
Received 6 October 2024; revised 3 November 2024; accepted 14 November 2024. Date of publication 18 November 2024;

date of current version 3 December 2024.

Digital Object Identifier 10.1109/OJCOMS.2024.3501856

Received Power Maximization Using Nonuniform
Discrete Phase Shifts for RISs With a

Limited Phase Range
DOGAN KUTAY PEKCAN (Graduate Student Member, IEEE),

HONGYI LIAO (Graduate Student Member, IEEE), AND ENDER AYANOGLU (Fellow, IEEE)

Center for Pervasive Communications and Computing, Department of Electrical Engineering and Computer Science,

University of California at Irvine, Irvine, CA 92697, USA

CORRESPONDING AUTHOR: E. AYANOGLU (e-mail: ayanoglu@uci.edu)

This work was supported in part by NSF under Grant 2030029.

ABSTRACT To maximize the received power at a user equipment, the problem of optimizing a

reconfigurable intelligent surface (RIS) with a limited phase range and nonuniform discrete phase shifts

with adjustable gains is addressed. Necessary and sufficient conditions to achieve this maximization are

given. These conditions are employed in two algorithms to achieve the global optimum in linear time.

Depending on the phase range limitation, it is shown that the global optimality is achieved in NK or fewer

and N(K + 1) or fewer steps, where N is the number of RIS elements and K is the number of discrete

phase shifts which may be placed nonuniformly over the limited phase range. In addition, we define

two quantization algorithms that we call nonuniform polar quantization (NPQ) algorithm and extended

nonuniform polar quantization (ENPQ) algorithm, where the latter is a novel quantization algorithm for

RISs with a significant phase range restriction. With NPQ, we provide a closed-form solution for the

approximation ratio with which an arbitrary set of nonuniform discrete phase shifts can approximate

the continuous solution. We also show that with a phase range limitation, equal separation among the

nonuniform discrete phase shifts maximizes the normalized performance. Furthermore, for a larger RIS

phase range limitation, we show that the gain of increasing K is only marginal, whereas, ON/OFF selection

for the RIS elements can bring significant performance compared to the case when the RIS elements are

strictly ON.

INDEX TERMS Intelligent reflective surface (IRS), reconfigurable intelligent surface (RIS), nonuniform

discrete phase shifts, IRS/RIS phase range, global optimum, linear time discrete beamforming for IRS/RIS,

nonuniform quantization.

I. INTRODUCTION

ARECONFIGURABLE intelligent surface (RIS), also

known as intelligent reflective surface (IRS) is

proposed for wireless environments where there may be

blockage of electromagnetic waves between the base station

(BS) and user equipment (UE), creating a low line-of-sight

(LOS) environment [1]. An RIS can also be employed

to generate a wireless coexistence environment by avoid-

ing an area which may have its own transmissions and

transmitting to users in a different area via reflections.

An RIS employs devices known as RIS elements whose

capacitance can be changed by controlling their bias voltage,

affecting the phase of the RIS element, thereby creating

a change in the reflection coefficient of the RIS element.

This results in changing the direction of an impingent

electromagnetic wave [2], [3], [4]. Assuming the phase shifts

at the RIS elements are continuous, optimization algorithms

are developed, for example, [5], [6], [7], [8]. A two-stage

approach to address the discrete phase shifts constraints for

the single-user system is to project the continuous solution

to the closest value in the discrete set [9], [10], [11],

[12]. With discrete phase shifts constraints, the number of
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possible solutions increases exponentially with the number

of RIS elements. Therefore, a closed-form solution becomes

practically unavailable and exponential search techniques are

required [13]. To that end, [14] stated that the problem is

a generally NP-hard discrete quadratic program (QP). Most

of the prior work in single-user scenarios had exponential

complexity [9], [15]. In this regard, to outperform the

traditional quantization approach, probabilistic optimization

techniques have also drawn attention [16], [17], [18]. To

address multi-user detection in code division multiple access,

the probabilistic data association (PDA) approach is used

in [16] to address general binary quadratic problems (BPQs).

Similarly, in [17], authors addressed BPQs with a PDA algo-

rithm and achieved near-optimal results for highly reliable

machine-to-machine communication. Recently, the authors

in [18] showed the general quantization approaches can be

outperformed in various discrete RIS optimization problems

by developing a comprehensive probabilistic technique to

transform discrete optimization problems. Yet, most of the

solutions not only assume uniform discrete phase shifts but

also can only approximate the global optimum.

There has been a significant amount of research activity for

the selection of uniform discrete phases when the phase range

is 2π , see, e.g., references in [19]. However, the problem

of the selection of discrete phases when the phase range is

limited to less than 2π is new and there are only a few works

that appeared in the literature or as preprints [20], [21], [22].

Reference [20] states a uniform phase shift assumption is

not realistic according to the actual behavior of practical

RIS elements. The paper maximizes the channel capacity of

the target user. It claims to develop a method that finds the

optimal reflection amplitudes and phases with complexity

linear in the number of RIS elements. Reference [21]

states it models reflection coefficients as discrete complex

values that have nonuniform amplitudes and suffer from

insufficient phase shift capability. It proposes a group-based

query algorithm that takes the imperfect coefficients into

consideration. The authors have fabricated an RIS prototype

system and validate their theoretical results by experiments.

Reference [22] recognizes that in real-world applications, the

phase and bit resolution of RIS units are often nonuniform

due to practical requirements and engineering challenges.

The authors formulate an optimization problem for discrete

nonuniform phase configuration in RIS-assisted multiple-

input single-output (MISO) communications. They state they

propose a partition-and-traversal algorithm which achieves

the global optimal solution.

We note that the problem of a limited phase range can

actually happen in a real RIS system. For example, a

common technology to implement an RIS is to employ

varactor diodes and change their capacitance via varying their

bias voltages. The change in capacitance makes the reflection

coefficient of the RIS element to change, thereby creating

the desired effect via the RIS. However, in the implemented

RIS element, the voltage changes may not correspond to

the full range of −π to π (or −180◦ to 180◦). As an

example, [4] discusses a prototype for an RIS implemented

via varactor diodes. In [4, Fig. 3], it can be observed that

for the frequency the RIS is designed to operate at, i.e.,

5.8 GHz, the change in the phase of the reflection coefficient

is restricted to −120◦ to 110◦. At frequencies different than
5.8 GHz, the range is even smaller.

Our motivation in this paper is to address the discrete-

phase RIS problem to maximize the received power at a

UE with the particular emphasis that the phase range is

less than 2π . As described above, this can occur commonly

in realistic implementations of the RIS structure where the

components that realize the phase change in an RIS element

are varactor diodes. In these settings, it is possible that the

algorithms developed for the full phase range of 2π will

not work and thus new algorithms need to be developed.

Inspired by our work in [19], we are also motivated to find

out if intuitive suboptimal algorithms to solve this problem

can be found. For example, is it possible to employ intuitive

techniques that have an approach of quantization within the

limited phase range? If yes, we would like to quantify how

closely they can perform compared to the optimum solution.

We are also motivated to find closed-form expressions as

to the fundamental limits of such techniques. Another key

motivation is optimizing the placement of discrete phase

shifts, i.e., selecting the phase shift set. Previously, these

were uniformly set based on the number of phases, but with

the possibility of nonuniform phases, this requires analysis.

Our work in this paper provides, as an extension of

the work in [19], necessary and sufficient conditions for

global optimality, two algorithms to achieve the optimum

solution which can have smaller number of steps than

the works in the literature, and two intuitive quantization

algorithms which achieve near-optimal performance with

very small complexity. We provide fundamental limits for the

quantization approach. We also show that the best solution

for this approach is obtained when equal separation among

the discrete phases in the limited phase range is achieved.

In quantitative terms, the contributions of the paper are

as follows.

• To maximize the received power at a user equipment,

the problem of optimizing an RIS with a limited phase

range R < 2π and nonuniform discrete phase shifts

with adjustable gains is addressed and necessary and

sufficient conditions to achieve this maximization are

given.

• These conditions are employed in two novel algorithms

to achieve the global optimum in linear time for R ≥ π

and R < π . With a total number of N(K+1) and N(K+
2) complex vector additions when R ≥ π and R < π , it

is shown that the global optimality is achieved in NK or

fewer and N(K+ 1) or fewer steps, respectively, where

N is the number of RIS elements and K is the number

of discrete phase shifts. To the best of our knowledge,

the required complexity is the lowest available in the

literature.
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• In addition, we define two quantization algorithms that

we call nonuniform polar quantization (NPQ) algorithm

and extended nonuniform polar quantization (ENPQ)

algorithm, where the latter is a novel quantization

algorithm for RISs with a significant phase range

restriction, i.e., R < π .

• With NPQ, we provide a closed-form solution for the

approximation ratio with which an arbitrary set of

nonuniform discrete phase shifts can approximate the

continuous solution. With this, we analyze the optimal

placement of the nonuniform discrete phases overseen

by literature. We show that with a phase range limita-

tion, equal separation among the nonuniform discrete

phase shifts maximizes the normalized performance.

• Furthermore, we show that the gain of using more than

two discrete phase shifts with R < π/2 and more than

three discrete phase shifts with R < π is only marginal,

i.e., increasing the number of discrete phase shifts does

not improve the performance when R is limited.

• Finally, we prove that when R < 2π/3, ON/OFF selec-

tion for the RIS elements brings significant performance

compared to the case when the RIS elements are

strictly ON.

The rest of this paper is organized as follows. Section II

introduces the system model and the problem defini-

tion. With strictly ON RIS gains, an optimal algorithm

and a suboptimal quantization algorithm are developed in

Section III and Section IV, respectively. Based on the

quantization algorithm, Section V provides an approximation

ratio for the performance. With the approximation ratio, an

analytical analysis for the optimum placement of discrete

phases is provided in Section VI. Then the RIS gains are

relaxed. Considering adjustable RIS gains, Sections VII–

IX provide an optimal algorithm, a suboptimal algorithm,

and an approximation ratio of the performance for R < π .

Section X analyzes convergence to optimality. Performance

and complexity analyses are provided in Section XI, in

comparison with the recent literature. Section XII has a brief

discussion on an extension to the multi-user scenario. Finally,

Section XIII provides the conclusion of the paper.

II. SYSTEM MODEL

We consider a point-to-point communication scenario aided

by an RIS with N elements and a phase range R. The RIS

elements introduce a gain and a phase shift, i.e., βrn and

θn for n = 1, . . . ,N, respectively, to the incident signal.

