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ABSTRACT To maximize the received power at a user equipment, the problem of optimizing a
reconfigurable intelligent surface (RIS) with a limited phase range and nonuniform discrete phase shifts
with adjustable gains is addressed. Necessary and sufficient conditions to achieve this maximization are
given. These conditions are employed in two algorithms to achieve the global optimum in linear time.
Depending on the phase range limitation, it is shown that the global optimality is achieved in NK or fewer
and N(K + 1) or fewer steps, where N is the number of RIS elements and K is the number of discrete
phase shifts which may be placed nonuniformly over the limited phase range. In addition, we define
two quantization algorithms that we call nonuniform polar quantization (NPQ) algorithm and extended
nonuniform polar quantization (ENPQ) algorithm, where the latter is a novel quantization algorithm for
RISs with a significant phase range restriction. With NPQ, we provide a closed-form solution for the
approximation ratio with which an arbitrary set of nonuniform discrete phase shifts can approximate
the continuous solution. We also show that with a phase range limitation, equal separation among the
nonuniform discrete phase shifts maximizes the normalized performance. Furthermore, for a larger RIS
phase range limitation, we show that the gain of increasing K is only marginal, whereas, ON/OFF selection
for the RIS elements can bring significant performance compared to the case when the RIS elements are
strictly ON.

INDEX TERMS Intelligent reflective surface (IRS), reconfigurable intelligent surface (RIS), nonuniform
discrete phase shifts, IRS/RIS phase range, global optimum, linear time discrete beamforming for IRS/RIS,
nonuniform quantization.

. INTRODUCTION

RECONFIGURABLE intelligent surface (RIS), also

known as intelligent reflective surface (IRS) is
proposed for wireless environments where there may be
blockage of electromagnetic waves between the base station
(BS) and user equipment (UE), creating a low line-of-sight
(LOS) environment [1]. An RIS can also be employed
to generate a wireless coexistence environment by avoid-
ing an area which may have its own transmissions and
transmitting to users in a different area via reflections.
An RIS employs devices known as RIS elements whose

capacitance can be changed by controlling their bias voltage,
affecting the phase of the RIS element, thereby creating
a change in the reflection coefficient of the RIS element.
This results in changing the direction of an impingent
electromagnetic wave [2], [3], [4]. Assuming the phase shifts
at the RIS elements are continuous, optimization algorithms
are developed, for example, [5], [6], [7], [8]. A two-stage
approach to address the discrete phase shifts constraints for
the single-user system is to project the continuous solution
to the closest value in the discrete set [9], [10], [11],
[12]. With discrete phase shifts constraints, the number of
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possible solutions increases exponentially with the number
of RIS elements. Therefore, a closed-form solution becomes
practically unavailable and exponential search techniques are
required [13]. To that end, [14] stated that the problem is
a generally NP-hard discrete quadratic program (QP). Most
of the prior work in single-user scenarios had exponential
complexity [9], [15]. In this regard, to outperform the
traditional quantization approach, probabilistic optimization
techniques have also drawn attention [16], [17], [18]. To
address multi-user detection in code division multiple access,
the probabilistic data association (PDA) approach is used
in [16] to address general binary quadratic problems (BPQs).
Similarly, in [17], authors addressed BPQs with a PDA algo-
rithm and achieved near-optimal results for highly reliable
machine-to-machine communication. Recently, the authors
in [18] showed the general quantization approaches can be
outperformed in various discrete RIS optimization problems
by developing a comprehensive probabilistic technique to
transform discrete optimization problems. Yet, most of the
solutions not only assume uniform discrete phase shifts but
also can only approximate the global optimum.

There has been a significant amount of research activity for
the selection of uniform discrete phases when the phase range
is 2m, see, e.g., references in [19]. However, the problem
of the selection of discrete phases when the phase range is
limited to less than 27 is new and there are only a few works
that appeared in the literature or as preprints [20], [21], [22].
Reference [20] states a uniform phase shift assumption is
not realistic according to the actual behavior of practical
RIS elements. The paper maximizes the channel capacity of
the target user. It claims to develop a method that finds the
optimal reflection amplitudes and phases with complexity
linear in the number of RIS elements. Reference [21]
states it models reflection coefficients as discrete complex
values that have nonuniform amplitudes and suffer from
insufficient phase shift capability. It proposes a group-based
query algorithm that takes the imperfect coefficients into
consideration. The authors have fabricated an RIS prototype
system and validate their theoretical results by experiments.
Reference [22] recognizes that in real-world applications, the
phase and bit resolution of RIS units are often nonuniform
due to practical requirements and engineering challenges.
The authors formulate an optimization problem for discrete
nonuniform phase configuration in RIS-assisted multiple-
input single-output (MISO) communications. They state they
propose a partition-and-traversal algorithm which achieves
the global optimal solution.

We note that the problem of a limited phase range can
actually happen in a real RIS system. For example, a
common technology to implement an RIS is to employ
varactor diodes and change their capacitance via varying their
bias voltages. The change in capacitance makes the reflection
coefficient of the RIS element to change, thereby creating
the desired effect via the RIS. However, in the implemented
RIS element, the voltage changes may not correspond to
the full range of —m7 to m (or —180° to 180°). As an
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example, [4] discusses a prototype for an RIS implemented
via varactor diodes. In [4, Fig. 3], it can be observed that
for the frequency the RIS is designed to operate at, i.e.,
5.8 GHz, the change in the phase of the reflection coefficient
is restricted to —120° to 110°. At frequencies different than
5.8 GHz, the range is even smaller.

