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1. Introduction

Although the interest of functional analysts in the nonlinear theory of Banach spaces has in-
creased significantly in the past few decades (e.g. [1, 15, 18, 23]), researchers have only recently
started to develop the nonlinear theory of their noncommutative counterpart, i.e., of operator
spaces (see [5-8]). As of now, this study was restricted to constructing a large scale geometry for
such spaces. The goal of the current article is to initiate the treatment of the small scale geometry
of operator spaces.

Before describing our main results, we start this introduction with a paragraph recalling the
basics for the non-expert: an operator space is a Banach subspace of the space of bounded
operators on a given Hilbert space H, which we denote by %8(H). Given n € N and a set X, we
denote the space of n-by-n matrices with entries in X by M, (X) — if X is either a vector space
or an algebra, M, (X) inherits a canonical vector space or algebra structure, respectively. Since
M,,(%(H)) is canonically isomorphic to (H®") (where H®" denotes the Hilbert sum of n copies
of H), each M,,(%(H)) is endowed with the canonical norm given by this isomorphism. Given an
operator space X < 98(H), the inclusions M, (X) € M,,(%(H)) then induce norms on each M, (X).
The n-amplificationof amap f: X — Y between operator spaces is the map f,: M, (X) — M, (Y)
given by

fullxi D = [f(x;)] forall [x;;] € My(X).
If f islinear, so is each f;; and | f; I, denotes its operator norm. The completely bounded norm of
f, abbreviated as the ch-norm of f, is given by
”f“cb =Ssup "fn”
neN

and f is called completely bounded if | flls, < co. Completely bounded maps play the role
bounded maps play in Banach space theory and are used to define complete isomorphisms
between operator spaces.

Our approach to study the small scale geometry of operator spaces comes from a strengthen-
ing of the main result of [6]; which, as the reader will see below, is something in between the large
and the small scale geometry of operator spaces. We start recalling the concept of coarse maps in
the category of operator spaces:

Definition 1. Let X and Y be operator spaces and B< X. Amap f: B — Y is called completely
coarse if for all r > 0 there is s > 0 such that
I{xij1 = [yijllim, 00 <7 implies || fn(lx;i;]) = fu(lyi DM,y = 8
forallneN and all [x;;],[yij]l € Mn(B).!
The main result of [6] showed that, despite its nonlinear definition, completely coarse maps

are essentially already linear. Precisely, the following version of the Mazur-Ulam theorem holds
for completely coarse maps between operator spaces:

Theorem 2 ([6, Theorem 1.11). Let X and Y be operator spaces. Any completely coarse map
f: X — Y with f(0) =0 must beR-linear.

In this paper, we take the techniques developed in [6] further and show that a much stronger
result remains valid. Throughout these notes, if X is a Banach space, Bx denotes its closed unit
ball.

Theorem 3. Let X and Y be operator spaces. Any completely coarse map f: Bx — Y with f(0) =0
must be the restriction of an R-linear map.

1n classic coarse geometry, a map is called coarse if this holds for 7 = 1.
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The previous result exhausts any possible attempt to build a large scale nonlinear theory for
operator spaces in the “naive” way: ideally, if we were to merge operator space theory with the
nonlinear theory for Banach spaces, there could be an interesting theory which would capture
aspects of the large scale geometry of operator spaces by simply considering maps f: X — Y, or
at least maps f: Bx — Y, and their amplifications. However, this does not mean that it is not
possible to obtain a nontrivial large scale geometry of operator spaces. Indeed, as shown in [5,
7, 8], there are several interesting things to be said if one takes a more sophisticated approach:
for instance, instead of considering a single map f from either X or Bx to Y, one can consider
sequences of maps (f": X — Y), or even of maps (f": n-Bx — Y),.

Motivated by Theorem 3, we start the study of the small scale structure of operator spaces. For
that, we want to take into consideration not only the behavior of maps on sets of small diameter,
but also their amplifications on such sets. Notice that this is not dealt with in Theorem 3 since
lim,,— o, diam(M, (Bx)) = 00.2 For this reason, we will restrict our maps to the unit balls of M, (X)
in order to guarantee the diameters of the sets are uniformly bounded. Before presenting our
main findings, we start by recalling the definition of the modulus of uniform continuity of a map.
Let (X, d) and (Y, 0) be metric spaces, and f: X — Y be amap. The modulus of uniform continuity
of f is the map w: [0,00) — [0,00] given by

wp(t) =sup{o(f(x), f(y) | d(x,y) < t}.

Definition 4. Let X and Y be operator spaces, and f: Bx — Y be a map.

(1) The small scale modulus of uniform continuity of f is the map a)jf: [0,00) — [0,00]
given by

wjf(t) = ilelgwf" 1By, 0 (1) forall t=0.
(2) Wesay that f is completely Lipschitz in small scale if there is L > 0 such that
wjf(t) <Lt forall t=0.

In contrast with Theorem 3, the next result shows that the property of a map being completely
Lipschitz in small scale does not force the map to be the restriction of an R-linear map. In fact,
the next theorem provides a large class of non-R-linear maps which are completely Lipschitz in
small scale.

Theorem 5. Any polynomial p in one complex variable is completely Lipschitz in small scale as a
map Bc — C. More generally, if A< %8(H) is an operator algebra (with its induced operator space
structure) then p: By — A is completely Lipschitz in small scale.

Theorem 5 can be further generalized since it is obtained by looking at the compositions of
m-linear maps with completely bounded maps. For brevity, we refer the reader to Section 3 and
Theorem 16 for further details.

Knowing that there are plenty of interesting non-R-linear maps which are completely Lipschitz
in small scale, we then turn to study what the existence of such maps can tell us about the
operator spaces involved. For that, we need the embedding notion given by maps which are
completely Lipschitz in small scale. Recall, if f: (X,d) — (Y, 0) is a map between metric spaces,
then the compression modulus of f is the map p: [0,00) — [0,00] given by

pr(0) =inf{o(f(x), f(y) 1 d(x,y) = t}.

2This is why we say Theorem 3 is somewhat in between the scope of large and small scale geometric analysis.
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Definition 6. Let X and Y be operator spaces, and f: Bx — Y be a map.

(1) Thesmall scale compression modulus pjcs: [0,00) — [0, 00] is given by
pjf(t) = riz?{Ipf" |Bu, 0 (1) forall t=0.

(2) We say that f is a completely Lipschitz in small scale embedding if it is completely
Lipschitz in small scale and there is L = 1 such that

1
pj?(t) > Zt forall t=0.

With our notion of nonlinear small scale embeddability being established, we now describe a
linear property which is preserved under such notion. Recall that an operator space X is called
Hilbertian if it is (linearly) isometric to a Hilbert space and homogeneous if for every linear map
u: X — X we have |lullcp = llull. Then, if X is a homogeneous Hilbertian operator space with
dim(E) = n, we can unambiguously define

e1 0...0
e2 0...0
Kn(X) = .
e, 0...0

My (X)

where {ey, ..., e,} is an arbitrary orthonormal set in X. Our main results about rigidity of operator
spaces with respect to nonlinear embeddings will be based on the asymptotic behavior of x ,(X).
If (a,), and (by,), are positive real numbers we use the common notation that a, = b, meaning
that thereis L =1 such that a,,/L < b, < La,, forall n e N.