We consider K discrete phase shifts for the RIS elements

θn ∈ �K , where �K = {φ1, φ2, . . . , φK} and the RIS gains

can be adjustable, i.e., βrn ∈ [0, 1]. We also define the

difference among each adjacent phase shift in �K as �K =
{ω1, ω2, . . . , ωK}, such that φk⊕1 = φk + ωk.

1 Hence, the

1In this paper, we define ⊕ and � to choose from RIS phase shift
indexes from 1 to K as follows. For k1, k2 ∈ {1, . . . ,K}, k1 ⊕ k2 = k1 + k2
if k1 + k2 ≤ K and k1 ⊕ k2 = k1 + k2 − K, otherwise. Similarly, for
k1, k2 ∈ {1, . . . ,K}, k1 �k2 = k1 −k2 if k1 > k2 and k1 �k2 = K+k1 −k2,
otherwise.

N-element reflection coefficient vector is

w =
[

βr1e
jθ1 , βr2e

jθ2 . . . , βrNe
jθN
]

(1)

where j =
√

−1. Let s ∈ C be the transmitted symbol. The

received signal is given as [19]

y =
(

hTuWhb + h0

)

s+ z, (2)

where h0 ∈ C is the direct link between the BS and UE with

non-line-of-sight (NLOS), W = diag(w), z is the additive

white Gaussian noise (AWGN), hu ∈ C
N×1 and hb ∈ C

N×1

are the equivalent channels of the RIS-UE and BS-RIS links,

respectively.

Let hn be the complex-valued cascaded channel coefficient

between the BS and the UE, being reflected by the nth

RIS element, n = 1, . . . ,N, i.e., let h = hu 
 hb, where


 is the elementwise (Hadamard) multiplication of the two

vectors. Assuming a mean power constraint E[|s|2] ≤ P

at the BS, the achievable ergodic data rate in bps/Hz is

given by

γ = E

[

log

(

1 +
P

σ 2

∣

∣

∣
h0 + hTw

∣

∣

∣

2
)]

, (3)

where z ∼ CN (0, σ 2) and σ 2 is the noise power.

The RIS aids the communication through discrete beam-

forming to maximize the overall channel gain in equation (3).

In practical scenarios, RISs have a certain phase-shifting

capability, and the discrete phase shifts are not necessarily

uniform [23]. In this paper, the RIS phase range R ∈
[0, 2π ] represents the phase-shifting capability of the RIS.

Hence, we assume that the main restriction arises due

to the RIS phase range R < 2π , and the nonuniform

phase shifts are selected based on the RIS phase range as

in Fig. 1.

At this point, we would like to emphasize an important

point regarding the placement of the limited phase range R

on the unit circle. We remark that the symmetry between

the phase shifts −R
2
and R

2
in Fig. 1 is not required and the

techniques presented in this paper apply to any nonuniform

discrete phase shifts structure with a total contiguous phase

range R. Because, for an arbitrary nonuniform phase shift

structure, the RIS phase range would satisfy the condition

R = 2π − ωk̄ where ωk̄ is the largest value in the set �K .

So, without loss of generality, we will use the approach in

Fig. 1, i.e., −π ≤ φ1 < · · · < φK = φ1 + R < π with

R < 2π K−1
K

. The condition R < 2π K−1
K

arises due to the

fact that R comes from ωk̄, and the condition ωk̄ ≥ 2π
K

must

be satisfied as
∑K

k=1 ωk = 2π and by its definition ωk̄ ≥ ωk,

for k ∈ {1, 2, . . . ,K} \ k̄. Note that, this will ensure that the

discrete phase shifts cannot be placed uniformly over the

unit circle.2 In addition, while we recognize the phase range

is not necessarily symmetric, we will assume the discrete

2Note that the terms uniform and nonuniform depend on the range over
which they are defined. In this paper, we use the term nonuniform to mean
the distribution over the full phase range [−π, π) is nonuniform, or not
equally separated.
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FIGURE 1. Nonuniform phase placement for R ∈ [0,2π].

phase shifts to be distributed over the range [−R
2
, R

2
], without

loss of generality.

A. PROBLEM DEFINITION

In this paper, we extend the problem of finding discrete

phase shifts to maximize the received power at a UE for

transmission, reflected by an RIS, originated from a BS, see,

e.g., [19]. In particular, we address the problem of finding

the values θ1, θ2, . . . , θN and βr1, β
r
2, . . . , β

r
N to maximize the

received power |h0 +
∑N

n=1 hnβ
r
ne
jθn |2 in equation (3), or its

square root, using nonuniform discrete phase shifts.

We would like to remind the reader that in |h0 +
∑N

n=1 hnβ
r
ne
jθn |, the values hn = βne

jαn , n = 0, 1, 2, . . . ,N

are the channel coefficients and θn, n = 1, 2, . . . ,N are the

phase values added to the corresponding hn by an RIS. As

for the moment, we let βrn = 1, n = 1, . . . ,N, which we

will relax after further analysis in this paper.

Initially, the problem can be formally described as

maximize
θ

f (θ)

subject to θn ∈ �K, n = 1, 2, . . . ,N (4)

where

f (θ) =
∣

∣

∣

∣

β0e
jα0 +

N
∑

n=1

βne
j(αn+θn)

∣

∣

∣

∣

2

, (5)

βn ≥ 0, n = 0, 1, . . . ,N, θ = (θ1, θ2, . . . , θN), and αn ∈
[−π, π) for n = 0, 1, . . . ,N.

We will provide optimal and suboptimal but computation-

ally efficient algorithms for the problem. Furthermore, we

will analyze the arbitrary phase shift placement and their

optimality of approximating the continuous solution for large

N, in regards to the RIS phase range.

In the next section, we will define our nonuniform

discrete phase shift selection algorithm that guarantees the

global optimal solution for βrn = 1, n = 1, 2, . . . ,N, or

equivalently when R ≥ π , and it will be an extension of [19,

Algorithm 1]. We further improve it in the sequel by relaxing

βrn in the interval [0, 1] to improve the performance whenever

the RIS phase range is less than π , i.e., R < π .

III. OPTIMAL SOLUTION WITH NONUNIFORM DISCRETE

PHASE SHIFTS

In this section, we aim to solve the received power

maximization problem, so that we can get the global

optimum solution in linear time. We want to maximize |h0 +
∑N

n=1 hne
jθn | where hn = βne

jαn for n = 0, 1, . . . ,N, and

θ = (θ1, θ2, . . . , θN). Define g as

g = h0 +
N
∑

n=1

hne
jθ∗
n (6)

where θ∗
n are the discrete phase shifts that lead to the global

optimum. Let μ = g/|g| so that |g| = ge(−j μ). Similar to

the condition in [19], we can make use of the following

lemma.

Lemma 1: For an optimal solution (θ∗
1 , θ∗

2 , . . . , θ∗
n ), it is

necessary and sufficient that each θ∗
n satisfy

θ∗
n = arg max

θn∈�K

cos(θn + αn − μ) (7)

for an arbitrary �K .

Proof: We can rewrite |g| = ge(−j μ) as

|g| = β0e
j(α0− μ) +

N
∑

n=1

βne
j(αn+θ∗

n− μ)

= β0 cos(α0 − μ) + jβ0 sin(α0 − μ)

+
N
∑

n=1

βn cos
(

θ∗
n + αn − μ

)

+ j

N
∑

n=1

βn sin
(

θ∗
n + αn − μ

)

. (8)

Because |g| is real-valued, the second and fourth terms in (8)

sum to zero, and

|g| = β0 cos(α0 − μ) +
N
∑

n=1

βn cos
(

θ∗
n + αn − μ

)

, (9)

from which (7) follows as a necessary and sufficient

condition for the lemma to hold.

With the help of this lemma, we have the necessary and

sufficient conditions to get the optimal phase shift selections.

However, at this point, we assumed that the optimum

μ would be given. To make use of this mathematical

conditioning on the globally optimum solution, we need an

operational framework to find μ, similar to [14], [19]. While

μ can be anywhere on the unit circle, given the channel

realizations hn for n = 0, 1, . . . ,N, we provide the following

proposition to reduce the search space of μ to a finite size,

as an extension to [19, Proposition 1]. Towards that end, we

will define the following sequence of complex numbers with

respect to each n = 1, 2, . . . ,N as

snk = exp
(

j
(

αn + φk −
ωk�1

2

))

, (10)

for k = 1, 2, . . . ,K. Define, for any two points a and b

on the unit circle C, arc(a : b) to be the unit circular arc

with a as the initial end and b as the terminal end in the
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FIGURE 2. An illustration for the optimality of θ∗
n

= φk given µ ∈ arc(snk : sn,k+1).

counterclockwise direction, with the two endpoints a and b

being excluded.

Proposition 1: A sufficient condition for θ∗
n = φk is

μ ∈ arc
(

snk : sn,k+1

)

. (11)

Proof: Assume μ satisfies (11). Then,

μ ∈
(

αn + φk −
ωk−1

2
, αn + φk+1 −

ωk

2

)

. (12)

By subtracting θn and αn, we get

μ − θn − αn ∈
(

φk −
ωk−1

2
− θn, φk+1 −

ωk

2
− θn

)

. (13)

Now, let θn = φk. Then,

μ − θn − αn ∈
(

φk −
ωk−1

2
− φk, φk+1 −

ωk

2
− φk

)

. (14)

By substituting φk+1 = φk + ωk, we have

μ − θn − αn ∈
(

−
ωk−1

2
,
ωk

2

)

. (15)

Therefore, letting θn = φk results in the largest cos(θn +
αn− μ) value among other possibilities for μ, as illustrated

in Fig. 2 by showing the effect of selecting the phase shift

option before and after than φk. Since cos( μ − θn − αn) =
cos(θn + αn − μ), the proof is complete.

Finally, to operate with Proposition 1, we will eliminate

duplicates among snk and sort to get ejλl such that 0 ≤ λ1 <

λ2 < · · · < λL < 2π. Define the update rule as

N (λl) =
{{

n′, k′
}

| sn′k′ = λl
}

. (16)

Let us search for the optimum μ by traversing the unit circle

in the counterclockwise direction, starting from μ = 0.

With Proposition 1, we know that θn for n = 1, 2, . . . ,N

will remain the same unless μ switches from one arc to

Algorithm 1 Generalized [19, Algorithm 1] for Nonuniform

Phase Considerations
1: Initialization: Compute snk and N (λl) as in equations

(10) and (16), respectively.