Our motivation in this paper is to address the discrete-
phase RIS problem to maximize the received power at a
UE with the particular emphasis that the phase range is
less than 2. As described above, this can occur commonly
in realistic implementations of the RIS structure where the
components that realize the phase change in an RIS element
are varactor diodes. In these settings, it is possible that the
algorithms developed for the full phase range of 2w will
not work and thus new algorithms need to be developed.
Inspired by our work in [19], we are also motivated to find
out if intuitive suboptimal algorithms to solve this problem
can be found. For example, is it possible to employ intuitive
techniques that have an approach of quantization within the
limited phase range? If yes, we would like to quantify how
closely they can perform compared to the optimum solution.
We are also motivated to find closed-form expressions as
to the fundamental limits of such techniques. Another key
motivation is optimizing the placement of discrete phase
shifts, i.e., selecting the phase shift set. Previously, these
were uniformly set based on the number of phases, but with
the possibility of nonuniform phases, this requires analysis.

Our work in this paper provides, as an extension of
the work in [19], necessary and sufficient conditions for
global optimality, two algorithms to achieve the optimum
solution which can have smaller number of steps than
the works in the literature, and two intuitive quantization
algorithms which achieve near-optimal performance with
very small complexity. We provide fundamental limits for the
quantization approach. We also show that the best solution
for this approach is obtained when equal separation among
the discrete phases in the limited phase range is achieved.

In quantitative terms, the contributions of the paper are
as follows.

« To maximize the received power at a user equipment,
the problem of optimizing an RIS with a limited phase
range R < 27 and nonuniform discrete phase shifts
with adjustable gains is addressed and necessary and
sufficient conditions to achieve this maximization are
given.

o These conditions are employed in two novel algorithms
to achieve the global optimum in linear time for R > &
and R < w. With a total number of N(K+1) and N(K+
2) complex vector additions when R > 7 and R < 7, it
is shown that the global optimality is achieved in NK or
fewer and N(K + 1) or fewer steps, respectively, where
N is the number of RIS elements and K is the number
of discrete phase shifts. To the best of our knowledge,
the required complexity is the lowest available in the
literature.
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« In addition, we define two quantization algorithms that
we call nonuniform polar quantization (NPQ) algorithm
and extended nonuniform polar quantization (ENPQ)
algorithm, where the latter is a novel quantization
algorithm for RISs with a significant phase range
restriction, i.e., R < 7.

o With NPQ, we provide a closed-form solution for the
approximation ratio with which an arbitrary set of
nonuniform discrete phase shifts can approximate the
continuous solution. With this, we analyze the optimal
placement of the nonuniform discrete phases overseen
by literature. We show that with a phase range limita-
tion, equal separation among the nonuniform discrete
phase shifts maximizes the normalized performance.

o Furthermore, we show that the gain of using more than
two discrete phase shifts with R < 7/2 and more than
three discrete phase shifts with R < 7 is only marginal,
i.e., increasing the number of discrete phase shifts does
not improve the performance when R is limited.

« Finally, we prove that when R < 27 /3, ON/OFF selec-
tion for the RIS elements brings significant performance
compared to the case when the RIS elements are
strictly ON.

The rest of this paper is organized as follows. Section II
introduces the system model and the problem defini-
tion. With strictly ON RIS gains, an optimal algorithm
and a suboptimal quantization algorithm are developed in
Section III and Section IV, respectively. Based on the
quantization algorithm, Section V provides an approximation
ratio for the performance. With the approximation ratio, an
analytical analysis for the optimum placement of discrete
phases is provided in Section VI. Then the RIS gains are
relaxed. Considering adjustable RIS gains, Sections VII-
IX provide an optimal algorithm, a suboptimal algorithm,
and an approximation ratio of the performance for R < 7.
Section X analyzes convergence to optimality. Performance
and complexity analyses are provided in Section XI, in
comparison with the recent literature. Section XII has a brief
discussion on an extension to the multi-user scenario. Finally,
Section XIII provides the conclusion of the paper.

Il. SYSTEM MODEL

We consider a point-to-point communication scenario aided
by an RIS with N elements and a phase range R. The RIS
elements introduce a gain and a phase shift, i.e., B, and
6, for n = 1,..., N, respectively, to the incident signal.
We consider K discrete phase shifts for the RIS elements
0, € ®g, where Pg = {¢p1, P2, ..., ¢x} and the RIS gains
can be adjustable, ie., B, € [0,1]. We also define the
difference among each adjacent phase shift in & as Qg =
{w1, w2, ..., wg}, such that ¢rg1 = dx + a)k.l Hence, the

UIn this paper, we define @ and © to choose from RIS phase shift
indexes from 1 to K as follows. For kj,ky € {1,...,K}, k; ®ky = k| +kp
if kf +ky < K and k| @ ky = ki + kp — K, otherwise. Similarly, for
ki ky e {1,...,K}, ki1 ©ky = k1 —ky it ky > kp and k1 ©ky = K+k| —ko,
otherwise.

VOLUME 5, 2024

N-element reflection coefficient vector is
W= [ﬂfefel Bl ﬁ;vei9N] 1)

where j = +/—1. Let s € C be the transmitted symbol. The
received signal is given as [19]

y= (hfth + ho)s +z )

where hg € C is the direct link between the BS and UE with
non-line-of-sight (NLOS), W = diag(w), z is the additive
white Gaussian noise (AWGN), h,, € CV*! and h;, € CN*!
are the equivalent channels of the RIS-UE and BS-RIS links,
respectively.

