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Abstract—Precise monitoring of tremor frequency and tissue
displacement (TD) is essential for developing effective non-
invasive tremor suppression methods. This study presents a
wearable ultrasound (WUS) array designed for continuous, real-
time muscle monitoring. The WUS features a 32-element, 1-3
PZT-5H composite array with a center frequency of 7.22 MHz
and a -6 dB fractional bandwidth of 52.74 %, optimized for
capturing high-resolution ultrasound signals from target muscles
like the flexor carpi radialis (FCR). Experiments with Parkinson’s
disease (PD) patients for tremor frequency detection and TD
measurements demonstrated that the WUS system accurately
identified tremor frequencies and tracked muscle displacement.
These results suggest that WUS can provide a reliable, non-
invasive alternative to commercial ultrasound systems, offering
continuous muscle monitoring for improved tremor management
and intervention strategies.

Index Terms—ultrasound transducers, wearable transducers,
muscle activities detection, functional electrical stimulation,
tremor management, machine learning

I. INTRODUCTION

Tremors, characterized by involuntary muscle oscillations,
particularly in the hands and arms, affect more than 11
million individuals in the United States [1]. These involun-
tary movements significantly impair daily activities. Current

We gratefully acknowledge the support of grants from NIH 1R21EB032059
and NSF 2124017, as well as the invaluable participation of all the participants
in this study.

Nitin Sharma
Joint Department of
Biomedical Engineering
North Carolina
State University
Raleigh, NC, USA
nsharm23 @ncsu.edu

Xiaoning Jiang
Department of Mechanical
and Aerospace Engineering

North Carolina

State University

Raleigh, NC, USA
xjiang5 @ncsu.edu

interventions for tremor management include pharmacological
treatments, neurosurgical procedures, and external assistive
devices. However, each approach has inherent drawbacks:
medications often lead to adverse side effects, surgical in-
terventions are invasive and costly, and external devices are
frequently limited by their size, weight, and lack of portability.
Recent research has demonstrated that both functional electri-
cal stimulation (FES) [2] and afferent stimulation (AS) [3]
can be effective alternatives for tremor suppression, without
the limitations associated with traditional methods. Unlike
FES, which targets muscle activation, AS specifically engages
afferent neural pathways using lower stimulation intensities.
This reduced intensity makes AS less likely to induce muscle
fatigue, presenting it as a more promising and sustainable
approach for tremor management. However, the efficacy of
AS in tremor suppression remains inconsistent across different
studies and clinical applications. A major challenge lies in the
absence of a standardized approach to AS strategies, making
it difficult to optimize treatment protocols. This variability
highlights the need for precise sensing technologies that can
accurately capture tremor dynamics and provide real-time
feedback for closed-loop control systems [4]. Effective tremor
suppression necessitates continuous monitoring of both tremor
frequency and target muscle tissue displacement. Tremor fre-
quency is crucial for determining the optimal timing of AS in-



terventions, while precise measurement of tissue displacement
provides valuable insights into muscle movement dynamics,
facilitating accurate modeling for AS. This real-time data is
essential for informing and adjusting stimulation parameters
to achieve optimal therapeutic outcomes.

Commonly employed techniques, such as inertial measure-
ment units (IMUs) and electromyography (EMG), present
significant drawbacks. IMUs primarily capture limb displace-
ment, offering limited information on muscle-specific tremor
frequency, while EMGs suffer from interference when record-
ing in the presence of active afferent stimulation, necessitating
interruptions in AS delivery during data acquisition. Ultra-
sound (US) imaging has emerged as a promising alternative
due to its ability to provide direct, real-time visualization of
muscle activity without the interference issues that hamper
EMG. However, traditional US probes are rigid and bulky,
making them impractical for wearable applications that require
continuous, unobtrusive monitoring during movement.

However, conventional US probes are rigid and cumber-
some, making them unsuitable for wearable applications that
require continuous, unobtrusive monitoring during movement.
Thus, there is a critical need to develop wearable, non-invasive
sensing technologies, such as wearable ultrasound (WUS) sys-
tems, that can provide detailed insights into muscle dynamics
and facilitate the design of more effective AS strategies for
tremor management. The objective of this study is to assess
the feasibility of using a WUS array for tremor monitoring
and suppression. Specifically, we aim to validate the WUS
array’s capability to accurately identify tremor frequency and
TD, both of which are essential parameters for closed-loop
tremor suppression systems. To our knowledge, this is the first
study to investigate the application of WUS technology in this
context.