2: Set μ = 0. For n = 1, 2, . . . ,N, calculate and store

θn = arg max
θn∈�K

cos( μ − θn − αn).

3: Set g0 = h0 +
∑N

n=1 hne
jθn , absgmax = |g0|.

4: for l = 1, 2, . . . ,L− 1 do

5: For each double {n′, k′} ∈ N (λl), let θn′ = φk′ .

6: Let

gl = gl−1 +
∑

{n′,k′}∈N (λl)

hn′
(

ejθn′ − ej(φk′�1)
)

7: if |gl| > absgmax then

8: Let absgmax = |gl|
9: Store θn for n = 1, 2, . . . ,N

10: end if

11: end for

12: Read out θ∗
n as the stored θn, n = 1, 2, . . . ,N.

another. Whenever μ switches arcs, there exists n such that

θn will be updated, i.e., if

μ ∈ arc
(

ejλl : ejλl+1

)

→ μ ∈ arc
(

ejλl+1 : ejλl+2

)

, (17)

then for every {n′, k′}, θn′ must be updated according to the

update rule in (16) as

θn′ → φk′ , {n′, k′} ∈ N (λl+1). (18)

Therefore, the optimum solution will come from L ≤ NK

possible candidates of μ. For each candidate, we will operate

using the sufficiency condition in Proposition 1 that is

guaranteed to provide the globally optimum solution, since

it is compatible with Lemma 1.

We specify the procedure explained in this section, which

achieves the global optimum solution when RIS elements are

strictly ON, as Algorithm 1. Algorithm 1 works as a search

algorithm for the optimum μ and therefore the optimum

RIS configuration, based on Lemma 1 and Proposition 1.

To initiate the search, Algorithm 1 starts with μ = 0

and selects the RIS coefficients with Lemma 1. Then, to

try every other candidate μ and the corresponding RIS

configuration, Algorithm 1 only updates one or a small

number of elements, as specified in (17) and (18), achieving

linear time complexity. After trying NK or fewer options,

Algorithm 1 selects the RIS configuration that achieves the

maximum received power, which is guaranteed to be the

global optimum by the analytical analysis provided in this

section. A complexity analysis for Algorithm 1 is provided

in Section X.

Finally, Algorithm 1 is a generalized version of [19,

Algorithm 1] to work with nonuniform phase shifts and

achieve the global optimum in L ≤ NK steps. We remark

VOLUME 5, 2024 7451
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that, for uniformly distributed phase shifts, we showed in [19]

that the convergence can be achieved in N or fewer steps,

without requiring any complex number calculations.

Similar to what the authors in [20] pointed out, we

remark on an important downside of the nonuniform discrete

phase shifts, especially when R < π . We know from our

Proposition 1 that the optimal phase shift selections will

satisfy μ−θn−αn ∈ (−ωk−1

2
,

ωk
2

). So, whenever R < π , we

will have an ωk̄ > π for k̄ ∈ {1, 2, . . . ,K}. Note that there

could only be one instance of k̄ since
∑K

k=1 ωk = 2π must

hold. With this, depending on the optimum μ, cos( μ−θn−
αn) can take a negative value for some n. This results in

a negative contribution to the optimum |g| given in (9). To

address the issue of negative values caused by R < π , we

will discuss this in detail starting from Section VII and in

subsequent sections.

IV. NONUNIFORM DISCRETE PHASE SHIFTS AND

QUANTIZATION SOLUTION

In this section, we will approach the received power

maximization problem with an intuitive quantization algo-

rithm, which we call NPQ. This quantization approach is an

extension to the uniform polar quantization (UPQ) algorithm

proposed in [19]. It is similar to the closest point projection

(CPP) algorithm in [12]. Using an analytical approach with

this algorithm, we will develop closed-form solutions of the

approximation ratios of arbitrary discrete phase shifts to the

continuous solution, and develop a framework on how to

place the nonuniform discrete phase shifts regarding the RIS

phase range.

Consider the problem in (4) but without the condition

θn ∈ �K , n = 1, 2, . . . ,N. We call the solution of this

problem the continuous solution to (4). Given a continuous

solution to the problem in (4), say θcontn , NPQ selects the

closest possible angle from the set �K . Therefore, for this

purpose, we first relax θn and redefine the received power

maximization problem as

maximize
θcont

f
(

θcont
)

subject to θcontn ∈ [−π, π), n = 1, 2, . . . ,N, (19)

where

f
(

θcont
)

=
∣

∣

∣

∣

β0e
jα0 +

N
∑

n=1

βne
j(αn+θcontn )

∣

∣

∣

∣

2

. (20)

In the above equation, f (θcont) is calculated by adding N+1

complex numbers, where each complex number represents a

two-dimensional vector on the complex plane. Among N+1

vectors, the only vector we do not have control over is

h0 = β0e
jα0 . Therefore, in order to achieve the maximum

value of f (θcont), we can select

θcontn = α0 − αn, for n = 1, 2, . . . ,N, (21)

FIGURE 3. CDF plots for SNR Boost with [19, UPQ], [19, Algorithm 1], BCD [24],

Algorithm 1, and NPQ, for K = 4.

so that all vectors will be aligned on top of each other,

resulting in the maximum achievable value of (
∑N

n=0 βn)
2.

In other words,

f
(

θcont
)

= |ejα0 |2
∣

∣

∣

∣

β0 +
N
∑

n=1

βne
j(αn+θcontn −α0)

∣

∣

∣

∣

2

=
∣

∣

∣

∣

β0 +
N
∑

n=1

βne
j(αn+θcontn −α0)

∣

∣

∣

∣

2

(22)

and the choice in (21) maximizes f (θcont). Given θcontn ∈
[−π, π), NPQ projects to the closest available phase value

in �K . Therefore, assuming without loss of generality that

−π ≤ φ1 < φ2 < . . . < φK < π , the decision rule for NPQ

is defined as

θNPQn =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

«

⎪

⎪

⎪

⎪

⎪

⎪

¬

φ1 if − π ≤ θcontn <
φ1+φ2

2
,

φ2 if
φ1+φ2

2
≤ θcontn <

φ2+φ3

2
,

...

φK−1 if
φK−2+φK−1

2
≤ θcontn <

φK−1+φK
2

,

φK otherwise.

(23)

where θcontn is the continuous solution in (21).

From the definition of NPQ, similar to UPQ and CPP

approaches, the solution cannot be guaranteed to be glob-

ally optimum. In other words, NPQ can only provide a

suboptimal solution. Yet, with the quantization approach,

the beamforming process can be substantially simplified by

using look-up tables, as NPQ only requires αn for n =
0, 1, . . . ,N to select the discrete phase shifts.

We present the cumulative distribution function (CDF)

results for signal-to-noise ratio (SNR) Boost [14] in Fig. 3

for K = 4, and in Fig. 4 for K = 8. In these results, we

consider the RIS phase range to be larger than or equal to

π , i.e., R ∈ {180◦, 240◦}, leading us to use large values

of K so that R < 2π K−1
K

. The CDF results are presented

for N = 9, 25, and 64, using 10,000 realizations of the
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FIGURE 4. CDF plots for SNR Boost with [19, UPQ], [19, Algorithm 1], BCD [24],

Algorithm 1, and NPQ, for K = 8.

channel model defined in [19] with κ = 0. We employed

UPQ in [19] and the optimum algorithm [19, Algorithm 1] to

generate the performance results for uniform discrete phase

shifts and quantify the loss due to nonuniformity. We also

employ Algorithm 1, and the NPQ algorithm presented in

this paper, with the equally separated nonuniform discrete

phase shifts structure given in Fig. 1. Finally, to provide

a comparison with the literature, we employed the block

coordinate descent (BCD) algorithm [24] as it is a commonly

used approach [12], [14], [19], where phases are selected

for each element at a time to successively refine the

performance. All algorithms ran over the same channel

realization in each step. Between Fig. 3 and Fig. 4, it can

be seen that the loss due to the RIS phase range restriction

increases for larger K. Note the UPQ with the uniform

discrete phase shifts is always superior to NPQ, provided R <

2π K−1
K

. However, we remark that the optimum performance

provided by Algorithm 1 with nonuniform discrete phase

shifts can surpass the UPQ algorithm with uniform phases. In

other words, the loss due to the RIS phase range limitation is

larger for the quantization approach rather than the optimum

solution with R ≥ π and βrn = 1 for n = 1, . . . ,N.

In the next section, we will analyze the achievable

performance under nonuniform discrete phase shift con-

straints by deriving approximation ratios with NPQ.

V. APPROXIMATION RATIO OF NONUNIFORM DISCRETE

PHASE SHIFTS WITH NPQ

Having the quantization approach in hand, we will define

an approximation ratio to quantify the effect of the NPQ

algorithm, the nonuniform discrete phase shifts, and the

RIS phase range on the overall performance of the system.

Specifically, the approximation ratio will quantify how well

the continuous solution can be approximated. Similar to the

approach in [9], [19], where we developed an approximation

ratio for the UPQ algorithm [19] with uniform discrete phase

shifts, we will first approximate the received power f (θcont)

for asymptotically large N as

f
(

θNPQ
)

=
∣

∣

∣

∣

β0e
jα0 +

N
∑

n=1

βne
j
(

αn+θ
NPQ
n

)∣

∣

∣

∣

2

=
∣

∣

∣
ejα0

∣

∣

∣

2
∣

∣

∣

∣

β0 +
N
∑

n=1

βne
j
(

αn+θ
NPQ
n −α0

)∣

∣

∣

∣

2

=
∣

∣

∣

∣

β0 +
N
∑

n=1

βne
j
(

θ
NPQ
n −θcontn

)∣

∣

∣

∣

2

≈
∣

∣

∣

∣

N
∑

n=1

βne
j
(

θ
NPQ
n −θcontn

)∣

∣

∣

∣

2

, (24)

where the gain from the direct link, i.e., β0, is practically

discarded. Let δn = θ
NPQ
n − θcontn for n = 1, 2, . . . ,N. The

resulting absolute square term in (24) can be expressed as

f
(

θNPQ
)

≈
∣

∣

∣

∣

N
∑

n=1

βne
j
(

θ
NPQ
n −θcontn

)∣

∣

∣

∣

2

=
N
∑

n=1

β2
n + 2

N
∑

k=2

k−1
∑

l=1

βkβl cos(δk − δl). (25)

Assume that in (25) all βk, βl, δk, and δl are independent

from each other. Taking the expectation yields

E

[

f
(

θNPQ
)]

= NE
[

β2
n

]