Let h, be the complex-valued cascaded channel coefficient
between the BS and the UE, being reflected by the nth
RIS element, n = 1,...,N, ie., let h = h, ©® hy, where
©® is the elementwise (Hadamard) multiplication of the two
vectors. Assuming a mean power constraint E[|s|?] < P
at the BS, the achievable ergodic data rate in bps/Hz is
given by

P . P
y = E|log 1+U—2‘h0+hw‘ , 3)

where z ~ CN(0, 02) and o2 is the noise power.

The RIS aids the communication through discrete beam-
forming to maximize the overall channel gain in equation (3).
In practical scenarios, RISs have a certain phase-shifting
capability, and the discrete phase shifts are not necessarily
uniform [23]. In this paper, the RIS phase range R €
[0, 27] represents the phase-shifting capability of the RIS.
Hence, we assume that the main restriction arises due
to the RIS phase range R < 27, and the nonuniform
phase shifts are selected based on the RIS phase range as
in Fig. 1.

At this point, we would like to emphasize an important
point regarding the placement of the limited phase range R
on the unit circle. We remark that the symmetry between
the phase shifts —123 and § in Fig. 1 is not required and the
techniques presented in this paper apply to any nonuniform
discrete phase shifts structure with a total contiguous phase
range R. Because, for an arbitrary nonuniform phase shift
structure, the RIS phase range would satisfy the condition
R = 2m — wj where wy is the largest value in the set Q.
So, without loss of generality, we will use the approach in
Fig. 1, ie, —m < ¢1 < -+ < ¢x = ¢1 + R < 7w with
R < 271%. The condition R < 27 %=L arises due to the
fact that R comes from wj, and the condition wj > 27” must
be satisfied as Zszl wy = 2 and by its definition w; > wy,
for k € {1,2, ..., K} \ k. Note that, this will ensure that the
discrete phase shifts cannot be placed uniformly over the
unit circle.” In addition, while we recognize the phase range
is not necessarily symmetric, we will assume the discrete

2Note that the terms uniform and nonuniform depend on the range over
which they are defined. In this paper, we use the term nonuniform to mean
the distribution over the full phase range [—m, ) is nonuniform, or not
equally separated.
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K phase shifts

FIGURE 1. Nonuniform phase placement for R € [0,2x].

phase shifts to be distributed over the range [—%, %], without
loss of generality.

A. PROBLEM DEFINITION
In this paper, we extend the problem of finding discrete
phase shifts to maximize the received power at a UE for
transmission, reflected by an RIS, originated from a BS, see,
e.g., [19]. In particular, we address the problem of finding
the values 61, 02, ..., 6y and B}, B3, ..., By to maximize the
received power |hg + 22]:1 hyBle®|? in equation (3), or its
square root, using nonuniform discrete phase shifts.

We would like to remind the reader that in |hg +
SN haBle|, the values hy, = Bue®, n=0,1,2,...,N

are the channel coefficients and 6,,, n=1,2,...,N are the
phase values added to the corresponding 4, by an RIS. As
for the moment, we let ) =1, n =1,..., N, which we

will relax after further analysis in this paper.
Initially, the problem can be formally described as

maxi;nize f(@0)
subject to 6, € &g, n=1,2,....N 4)

where

N 2
oo + 3 ot
n=1
Bn=>0 n=01,....,N,0 = (01,6, ..
[-m,7) forn=0,1,...,N.

We will provide optimal and suboptimal but computation-
ally efficient algorithms for the problem. Furthermore, we
will analyze the arbitrary phase shift placement and their
optimality of approximating the continuous solution for large
N, in regards to the RIS phase range.

In the next section, we will define our nonuniform
discrete phase shift selection algorithm that guarantees the
global optimal solution for B, =1, n = 1,2,...,N, or
equivalently when R > =, and it will be an extension of [19,
Algorithm 1]. We further improve it in the sequel by relaxing
B, in the interval [0, 1] to improve the performance whenever
the RIS phase range is less than m, ie., R < 7.

f6) = (3)

.,0N), and o, €
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lll. OPTIMAL SOLUTION WITH NONUNIFORM DISCRETE
PHASE SHIFTS

In this section, we aim to solve the received power
maximization problem, so that we can get the global
optimum solution in linear time. We want to maximize |ho-+
SV hae®n| where h, = Bpel® for n = 0,1,...,N, and

0 = (61,6s,...,0y). Define g as
N .
g=ho+ Y hpel” (6)
n=1

where 6, are the discrete phase shifts that lead to the global
optimum. Let u = g/|g| so that |g| = ge'™/H). Similar to
the condition in [19], we can make use of the following
lemma.

Lemma 1: For an optimal solution (0,65, ...,0;), it is
necessary and sufficient that each 6, satisfy
) = arg Giré%xK cos(Oy + an — /1b) @)

for an arbitrary ®g.
Proof: We can rewrite |g| = ge' /M) as

N
Boel @/ | Z Bpel CntOi=/I4)
n=1

= Bocos(ag — /p) + jBo sin(eo — /1)

N
+ Z Bn cos(@,f + oy, — ﬂ)

n=1
N

7> Busin(BF + o — /1) )

n=1

lgl =

Because |g| is real-valued, the second and fourth terms in (8)
sum to zero, and

N
18l = Bocos(an — /i) + Y _ Bucos(b +an — /). (9)
n=1
from which (7) follows as a necessary and sufficient
condition for the lemma to hold. |
With the help of this lemma, we have the necessary and
sufficient conditions to get the optimal phase shift selections.
However, at this point, we assumed that the optimum
@ would be given. To make use of this mathematical
conditioning on the globally optimum solution, we need an
operational framework to find w, similar to [14], [19]. While
@ can be anywhere on the unit circle, given the channel
realizations h, forn =0, 1, ..., N, we provide the following
proposition to reduce the search space of u to a finite size,
as an extension to [19, Proposition 1]. Towards that end, we
will define the following sequence of complex numbers with
respect to eachn=1,2,...,N as