The following is our main theorem about the preservation of the linear geometry of operator
spaces by completely Lipschitz in small scale embeddings.

Theorem 7. Let X and Y be homogeneous Hilbertian operator spaces. If there is a completely
Lipschitz in small scale embedding Bx — Y, then x ,(X) =« ,(Y).

Theorem 7 is obtained in two stages, one giving the lower estimate and other the upper (see
Theorems 32 and 35, respectively). For each of these weaker results, the hypotheses are also much
weaker.

In order to obtain applications of Theorem 7, it is important to compute, or at least estimate,
K, (X) for some operator spaces. Our main source of examples comes from interpolating operator
spaces. We refer the reader to Section 4 and the references therein for precise definitions. Here,
we simply mention that if X and Y are homogeneous Hilbertian operator spaces and 6 € [0, 1],
(X, Y)y denotes the -interpolation operator space of X and Y. We compute the following (R and
C denote the row and the column operator spaces, respectively, see Section 4):

o ku((R,C)g) = n'? (Corollary 25),

o K, ((min(¢,), max(¢,))g) = n®’? (Corollary 25),

e k,((RNC,R+ C)g) = n’? (Corollary 26), and

e Kk, (®) ~/n, where ® is the Fermionic operator space (Proposition 27).

In particular, the computations above allow us to conclude the following:

Corollary 8. Let0,y€[0,1],

e Xe{(R,C)y,(min(¢2),max(¢s))g,(RNC,R+ C)g}, and
e Y e{(R,C)y,(min(¢2), max(¢2))y, (RN C,R+ C)y}.

If there is a completely Lipschitz in small scale embedding f: Bx — Y, then@ =vy.
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Note that due to the very definition of x,, Theorems 7, 32, and 35 deal exclusively with maps
Bx — Y where X and Y are homogeneous Hilbertian operator spaces. In Section 6, we use local
techniques to push things beyond the Hilbertian setting and prove a result similar to the lower
bound in Theorem 7 in the case where X is not Hilbertian (see Theorem 38). We defer the detailed
statement to Section 6 to avoid introducing various technical definitions here, and for the
moment we only state a corollary of it to illustrate the kind of results we obtain. Recall that from
Dvoretzky’s theorem for operator spaces (see [25, Corollary 1.5]), for any infinite-dimensional
operator space X there is an infinite-dimensional homogeneous Hilbertian operator space Z
which is completely isometric to a subspace of an ultrapower of X (see [27, Section 2.8] for more
details on ultraproducts of operator spaces). We call such a space a Dvoretzky space for X.

Corollary 9. Let X be an infinite-dimensional operator space, and let Z be a Dvoretzky space for
X. Let Y be a homogeneous Hilbertian operator space such thatx ,(Y) 2 n€ for some c € [0,1/2]. If
there is a completely Lipschitz in small scale embedding Bx — Y, thenx ,(Z) > n¢'(1+29

The conclusion in Corollary 9 is weaker than the lower bound in Theorem 7, which is not sur-
prising since the assumption on Z is weaker. Moreover, let us emphasize that it is significantly
weaker: while the finite-dimensional subspaces of Z are uniformly isomorphic to subspaces of
X because ultrapowers of a Banach space are finitely representable in the original space [17,
Proposition 6.1], in the operator space setting the corresponding statement with complete iso-
morphisms does not hold [13, p. 88].

2. Revisiting completely coarse maps

In this section, we prove Theorem 3. The next lemma gives a sufficient condition for a map
Bx — Y to be the restriction of an R-linear map.

Lemma 10. Let X and Y be normed R-vector spaces, and let f : Bx — Y be a bounded function
such that f(0) =0 and

1 1
f(g(x+z) =3 (f)+ f(2)
forall x,z € Bx. Then f is the restriction of an R-linear function X — Y.

Proof. Firstly, for computational reasons, it will be useful to assume that f is defined on 2 - By.
This is not an issue since, replacing f with f(3), we can assume that f is defined on the whole
2-By and it still satisfies the assumptions of the lemma for all x, z € 2- Bx. Moreover, since f(0) =0,
we must have

f(%x) = %f(x) forall xe2-By. (@))]

Therefore, in order to show that f: 2-Bx — Y is the restriction of an R-linear function, it is enough
that f | By is so.

Claim 11. Forall x;,...,x, € Bx, we have
1

Proof. This follows from induction on n. For n = 1, the result is trivial; suppose then it holds for
some 7 € N. By (1), we have

1

X1+ Xp

)= (FO) e+ f ).

n

x+Z)

)= Crwegr@=r(5)+r(3) @
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for all x, z € 2 Bx. Analogously, the induction hypothesis also implies that

f

for all xy,...,x, € Bx (notice that the induction hypothesis does not allow us to conclude this
holds for all elements in 2 - Bx though).
Notice that if xy,..., x,+1 € By, then

(x1+...+xrz):f(3;1) +f( ) 3)

n

2 2
*1 € By and Meg.]gx'
n+1 n+1
Therefore, by (2) and (3), we have
X1+ + Xn+1 2x1/(n+1)+2(x2+--+ xp+1)/(n+1)
= 4
f( n+1 ) f( 2 ) @
_ X1 Xo+ 0t Xp+
_f(n+1)+f( n+1 )
B X1 nxp/(n+1)+--+nx,1/(n+1)
_f(n 1)+f( n
_ 1 . Xn+1
_f(n+l)+f(n+l) +f(n+l)

forall xy,...,x,+1 € Bx. In particular, if all xy,...,x,+; are the same, say x = x; forall i € {1,..., n},
this shows that

X
f(n+1) p—t f(x) forall x € By.

Revisiting (4) with this extra information, we conclude that

f

forall x1,..., x,+1 € Bx as desired. O

(x1+"'+xn+1)_
n+1 B

(£ £ )

The previous claim together with the fact that f(0) = 0 gives
flgx)=qf(x) forallge[0,11nQ and all x € By, (5)

which also implies that

flgx)=qf(x) forall g€ [0,00)NnQ and all x € Bx with gx € Bx. (6)
For each x € X'\ {0}, pick rx € [2,3) such that ||, x| x € Q. Define amap F: X — Y by letting
pey < s () 60, -
0, x=0.

It follows immediately from (6) that F is an extension of f [ Bx. We are left to notice that F is
R-linear. For additivity, notice that if x, z E - Bx, then x + z € By and, by (6), we must have

f(x+z)=f(2 ) 2f( ) 0+ f(2). ®)

Fix x,z € X and pick M > 1 large enough so that

X ¥4

, €—-BX
Mryizllx+zllx Mrygllx+zllx 2

and
rellxiNX rzllzll x

, <
Mryizllx+zllx Mrygzllx+zlx
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Then, (5) and (8) together imply

TxrzllX + 2l x ( Xtz )
M Ierzll X+ 2zl x
X+z )

Mryizllx+zllx

1
—-F(x+2)=
M (x+2)

= rx+z||x+2||xf(

= resllx+ 2] (f( X )+f( ud ))
VU A\ M llx+ zllx Mry, llx+zlx
= %(F(x)+F(z)).

So, F is additive.