+ N(N − 1)E[βkβl]E[cos(δk − δl)]. (26)

Finally, we need to normalize the result in (26) with

the maximum achievable result to get a ratio from 0 to

1, where the continuous solution would achieve 1. We

know from (21) that the maximum achievable number is

(
∑N

n=0 βn)
2. Therefore, E[(

∑N
n=0 βn)

2] = NE[β2
n ] + N(N −

1)E[βkβl]. As a result, with (26), the ratio of the two

expected values can be calculated for asymptotically large

N as

lim
N→∞

E

[

f
(

θNPQ
)]

E

[

(

∑N
n=0 βn

)2
] = E[cos(δk − δl)]. (27)

Hence, E[ cos(δk − δl)] will be the approximation ratio for

NPQ. As we have the independence assumption among δk
and δl, E[ cos(δk − δl)] can be simplified further as

E[cos(δk − δl)]

= E[cos(δk) cos(δl) + sin(δk) sin(δl)]

= E[cos(δk) cos(δl)] + E[sin(δk) sin(δl)]

= E[cos(δk)]E[cos(δl)] + E[sin(δk)]E[sin(δl)]

= (E[cos(δn)])
2 + (E[sin(δn)])

2 (28)

for n = 1, 2, . . . ,N. Therefore, for a given discrete phase

shift selection set �K , the approximation ratio can be

calculated with (28). We will calculate this for two different

scenarios. First, we will provide the approximation ratio for
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arbitrary φk, k = 1, 2, . . . ,K, and then for equally separated

nonuniform phase shifts over the RIS phase range, as given

in Fig. 1. In between the two steps, we will also analyze

the special connection between the two and show that the

latter maximizes the potential of the RIS with nonuniform

discrete phase shifts.

Given the set �K of arbitrary discrete phase shifts, the

approximation ratio will be denoted by E(φ1, φ2, . . . , φK).

This will be a measure to represent the average performance

for an RIS. For this purpose, as a common assumption from

the literature to define the quantization error [9], [12], [19],

we will assume that θcontn is uniformly distributed, i.e.,

θcontn ∼ U [−π, π ] to apply the law of total expectation.

Let �K = {φ1, φ2, . . . , φK} be the set of arbitrarily

selected nonuniform phase shifts. Assume without loss of

generality that −π ≤ φ1 < φ2 < . . . < φK < π .

Let θcontn ∈ [φk, φk+1] for k = 1, . . . ,K with probability
φk+1−φk

2π
, in which case θ

NPQ
n will either be φk or φk+1.

Note that δn = θ
NPQ
n − θcontn will be uniformly distributed in

[−φk+1−φk
2

,
φk+1−φk

2
], i.e., δn ∼ U [−φk+1−φk

2
,

φk+1−φk
2

].

To find E(φ1, φ2, . . . , φK), we need to calculate the result

in (28). First, note that the distribution of δn is always

symmetric around zero, which gives (E[ sin(δn)])
2 = 0, n =

1, 2, . . . ,N. Therefore, E(φ1, φ2, . . . , φK) = (E[ cos(δn)])
2.

Now, introduce the law of total expectation given as E[X] =
E[E[X|Y]] =

∑

i E[X|Ai]P(Ai), so that E[ cos(δn)] can be

calculated as

E[cos(δn)]

=
K−1
∑

k=1

⎡

⎣

φk+1 − φk

2π

∫

(

φk+1−φk
2

)

−
(

φk+1−φk
2

)

1

φk+1 − φk
cos(δn)dδn

⎤

⎦

+
2π + φ1 − φK

2π

∫

(

2π+φ1−φK
2

)

−
(

2π+φ1−φK
2

)

1

2π + φ1 − φK
cos(δn)dδn

(29)

where inside the integral, 1
φk+1−φk

comes from the uniform

distribution and
φk+1−φk

2π
is the probability of the event θcontn ∈

[φk, φk+1] occurring. Now, we calculate the term inside the

square brackets as

φk+1 − φk

2π

∫

(

φk+1−φk
2

)

−
(

φk+1−φk
2

)

1

φk+1 − φk
cos(δn)dδn

=
1

π

∫

(

φk+1−φk
2

)

0

cos(δn)dδn

=
1

π
sin

(

φk+1 − φk

2

)

. (30)

Similarly, the last term in (29) will be 1
π

sin(
φK−φ1

2
)

as sin(
2π+φ1−φK

2
) = sin(

φK−φ1

2
). Therefore, from equa-

tions (28), (29), and (30), the approximation ratio for an

arbitrary nonuniform discrete phase shift set is

E(φ) =
1

π2

[(

K−1
∑

k=1

sin

(

φk+1 − φk

2

)

)

+ sin

(

φK − φ1

2

)

]2

(31)

where we used the shorthand notation φ for φ1, φ2, . . . , φK
with −π ≤ φ1 < φ2 < · · · < φK < π .

Now, without loss of generality, let −π ≤ φ1 < · · · <

φK = φ1 + R < π with R < 2π K−1
K

, as given in Fig. 1.

Substituting φK = φ1 + R in (31), we have

E(φ) =
1

π2

[

( K−2
∑

k=1

sin

(

φk+1 − φk

2

))

+ sin

(

φ1 + R− φK−1

2

)

+ sin

(

R

2

)

]2

, (32)

where it is clear that R will directly impact the average

performance. We leave the discussion of this to Section VI.

VI. OPTIMUM PLACEMENT OF THE PHASE SHIFTS

In this section, we use our approximation ratios calculated

in Section V to find the optimal placement of the discrete

phase shifts, analytically. More specifically, we first use

equation (31) to show that the optimal placement of the

discrete phase shifts would be uniformly distributed, when

there is no RIS phase range limitation. Secondly, we extend

this calculation considering a limited RIS phase range,

i.e., R < 2π K−1
K

, and show that the optimal placement

of the discrete phase shifts would be equally separated

over the RIS phase range, i.e., over [−R
2
, R

2
] as in Fig. 1.

Finally, by considering the equally separated nonuniform

discrete phase shifts, we reveal the effect of R and K

on the overall discrete beamforming performance of the

RIS. In (31), we derived the closed-form expression for

the approximation ratio of the set of arbitrary nonuniform

discrete phase shifts, i.e., how well the continuous solution

can be approximated for large N. Now we will prove that

given K, arranging the phase shifts uniformly will maximize

the approximation ratio, and therefore will also maximize

the average quantization performance. Define �k = (φk+1 −
φk)/2 for k = 1, 2, . . . ,K− 1 and �K = (2π + φ1 − φK)/2.

Note that �k ∈ (0, π) for k = 1, 2, . . . ,K and
∑K

k=1 �k =
π . Ignoring the factor 1/π2 in (31), the maximization

problem can be equivalently expressed as

maximize

K
∑

k=1

sin(�k)

subject to �1 + �2 + · · · + �K = π,

�k ∈ (0, π), k = 1, 2, . . . ,K. (33)

Using Lagrange multipliers, let

F(�1,�2, . . . ,�K, λ)

=
K
∑

k=1

sin(�k) + λ(

K
∑

k=1

�k − π), (34)
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where, the derivatives will be

∂F

∂�k
= cos(�k) + λ

∂F

∂λ
= �1 + �2 + · · · + �K − π

for k = 1, 2, . . . ,K. Letting ∂F
∂�k

= 0 gives cos(�1) =
cos(�2) = · · · = cos(�K) = −λ. Since, �k ∈ (0, π), the

solution will be �1 = �2 = · · · = �K = π/K to satisfy the

second condition ∂F
∂λ

= 0. Therefore, the optimum placement

of the phase shifts is uniformly distributed. Note that this is

achievable as long as the RIS phase range R is large enough

for a desired number of phase shifts K. Therefore, if there

is to be a restriction due to the RIS phase range to force

nonuniform phase shifts, the condition R < 2π K−1
K

must be

satisfied. When there is a sufficient restriction due to the

RIS, i.e., R < 2π K−1
K

, there is no way that the arbitrary

discrete phase shifts can be distributed uniformly over the

range [−π, π). However, we can still question the placement

of the discrete phase shifts over the range R that the RIS

can reach and show that equally separated discrete phase

shifts over the range R will maximize the performance. Note

from (32) that this time we need to define �k′ for k′ =
1, . . . ,K−1. Therefore, let �k′ = φk′+1−φk′

2
, k′ = 1, . . . ,K−

2 and �K−1 = φ1+R−φK−1

2
. Now, focusing on the placement

of discrete phase shifts, we will omit the sin(R
2
) term.

Similar to the arbitrary case, using the Lagrange

multipliers, we define the equivalent maximization problem

as

maximize

K−1
∑

k′=1

sin(�k′)

subject to �1 + �2 + · · · + �K−1 =
R

2
,

�k′ ∈
(

0,
R

2

)

, k′ = 1, 2, . . . ,K − 1. (35)

Define

F′(�1,�2, . . . ,�K−1, λ) =
K−1
∑

k′=1

sin(�k′) + λ(

K−1
∑

k′=1

�k′ −
R

2
), (36)

where, the derivatives will be

∂F

∂�k′
= cos(�k′) + λ

∂F

∂λ
= �1 + �2 + · · · + �K−1 −

R

2

for k′ = 1, . . . ,K − 1. Letting ∂F
∂�k′

= 0 gives cos(�1) =
cos(�2) = · · · = cos(�K−1) = −λ. Since �k′ ∈ (0, R

2
)

and in this range the cosine function is monotonically

decreasing, the solution is provided by �1 = �2 = · · · =
�K−1 = R

2(K−1)
. Note that this also satisfies ∂F

∂λ
= 0.

Therefore, the optimum placement of the phase shifts is

equally separated over the range R to maximize the average

FIGURE 5. PDF of δn , i.e., the quantization error.

normalized performance of the RIS. At this point, we have

shown that given the RIS phase range R, the placement of the

nonuniform discrete phase shifts over the RIS phase range

needs to be equally separated, to harness the potential of the

RIS and maximize the approximation ratio. This placement

of the nonuniform phase shifts will also be adopted for

the rest of the paper, including the numerical results, as

suggested by the performance maximization approach and

practicality. Therefore, as shown in Fig. 1, we let �K =
{−R

2
, R
K−1

− R
2
, 2 R

K−1
− R

2
, . . . , (K − 1) R

K−1
− R

2
}. So that,

with the equally separated discrete phase shifts, the decision

rule for the NPQ can alternatively be defined as

θNPQn =

⎧

⎪

⎪

«

⎪

⎪

¬

R
2

if R
2

≤ θcontn ,
⌊

θcontn + R
2

ω′

⌉

× ω′ − R
2
if −R

2
≤ θcontn < R

2
,

−R
2

if θcontn < −R
2
,

(37)

where �·� is the rounding function defined as �x� =
sgn(x)�|x| + 0.5� and ω′ = R

K−1
.