. wkol
Suk = eXp(J(% + ¢ — Te))

for k = 1,2,...,K. Define, for any two points a and b
on the unit circle C, arc(a : b) to be the unit circular arc
with a as the initial end and b as the terminal end in the

(10)
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FIGURE 2. An illustration for the optimality of 8 = ¢, given u € arc(Sp : Snk+1)-

counterclockwise direction, with the two endpoints a and b
being excluded.
Proposition 1: A sufficient condition for 6 = ¢ is

€ arc(suk : Snkt1)- (11)
Proof: Assume u satisfies (11). Then,
Wk—1 Wi
pe(amt+o—"tatdn—5). (12
By subtracting 6, and oy, we get
Wi—1 Wk
(1= 00— an € (9= 5t =0 a1 — 5 = 0,).(13)

Now, let 6,, = ¢. Then,
Wg—1 Wk
=00 —an € (6= 5% = du b — 5 — ). (149

By substituting ¢y = ¢ + wi, we have

Wg—1 Wk

= 0n—ane (=25 ).

Therefore, letting 6, = ¢ results in the largest cos(6, +
ap — /i) value among other possibilities for w, as illustrated
in Fig. 2 by showing the effect of selecting the phase shift
option before and after than ¢. Since cos(& -6, —ay) =
cos(0, + oy — ﬂ), the proof is complete. [ |

Finally, to operate with Proposition 1, we will eliminate
duplicates among s, and sort to get ¢* such that 0 < A; <
Ay < -+- < Ap < 2m. Define the update rule as

5)

N = {{”/’k/}|M=)\l}~ (16)

Let us search for the optimum p by traversing the unit circle
in the counterclockwise direction, starting from /M= 0.
With Proposition 1, we know that 6, for n = 1,2,...,N
will remain the same unless w switches from one arc to
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Algorithm 1 Generalized [19, Algorithm 1] for Nonuniform
Phase Considerations
1: Initialization: Compute s, and AV'(X;) as in equations
(10) and (16), respectively.
2: Set /M= 0. Forn=1,2,...,N, calculate and store

0, = arg gné%)xk cos(ﬂ — 6, — ay).

3: Set go = ho + Zilvzl hpe®r, absgmax = |go|.

4: forI=1,2,...,L—1do
5: For each double {#', k'} € N (X)), let 6, = ¢p.
6: Let

g1 =811+ Z hy (' — &/ Prar))
(' K'YeN ()
7: if |g;| > absgmax then
8: Let absgmax = |g;|
9: Store 6, forn=1,2,...,N
10: end if
11: end for

12: Read out 6, as the stored 6,, n=1,2,...,N.

another. Whenever u switches arcs, there exists n such that
0, will be updated, i.e., if

u e arc(em : ej)"“) — U E arc(e’“’*l : eﬂ’”), 7

then for every {n’, k'}, 6, must be updated according to the
update rule in (16) as

O — i, {0 K} € N (). (18)

Therefore, the optimum solution will come from L < NK
possible candidates of u. For each candidate, we will operate
using the sufficiency condition in Proposition 1 that is
guaranteed to provide the globally optimum solution, since
it is compatible with Lemma 1.

We specify the procedure explained in this section, which
achieves the global optimum solution when RIS elements are
strictly ON, as Algorithm 1. Algorithm 1 works as a search
algorithm for the optimum g and therefore the optimum
RIS configuration, based on Lemma I and Proposition 1.
To initiate the search, Algorithm 1 starts with /M= 0
and selects the RIS coefficients with Lemma 1. Then, to
try every other candidate p and the corresponding RIS
configuration, Algorithm 1 only updates one or a small
number of elements, as specified in (17) and (18), achieving
linear time complexity. After trying NK or fewer options,
Algorithm 1 selects the RIS configuration that achieves the
maximum received power, which is guaranteed to be the
global optimum by the analytical analysis provided in this
section. A complexity analysis for Algorithm 1 is provided
in Section X.

Finally, Algorithm 1 is a generalized version of [19,
Algorithm 1] to work with nonuniform phase shifts and
achieve the global optimum in L < NK steps. We remark
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that, for uniformly distributed phase shifts, we showed in [19]
that the convergence can be achieved in N or fewer steps,
without requiring any complex number calculations.
Similar to what the authors in [20] pointed out, we
remark on an important downside of the nonuniform discrete
phase shifts, especially when R < w. We know from our
Proposition 1 that the optimal phase shift selections will

satisfy /p —6, —a, € —%, “Ey. So, whenever R < 7, we
will have an wg > 7w for k € {1,2, ..., K}. Note that there

could only be one instance of k since Z,’le Wk = 2m must
hold. With this, depending on the optimum x, cos(/u — 6, —
oy) can take a negative value for some n. This results in
a negative contribution to the optimum |g| given in (9). To
address the issue of negative values caused by R < m, we
will discuss this in detail starting from Section VII and in
subsequent sections.

IV. NONUNIFORM DISCRETE PHASE SHIFTS AND
QUANTIZATION SOLUTION

In this section, we will approach the received power
maximization problem with an intuitive quantization algo-
rithm, which we call NPQ. This quantization approach is an
extension to the uniform polar quantization (UPQ) algorithm
proposed in [19]. It is similar to the closest point projection
(CPP) algorithm in [12]. Using an analytical approach with
this algorithm, we will develop closed-form solutions of the
approximation ratios of arbitrary discrete phase shifts to the
continuous solution, and develop a framework on how to
place the nonuniform discrete phase shifts regarding the RIS
phase range.