We now show that F(tx) = tF(x) for all r = 0 and x € X. For that, fix x € X and define a map
gx: R— X by letting

gx=F(tx)—tF(x) forall teR.
As f is bounded, g, is bounded on bounded sets. On the other hand, since F is additive, we have
gx(t+1)=F(tx+x)—(t+1)F(x) = F(tx) — tF(x) = g(t)

forall te R, i.e., g, is 1-periodic. Therefore, g, must be bounded. However, as F is additive, so is
g« Since a bounded additive function must be zero, the result follows. g

The following is elementary and it is the operator space version of [20, Lemma 1.4]. This will
be used in the proof of Theorem 3 below.

Proposition 12. Let X and Y be operator spaces and K < X be convex. Thenamap f: K — Y is
completely coarse if and only if there is C > 0 so that
I f(Lxi ;D) = fUyi DM, < Clllxijl = [yijllim, o +C
forallneN and all [x;;] € M, (K). O
Before presenting the proof of Theorem 3, we recall the concept of Hadamard matrices: a
Hadamard matrixis a square matrix whose entries are either 1 or —1 and whose rows are mutually

orthogonal. To notice that Hadamard matrices of arbitrarily large size exist, we define matrices
A,k € My (C) inductively by letting

_ ]. ]. _ Azk A2k
Ay = (1 _1) and Ay = (Azk —Azk)
forall k> 1.

Proof of Theorem 3. Our goal to conclude that f: Bx — Y is the restriction of an R-linear map is
to use Lemma 10. Hence, we fix distinct x, z € Bx and show that

f(%(x+z) = %(f(x) + f(2).

For convenience, let
X+z X—z
and h= >

S0 Xg, h, xo + h, and xy — h are still in Bx, and we are left to show that
1
f(xo)=z(f(xo+h)+f(xo—h)). 9)

As x # z, h # 0 and we can use Hahn-Banach to pick ¢ € X* with ¢(h) = 1. We then set
fo—h) = f(xo+h)
Yo = >

X0 =

and define amap g: X — Y by letting
gx) = f(x) +p(x)yp forall xe By.



1900 Bruno M. Braga and Javier Alejandro Chavez-Dominguez

Since f and ¢ are completely coarse, so is g. By Proposition 12, there exists a constant C > 0 such
that for any n € N and [xijlij,[yijlij € Mu(Bx), we have

Clltxij = yiflijlly, o + C- (10)

H (gCxi) - gWip];; (Mn(y) <

Let (Ayr)32, be the Hadamard matrices and, for each k € N, write Ayr = [a{.“j]?kj:l. Since each

k is either 1 or —1, we have that each x¢ + hal.‘]. belongs to Bx. In particular, if 1,« denotes the

i.j
2k x 2k gcalar matrix whose entries are all 1,

a

Zk
Lyx®xg+ Ay ®h= [X() + hafj] ije1 € M, (Bx)
and
k
Lok ® xo = [%0]5 ;) € My (Bx)
for all k € N. Hence, by (10),

Notice that, by the formula of g, g(xo + h) = g(xp — h). Therefore

k
[8Cxo + halp - g(x0)]? ;-

|(M2km =Cll Ay ®hlly , )+ C:

It + 1= gtxo)ly [t Iy, < C- Ml [ Ay, +C,
which yields
| g0 + B — g(xo) ||y 2% < CllRllx V2F + C.

Letting k tend to infinity, we can conclude that g(xp + k) = g(xp). Unfolding definitions, this
means that

f(x0) + ¢ (x0) yo = f(xo + h) + @p(x0 + h) yo,
which, rearranging the terms and using that ¢ (h) = 1, give f(xp) = f (xo+ h) + yo. By the definition
of yp, this implies
Fxo) = fxo+h)+ f(xo_h);f(x“h) - %(f(x0+h)+f(x0—h)).

This shows that (9) holds and we are done. O

Remark 13. The results of [6] are stated for both real and complex operator spaces. Since we
make heavy use of complex interpolation in the present work, for simplicity we have written the
whole paper in terms of complex operator spaces. Nevertheless, note that the proof of Theorem 3
yields the same result for real operator spaces.

3. Nonlinear small scale maps

In this section, we produce examples of maps Bx — Y which are completely Lipschitz in small
scale but are not the restriction of R-linear maps. This culminates in Theorem 5 and, more
generally, in Theorem 16.

We start recalling some standard notation. Given m € N and Banach spaces X;,..., X, the
sum @}, X; will always denote the Banach space obtained by considering the vector space
EBZ“Zl Xi endowed with the ¢-sum. If moreover each Xj is an operator space, then EBZ’ZI X
is also an operator space endowed with the ¢,-sum operator space structure. Since m-linear
maps will play an important role in what follows, we quickly recall some basic terminology. Given
Banach spaces Xj, ..., X, Y, the norm of an m-linear map Q: @kmzl Xy — Y is the infimum of all
L > 0 such that

lQx™, ..., x|, =LIxWlix, - -+ - 1x™ | x,,



Bruno M. Braga and Javier Alejandro Chavez-Dominguez 1901

forall (x\V,...,x"™) € @} | X. This infimum is denoted by ||Q|l and we say that Q is a bounded
m-linear map if |Q|| < co. Notice that, if Xj,..., X;, Y are moreover operator spaces, then each
n-amplification Qy;: @kaI M, (X)) — M, (Y) is also m-linear and hence | Q| is well defined.

Definition 14. LetmeN, Xj,..., X, Y be operator spaces, and Q: GBI’C”ZI Xy — Y be an m-linear
map. We say that Q is completely controlled if®

1Qllcc =sup Qx| <oo.
n

Proposition 15. Let m € N, H be a Hilbert space, and X3, ..., X;m € %B(H) be operator spaces. The
product map P: @} | Xi — B(H) given by

m
P, x ™y = xW e XM forall (xV,..., x") e @ X
k=1
is a completely controlled m-linear map with | P| ¢ < 1.
Proof. The m-linearity of P is straightforward. To notice that P is completely controlled, the
crucial tool is the following generalization of Schur’s inequality [30, Satz I1I] which follows from [9,
Theorem 2.3]: if n € N and [x;], [z;;] € M, (%(H)), then
I1xijzi j1Im, @) < 11X 1M, @) 12i 1, @@ -

By a straightforward induction, this implies that

’Pn([xij],--.,[xij L -~ ” ”Mn(ga(m)
” M, () M (Xm)
for all ne N and all ([x (U] o lx ('")])EEBk 1 Mn(Xg). This shows that || Pllcc < 1. -

The following is our main result to construct nontrivial examples of non-R-linear maps which
are completely Lipschitz in small scale.

Theorem 16. Let m e N, X, X,..., Xy, Y be operator spaces, T: X — 69,’?:1 Xy be a completely
bounded operator, and Q: @), Xy — Y be a completely controlled m-linear map. Then Q o
T: Bx — Y is completely Lipschitz in small scale.

We start with a lemma about small scale behavior of m-linear maps on Banach spaces.