Let us define the approximation ratio as E(R,K) =
E[ cos(δk−δl)], where we have δn = θ

NPQ
n −θcontn . From the

definition of θ
NPQ
n and θcontn in (37) and (21) respectively,

clearly δn ∈ [−(π− R
2
), π− R

2
]. Remembering the assumption

that θcontn ∼ U [−π, π ], the probability density function

(PDF) of δn, i.e., f (δn), can be deduced simply and it is

plotted in Fig. 5. With the PDF f (δn), we need to calculate

the simplified version of the term E[ cos(δk − δl)] as given

in (28). Note that, the second term in (28) will be zero,

since f (δn) is an even function. Therefore, we only need to

calculate (E[ cos(δn)])
2 to find E(R,K). Let us first calculate

E[ cos(δn)] as

E[cos(δn)]

= 2

[

∫ R
2(K−1)

0

cos(δn)
K

2π
dδn +

∫ π−R/2

R
2(K−1)

cos(δn)
1

2π
dδn

]

=
1

π

[

K

[

sin

(

R

2(K − 1)

)

− sin(0)

]

+
[

sin

(

π −
R

2

)

− sin

(

R

2(K − 1)

)]]

=
1

π

[

(K − 1) sin

(

R

2(K − 1)

)

+ sin

(

R

2

)]

(38)
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FIGURE 6. E(R, K ) vs R for K ∈ {2,3,4,6,8}.

=
R

2π

[

sincu

(

R

2(K − 1)

)

+ sincu

(

R

2

)]

(39)

where from (38) to (39), we divide and multiply by

R/2, and sincu(·) represents the unnormalized sinc function

sincu(x) = sin x
x
. Note that sincu(x) = sinc( x

π
). Also, note

that (38) is compatible with (31) with
φk+1−φk

2
= R

2(K−1)
for

k = 1, . . . ,K − 1 and
φK−φ1

2
= R

2
. Thus, the approximation

ratio for the NPQ algorithm is

E(R,K) =
R2

4π2

[

sinc

(

R

2π(K − 1)

)

+ sinc

(

R

2π

)]2

(40)

where R is the RIS phase range and sinc(·) is normalized

satisfying sinc(1) = 0. An illustration for the theoretical

calculations of the approximation E(R,K) is given in

Fig. 6, where it can be seen that E(R,K) converges to

the approximation ratio of the uniform phases, i.e., E∞(K)

in [19], as the RIS phase range increases. From our analysis

of the optimum selection of nonuniform discrete phases in

Section VI, we know that the equal separation in the RIS

phase range will maximize the average performance. Even

with the best case scenario with the optimal placement of

the nonuniform phases, Fig. 6 shows that the gain of using

K ≥ 3 is only marginal when R < π/2. Similarly, the gain

of using K = 4 or more discrete phase shifts is negligible

unless the RIS phase range is large enough, i.e., R > π .

We remark that the approximation ratio is calculated for

sufficiently large N. Further analysis to confirm the validity

of the theoretical calculation of E(R,K) is provided in the

numerical results.

Finally, the numerical results for the approximation

ratio are calculated by dividing the expression |β0e
jα0 +

∑N
n=1 βne

j(αn+θn)|2 to (
∑N

n=0 βn)
2 for each channel realiza-

tion and averaged. With this, the normalized performance

results are presented in Fig. 7 for R = 180◦, and in

Fig. 8 for R = 240◦. In both figures, the performance

of NPQ converges to the approximation ratio curve for

large N, falling in line with our analytical analysis on

FIGURE 7. Normalized Performance results vs. N , for R = 180◦ and K ∈ {4,8}.

FIGURE 8. Normalized Performance results vs. N , for R = 240◦ and K ∈ {4,8}.

E(R,K). Providing the optimum result, Algorithm 1 serves

as an upper bound. From Fig. 7 to Fig. 8, for larger R,

the performance gap between Algorithm 1 and NPQ gets

smaller. With this, we remark that increasing R from 180◦

to 240◦ helps significantly more in terms of performance

rather than increasing the number of discrete phase shifts K.

This confirms our analysis with Fig. 6 that the lower the RIS

phase range is, the less likely it is to achieve a performance

gain by increasing K.

VII. GLOBAL OPTIMUM SOLUTION WITH ON/OFF βr
n

In this section, we address the destructive selection issue by

relaxing the RIS gains, i.e., βrn ∈ [0, 1]. With this, we will

define an updated maximization problem where we tune βrn
together with θn, and develop an optimal discrete phase shift

selection algorithm with ON/OFF βrn. We will also specify

how it can converge to the optimum solution in L ≤ N(K+1)

steps in linear time.

So far, we have developed a comprehensive analysis for

the approximation ratio of nonuniform discrete phase shifts.
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Algorithm 2 Extended Algorithm 1 for the Special

Condition When R < π

1: Initialization: Compute snk and N (λl) as in

Proposition 2 and equation (16), respectively.

2: Set μ = 0. For n = 1, 2, . . . ,N, calculate

θn = arg max
θn∈�K

cos( μ − θn − αn).

3: Set βrn = �cos( μ − θn − αn)� for n = 1, 2, . . . ,N.

4: Update θn = φk̄⊕1 for n ∈ {n|βrn = 0}, and store θn,∀n.
5: Set g0 = h0 +

∑N
n=1 hnβ

r
ne
jθn , absgmax = |g0|.

6: for l = 1, 2, . . . ,L′ − 1 do

7: Set gupdate = 0.

8: for each double {n′, k′} ∈ N (λl) do

9: if βn′ = 1 then

10: if k′ = k̄ ⊕ 1 then

11: Set βn′ = 0 and θn′ = φk′

12: Let

gupdate − hn′ejφk̄ ← gupdate.

13: else

14: Set θn′ = φk′

15: Let

gupdate + hn′
(

ejθn′ − ej(φk′�1)
)

← gupdate.

16: end if

17: else

18: Set βn′ = 1

19: Let

gupdate + hn′ejθn′ ← gupdate.

20: end if

21: end for

22: Let gl = gl−1 + gupdate
23: if |gl| > absgmax then

24: Let absgmax = |gl|
25: Store βrn and θn for n = 1, 2, . . . ,N

26: end if

27: end for

28: Read out βr
∗
n and θ∗

n , n = 1, 2, . . . ,N.

Together with this, we provided two algorithms, i.e., NPQ

and Algorithm 1, where the first is an intuitive practical

algorithm and the latter achieves the global optimum with

βrn = 1 for n = 1, 2, . . . ,N in NK or fewer steps, provided

R ≥ π . Then, we underlined the special case that arises

due to the nonuniform structure of the phase shifts, or the

RIS phase range constraint, that setting βrn = 1 for n =
1, 2, . . . ,N right away can result in allowing paths that are

destructive when R < π .

In this section, we will develop a new algorithm,

Algorithm 2, for the special case of R < π . We will also

show that this algorithm can be interchangeably used with

Algorithm 1 with relaxed βrn. Algorithm 2 will adjust the

RIS gains to manage the destructive paths through the RIS.

For this purpose, we will relax the gains and redefine the

optimization problem as

maximize
θ

f (θ)

subject to θn ∈ �K, n = 1, 2, . . . ,N

βrn ∈ [0, 1], n = 1, 2, . . . ,N (41)

where

f (θ) =
∣

∣

∣

∣

β0e
jα0 +

N
∑

n=1

βnβ
r
ne
j(αn+θn)

∣

∣

∣

∣

2

, (42)

βn > 0, n = 0, 1, . . . ,N, θ = (θ1, θ2, . . . , θN), and αn ∈
[−π, π) for n = 0, 1, . . . ,N.

Similar to our Lemma 1, let

g′ = h0 +
N
∑

n=1

hnβ
r∗
n e

jθ∗
n , (43)

so that we can state our second lemma as follows.

Lemma 2: To achieve the maximum of |g′|, a necessary

condition on (θ∗
1 , θ∗

2 , . . . , θ∗
n ) is that each θ∗

n for n ∈
{n|βr∗n > 0} must satisfy

θ∗
n = arg max

θn∈�K

cos(θn + αn − μ) (44)

where μ stands for the phase of optimum μ = g′/|g′| with
g′ in equation (43).

Proof: We can rewrite equation (9) as

|g′| = β0 cos(α0 − μ) +
N
∑

n=1

βnβ
r
n cos

(

θ∗
n + αn − μ

)

, (45)

where βn > 0. Therefore, for |g′| to be the maximum value

possible, (44) follows as a necessary condition, completing

the proof.

So far, similar to the development of Algorithm 1, we are

proceeding with the assumption that we know the optimum

μ. Before coming up with the operational procedure for

Algorithm 2, we will state our third lemma regarding the

optimum RIS gain selection βr∗n as follows:

Lemma 3: Given the optimum μ, the globally optimum

solution will be yielded by βr∗n = �cos(θ∗
n + αn − μ)�.

Proof: In equation (45), define the function h(βrn) =
βnβ

r
n cos(θ∗

n + αn − μ) independently for every n =
1, 2, . . . ,N. For |g′| to be the maximum value possible, given

θ∗
n , the function h(βrn) should be maximized independently

for n = 1, . . . ,N. Note that h(βrn) is a monotonic function.

Therefore, to achieve the maximization in |g′|, βr∗n needs to

satisfy

βr
∗
n =

{

1 , if cos
(

θ∗
n + αn − ∠μ

)

> 0,

0 , if cos
(

θ∗
n + αn − ∠μ

)

≤ 0.
(46)

Therefore, without loss of generality, the optimum solution

will be yielded by ON/OFF βrn provided by the equality

βrn = �cos(θn + αn − μ)�. (47)
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FIGURE 9. Range of values of ∠µ − θn − αn for Case 1 with µ ∈ arc(s
nk̄

: s
n,k̄⊕1).

Therefore, the proof is complete.