Consider the problem in (4) but without the condition
6, € P, n = 1,2,...,N. We call the solution of this
problem the continuous solution to (4). Given a continuous
solution to the problem in (4), say 9,30“‘, NPQ selects the
closest possible angle from the set ®g. Therefore, for this
purpose, we first relax 6, and redefine the received power
maximization problem as

maximize f(6°™)

acom
subject to 0™ € [—7, ), n=1,2,...,N, (19)
where
N
. ; cont
FO°) = [Boe™ + ) Bt (20)
n=1

In the above equation, f(6°°") is calculated by adding N+ 1
complex numbers, where each complex number represents a
two-dimensional vector on the complex plane. Among N+ 1
vectors, the only vector we do not have control over is
hy = ﬂoej“O. Therefore, in order to achieve the maximum
value of f(0°°™), we can select

cont
9}’1

=ayg—ay, forn=1,2,...,N, 21
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1 T

Optimum, Uniform [1]
09F UPQ, Uniform [1]
— — — Algorithm 1, R = 240°
Algorithm 1, R = 180°
0.8 |- — —NPQ, R=240°
NPQ, R = 180°
L |— — —BCD, R=240"
07 BCD, R = 180°
')
0.6 I

Cumulative Distribution

20
SNR Boost (dB)

FIGURE 3. CDF plots for SNR Boost with [19, UPQ], [19, Algorithm 1], BCD [24],
Algorithm 1, and NPQ, for K = 4.

so that all vectors will be aligned on top of each other,
resulting in the maximum achievable value of (ij:o Bn)>.
In other words,

2

N
S

n=1

N 2
o 3 e
n=1

f(ocont) — |eja0|2

(22)

and the choice in (21) maximizes f(8°°™). Given 6™ €
[—m, m), NPQ projects to the closest available phase value
in ®g. Therefore, assuming without loss of generality that
—T < ¢ <@ <...< ¢k < m, the decision rule for NPQ
is defined as

b if — 7 < geont o1+
=0, s
®» if ¢1-§¢2 < erfont < ¢2-§¢3’
oNPQ — (23)
bx_1 if ¢'K—242r¢1<—1 < Qrcl:ont < ¢K—12+¢K’

bk otherwise.

where 05°™ is the continuous solution in (21).

From the definition of NPQ, similar to UPQ and CPP
approaches, the solution cannot be guaranteed to be glob-
ally optimum. In other words, NPQ can only provide a
suboptimal solution. Yet, with the quantization approach,
the beamforming process can be substantially simplified by
using look-up tables, as NPQ only requires «, for n =
0,1,...,N to select the discrete phase shifts.

We present the cumulative distribution function (CDF)
results for signal-to-noise ratio (SNR) Boost [14] in Fig. 3
for K = 4, and in Fig. 4 for K = 8. In these results, we
consider the RIS phase range to be larger than or equal to
mw, i.e,, R € {180°,240°}, leading us to use large values
of K so that R < ZnKT*l. The CDF results are presented
for N = 9, 25, and 64, using 10,000 realizations of the
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Optimum, Uniform [1]
0.9 UPQ, Uniform [1] /-
— — — Algorithm 1, R = 240° 1
Algorithm 1, R = 180° f
0.8 |— — —NPQ, R = 240° il 1
NPQ, R = 180° fl
| |- — —BCD, R=240° i /! |
0.7 BCD, R = 180° | I
/ i
0.6 [ fl ]
i
051 i 4

©
'S
T

N=64 f

Cumulative Distribution
o o
pNow
T

o

o

SNR Boost (dB)

FIGURE 4. CDF plots for SNR Boost with [19, UPQ], [19, Algorithm 1], BCD [24],
Algorithm 1, and NPQ, for K = 8.

channel model defined in [19] with x = 0. We employed
UPQ in [19] and the optimum algorithm [19, Algorithm 1] to
generate the performance results for uniform discrete phase
shifts and quantify the loss due to nonuniformity. We also
employ Algorithm 1, and the NPQ algorithm presented in
this paper, with the equally separated nonuniform discrete
phase shifts structure given in Fig. 1. Finally, to provide
a comparison with the literature, we employed the block
coordinate descent (BCD) algorithm [24] as it is a commonly
used approach [12], [14], [19], where phases are selected
for each element at a time to successively refine the
performance. All algorithms ran over the same channel
realization in each step. Between Fig. 3 and Fig. 4, it can
be seen that the loss due to the RIS phase range restriction
increases for larger K. Note the UPQ with the uniform
discrete phase shifts is always superior to NPQ, provided R <
2 K1 K . However, we remark that the optimum performance
provided by Algorithm 1 with nonuniform discrete phase
shifts can surpass the UPQ algorithm with uniform phases. In
other words, the loss due to the RIS phase range limitation is
larger for the quantization approach rather than the optimum
solution with R > m and B =1forn=1,...,N.

In the next section, we will analyze the achievable
performance under nonuniform discrete phase shift con-
straints by deriving approximation ratios with NPQ.