Lemma 17. LetmeN, Xj,..., X, Y be Banach spaces, and Q: EBkm:l Xy — Y be a bounded m-
linear map. Then, for all (x'V,...,x'),(z1,...,z/™) € Bgy  x, we have

[Q™, .1 = Q" ...y = I QUG 2™ = @, g

Proof. We proceed by induction on m e N. If m =1, Q is abounded linear operator and the result
is immediate. Suppose it holds for m — 1, with m = 2, and let us show it is also valid for m. Fix

xW, . x 0, 2W, 20 in Bgym .. Then, as Q is m-linear and as each x' has norm at most 1,
it follows that
JQe™, ..., x™ 1 xm) — Qx®, ..., x™ D 2|, = Q... x" D, xm — )y o

<1QI ™ -2
Let B: @le—ll Xj — Y be given by

Bw™,...,w™ V) =Quw™,..., w™ Y, zm)

3We chose to control (no pun intended) the automatic instinct of calling such m-linear map completely bounded since
this definition already exists for m-linear maps and it is not the one given above (see, for instance, [9]).



1902 Bruno M. Braga and Javier Alejandro Chavez-Dominguez

forall (w®,...,w™Y) e @ ! X. So, Bis an (m —1)-linear map and, as ||z | x,, < 1, we have
1Bl = |QIl. Therefore, the induction hypothesis gives that

||B(x(1), o x(m—l)) _ B(Z(l), . Z(m—l)) ” v
< (m=DIQI G, x™ D) = (2., 2" ) | gt .
The lemma then follows by the triangle inequality. 0

Proof of Theorem 16. Since each amplification Q,, is an m-linear map with norm at most || Q|| ¢,
Lemma 17 gives that

(1) (m) (1) (m)
|Qnt=l,..., - Qullz),..., 1)]Mn(y)
(1 (m)yy _ (1) (m)
< Qe | (e 15D = 027 D
for all » € N and all ([x(l)], L [x (m)]) ([zl(.}.)],... [z (m)]) € B®nz M, (x)- BY the m-linearity of Q,,, if
([xl(.l.)], oo lx l(.'.”)]) and ([z 51.)], ,[z(’”)]) have norm at most | T||p instead, we obtain the a similar

inequality with the factor || T'|| g” added to it on the right-hand side. Therefore, we conclude that

(@0 T)n(lxij1) = Qo T (2D, vy = | Qu(Tn(lxij1) = Qu(Tullzi ;)| (v
< mlQlecl TIH 1T (xi )] - [T (2 )] ||@;11M,,<xk)

< mlQlee TN 111 = Lz [y )

for all n e N and all [x;;], [z;;] € Bm,(x)- So,

0B (M <mlQlec TNt
forall £=0. O

Proof of Theorem 5. Let m € N and let p™ be the complex polynomial given by p" (x) = x™ for
all x € C. Let A be an operator algebra. Then, by Proposition 15, the map (a,...,a;) € 6921:1 A—
a---am € A is completely controlled. Since the map a€ A~ (a,...,a) € @}, A is completely
bounded, it follows from Theorem 16 that p™ is completely Lipschitz in small scale. As any
polynomial is a linear combination of polynomials of the form p™, m € N, the result follows. [

The reader familiar with m-linear maps on operator spaces knows that other notions of
“complete boundedness” are also frequently studied. More precisely, if Q: @)L, X; — Y is an
m-linear map between operator spaces, Q may be completely bounded or jointly completely
bounded. Those are technical definitions which, for brevity, we chose to omit here, see [10, p. 281]
and [2, Section 1.5.11] for the precise definitions of each of them, respectively.! We finish this
section briefly relating these notions.

Proposition 18. LetmeN, Xj,..., Xy, Y be operator spaces, and Q: GB]'C”:I Xx — Y be a jointly
completely bounded m-linear map. Then Q is completely controlled with ||Q|lcc < I|Qlljch, where
I Qlljcr denotes the norm of joint complete boundedness of Q (see [2, Section 1.5.11]).

Proof. For simplicity we will write the proof in the case m = 2, the general case is analogous. Let
n € N. Since Q is jointly completely bounded, for every [xg})] € M, (X;) and [xg.)] € M, (X)) we

have
”[Q( S‘)’ ;Czl)) ‘ m]HM”(Xl) H (Z)H

4The reader should be warned that some references such as [14] use the terminology completely bounded (resp.
multiplicatively bounded) for the multilinear mappings that are nowadays generally called jointly completely bounded
(resp. completely bounded).

< 1Qljeb

M, (X2)
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The desired conclusion now follows from Ruan’s axioms by observing that [QxW

ij
principal submatrix of the n? x n? matrix [Q(xl(.l.),xl(czl))], that is, there exists a coordinate partial

isometry P € M, 2 (€) such that [Q(x{}, x{?)] = PIQ(x{}, ;) P*. O

xﬁ))] isannxn

Since completely bounded m-linear maps are jointly completely bounded, Proposition 18
shows that many of the multilinear maps that have previously been studied in operator space
theory are completely controlled. Also, in the case of maximal operator spaces there is an
abundance of completely controlled maps (see [27, Chapter 3] for the definition of the minimal
and maximal operator space structures).

Corollary 19. Let m e N, X;,...,X,, be Banach spaces, and Y be an operator space. Then any
bounded m-linear map Q: @}, Xy — Y is completely controlled as a map @, , max(Xy) — Y.

Proof. By Proposition 18, it suffices to show that Q is jointly completely bounded. Since jointly
completely bounded m-linear maps correspond to completely bounded linear maps on the pro-
jective operator space tensor product (see [14, Proposition 7.1.2]), and max(X;)®---®max(X,,) =
max(X1 8, ---®, X,), where ®; is the Banach space projective tensor product (see [2, Proposi-
tion 1.5.12]), the conclusion follows from the fact that bounded linear maps whose domain is a
maximal operator space are automatically completely bounded. g

The reader familiar with the theory of polynomials on vector spaces will already have rec-
ognized that in the situation of Theorem 16, if X = X; = --- = X;;; and T is the diagonal map
T(x) = (x,x,...,x), the composition Qo T is precisely a polynomial on X. Therefore, one would
expect that the available literature on polynomials on operator spaces might already provide us
with more examples of maps which are completely Lipschitz in small scale. However, this is a
subject that has not yet been developed much: the only significant works in this regard appear to
be [11, 12]. Corollary 19 is closely related to [11, Proposition 9.3], and we next list other examples
of completely Lipschitz in small scale maps that follow from the aforementioned two papers.

Corollary 20. Let m € N and Y an operator space. Then any bounded m-linear map
Q: DL, oo — Y is completely controlled.

Proof. This follows from [11, Proposition 9.5], since the Schur multilinear mappings defined in
that paper are easily seen to be completely controlled and thus Theorem 16 yields the desired
result. =

For our last example, the operator space OH mentioned in it is the Hilbert operator space of
G. Pisier, see [27, Chapter 7] for its definition.

Corollary 21. Let (ej)?il be an orthonormal basis for OH, Y an operator space, and (yj)‘]?‘;l a
norm null sequence in Y. Let m = 2 be a natural number and define P: OH — Y by

(o) ()
P(Z xjej) =) Xy
n=1 n=1
Then P is completely Lipschitz in small scale.

Proof. This follows from [12, Proposition 4.1], since the completely bounded polynomials de-
fined in that paper are constructed as restrictions to the diagonal of jointly completely bounded
multilinear maps. Thus, Proposition 18 and Theorem 16 yield the desired result. g

4. Basics about x,(X) and examples

In this section, we prove basic properties about the k,’s and compute x,(X) for many homoge-
neous Hilbertian operator spaces X. For its definition, see Section 1.
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We start recalling the definition of the row and column operator spaces. Given i, j € N, we let
e;,j denote the operator on ¢, whose matrix representation has 1 in the (i, j)-th entry and zero
elsewhere. The row and the column operator spaces are then defined to be

R=spanie ;| jeN} and C=spanfe;;|ieN}.
In particular, both R and C are homogeneous Hilbertian operator spaces.