To operate with Lemma 3, further analysis is required in

terms of finding when the cos(θ∗
n + αn −∠μ) ≤ 0 case will

arise. For this purpose, assume for R < π that we have the

unique k̄ such that ωk̄ > π . We will revisit equation (15)

from Proposition 1, as we know from Lemma 2 that it

will hold whenever βrn > 0. Our θ∗
n selections will make

sure that μ − θn − αn ∈ (−ωk−1

2
,

ωk
2

), given that μ ∈
arc(snk : sn,k+1). Consider two cases, μ ∈ arc(snk̄ : sn,k̄⊕1)

and μ ∈ arc(sn,k̄⊕1 : sn,k̄⊕2). As shown in Fig. 9 and Fig. 10,

in both cases the cosine value in (45) can take a negative

value, i.e., cos(θn +αn −∠μ) < 0, resulting in the selection

of βrn = 0. With this observation, we propose the following

proposition to be able to operate with Lemma 2 and Lemma 3.

Proposition 2: Let s1
n,k̄⊕1

= ej(αn+φk̄+
π
2 ) and s2

n,k̄⊕1
=

ej(αn+φk̄⊕1−
π
2 ). A sufficient condition for βr∗n = 0 is

μ ∈ arc
(

s1
n,k̄⊕1

: s2
n,k̄⊕1

)

. (48)

Proof: Consider the two and only cases that cos(θn+αn−
∠μ) can take a negative value.

First, assume μ ∈ arc(snk̄ : sn,k̄⊕1). Since ωk̄/2 > π/2, the

cosine value can take a negative value as shown in Fig. 9.

This happens if μ ∈ arc(sn,k̄⊕1e
−j(ωk̄−π)/2 : sn,k̄⊕1), as there

is no θn ∈ �K such that cos(θn + αn − ∠μ) > 0.

Second, assume μ ∈ arc(sn,k̄⊕1 : sn,k̄⊕2). Since −ωk̄/2 <

−π/2, the cosine value can take a negative value as shown in

Fig. 10. This happens if μ ∈ arc(sn,k̄⊕1 : sn,k̄⊕1e
j(ωk̄−π)/2),

as there is no θn ∈ �K such that cos(θn + αn − ∠μ) > 0.

Finally, the two cases together can be expressed as

a single arc around sn,k̄⊕1 by using s1
n,k̄⊕1

and s2
n,k̄⊕1

as μ ∈ arc(sn,k̄⊕1e
−j(ωk̄−π)/2 : sn,k̄⊕1e

j(ωk̄−π)/2). Since

φk̄⊕1 = φk̄ + ωk̄, the same arc can be expressed as μ ∈
arc(ej(αn+φk̄+

π
2 ) : ej(αn+φk̄⊕1−

π
2 )). Thus, the proof is complete.

With Proposition 1 and Proposition 2 together, we need

to consider K + 1 arcs that the optimum μ can be in for

every n = 1, . . . ,N independently as there is an extra arc

introduced in Proposition 2 for n = 1, 2, . . . ,N. This is

because, when R < π and ωk̄ > π , we will let sn,k̄⊕1 =

FIGURE 10. Range of values of ∠µ − θ∗
n

− αn for Case 2 with µ ∈ arc(s
n,k̄⊕1 : s

n,k̄⊕2).

{s1
n,k̄⊕1

, s2
n,k̄⊕1

} so that sn,k̄⊕1 will encode two complex

numbers.

We specify the procedure explained in this section, which

achieves the global optimum solution when the RIS gains are

relaxed, i.e., βrn ∈ [0, 1], as Algorithm 2. Like Algorithm 1,

Algorithm 2 works as a search algorithm for the optimum

μ and therefore the optimum RIS configuration, based on

Lemma 2, Lemma 3, and Proposition 2. To initiate the

search, Algorithm 2 starts with μ = 0 and selects the RIS

coefficients with Lemma 2 and Lemma 3. Then, to try every

other candidate μ and the corresponding RIS configuration,

Algorithm 2 only updates one or a small number of elements,

e.g., it may turn ON/OFF or update the phase of these

elements, achieving linear time complexity. After trying

N(K + 1) or fewer options, Algorithm 2 selects the RIS

configuration that achieves the maximum received power that

is guaranteed to be the global optimum by the analytical

analysis provided in this section. A complexity analysis

for Algorithm 2 is provided in Section X. We remark that

Algorithm 2 works with adjustable RIS gains, yet it achieves

the global optimum solution by setting an element either ON

or OFF. Also, note that Algorithm 2 is an extended version

of Algorithm 1 in Section III to work with adjustable RIS

gains when R < π .

We present the CDF results for SNR Boost in Fig. 11

for K = 2, and in Fig. 12 for K = 4. In these results, we

consider a notable limitation on the RIS phase range such that

R < π , i.e., R ∈ {90◦, 120◦}. The CDF results are presented

for N = 16, 64, and 256, using 10,000 realizations of the

channel model defined in [19] with κ = 0. The discrete

phase shift selections are equally separated and chosen as

given in Fig. 1. We employed Algorithm 1, Algorithm 2,

and NPQ algorithms that we proposed in this paper, as well

as BCD algorithm [24]. Since we have R < π , Algorithm 1

will only serve as a pseudo-optimal solution, assuming that

βrn are strictly 1 for all n, so that we can observe the effect

of destructive paths and ON/OFF keying. All algorithms ran

over the same channel realization in each step. It can be seen

that the gap between Algorithm 2 and the other algorithms

increases for larger N, as well as for smaller R. This signifies
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FIGURE 11. CDF plots for SNR Boost with BCD [24], nonuniform polar quantization

(NPQ), Algorithm 1, and Algorithm 2 for K = 2 and R ∈ {90◦ ,120◦}.

FIGURE 12. CDF plots for SNR Boost with BCD [24], nonuniform polar quantization

(NPQ), Algorithm 1, and Algorithm 2 for K = 4 and R ∈ {90◦ ,120◦}.

the power of using ON/OFF βrn with larger RISs, having

more phase range limitations. Furthermore, using K = 4

instead of K = 2 mostly impacts the performance of NPQ

with R = 120◦, making it more desirable due to its low

complexity. Finally, BCD can outperform NPQ, as it is

seemingly benefiting from the phase range restriction, e.g.,

this can be observed by comparing Fig. 3 and Fig. 12. Yet,

BCD is still outperformed by Algorithm 1.

With Algorithm 2 and R < π , the normalized performance

results are presented in Fig. 13 for R = 90◦, and in Fig. 14

for R = 120◦. In both figures, the performance of NPQ

converges to the approximation ratio curve for large N, again

confirming our analytical analysis on E(R,K). Similar to the

CDF plots, the performance gain from using Algorithm 2

over both NPQ and Algorithm 1 increases for larger N. Also,

if R is sufficiently low, Algorithm 2 is always superior to

Algorithm 1. Similarly, Algorithm 1 is always superior to

FIGURE 13. Normalized Performance results vs. N , for R = 90◦ and K ∈ {2,4}.

FIGURE 14. Normalized Performance results vs. N , for R = 120◦ and K ∈ {2,4}.

FIGURE 15. Average SNR Boost vs. R, for K = 2 and N ∈ {16,64,256,1024}.

NPQ, even if a larger K is used for the latter. The underlying

reason for this again is that the performance gain from using

larger K diminishes significantly for low R.

Finally, we present the average SNR Boost results of

our proposed algorithms versus R in Fig. 15 for K = 2,
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FIGURE 16. Average SNR Boost vs. R, for K = 4 and N ∈ {16,64,256,1024}.

and in Fig. 16 for K = 4. Both figures show that the

average performance of Algorithm 1 converges to that of

Algorithm 2, as R approaches π . On the other hand, NPQ

can provide an average SNR Boost that is significantly close

to both Algorithm 1 and Algorithm 2 as R increases, for

large N. Both Fig. 15 and Fig. 16 suggest in a sense that

Algorithm 1 and Algorithm 2 can be used interchangeably

to solve the problem in (41), where the selection depends

on whether R < π or R ≥ π .

Finally, we remark that the development of Algorithm 2

follows from the strict limitation on the RIS phase range, i.e.,

R < π . Otherwise, an important side conclusion that follows

from Lemma 3 is that, Algorithm 1 can be extended to solve

the problem in (41) with βrn ∈ [0, 1] for n = 1, 2, . . . ,N,

when R > π . With R > π , we know from Lemma 3 that

the solution that yields the global optimum will select βrn =
1 for n = 1, 2, . . . ,N. Therefore, both Algorithm 1 and

Algorithm 2 can be used to solve the general problem in (41)

for R ≥ π and R < π , respectively. With this, the number of

required steps in the for loop would reduce from N(K + 1)

to NK. Further analysis regarding the number of required

steps and complexity is provided in Section X.

VIII. REVISITING THE QUANTIZATION SOLUTION WITH

ON/OFF βr
n: EXTENDED NONUNIFORM POLAR

QUANTIZATION

In this section, we will propose a novel quantization

algorithm by enhancing the NPQ algorithm with ON/OFF

βrn selections. The importance of the ON/OFF selections

has been established so far, showing significant performance

gains for R < π . A similar approach to exploit βrn in

Algorithm 2 can be used for the quantization solution.

The quantization approach comes from selecting the

closest option from the phase shifts set to the continuous

solution, which can achieve the maximum possible received

power given by (
∑N

n=0 βn)
2. Similar to our analysis in

Section VII, let δn = θ
NPQ
n − θcontn for n = 1, . . . ,N. When

R < π , depending on the value θcontn , the difference between

θ
NPQ
n and θcontn in (21) can be greater than π

2
, or less

than −π
2
, i.e., |δn| > π

2
. Therefore, such a path through

the nth RIS element would contribute destructively to the

overall performance, as could be deduced from E(R,K) =
(E[ cos(δn)])

2. With the adjustable RIS gains, this can be

eliminated by an OFF selection, i.e., βrn = 0. Therefore, we

define the ENPQ algorithm with ON/OFF βrn, which is an

algorithm to select the RIS coefficients, as

wENPQ
n = �cos(δn)� exp

(

jθNPQn

)

, (49)

where θ
NPQ
n are selected by the NPQ algorithm, and δn =

θ
NPQ
n −θcontn . Note that for R ≥ π , ENPQ will select the same

RIS coefficients as the NPQ algorithm, because |δn| > π
2

will never occur.