V. APPROXIMATION RATIO OF NONUNIFORM DISCRETE
PHASE SHIFTS WITH NPQ

Having the quantization approach in hand, we will define
an approximation ratio to quantify the effect of the NPQ
algorithm, the nonuniform discrete phase shifts, and the
RIS phase range on the overall performance of the system.
Specifically, the approximation ratio will quantify how well
the continuous solution can be approximated. Similar to the
approach in [9], [19], where we developed an approximation
ratio for the UPQ algorithm [19] with uniform discrete phase
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shifts, we will first approximate the received power f(#°°™)
for asymptotically large N as

N . NPQ) |2
f(aNPQ) — | oei®0 + Zﬂné/(a"+9" Q)‘

n=1

o’ | gy + iﬂ el ) [

Q cont 2
:30 + Z ,Bn NP o [)

5

where the gain from the direct link, i.e., fo, is practically
discarded. Let 8, = 65" 2 — 6" for n = 1,2,...,N. The

resulting absolute square term in (24) can be expressed as

f07) ~| St

(24)

%

)

NPQ
n

6(,0!1[)

k—1

N
= Zﬂ,%+ 23" BBicos(s — 8)). (25)
n=1 k=2 I=1
Assume that in (25) all B, B;, 8k, and §; are independent
from each other. Taking the expectation yields

Blr(0)] = val o]

+ NN — DE[Bfi1]E[cos (8 — 81)]. (26)

Finally, we need to normalize the result in (26) with
the maximum achievable result to get a ratio from O to
1, where the continuous solution would achieve 1. We
know from (21) that the maximum achievable number is
(Yo Bw)?. Therefore, E[(YN_ B)2] = NE[B2] + N(N —
DE[BrB]. As a result, with (26), the ratio of the two
expected values can be calculated for asymptotically large

N as
A G)

| (Shom)|

Hence, E[ cos(§x — §;)] will be the approximation ratio for
NPQ. As we have the independence assumption among &y
and §;, E[ cos(8x — 8;)] can be simplified further as

= Elcos(8x — 8)].  (27)

E[cos(6x — 81)]
= [E[cos(8x) cos(8;) + sin(8y) sin(8;)]
= E[cos(5x) cos(8;)] + E[sin(5x) sin(d;)]
= E[cos(5x)]E[cos(5;)] + E[sin(5x) JE[sin(5;)]
= (E[cos(8,)])” + (Elsin(5,)])”
for n = 1,2,...,N. Therefore, for a given discrete phase
shift selection set ®g, the approximation ratio can be

calculated with (28). We will calculate this for two different
scenarios. First, we will provide the approximation ratio for

(28)
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arbitrary ¢, k=1,2,..., K, and then for equally separated
nonuniform phase shifts over the RIS phase range, as given
in Fig. 1. In between the two steps, we will also analyze
the special connection between the two and show that the
latter maximizes the potential of the RIS with nonuniform
discrete phase shifts.

Given the set ®x of arbitrary discrete phase shifts, the
approximation ratio will be denoted by E(¢1, ¢2, ..., ¢K).
This will be a measure to represent the average performance
for an RIS. For this purpose, as a common assumption from
the literature to define the quantization error [9], [12], [19],
we will assume that 0,20“1 is uniformly distributed, i.e.,
0o ~ UY[—m, 7] to apply the law of total expectation.

Let ®x = {¢1,¢2,...,.¢x} be the set of arbitrarily
selected nonuniform phase shifts. Assume without loss of

generality that —w < ¢; < ¢ < < ¢k < m.
Let 6°™ € [¢x, pry1] for k = 1,..., K with probability
w, in which case 6, will either be ¢x or ¢i+1.

Note that 8, = 6572 — < will be uniformly distributed in
[_¢k+12_¢k’ ¢k+12—¢k], ie., 8, ~ u[_¢k+12_¢k7 ¢k+l2_¢k]’

To find E(¢1, ¢2, ..., ¢x), we need to calculate the result
in (28). First, note that the distribution of §, is always
symmetric around zero, which gives (E[ sin((Sn)])2 =0,n=
1,2,...,N. Therefore, E(¢p1, ¢2, ..., dx) = (E[ c:os((Sn)])2
Now, introduce the law of total expectation given as E[X] =
E[E[X|Y]] = > ;E[X]A;]IP(A)), so that E[cos(5,)] can be
calculated as

E[cos(8,)]
:Kil Prr1 — Pk /(M) ! cos(8,)dé
£ 27 7(¢k+l ¢’k) Ok+1 — Pk A
paeime ()
2 () 2k g =g
(29)

s comes from the uniform
Pir1— P ¢k

distribution and ¢"+2‘7T_¢" is the probability of the event 65°™ €
[@k, dr+1] occurring. Now, we calculate the term inside the
square brackets as

where inside the integral

cos(8,)ds,

¢k+| —%k
Prr1 — b / ( )
ot _("’H k) drr1 — Pk

-

1 (¢k+1 ¢k>
= —sin
b4 2

Similarly, the last term in (29) will be L sin(25%L)
27r+¢21—¢1<)

¢k+1 ¢k

cos(S,,)d(S,,

(30)

as sin( = sin(@). Therefore, from equa-
tions (28), (29), and (30), the approximation ratio for an
arbitrary nonuniform discrete phase shift set is
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2

K—1
E(¢p) = |:( sm(m+1 )) +sin(¢K;¢])i|
k=1
(€2))
where we used the shorthand notation ¢ for ¢1, ¢2, ..., ¢k
with —7 < ¢ < <--- < g < .
Now, without loss of generality, let T < ¢ <<

¢k = ¢1 + R < m with R < 27%Z1 a5 given in Fig. 1.
Substituting ¢x = ¢1 + R in (31), we have

K-2

_ Ly Prt1 — Pk
E(¢p) = - |:( ; s1n< 5 ))
2
+sin<¢l+R2_ ¢K—1>+Sin<1§>i| ()

where it is clear that R will directly impact the average
performance. We leave the discussion of this to Section VI.