Example 22. If R and C are the row and column operator spaces, respectively, then x,(R) = 1
and x,(C) = v/n for all n € N. Moreover, it is clear that these spaces minimize and maximize
K, respectively, i.e., for any operator space E we have 1 < x,(E) < /n for all n € N. The lower
bound is obvious since each of the canonical projections M, (E) — E is completely contractive
and the upper bound follows equally as easily by considering some representation E < 28(H) and
computing b(x), where b is the n-by-n E-valued matrix in the definition of «,(E) and x is an
arbitrary normalized vector in H®".

Proposition 23. For any homogeneous Hilbertian operator space X and any n € N, we have
Kn (XK, (X*) = vn.

Proof. Let {e;}"_; be an arbitrary orthonormal set in X and {e;};_, be an orthonormal set in X™
which is biorthogonal to {e; 7:1. Then the product ¥, (X)x,(X*) dominates the norm in M2 of
the matrix pairing between

e10...0 e;0...0
ex0...0 e;0...0
... .| and A
€, 0...0 e;0...0

which is exactly /7 since, as a matrix in M, 2, it has n entries equal to 1 in the first column and all
other entries 0. O

Interpolation spaces will provide a good source of examples of operator spaces whose x;’s can
be estimated. For simplicity, we now set some notation: if Xy and X; are homogeneous Hilbertian
operator spaces and 0 € [0, 1], we let

Xo = (Xo, X1)o,
where the interpolation above is taken with respect to some isometric identification Xy = X
(since both spaces are homogeneous Hilbertian, the specific identification is irrelevant). Due to
its technical definition, we refer the reader to [27, Section 2.7] for the definition of interpolation
operator spaces.

Proposition 24. Consider the interpolation spaces (Xg)ocio,1] 0f a given pair (Xo, X1) of infinite
dimensional homogeneous Hilbertian operator spaces. The following holds.

(1) x,(Xp) < Kkn(Xo) "%,(X1)? forall® € [0,1] and all n € N.

@) If X} = X1, thenx,(Xp) = Vil (kn(X1)' 0%, (X0)?).

Proof.
(1). Itisstandard in interpolation theory that

1Bl ) < 1IN ) 1B 13y,
for any b € M,,(Xp) (see [2, Section 1.2.30]). So, the inequality is immediate.
(2). Since Xj is reflexive and using that XS‘ = X, we have that
X, = (X0, X1)g = (Xg, X7)g = (X1, X0)g = (Xo, X1)1-0 (¢8))

([27, Theorem 2.7.4]). It then follows from (2) that Kn(Xg) < x,(X0)?x ,,(X1)1~Y. Therefore, since
Proposition 23 gives Kn(Xg)’Kn(Xg* ) = v/n, the result follows. O
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Corollary 25. The following holds for6 € [0,1] and n e N.
(1) xu((R,C)g) =n?"2.

(2) x,((min(f,), max(¢,))g) = n?'2.

Proof.
(1). It is immediate that x,(R) = 1 and x,(C) = v/n (Example 22). Therefore, since R* = C ([27,
p- 41]), the upper and lower bounds given by Proposition 24 imply that x ,((R, C)g) = nd’2,

(2). Since the identity R — min(¢,) is completely contractive and x,(R) = 1, this im-
plies x,(min(¢,)) = 1. Similarly, since the identity max(¢,) — C is completely contractive,
kn(max(¢3)) = v/n and equality must then hold as x,(max(¢,)) < v/n (Example 22). Therefore,
asmin(fy)* = max(f_g) ([27, p. 72]) and as max(ﬂ_g) is completely isometric to max(¢,), the result
then follows from Proposition 24 again. U

As our next result shows, Corollary 25(2) can be considerably generalized. Recall that, if X is
a homogeneous Hilbertian operator space, then Riesz representation gives us a linear isometry
X — X* and this allows us to construct the interpolation spaces (X, X*)g. In order to present a
consequence of this generalization, we recall the definitions of RN C and R+ C. Letr: , — R
and c: ¢, — C be canonical isometries. The operator space RN C is the Banach space ¢, together
with the operator space structure given by the isometric inclusion

X€ly— (r(x),c(x)) ERoC < B(r) ® B (L>).
The operator space R+ C is the quotient (R®; C)/A, where A = {(r(x), —c(x)) | x € €2} ([27, p. 194]).

Corollary 26. Ler X be a homogeneous Hilbertian space such that the identity R — X has cb-
norm 1. Then, (X, X*)g) = n%’? forall@ € [0,1] and all n € N. In particular, x ,(RNC,R+C)g) =
n%"2 forall® € 0,1] and all n € N.

Proof. Since the identity R — X has cb-norm 1, its adjoint X* — C also has cb-norm 1. So, the
proof follows exactly as the one of Proposition 25(2). The last statement follows since the identity
R — Rn Cis clearly completely contractive and (RN C)* = R+ C ([27, p. 194]). O

For our next example, we recall the definition of Fermionic operator spaces. Let H be a Hilbert
space and (v;);es be a family of operators in 98(H) such that

vivi+vjv;=0 and v;v; +v;v; =6;;ldy

P
for all i,j € I, where (9, j)i,jer are the Kronecker deltas. Then, the Fermionic operator space
associated to I is

®(I) =span{v; | i € I}.
It turns out the space above does not depend on (v;);c; per se but only on I. We refer to [27,
Theorem 9.3.1] for a proof of that. For shortness, if I ={1,..., n}, we write ®, for ®({1,..., n}).

Proposition 27. For any infinite set I, we have that k ,(®(I)) = /1.

Proof. The upper bound x,(®) < /n is immediate since it holds for any homogeneous Hilber-
tian operator space (Example 22). Let C, denote £} with the column operator space structure,
i.e., C, =spanfey ;| i € {1,...,n}}. Itis shown in [27, Equation (10.22)] that the identities ®, — C,,
have uniformly bounded cb-norms. Therefore, x,,(®(I)) = «,(C). Since, k,,(C) = v/n, the result
follows. O

In the first version of this paper, based on the examples for which we have been able to
calculate x,(X), we asked whether the inequality in Proposition 23 is always an equality, and
also asked about the possible growth rates for the sequence (Kn(X))Zozl. We thank the referee
for providing us with the proofs of the following two propositions, which completely answer the
aforementioned questions.
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Proposition 28. For any homogeneous Hilbertian operator space X and any n € N, we have
Kn(X)xp(X*) = /n.