IX. APPROXIMATION RATIO CALCULATION FOR ENPQ

We extend our approximation ratio calculations to find

the approximation ratio for the ENPQ algorithm, i.e.,

Eon
off(R,K). With the independence assumption among δn,

it can be deduced from (25)–(28) that Eon
off(R,K) =

(E[�cos(δn)� cos(δn)])
2 + (E[�cos(δn)� sin(δn)])

2 by includ-

ing the �cos(δk)� and �cos(δl)� terms. Due to the symmetry

in δn, (E[�cos(δn)� sin(δn)])
2 = 0, so that Eon

off(R,K) =
(E[�cos(δn)� cos(δn)])

2. Now, with the PDF of δn given in

Fig. 5, the expected value can be calculated as follows:

E[�cos(δn)� cos(δn)]

= 2

[ ∫ R
2(K−1)

0

�cos(δn)� cos(δn)
K

2π
dδn

+
∫ π−R/2

R
2(K−1)

�cos(δn)� cos(δn)
1

2π
dδn

]

(50)

where in the first integral, �cos(δn)� = 1 as R
2(K−1)

< π
2
.

Whereas, in the second integral, when π − R/2 > π
2
, i.e.,

R < π , the upper limit of the integral should be updated

as π
2

as �cos(δn)� = 0 when |δn| > π
2
. Therefore, (50) is

rewritten as

E[�cos(δn)� cos(δn)]

= E[cos(δn)]

= 2

[

∫ R
2(K−1)

0

cos(δn)
K

2π
dδn +

∫ π
2

R
2(K−1)

cos(δn)
1

2π
dδn

]

=
1

π

[

(K − 1) sin

(

R

2(K − 1)

)

+ 1

]

. (51)

where we keep the sin(·) function instead of sinc(·) this time

for a clearer notation. Thus, the approximation ratio for the

ENPQ algorithm is

Eon
off(R,K) =

1

π2

[

(K − 1) sin

(

R

2π(K − 1)

)

+ 1

]2

. (52)

An illustration for the theoretical calculations of the approx-

imation Eon
off(R,K) is given in Fig. 17, where it can be seen

that Eon
off(R,K) converges to the approximation ratio of the

NPQ, i.e., E(R,K), as R reaches π . We remark on the

importance of using the ON/OFF βrn for R < π . This can be
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FIGURE 17. Eon
off

(R, K ) vs R for K ∈ {2,3,4,6,8}.

seen from Fig. 17 that as R approaches zero, while E(R,K)

becomes zero with all the elements being ON, Eon
off(R,K) on

the other hand becomes 0.1. Therefore, even with θn being

the same for n = 1, . . . ,N, i.e., no phase shifts selection as

R becomes zero, ON/OFF selections solely could beat the

performance of βrn for up to K = 8 phase shift selections

when R < π/3. Furthermore, when there are K = 2 discrete

phase shifts with ON/OFF βrn, the average performance is

better than the case when βrn = 1 with up to K = 8 discrete

phase shifts, for R < 2π/3.

With NPQ and R < π , the normalized performance results

are presented in Fig. 18 for R = 90◦, and in Fig. 19 for R =
150◦. As a validity check for our Eon

off(R,K) calculation, we

remark that the numerical results for ENPQ indeed converge

to the theoretical approximation ratio. For a lower value of

R = 90◦ in Fig. 18, the simple quantization approach with

ON/OFF βrn selections outperforms the optimum solution

with βrn = 1 for N ≥ 100. On the other hand, when R is high

enough, say R = 150◦ as in Fig. 19, there is not such a loss

due to the limited RIS phase range that ENPQ could exploit

with ON/OFF βrn, resulting in Algorithm 1 being superior.

X. CONVERGENCE TO OPTIMALITY

We will now discuss the convergence of Algorithm 1

and Algorithm 2 to the optimal solution for βrn = 1

and βrn ∈ [0, 1], n = 1, . . . ,N, respectively. We know

from Lemma 1 and Proposition 1 that Algorithm 1 will

converge to the global optimum. Whereas, convergence

to the global optimality of Algorithm 2 is guaranteed by

Lemma 2, Lemma 3, Proposition 1, and Proposition 2.

The required complexity is analyzed under two main

components, which are the search complexity and the time

complexity. The number of steps required will correspond

to the search complexity. On the other hand, the num-

ber of complex vector additions will quantify the time

complexity [20]. We remark that since θn′ = φk′ in Step

6 of Algorithm 1 and in Step 15 of Algorithm 2, by

using the Euler’s formula, the term hn′(ejθn′ − ej(φk′�1)) can

FIGURE 18. Normalized Performance results vs. N , for R = 90◦ and K ∈ {2,4}.

FIGURE 19. Normalized Performance results vs. N , for R = 150◦ and K ∈ {2,4}.

simply be expressed as 2hn′ sin(ωk′�1/2)ej(φk′�1+(ωk′�1+π)/2).

Therefore, each iteration of these algorithms will only incur

one complex vector addition. Next, we will discuss the

required complexity of both algorithms to achieve global

optimality, individually.

First, for Algorithm 1, the for loop from Step 4 to Step

11 takes
∑L

l=1 O(|N (λl)|) = O(NK) steps. With this, one

vector addition is performed for each updated element.

Together with the N vector additions in Step 3, Algorithm 1

incurs N(K + 1) vector additions in total.

Second, for Algorithm 2, the for loop from Step 6 to Step

27 takes
∑L′

l=1 O(|N (λl)|) = O(N(K + 1)) steps. With this,

there are K+1 arcs to be considered for each element, where

only one vector addition is performed for each of those arcs.

Together with the N vector additions in Step 5, Algorithm 2

incurs N(K + 2) vector additions in total. Note that, since

the number of steps is larger for Algorithm 2, the required

number of vector additions performed is also slightly larger

than for Algorithm 1.

Finally, since in each step of both Algorithm 1 and

Algorithm 2, only one or a small number of elements are

updated, the time complexity of both algorithms will be
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FIGURE 20. 1st percentile SNR Boost results vs. N , for K = 2 and R ∈ {90◦ ,150◦}.

FIGURE 21. Time complexity results vs. N , for K = 2.

linear in N. A detailed comparison with the recent literature

is provided in the next section.

XI. PERFORMANCE AND COMPLEXITY COMPARISONS

In this section, we will discuss performance and complexity

in a comparative way with the works from the literature.

Firstly, to give a comparative trade-off between the presented

algorithms in this paper, we present the performance results,

i.e., 1st percentile SNR Boost [12], in Fig. 20, and complex-

ity results, i.e., number of vector additions, in Fig. 21 for

K = 2. Moreover, in Fig. 20, we consider R = 90◦ and R =
150◦ to analyze the severe restriction and mild restriction

on the RIS phase range, respectively, for K = 2. In these

results, we assume that the quantization algorithms will incur

N vector additions to produce the resulting SNR Boost value.

Yet, even for the 1st percentile performance, ENPQ can

perform surprisingly well while requiring lower complexity,

especially for lower R. Regarding the comparison of the

optimum algorithms and the quantization algorithms, we

focus on Algorithm 2 versus ENPQ and Algorithm 1 versus

NPQ. Algorithm 2 incurs four times the vector additions

required by ENPQ while providing about 1 dB and 2 dB gain

for R = 150◦ and R = 90◦, respectively. On the other hand,

Algorithm 1 incurs three times the vector additions required

by NPQ yet can provide more than 3 dB gain for R = 90◦.
This additional gain that Algorithm 1 can provide vanishes

for larger R. Finally, in Fig. 20, BCD can provide more

performance than NPQ and ENPQ for R ∈ {90◦, 150◦} and

R = 150◦, respectively. However, it comes with a significant

jump in complexity.

Regarding the comparisons with the literature, as we

discussed in Section I, the works that deal with the exact

problem introduced in this paper, i.e., the nonuniform

discrete phase shifts and RIS phase range restriction, are

not extensive, being restricted to [20], [21], [22]. Therefore,

we will provide a discussion as to the comparative

performance of this work with those from the literature,

i.e., [20], [21], [22].

A. PERFORMANCE COMPARISON WITH THE

LITERATURE

The work in this paper is an extension of [19] in that the

problem is the same power maximization one but the phase

range R is less than 2π , the discrete phase shifts set �K

can be arbitrary, and the RIS gains βrn ∈ [0, 1] can be

adjustable. We first show that the same set of necessary

and sufficient conditions apply to the problem with the

limited phase range when βrn = 1 for n = 1, 2, . . . ,N and

we develop new conditions on the optimality when βrn ∈
[0, 1]. Assuming βrn = 1 for n = 1, 2, . . . ,N, we developed

an optimal algorithm, Algorithm 1, an extension of [19,

Algorithm 1], as well as a suboptimal algorithm called NPQ.

For βrn ∈ [0, 1], using the new conditions on the optimality,

we developed another optimal algorithm, Algorithm 2, as an

extension of Algorithm 1 in this paper for R < π , as well

as a novel suboptimal algorithm called ENPQ. Simulation

results show that the performance results of Algorithm 1

and NPQ, or similarly Algorithm 2 and ENPQ, for single-

input single-output (SISO) systems are close, especially for

large N. We remark that the algorithms in this paper cover

a wide range of scenarios regarding discrete beamforming

optimization with RISs, e.g., RIS phase range restriction,

adjustable RIS gains, and arbitrarily selected nonuniform

discrete phase shifts.

The work in [20] attempts to maximize the capacity in

the channel from the BS to the UE via the RIS, where they

only consider R < π . Since it claims global optimality, the

performance would be the same as Algorithm 2 for R < π,

but, we will see in the next subsection that Algorithm 2

will require significantly fewer number of complex vector

additions. With this, the work in [20] compares its capacity

results with that of CPP, a suboptimal algorithm similar

to NPQ. However, our novel algorithm ENPQ is more

competitive against Algorithm 2 than NPQ for R < π , e.g.,

in Fig. 18, and in [20] this kind of analysis is not present
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as they only compare with CPP, which does not perform

well when R < π . Reference [21] tries to maximize Long-

Term Average Received Power (LARP), where the average

is taken in the statistical sense via an expectation operator.