VI. OPTIMUM PLACEMENT OF THE PHASE SHIFTS
In this section, we use our approximation ratios calculated
in Section V to find the optimal placement of the discrete
phase shifts, analytically. More specifically, we first use
equation (31) to show that the optimal placement of the
discrete phase shifts would be uniformly distributed, when
there is no RIS phase range limitation. Secondly, we extend
this calculation considering a limited RIS phase range,
e, R < Zn%, and show that the optimal placement
of the discrete phase shifts would be equally separated
over the RIS phase range, i.e., over [—§, I—;] as in Fig. 1.
Finally, by considering the equally separated nonuniform
discrete phase shifts, we reveal the effect of R and K
on the overall discrete beamforming performance of the
RIS. In (31), we derived the closed-form expression for
the approximation ratio of the set of arbitrary nonuniform
discrete phase shifts, i.e., how well the continuous solution
can be approximated for large N. Now we will prove that
given K, arranging the phase shifts uniformly will maximize
the approximation ratio, and therefore will also maximize
the average quantization performance. Define Ay = (¢x41 —
or)/2fork=1,2,...,K—1and Agx = Cr + ¢ — Pg)/2.
Note that Ay € (0,7) for k=1,2,...,K and Z,’le Ay =
w. Ignoring the factor 1/72 in (31), the maximization
problem can be equivalently expressed as

K
maximize Z sin(Ag)
k=1
subject to A+ Ary+---+ Ax =m,
Are0,m), k=1,2,...,K. (33)
Using Lagrange multipliers, let
F(Ay, Ay, ..., Ak, A)
K K
=) sin(Ap) + A Ax— ), (34)
k=1 k=1
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where, the derivatives will be

F
= cos(Ag) + A

BA

oF A+ Ay + + A

o 1 2 K
for k = 1,2,...,K. Letting % = 0 gives cos(A]) =
cos(Ar) = --- = cos(Ag) = —A. Since, Ay € (0, ), the
solution will be A; = Ay =--- = Ag = /K to satisfy the

second condition % = 0. Therefore, the optimum placement

of the phase shifts is uniformly distributed. Note that this is
achievable as long as the RIS phase range R is large enough
for a desired number of phase shifts K. Therefore, if there
is to be a restriction due to the RIS phase range to force
nonuniform phase shifts, the condition R < 2w KKI must be
satisfied. When there is a sufficient restriction due to the
RIS, ie., R < 271%, there is no way that the arbitrary
discrete phase shifts can be distributed uniformly over the
range [—m, ). However, we can still question the placement
of the discrete phase shifts over the range R that the RIS
can reach and show that equally separated discrete phase
shifts over the range R will maximize the performance. Note
from (32) that this time we need to define Ay for k’
,...,K—1. Therefore, let Ay = &% g =1, K-
2 and Ag_1 = %. Now, focusmg on the placement
of discrete phase shifts, we will omit the sin(%) term.

Similar to the arbitrary case, using the Lagrange
multipliers, we define the equivalent maximization problem
as

K—1
maximize Zsin(Ak/)
k=1
subject to A;+ Ay +---4+ Ag_1 = 7
R
Ay € ( 2) K=1,2,...,K—1. (35
Define
F' (A1, Dy,  Ag1, b)) =
K—1 K—1 R
D_sin(A) + A Av = 5), (36)
kK'=1 kK'=1
where, the derivatives will be
oF (Ap) + A
—— = cos(Ay
0Ay k
AN D R
an = A1 2 K-1= 73
for k' = — 1. Letting 3 = 0 gives cos(Aj) =
cos(Ay) = -+ = COS(AK_l) = —A Since Ap € (0, 2)

and in this range the cosine function is monotonically
decreasing, the solution is provided by A = Ay = - =
Ag_1 = ﬁ. Note that this also satisfies g—f =0
Therefore, the optimum placement of the phase shifts is
equally separated over the range R to maximize the average
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- (" - g) - 2(KR— 1) z(KR— 1 (" - g)

FIGURE 5. PDF of é,, i.e., the quantization error.

normalized performance of the RIS. At this point, we have
shown that given the RIS phase range R, the placement of the
nonuniform discrete phase shifts over the RIS phase range
needs to be equally separated, to harness the potential of the
RIS and maximize the approximation ratio. This placement
of the nonuniform phase shifts will also be adopted for
the rest of the paper, including the numerical results, as
suggested by the performance maximization approach and
practicality. Therefore, as shown in Fig. 1, we let ®x =
-3 & 525 -5 . ®-1D& -5} So that,
with the equally separated dlscrete phase shifts, the decision
rule for the NPQ can alternatively be defined as

if B R < Gcom

230
ecom_,’_ﬁ .
QITPQZ n—/z Xa)’—glf

- —5 =6 <3, (37

|

b
_
=

=2

Q
=
B

where |[-] is the rounding function defined as |[x] =
sgn(x)||x| +0.5] and o = 2&5.

Let us define the approximation ratio as E(R,K) =
E[ cos(8; — 8;)], where we have §, = G,TPQ — ¢ From the
definition of 65" and 6™ in (37) and (21) respectively,
clearly 6, € [—(m —%), - 1%]. Remembering the assumption
that 65°" ~ U[—m, 7], the probability density function
(PDF) of §,, i.e., f(6,), can be deduced simply and it is
plotted in Fig. 5. With the PDF f(§,), we need to calculate
the simplified version of the term E[ cos(d; — ;)] as given
in (28). Note that, the second term in (28) will be zero,
since f(8,) is an even function. Therefore, we only need to
calculate (IE[cos(cSn)])2 to find E(R, K). Let us first calculate
E[ cos(5,)] as

E[cos(8,)]
2(,(’?_1) T—R/2 1
=2 / cos(Sn) d8,, / cos(8,) — dé,
0 R 2
2(K-1)

() oo
+_[Sin<” B I;) o (Z(K - 1)>H
() + ()]

8-

(38)

N |-
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FIGURE 6. E(R, K) vs R for K « {2,3,4,6,8).