Proof. Note that, using ® to denote the injective tensor product of operator spaces, and letting
(e;); be an orthonormal basis for X,
= =Id: Ry — Xnllep

n
Z ei1®e;
i=1 M, (X) Cn®X

where we have used the standard identification C, ® X = CB(C;,,X), and Id : R, — X,, is the
canonical isometry sending an orthonormal basis of R,, to one of X,,. Therefore,

Kn(X)Kn(X*) =|Id: R, — Xnlleh Id: X, — Culleh -

On the other hand, by [27, Theorem 7.8], there exist u : R, — X, and v : X;, — C, such that
vu =1d and |lullep lvlien = vR. Next we use Zhang's averaging technique [32, 33] (see also [27,
Proposition 10.1] for a very similar proof using this type of argument). By homogeneity and using
the singular value decomposition of an n x n matrix, we can assume that « is a diagonal operator
with diagonal entries A;,...,A, > 0. Thus v must also be diagonal, with reciprocal diagonal
entries. If S: R, — R, and T : X,; — X, denote the “cyclical shift” isometries given by Se; ; = e} ;+1
and Te; = e;—; (where the indices are taken modulo n), note that TuS is diagonal with diagonal
entries Ay,...,A,,11. Once again by homogeneity, | TuSllcp = | ullcp. It now follows from applying
similar arguments with higher powers of S and T, together with the triangle inequality, that

n
Z Tius’
i=1

n
Z ei19e;

i=1

Kp(X) =

A+ +A
= %nm:}zn—»xnllcb.

lulley = "
cb

and analogously
-1, .. -1

AT+
Ivlle, = -, Id: X — Callep -
Applying the Arithmetic Mean-Geometric Mean inequality we thus conclude
vn= lullep lvllep = 11d: Ry — Xyllep 1 : Xy, — Cylley = 11d: Ry — Chllep = vn,
yielding the desired conclusion. g

Proposition 29.

(1) Let X be a homogeneous Hilbertian operator space. Then the function n € N —
n~Y2x,(X) € R is decreasing.

(2) Let ¢ : N — R be an increasing function satisfying that ¢(1) = 1 and n — n~?¢(n) is
decreasing. Then there exists an (infinite dimensional) Hilbertian homogeneous operator
space X such that for every n € N we have x ,(X) = ¢(n). (Note that these conditions are
optimal, because of part (1) and the clear fact that the sequence of the ks is increasing
and takes the value 1 at 1).

Proof.
(1). Let X < 98(H) be a completely isometric embedding. Then, once again denoting by (e;); an
orthonormal basis for X,

2
n n n
(X2 =13 ein@e =l X (ej,®@e)ei®e) =X efei (12)
i=1 M, (@H)  Nbi=1 M, (B(H) 111=1 B(H)
Therefore,
n+1 1 n+1 1 n+1 n+1
K (X2 =Y efe; =X e =Y |Leie = ——Kkn(X?,
i=1 BH) j=li#] BH) j=1 i BH)

from where it follows that (rn+1)"2x,,, 1 (X) < n7 2%, (X0).
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(2). For each n € N, let 6,, be the set of all contractions of rank at most n on ¢,. We define an
operator space X by setting, for each m € N and each x € M,;,(¢>»),
%, x) =maX{ 1%, Ry »SUP sup 17~ 2 () | Pmxllag, ) }
n=1 Peé6,

It is clear that these are norms satisfying Ruan’s axioms, and that at level k = 1 the norm
agrees with the usual norm on ¢,. The resulting operator space is also homogeneous, since
for a linear map u : > — ¢> we have |upxlwm,, &) < lullllxlm,,r (by homogeneity of R) and
SUPpeeg, I1Pmumxlp,,c) < llul SUP e, 1Qmxln, ) (because the rank of Pu is at most that of
P). Recall that for y = Y77 ¢;1 ® ¢; we have |y|y  =1and |y|y . = vm. For any
contraction P on ¢;, since P,y = Z;?i 1 €i,1 ® Pe; a calculation analogous to (12) together with
the triangle inequality shows that we have ||Pny|,, ) < v, and therefore for n > m we have
SUPpes, || Py, y“ M (C) = v/m. In the case n < m, for any P € €6,, we have, using once again the
standard identification C,, ® C,, = CB(C;,,, Cp)

m
Y ei1®Pej;
i=1

1Pmyln,,c) =

m
Z e;1®Pe;;
i=1

M, ®Ci, Cin®Cpy
=|P: R — Cpllch = IPllus < Vrank(P) | P|| < v/n,

where we have used that for a linear map R,; — C,, the completely bounded norm agrees with
the Hilbert-Schmidt norm [27, Equation (1.5)]. Moreover, the inequality above is achieved by
taking P to be the orthogonal projection onto a subspace generated by an n-element subset of
the canonical basis. Therefore, we conclude that

Km0 = [V, 00 = Sup ™ @)/ minin, m = pom
nz

as desired. O

5. Small scale rigidity of x ,(E)

In this section, we now show how the «,’s impact the existence of small scale Lipschitz maps
between operator spaces. The results herein will culminate in Theorem 7. For that, in order
to obtain the equivalence «,(X) = x,(Y), we prove the inequalities < and 2 separately, see
Theorems 32 and 35, respectively. We emphasize this here since each of these partial results have
weaker hypotheses than Theorem 7.

We start with a lemma relating the «,’s with a similar quantity computed with respect to
weakly null sequences instead of orthonormal sets.

Lemma 30. Let X be an infinite dimensional homogeneous Hilbertian operator space, b = a > 0,
and let (x;,) m be a weakly null sequence in X such that || x| € [a, b] for all m € N. Then, for all
€ >0, there is an infiniteM < N such that

Xm; 0...0
Xmy, 0...0

(a-e)xy(X) < L. < (b+¢&)xp(X).
Xm, 0...0 M, (X)

forallm <---<m, e M.

Proof. Let (e;;), be an orthonormal sequence in X and ¢ > 0, without loss of generality, assume
€ < a. By going to a subsequence if necessary, a standard gliding-hump argument allows us to
assume that the assignment x,, — e;, defines an isomorphism T': span{x,, | m € N} — span{e,, |
meN}such that |[T|<1/(a—¢)and [T < b+e. As X isa homogeneous space, we must also
have | Tllep < 1/(a—¢€) and | T~ | < b +¢, so the result follows. O
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We say that amap f: Bx — Y is completely bounded in small scale if there is M > 0 such that
||fn([xij])||Mn(X) <M forall neN and all [x,-j] € BM,,(X)-

In order to obtain restrictions for the existence of certain maps, we must also demand the
maps to satisfy some nontrivial lower estimates. The next definition is an “operator space/small
scale” version of the the compression exponent of a metric space X into another space Y
introduced in [16].

Definition 31. Let X and Y be operator spaces. We denote by a5 (X) the infimum of all @ = 1 for
which there is completely bounded in small scale f: Bx — Y and L = 1 such that

1
Ifx)—fWly = lex—yII?(
forallx,y€ Bx.®

Theorem 32. Given arbitrary homogeneous Hilbertian operator spaces X and Y, we have that
Kn (X)) 2 i, (V).

Proof. Let f: Bx — Y be completely bounded in small scale. Suppose «, L = 1 are such that
1
IIf(x)—f(y)IIyzzllx—yllié forall x,y € Bx. (13)
As f is completely bounded in small scale, fix M > 0 such that
I fn(@ll =M forall a€ Bwm,x)- 14)

Fix n € N and let (e;); be an orthonormal sequence in X. Appealing to Rosenthal’s ¢;-
theorem (see [29, The Main Theorem]), by going to a subsequence if necessary, we can assume
(f(ej/x,(X))); is weakly Cauchy. In particular, (f(ezj-1/x,(X)) — f(e2j/x,(X))); is weakly null.

