerland). The experimental setup is

illustrated in Figure 2.

Fig. 2. Experimental setup for tremor monitoring with WUS array, commer-
cial US, and IMU sensors.

3) Tremor Frequency identification from B-mode US, IMU,

and WUS Data: RF US signals were collected at 100 Hz using

the Verasonics system. To identify the tremor frequency from

the RF data acquired by the WUS, the data were first converted

into M-mode images. These images were then analyzed across

all 32 channels. For each channel, a Fast Fourier Transform

(FFT) was performed to generate the frequency spectrum of

the tissue movement. The magnitude spectrum was examined

to identify the dominant frequency within the tremor range

of 4 to 12 Hz, based on existing studies [5]. The maximum

magnitude within this range, along with its corresponding

frequency, was recorded for each channel. By averaging the

results across all 32 channels, the tremor frequency was deter-

mined by focusing on the channel with the highest magnitude,

providing an accurate method for quantifying tremor frequency

from the WUS RF data.

B-mode US images were captured at 1 kHz using the

Prodigy US system, equipped with an NVIDIA Titan V GPU.

A GPU-based speckle tracking algorithm [6] was applied to

these images to measure tissue motion associated with tremor

activity. Similar to the RF data, an FFT was performed on

the tissue motion data to extract the frequency spectrum of

the tremor behavior. In addition, IMU signals were collected

at 1 kHz, specifically targeting the FCR muscle. Given the

muscle’s involvement, the yaw angular velocity data from the

IMU was selected for frequency analysis. A similar FFT-based

approach was used to analyze the IMU data and determine the

tremor frequency.

4) Tissue Displacement Estimation via Machine Learning

Using WUS and B-mode US: In the previous section, we esti-

mated the FCR muscle TD using a speckle tracking algorithm

applied to B-mode images obtained from the commercial US

system. Following this, we applied US feature extraction to the

RF data acquired from the WUS array. The feature extraction

process adhered to methodologies established in studies [7],

[8]. A brief summary of this procedure is provided, as the full

details are available in the referenced works and will not be

repeated here. For the machine learning model, the extracted

US features from the WUS served as inputs, while the tissue

displacement values obtained from the B-mode commercial

US system were used as the output.

The dataset was divided, with 70 % utilized for model

training and the remaining 30 % split evenly between testing

and validation. A neural network consisting of 10 layers

was trained using a Bayesian regularization approach [9],

implemented via MATLAB’s Neural Network Fitting Toolbox

(R2023b, MathWorks, MA, USA). The process of analyzing

and processing the RF US data, along with the machine

learning model framework, is illustrated in Figure 3.

Fig. 3. Workflow of RF data processing and machine learning model for
tissue displacement estimation



III. RESULTS

A. Transducer characterizations

The transducer characterization was performed using pulse-

echo and electrical impedance tests. In this section, we present

the experimental results to validate the completeness and

accuracy of the developed system. The WUS exhibited an

average center frequency of 7.22 MHz, a -6 dB fractional

bandwidth of 52.74 %, and a peak-to-peak voltage of 12.38

mV. Moreover, the electrical impedance test yields an average

capacitance of 50.44 pF, an average loss of 12.85 mU at 1

kHz, and an average impedance of 391.59 Ω at 7.5 MHz.

The system, including the cable and printed circuit board,

weighs 16.5 g, making it lightweight and suitable for wearable

applications.

B. Tremor frequency and tissue displacement sensing

For tremor frequency identification, the dominant frequen-

cies obtained from the IMU, B-mode US, and WUS for

both PD and ET patients were consistent, as illustrated in

Figure. 4. Notably, the WUS results aligned well with both

the IMU and B-mode US measurements, demonstrating the

WUS system’s ability to overcome limitations such as the

non-muscle specificity of IMU and the complex beamforming

required for B-mode US.

For TD estimation, we collected 6,000 samples of RF

data from the PD patient, with the corresponding TD values

derived from the commercial B-mode US system. As shown

in Figure 5, the neural network fitting results demonstrated

strong performance, with an R value of 0.903 on the training

set, indicating a high correlation between predicted and actual

TD values. The model also showed reasonable performance

on the validation and test sets, achieving R values of 0.749

and 0.769, respectively. The overall R value of 0.860 indi-

cates good generalization across the entire dataset, confirming

the effectiveness of the model in estimating real-time tissue

displacement.

Fig. 4. Comparison of dominant tremor frequencies identified from IMU,
B-mode US, and WUS for PD and ET patients

IV. CONCLUSION

This study demonstrated the feasibility of using a WUS

System for tremor frequency identification and TD estimation.

The WUS array was validated against IMU and commercial

B-mode US systems, showing consistent results for tremor

frequency in both PD and ET patients. Additionally, a ma-

chine learning model trained with RF data from the WUS

Fig. 5. Comparison of dominant tremor frequencies identified from IMU,
B-mode US, and WUS for PD and ET patients

successfully estimated TD, achieving high correlation with B-

mode US-derived measurements. Future work will focus on

investigating additional parameters and expanding the subject

pool to improve the model’s accuracy and generalizability.

Further exploration of integrating the WUS with closed-

loop control systems will be conducted to enable real-time

tremor suppression, paving the way for more effective and

personalized therapeutic interventions.
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