This paper provides simulation results in terms of a number

of channel models, i.e., Rician, Rayleigh, and pure LOS

fading. Performance results for LARP are provided in [21,

Fig. 4] for the three fading models for RIS sizes of 1–

104 elements employing continuous phase shifts. There are

other simulation results provided, such as LARP against

decrement of phase shifting capability, incident angle, phase

shifting capacity, or control voltage. However, [21] does

not have a result we can use to compare with ours. And,

unlike this work, [21] does not provide an indication of

what the theoretical maximum gain in LARP is. Neither

does it have a similar result to our necessary and sufficient

conditions for global optimality. Reference [22] studies the

problem of minimizing the transmit power at the BS while

the received power is above a certain threshold. It can be

considered as the extension of divide-and-sort (DaS) search

algorithm proposed in [25] for uniform discrete phase shifts

and it can be perhaps interpreted as the dual of our received

power maximization problem. Reference [22] proposes an

algorithm called partition-and-traversal (PAT) for that pur-

pose. Reference [22] claims to ensure global optimality and

shows a perfect fit with exhaustive search results for RIS

elements up to 50 in [22, Fig. 4]. In addition, [22] discusses

two suboptimal algorithms, which are manifold optimization

(Manopt) and semidefinite relaxation-semidefinite program

(SDR-SDP). We remark that in [22], RIS gains are set to be

always ON for the sake of optimization. Yet, in this work,

our extensive analysis shows the importance of ON/OFF

selections when R < π , and this kind of analysis is missing

in [22]. In [22, Fig. 7], the performance of PAT, exhaustive

search, Manopt, and SDR are depicted. Since the PAT claims

global optimality, it would give the same performance as

Algorithm 1. With this, neither Manopt nor SDR comes any

close to the performance of NPQ as suboptimal algorithms.

Yet, we remark that Algorithm 2 is guaranteed to perform

better than PAT whenever R < π and ENPQ can also perform

better than PAT when, for example, R = 90◦ as shown in

Fig. 18.

B. COMPLEXITY COMPARISON WITH THE LITERATURE

Among [20], [21], [22] from the literature that deal with the

same problem considered in this paper, only [20] and [22]

claim global optimality. Hence, we compare the complexity

of our optimum algorithms with these references. We remark

that the solution for the same problem using uniformly

distributed discrete phase shifts requires significantly less

complexity. A detailed complexity analysis for the uniform

case is provided in [19]. Now, we will carry out the

complexity analysis for the nonuniform case in three main

components: The sorting requirement, the number of search

steps required, and the number of complex vector additions.

While the number of search steps corresponds to the search

space size, the number of complex vector additions will

represent the overall computational time complexity.

Firstly, the algorithms work with the sorted snk according

to their arguments, i.e., the update rule N (λl) requires

sorting. The sorting enables elementwise updates between

the search steps to achieve linear time complexity, which

was mostly ignored by the literature when solving the

problem with uniform discrete phase shifts [19]. The same

requirement persists with the nonuniform phase shifts.

Assuming λl are uniformly distributed, the sorting in

N (λl) will take O(N) time on average [14]. Besides this,

more generally, to sort the L ≤ NK or L′ ≤ N(K +
1) arguments in the update rules of Algorithm 1 and

Algorithm 2, traditional sorting algorithms may require

O(L log(L)) and O(L′ log(L′)) complexity for Algorithm 1

and Algorithm 2, respectively. We remark that the authors

in [20] develop a special sorting algorithm that can work

with complexity O(N(K + 1) log(K + 1)), however, it is

assumed that the sorting of the cascaded channel phases

would be readily provided, i.e., αn are assumed to be

sorted.

Secondly, the number of search steps required to ensure

global optimality should be considered. In this paper, our

algorithms consider repetitions among snk and have the

potential to reduce the search steps further, i.e., L ≤ NK and

L ≤ N(K+1) for Algorithm 1 and Algorithm 2, respectively.

In [20], the required number of steps is fixed to N(K + 1),

which is more than or the same as Algorithm 2 and is

not reduced for R ≥ π . In [22], the complexity analysis

is provided in terms of the search space size only, where

the proposed PAT algorithm would incur 2NK steps for the

special case of SISO. In [22, Fig. 5], the plot for the SISO

scenario shows around 7 dB increase in the search space for

increasing the number of elements from 20 to 100. Since

10 log(100/20) ≈ 7 dB, this would correspond to a linear

complexity in the number of elements.

Finally, the number of vector additions required by our

algorithms is N(K + 1) when R ≥ π and N(K + 2) when

R < π , i.e., for Algorithm 1 and Algorithm 2, respectively.

In [20], the proposed partitioning based optimization (PBO)

requires N(2K+3) complex vector additions. Consequently,

PBO incurs at least N(K+1) extra vector additions compared

to our algorithms, with the number of extra additions

increasing linearly with both the number of RIS elements

and the number of discrete phase shifts.

We summarize the performance comparisons in Table 1

for clarity. While the focus was on the optimal algorithms

in this section, the suboptimal algorithms are also presented

in Table 1.

XII. EXTENSION TO THE MULTIUSER SCENARIO

In the literature, ample research on RIS deals with multiple

users, where the problem is generally formulated as an

optimization problem to maximize the overall through-

put [26], [27], or similarly the sum rate [28], [29], [30], [31].

These approaches commonly consider inter-user interference.
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TABLE 1. Comparison of Algorithms 1-2 and NPQ-ENPQ with algorithms from the

literature.

In [26], the authors investigate the joint beamforming

problem for a multiuser SISO communication aided by an

active RIS. Reference [27] maximizes the throughput of

an RIS-assisted UAV-to-ground user communications while

simultaneously minimizing the average total power consump-

tion, where the RIS is assumed to have continuous phase

shifts. From the perspective of sum rate maximization, the

sum of weighted rates is maximized with successive convex

approximation in [28], the sum rate is maximized in [29] via

joint beamforming for the BS and an RIS with discrete phase

shifts, achievable sum rate maximization is performed while

the RIS uses continuous phase shifts in [30], and the authors

in [31] maximize the sum rate by eliminating the inter-user-

interference with the assumption of zero force precoding at

the BS and continuous phase shifts at the RIS. Moreover, the

problem of maximizing the minimum SNR among multiple

users has also drawn significant attention from the recent

literature, with continuous [32], [33], and discrete phase

shifts [34], [35], [36], [37]. In [32], the authors consider

maximizing the minimum of the achievable rates of the users

given SNR, whereas, in [33], the max-min beamforming

gain is achieved based on matrix lifting and linear matrix

inequality techniques. For the max-min SNR problem with

discrete phase RISs, SDR and gradient descent/ascent (GDA)

approaches are used in [34], BCD is used in [35] for

passive beamforming, and a CSI-free beamforming approach

is developed in both [36] and [37] based on the received

power data. In these works, the optimization problems are

naturally NP-hard and global optimality is hard to achieve

with discrete phase RISs. Therefore, results are mostly

approximations and sub-optimal.

RIS partitioning has also drawn attention as an alternative

approach to the aforementioned solutions. The main idea is

to partition the RIS into multiple groups of elements, where a

certain group serves a single user [38], [39], [40], [41], [42].

It is shown in [42] that the interference among other groups

of elements in a multiuser scenario can be neglected when

the RIS is a uniform linear array. So, the multiuser problem

can boil down to optimizing an RIS partition for a single

user, which is a motivating factor to study the single-user

problem [20], as we did in this paper.

We extend our results for a multicast network, assuming

perfect channel state information (CSI), similar to the

scenarios considered in [12], [14], [19]. Consider a max-min

SNR problem with U ≥ 2 receivers with a transmit power

of P = 30 dBm, i.e.,

max
θn∈�K

min
u

{

P|β0,ue
jα0,u +

∑N
n=1 βn,ue

j(αn,u+θn)|2

σ 2
u

}

, (53)

where σ 2
u = −90 dBm is the noise variance at each receive

antenna, h0,u = β0,ue
jα0,u is the direct channel, and hn,u =

βn,ue
jαn,u is the reflected channel through the n-th RIS

element for the u-th receiver.

The way we extend our algorithms is as follows. For

NPQ and ENPQ, each algorithm is repeated for each user,

then the RIS configuration that maximizes the minimum

SNR among the users is selected. On the other hand,

while performing Algorithm 1–2 for user u, we decide the

best possible solution in the for loop of Algorithm 1–2 by

maximizing the minimum channel gain among all users.

Therefore, Algorithm 1 and Algorithm 2 incur NU(K + 1)

and NU(K + 2) vector additions, respectively. Then, this

process is repeated for each user, to select the best option

among U possibilities, which results in O(NU2(K+ 1)) and

O(NU2(K+2)) time complexity in total for Algorithm 1 and

Algorithm 2. We remark that NPQ and ENPQ algorithms

will also require vector additions unlike the single-user

scenario, because we need to search for the maximum

available powers. Therefore, both suboptimal algorithms will

result in O(NU2) time complexity.

The CDF plots for the minimum SNR performance of

the multicast extension are given in Fig. 22 and Fig. 23 for

R = 90◦ and R = 150◦, respectively when K = 2 and N ∈
{16, 64, 256}. The results show that both Algorithm 1 and

NPQ with the always ON approach perform better than their

extended versions with ON/OFF consideration when R < π .

This difference gets smaller for larger R since these pair

of algorithms would provide the same outcome, as given in

Fig. 15. Overall, it can be seen that Algorithm 1 can provide

superior performance compared to the quantization approach,

i.e., NPQ. When R = 90◦, the average gain of Algorithm 1

against NPQ is 3.0 dB for N = 16 and 4.4 dB for N =
256. When R = 150◦, the average gain of Algorithm 1

against NPQ is 3.6 dB for N = 16 and about 5.0 dB for

N = 256. Therefore, considering the complexity jump in

the quantization approach for the multiuser extension, our

optimal algorithm can become an even better option. Note

that these gains with Algorithm 1 get larger as N increases.
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FIGURE 22. CDF of the minimum SNR across U = 4 users for K = 2,

N ∈ {16,64,256}, and R = 90◦ .

FIGURE 23. CDF of the minimum SNR across U = 4 users for K = 2,

N ∈ {16,64,256}, and R = 150◦ .

XIII. CONCLUSION

In this paper, to maximize the received power at a UE, we

provided necessary and sufficient conditions for determina-

tion of the RIS coefficients that are subject to nonuniform

discrete phase shifts. We employed these conditions to

achieve the optimum solution in linear time and with less

complexity than the existing solutions in the literature. Also,

we established a foundation on the RIS phase range R with

the nonuniform discrete phase shifts structure. We proved

that the optimum placement of the nonuniform discrete phase

shifts would be equally separated over the RIS phase range.

Then, we showed that whenever R < π , adjusting RIS gains

can bring significant performance, and the globally optimum

solution would be yielded by the RIS elements being either

ON or OFF.

In addition to the optimum algorithms, we also calculated

the approximation ratio for the nonuniform discrete phase

shifts by employing the intuitive quantization algorithm.

Furthermore, with the ON/OFF RIS gains, we proposed

a novel quantization algorithm named ENPQ, a low-

complexity algorithm that can bring significant performance

when there is a notable limitation in the RIS phase range,

with which we also provided a secondary closed-form

solution for the approximation ratio for nonuniform discrete

phase shifts.
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