1

Moreover, (13) implies that
) ), e
f(Kn(X) / Kn(X) )y Lxp(X)®

for all j € N. Hence, going to a further subsequence if necessary, Lemma 30 allows us to assume
that

fler/xn (X)) - flealxn(X)) 0...0
Fle3/xn(X)) = flealxn(X)) 0 ...0 K (V)
>

: P " 2L, ()
flezn11ka(X0) = flean/xcn(X) 0 ... Of [y )

Let ¢, € M, (X) be the operator in 28(¢2) whose (j,1)-coordinate is ez;-1/x,(X), for all j €
{1,...,n}, and all other coordinates are zero, and let d,, € M;(X) be the operator in %8(¢>)
whose (j,1)-coordinate is e»;/x,(X), for all j € {1,..., n}, and all other coordinates are zero. So,
lcnlim, 0 = ldnllm,x) =1 and (14) gives

I frn(cn) = fu(dn) M, (v) < 2M.
As
fler/xn(X)) - flea/kn(X)) 0...0
fles/xn (X)) — flea/x, (X)) 0...0
"fn(cn) _fn(dn)”Mn(X) = . L.

flezn—1/x,(X)) — fe2n/xp(X) 0... 0 M, (Y)

5We point out that the compression exponent of a metric space X into another space Y (see [16]) considers the
supremum of all @ < 1 for which a similar inequality holds. This difference comes from the fact that the compression
exponent deals with large scale geometry, while the exponent aSYS(X) is supposed to capture small scale behavior.
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the arbitrariness of n € N implies that
Kn(Y)
2Lk, (X)®
This finishes the proof. O

<2M forall neN.

Corollary 33. Let8,y€[0,1],

e X e{(R,C)p,min(¢y), max(¢2))g, (RN C,R+ C)g}, and
e Y e{(R,C)y,(min(fr), max(f3))y, (RN C, R+ C)y}.

Then, a3 (X) =2 y/6.
Proof. Corollaries 25 and 26 show that x,(X) = n%2 and «,(Y) = n’2. Hence, Theorem 32

implies that n%X9/2 > n1/2 50, a$3(X) = y/0. O

The next definition considers another approach to obtain lower bounds for the small scale
distortion of maps between operator spaces. Similar definitions have already been studied by
C. Rosendal and the first named author in the context of Banach spaces under the names of
uncollapsed and almost uncollapsed maps, see [4, 28].

Definition 34. Let X and Y be operator spaces. We call a map f: Bx — Y completely almost
uncollapsed if there aree > 0 and t € (0,1) such that

I1x; 1 = [2i 1m0 = ¢ implies || f(x;1) = fu(lzijD M, ) = €
forallneN and all [x;],(z;;] € Bm,,(x).

Theorem 35. Let X and Y be homogeneous Hilbertian operator spaces. If there is a Lipschitz map
f: Bx — Y which is completely almost uncollapsed, then x ,(X) < xp,(Y).

Proof. The proof resembles the one of Theorem 32 but with the arguments for the upper and
lower estimates replacing each other. For this reason, we start this proof letting X, Y, (c,), and
(dyn), be as in there.

Since f is completely almost uncollapsed, fix ¢ € (0,1) and ¢ > 0 such that

I{xi;1 = [zijlIm,x) = ¢t implies | f([x;;]D) = fullzi DM, ) = €

for all n € N and all [x;;],[z;;] € Bm,(x). Since X is a homogeneous Hilbertian space, it immedi-
ately follows that ||c, — d,ll = V2 for all n € N. Therefore, replacing each of the c¢,’s and d,,’s by
(t1vV2)c,, and (¢/vV2)d,, respectively, we can assume that

lcy,—dpll =t forall neN.
Our choice of t and € then give that
I fren) = fuldn)llm, vy = € forallneN. (15)
On the other hand, letting L = Lip(f), we have

o )
— i |- fl————e;
VaKn(X) VaKn(X)

Hence, proceeding as in the proof of Theorem 32 and passing to a subsequence if necessary,

Lemma 30 gives that

forall j,neN.

Yy Kp(X)

2Lk, (Y)

— d <"
||fn(cn) fn( n)||Mn(Y)< xn(X)

Equations (15) and (16) together then imply that x ,(X) < x,,(Y) as desired. g

forall n e N. (16)



1910 Bruno M. Braga and Javier Alejandro Chavez-Dominguez

Corollary 36. Let0,y€[0,1],

* X €{(R,C)g, (min(¢2),max(£2))g, (RN C, R+ C)g}, and
o Y €{(R,C)y, (min(f2), max(£2))y, (RN C, R+ C)yl.

Ifthere is a Lipschitz map f: Bx — Y which is completely almost uncollapsed, then 6 <.

Proof. Corollaries 25 and 26 show that x,(X) = n?2 and xkp(Y) = nY’2. Hence, Theorem 35
implies that n%’% < n¥'2,s0,0 <. O

Proof of Theorem 7. Suppose there is a completely Lipschitz in small scale map f: Bx — Y
which is completely almost uncollapsed. In particular, f is completely bounded in small scale
and aSYS(X ) = 1. Therefore, Theorem 32 gives that k,(Y) < x,(X) . On the other hand, Theorem 35
implies x,(X) < xp, (V). O

Proof of Corollary 8. This follows from Corollaries 33 and 36. g

6. Aforay into the non Hilbertian setting

In this final section, we go beyond the homogeneous Hilbertian case and provide lower bounds
for compression exponents a3’ (X) for non-Hilbertian operator spaces X.

Theorem 38 below is in a sense a localized version of Theorem 32. The only significant
difference in its proof is that instead of using tools such as Rosenthal’s ¢;-theorem to extract
a subsequence from an infinite sequence, we will extract a subsequence of a finite sequence
using the following slight generalization of the original Bourgain-Tzafriri restricted invertibility
theorem [3, Theorem 1.2] (we point out that the version below follows e.g. from [31, Theorem 2]).

Theorem 37. There exists a universal constant D > 0 such that whenever T : £} — (7 is a linear
map with || Te; || =1 foreach 1< j < n, where {e; ;?:1 is the canonical basis of ), then there exists
a subseto <{1,2,...,n} of cardinality || = Dn/ || TI? such that for any choice of scalars {a;} jes we
have
)12
|z wrel =05 w)
jeo jeo

For ahomogeneous Hilbertian operator space Z and n € N, we denote by Z,, an n-dimensional
subspace of Z (they are all completely isometric by homogeneity, so there is no ambiguity).
Note that by Example 22, in the statement of the following theorem the interval [0,1/2] covers
all possible values of the constant c.