The key contributions of this work are: (1) the development
and validation of a novel WUS array; (2) identification of
tremor frequency in Parkinson’s disease (PD) and essential
tremor (ET) using IMU, commercial B-mode US, and A-
mode US with WUS, to demonstrate the potential of wearable
US for tremor frequency identification; and (3) acquisition of
flexor carpi radialis (FCR) muscle TD using the WUS array
combined with a machine learning model.

II. MATERIALS AND METHODS
A. Transducer design and fabrication

We selected a center frequency of 7.5 MHz to achieve
the necessary penetration depth for monitoring arm muscle
activity. Each element of the linear ultrasound transducer array
is composed of a piezoelectric composite, with PZT-5H as the
active pillar material and epoxy serving as the passive filler.
To minimize the effects of grating lobes and ensure optimal
image quality, the array was designed with a pitch of 0.16 mm,
which is less than the wavelength in water. The kerf width
was set at 0.03 mm. The array’s elevational aperture measures
5.5 mm, while the azimuthal aperture is 10.2 mm. A quarter-
wavelength matching layer was implemented to match the
acoustic impedance between human tissue and the transducer

array. Alumina powder (particle size: 0.05 m) mixed with
epoxy was used for the matching layer, and a 0.5 mm-thick
backing layer made from E-solder 3022 was applied.

To fabricate the 1-3 piezoelectric composite, a dicing-
and-filling method was employed using a dicing machine
(DAD322, DISCO, Japan) with a 30 m-thick blade to create
kerfs at a 160 m pitch. Once the 1-3 composite was formed, the
kerfs were filled with an epoxy solution. After curing, Cr/Au
electrodes, with thicknesses of 50 nm and 200 nm, respec-
tively, were deposited on both sides of the composite using an
electron beam evaporator (Thermionics, US). The composite
was then diced again at a 160 um pitch to form the individual
elements of the linear array, each measuring 130 um by 5.5
mm. A custom flexible printed circuit (FPC) was bonded to
each array element using an epoxy adhesive (EpoTek 301,
Epoxy Technology). The FPC was then connected to a PCB
converter board for integration with the Verasonics system.
The structure and photographs of the WUS are shown in
Figure 1.
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Fig. 1. Structure and Photographs of the WUS Array

B. Transducer characterizations

The performance of the proposed transducer was evaluated
using pulse-echo and electrical impedance testing. A pulse-
echo test was conducted to assess the bandwidth and center
frequency of all 32 elements of the WUS array. Each element
was excited using a pulser-receiver unit (5900 PR, Olympus,
WA, USA) with a pulse repetition frequency (PRF) of 200
Hz and a pulse energy of 1 puJ. The echo signals were
captured through a bandpass filter ranging from 3 to 20 MHz,
with a steel bar serving as the reflector. The resulting radio-
frequency (RF) signals were recorded using an oscilloscope
(DSO7104B, Agilent Technologies, Santa Clara, CA, USA).
From the captured pulse-echo signals, the bandwidth and
center frequency of the fabricated elements were determined.
Additionally, the electrical impedance, capacitance, and loss
for each element were measured using an impedance analyzer
(4294 A, Keysight Technologies, Santa Rosa, CA, USA).



C. Experimental Setup for Tremor frequency and tissue dis-
placement monitoring

1) Subjects: The experimental protocol was reviewed and
approved by the Institutional Review Board (IRB) at North
Carolina State University. Two subjects, one diagnosed with
PD and the other with ET, were recruited for the study.
Informed consent was obtained from all participants prior to
the commencement of any experimental procedures.

2) Experimental protocols: The subjects were seated com-
fortably in a chair. A linear US transducer (L7.5SC Prodigy
Probe, S-Sharp, Taiwan) connected to a US imaging system
(Prodigy, S-Sharp, Taiwan), along with the WUS array linked
to the Verasonics US system (Vantage 256, Kirkland, USA),
were affixed to the participants’ forearm, targeting the FCR
muscle. Additionally, IMU sensors (Yost Labs Inc., USA) were
attached to their hands. The participants were instructed to
perform a cup-holding task for 1 minute. B-mode US from
the commercial system, IMU signals, and radiofrequency (RF)
US signals from the WUS array were recorded and synchro-
nized using a real-time system (Real-Time Target Machine,
Speedgoat, Liebefeld, Switzerland). The experimental setup is
illustrated in Figure 2.
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Fig. 2. Experimental setup for tremor monitoring with WUS array, commer-
cial US, and IMU sensors.