Theorem 38. Let Z and Y be homogeneous Hilbertian operator spaces. Suppose thatx,(Y) 2 n®
forsome c €[0,1/2]. If X is an operator space for which there exist a constant A = lssand a sequence
of injective linear maps ¢" : Z,, — X such that | (¢™)n | (@™ || = A, thenx ,(2)*7X) > pc/(1+2),

Proof. Without loss of generality, let us assume that for each n € N we have ||(¢™),|| =1 and
[(@™~!| = A. Suppose there is a map f: Bx — Y which is completely bounded in small scale
and numbers «a, L =1 such that

1
IIf(x)—f(y)IIyzzllx—yII‘}( forall x,y € Bx. (17)
As f is completely bounded in small scale, fix M > 0 such that

IIfn(a)Ian(y) <M forall (/Z€BMn(X). (18)
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Fix n € N and let (eJ)Z” be an orthonormal basis for Z,,. For 1< j <2n,leté; = <p2”(ej), and
note that [|&;[| < || ej || = 1. Note that (17) implies that for 1 < j < n,

el

- é; | 1

- — = 221 =24
n(Z) kn(2)|x Lia(2)"

1 . 1

2 e e -eilz2 e

Let ¢, € My (X) be the matrix whose (j,1)-entry is é2;-1/x,(Z), for 1 < j < n, and all other
entries are zero, and let d,, € M (X) be the matrix in M,,(X) whose (j,1)-entry is &/« ,(Z), for all
1 < j < n, and all other entries are zero. Since || (¢9*"),,|| = 1, note that || cxllm, x) < &Kn(2)/xp(Z) =
1. Analogously, l|d,llm,x) < 1. Therefore, by (18), we conclude that

Il fu(cn) = fuldn) v, (v) < 2M.

Letting y; = f(€2j-1/xx(Z)) - f(&2j/x,(Z)) for 1 = j < n, the previous inequality means that

y10...0
y20...0
e =2M. (19)
Yn0...0

M, (Y)

Now, for any A1,1;...,14, € C it follows from Ruan’s axioms that

j=

y10...0
y20...0 0 n ) 1/2
i =M Az Al L Al=2m| Y 2|,
=1 v o :

Yn0...0 M, (V)

that is, the operator T: YV, — Y Which sends the j-th element of the canonical basis to y; has
norm at most 2M. Since | y; |, = L™, (Z)"*A~® for each 1 < j < n, it follows from Theorem 37
that there is a universal constant D such that there is a subset o = {01,...,0,} € {1,2,...,n} of
cardinality m = WL 2k ,(Z) 2% A~2% such that the operator T, when restricted to the coordmate
subspace corresponding to o, is invertible and the norm of the inverse is at most D~ Lx ,,(Z)* A%.

By homogeneity, the cb-norm of the inverse of said restriction is also bounded by this same

number. Therefore,

Yo, 0...0
Yo, 0...0 )
oL = DL 'kp(Z2) ¥ A" % m(Y), (20)
Yo, 0...0 M, (Y)
and thus we have from (19) and (20) that
o k() (xa(2)A) N n¢
Y ka@A) Y (kDA (kn(2)A)* 02

where the 1m¥)hed constants are independent of both n and a. It then follows that
(Kn(Z)A MHZC > nt, so K,,(Z)A) pe n¢/1+20) from where the desired result follows. O



1912 Bruno M. Braga and Javier Alejandro Chavez-Dominguez

Remark 39. If the space Z in Theorem 38 satisfies x,(Z) < n? for some constant d, we get the
lower bound aSS(X) > d(1+2c) However, this bound is trivial when d = 1/4: since c € [0,1/2] by
Example 22, we get 1 = 7555 o) - In particular, Theorem 38 gives no information when Z = OH =
(R, O)1r2-

Remark 40. By [22, Theorem 3.3], the sequence of maps ¢" : Z, — X in the hypotheses of
Theorem 38 is guaranteed to exist whenever X has weak cotype (2, Z*): we even get the stronger
condition ||¢"||, (@™ ~!|| = A for some constant A. Such maps are called complete semi-
isomorphisms in the literature, see [24, Section 3]. Since we will not need the aforementioned
notion of weak cotype in this paper, the reader is directed to [22, Section 2] for the definition.

As a first example of the consequences one can obtain from Theorem 38, we state one that
easily follows from our previous calculations of k,’s in specific cases.

Corollary 41. Let8,y € [0,1],
e Ze{(R,C)g,min(¢z),max(¢,))g, (RN C,R+ C)g}, and
¢ Y e{(R,C)y,(min({3), max(¢2))y, (RN C,R+C)y}.
If X is an operator space for which there exist a constant A = 1 and a sequence of injective linear

maps " : Z,, — X such that || (™) | - ||(9™ || < A, (in particular, if X has weak cotype (2, Z*)),
then a$ (X) = (1+y)6

Now we present an example for some specific operator spaces X, namely the Schatten classes
Sp. See [26, Chapter 1] for the definition of their operator space structure.

Corollary 42. Letl < p <2 and p' € [2,00) be such that1/p+1/p' =1. LetY be a homogeneous
Hilbertian space such that x,(Y) 2, n¢ for some c € [0,1/2]. Then a3 (Sp) = Moreover, if
p=1landc>0, then a'SYS(Sl) =00

Proof. By Item (1) of the first theorem in p. 222 of [21], S}, has cotype (2,(RN C,R+C)1/,), which
implies weak cotype (2, (RNC,R+C)1/p). Note that (RNC,R+C)yy, = Z* for Z=(RNC,R+C)1py
by (11), so by Remark 40 we can apply Theorem 38 to get x,(Z)%Y S») > p¢/(1+20) Byt x,(Z) =
n'’2P" by Corollary 26, yielding the conclusion. O

- (1+20)

Furthermore, we next show that Theorem 38 can always be applied to non-Hilbertian operator
spaces.

Corollary43. Let X be an infinite-dimensional operator space, and let Z be a Dvoretzky space for
X. Let Y be a homogeneous Hilbertian operator space such that x ,(Y) 2 n° for some c € [0,1/2].
Then x,(2)%7 X > pc/U+29 1y particular, if X is a minimal operator space and ¢ > 0 then
aP(X) =

Y

Proof. By the definition of a Dvoretzky space, Z is contained in an ultrapower of X completely
isometrically. Therefore, approximating the finite dimensional pieces of this containment by
elements in X, it follows straightforwardly that, for all e > 0 and all 7 € N, X contains a copy of the
n-dimensional subspaces of Z by maps whose n-amplifications are isomorphic embeddings with
distortion at most 1 + €. In particular, for any n € N and € > 0, we can find an injective linear map
@": Z, — X such that || (¢™)!|| =1 and ||(¢™) || = 1 +&; here Z, < Z is a subspace of dimension
n. Therefore, the hypotheses of Theorem 38 are satisfied which yields the conclusion.

If X is minimal, since both ultraproducts and subspaces of minimal operator spaces are
also minimal, then the only possible (separable) Dvoretzky space for X is min(¢,). Since
K (min(¢2)) = 1 by Corollary 25, we conclude ai,s(X) =o00. O

Proof of Corollary 9. Just as in the proof of Theorem 7, the existence of a completely Lipschitz
in small scale embedding Bx — Y implies a$’(X) = 1. Thus, the desired conclusion follows from
Corollary 43. d
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As we have seen in the proof of Corollary 43 above, for any infinite-dimensional operator
space X there is a homogeneous Hilbertian Z which satisfies the condition in Theorem 38. The
opposite is also true: for a given homogenous Hilbertian operator space Z, itis not difficult to find
nonhomogeneous and not Hilbertian operator spaces X satisfying the desired condition (and not
containing Z). For example, take the £,-sum (G}‘,’l":l Zn)g for p € (1,00) \ {2}, which obviously
contains completely isometric copies of the Z, but is not homogeneous since it also contains a
completely 1-complemented copy of ¢,, which is not homogeneous [19, p. 137].
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