3) Tremor Frequency identification from B-mode US, IMU,
and WUS Data: RF US signals were collected at 100 Hz using
the Verasonics system. To identify the tremor frequency from
the RF data acquired by the WUS, the data were first converted
into M-mode images. These images were then analyzed across
all 32 channels. For each channel, a Fast Fourier Transform
(FFT) was performed to generate the frequency spectrum of
the tissue movement. The magnitude spectrum was examined
to identify the dominant frequency within the tremor range
of 4 to 12 Hz, based on existing studies [5]. The maximum
magnitude within this range, along with its corresponding
frequency, was recorded for each channel. By averaging the
results across all 32 channels, the tremor frequency was deter-
mined by focusing on the channel with the highest magnitude,

providing an accurate method for quantifying tremor frequency
from the WUS RF data.

B-mode US images were captured at 1 kHz using the
Prodigy US system, equipped with an NVIDIA Titan V GPU.
A GPU-based speckle tracking algorithm [6] was applied to
these images to measure tissue motion associated with tremor
activity. Similar to the RF data, an FFT was performed on
the tissue motion data to extract the frequency spectrum of
the tremor behavior. In addition, IMU signals were collected
at 1 kHz, specifically targeting the FCR muscle. Given the
muscle’s involvement, the yaw angular velocity data from the
IMU was selected for frequency analysis. A similar FFT-based
approach was used to analyze the IMU data and determine the
tremor frequency.

4) Tissue Displacement Estimation via Machine Learning
Using WUS and B-mode US: In the previous section, we esti-
mated the FCR muscle TD using a speckle tracking algorithm
applied to B-mode images obtained from the commercial US
system. Following this, we applied US feature extraction to the
RF data acquired from the WUS array. The feature extraction
process adhered to methodologies established in studies [7],
[8]. A brief summary of this procedure is provided, as the full
details are available in the referenced works and will not be
repeated here. For the machine learning model, the extracted
US features from the WUS served as inputs, while the tissue
displacement values obtained from the B-mode commercial
US system were used as the output.

The dataset was divided, with 70 % utilized for model
training and the remaining 30 % split evenly between testing
and validation. A neural network consisting of 10 layers
was trained using a Bayesian regularization approach [9],
implemented via MATLAB’s Neural Network Fitting Toolbox
(R2023b, MathWorks, MA, USA). The process of analyzing
and processing the RF US data, along with the machine
learning model framework, is illustrated in Figure 3.
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Fig. 3. Workflow of RF data processing and machine learning model for
tissue displacement estimation



III. RESULTS
A. Transducer characterizations

The transducer characterization was performed using pulse-
echo and electrical impedance tests. In this section, we present
the experimental results to validate the completeness and
accuracy of the developed system. The WUS exhibited an
average center frequency of 7.22 MHz, a -6 dB fractional
bandwidth of 52.74 %, and a peak-to-peak voltage of 12.38
mV. Moreover, the electrical impedance test yields an average
capacitance of 50.44 pF, an average loss of 12.85 mU at 1
kHz, and an average impedance of 391.59 Q at 7.5 MHz.
The system, including the cable and printed circuit board,
weighs 16.5 g, making it lightweight and suitable for wearable
applications.

B. Tremor frequency and tissue displacement sensing

For tremor frequency identification, the dominant frequen-
cies obtained from the IMU, B-mode US, and WUS for
both PD and ET patients were consistent, as illustrated in
Figure. 4. Notably, the WUS results aligned well with both
the IMU and B-mode US measurements, demonstrating the
WUS system’s ability to overcome limitations such as the
non-muscle specificity of IMU and the complex beamforming
required for B-mode US.

For TD estimation, we collected 6,000 samples of RF
data from the PD patient, with the corresponding TD values
derived from the commercial B-mode US system. As shown
in Figure 5, the neural network fitting results demonstrated
strong performance, with an R value of 0.903 on the training
set, indicating a high correlation between predicted and actual
TD values. The model also showed reasonable performance
on the validation and test sets, achieving R values of 0.749
and 0.769, respectively. The overall R value of 0.860 indi-
cates good generalization across the entire dataset, confirming
the effectiveness of the model in estimating real-time tissue
displacement.
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IV. CONCLUSION

This study demonstrated the feasibility of using a WUS
System for tremor frequency identification and TD estimation.
The WUS array was validated against IMU and commercial
B-mode US systems, showing consistent results for tremor
frequency in both PD and ET patients. Additionally, a ma-
chine learning model trained with RF data from the WUS
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Fig. 5. Comparison of dominant tremor frequencies identified from IMU,
B-mode US, and WUS for PD and ET patients

successfully estimated TD, achieving high correlation with B-
mode US-derived measurements. Future work will focus on
investigating additional parameters and expanding the subject
pool to improve the model’s accuracy and generalizability.
Further exploration of integrating the WUS with closed-
loop control systems will be conducted to enable real-time
tremor suppression, paving the way for more effective and
personalized therapeutic interventions.
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