() ()]
= —|sincu| —— | + sincu| —
2 2(K—1) 2

where from (38) to (39), we divide and multiply by
R/2, and sincu(-) represents the unnormalized sinc function
sincu(x) = *3*. Note that sincu(x) = sinc(3). Also, note

(39)

that (38) is compatible with (31) with =% = R for
k=1,...,K—1 and ‘75"2;@ = g. Thus, the approximation

ratio for the NPQ algorithm is

R R . (R\7? A

E(R,K) = H[SIHC(m) + SIHC(E>:| ( 0)
where R is the RIS phase range and sinc(-) is normalized
satisfying sinc(l) = 0. An illustration for the theoretical
calculations of the approximation E(R,K) is given in
Fig. 6, where it can be seen that E(R, K) converges to
the approximation ratio of the uniform phases, i.e., Ex(K)
in [19], as the RIS phase range increases. From our analysis
of the optimum selection of nonuniform discrete phases in
Section VI, we know that the equal separation in the RIS
phase range will maximize the average performance. Even
with the best case scenario with the optimal placement of
the nonuniform phases, Fig. 6 shows that the gain of using
K > 3 is only marginal when R < /2. Similarly, the gain
of using K = 4 or more discrete phase shifts is negligible
unless the RIS phase range is large enough, ie., R > 7.
We remark that the approximation ratio is calculated for
sufficiently large N. Further analysis to confirm the validity
of the theoretical calculation of E(R, K) is provided in the
numerical results.

Finally, the numerical results for the approximation
ratio are calculated by dividing the expression |Bpe/® +
Z;V: | Bl @nttn) |2 to (ZLV:O B.)?* for each channel realiza-
tion and averaged. With this, the normalized performance
results are presented in Fig. 7 for R = 180°, and in
Fig. 8 for R = 240°. In both figures, the performance
of NPQ converges to the approximation ratio curve for
large N, falling in line with our analytical analysis on
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FIGURE 7. Normalized Performance results vs. N, for R = 180° and K < {4,8).
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FIGURE 8. Normalized Performance results vs. N, for R = 240° and K ¢ {4,8}.

E(R, K). Providing the optimum result, Algorithm 1 serves
as an upper bound. From Fig. 7 to Fig. 8, for larger R,
the performance gap between Algorithm 1 and NPQ gets
smaller. With this, we remark that increasing R from 180°
to 240° helps significantly more in terms of performance
rather than increasing the number of discrete phase shifts K.
This confirms our analysis with Fig. 6 that the lower the RIS
phase range is, the less likely it is to achieve a performance
gain by increasing K.

VIl. GLOBAL OPTIMUM SOLUTION WITH ON/OFF B/,
In this section, we address the destructive selection issue by
relaxing the RIS gains, i.e., B, € [0, 1]. With this, we will
define an updated maximization problem where we tune f3,
together with 6,, and develop an optimal discrete phase shift
selection algorithm with ON/OFF g;. We will also specify
how it can converge to the optimum solution in L < N(K+1)
steps in linear time.

So far, we have developed a comprehensive analysis for
the approximation ratio of nonuniform discrete phase shifts.
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Algorithm 2 Extended Algorithm 1 for
Condition When R < &
1: Initialization: Compute s, and AN(A;) as in
Proposition 2 and equation (16), respectively.
2: Set /= 0. Forn=1,2,...,N, calculate

the Special

0, = argeiré%g(l( cos(& — 6, — ay).
3: Set B = (cos(&— 6, —ay)] forn=1,2,...,N.
4: Update 0, = ¢jq for n € {n|B, = 0}, and store 6, Vn.
5: Set go = ho + 227:1 hnﬁ;eﬂ’", absgmax = |go|.
6: for/=1,2,...,L' —1 do
7 Set gupdate = 0.
8 for each double {r', K’} € N'(X;) do
9 if 8,y = 1 then

10: if ¥ =k® 1 then
11: Set By =0 and 6,y = ¢y
12: Let

8update — hn’e/(bi <— Zupdate-

13: else
14: Set 0,y = ¢p
15: Let

8update + hy (eien/ - ei(¢’k’el)) <~ 8update-

16: end if

17: else

18: Set By =1
19: Let

0
Zupdate T hy e’ <« 8update-

20: end if

21: end for

22: Let gi = gi—1 + &update

23: if |g;| > absgmax then

24: Let absgmax = |g/|

25: Store B), and 6, forn=1,2,...,N
26: end if

27: end for

28: Read out g and 6, n=1,2,...,N.

Together with this, we provided two algorithms, i.e., NPQ
and Algorithm 1, where the first is an intuitive practical
algorithm and the latter achieves the global optimum with
B,=1forn=1,2,...,N in NK or fewer steps, provided
R > m. Then, we underlined the special case that arises
due to the nonuniform structure of the phase shifts, or the
RIS phase range constraint, that setting 8, = 1 for n =
1,2,..., N right away can result in allowing paths that are
destructive when R < 7.

In this section, we will develop a new algorithm,
Algorithm 2, for the special case of R < w. We will also
show that this algorithm can be interchangeably used with
Algorithm 1 with relaxed ). Algorithm 2 will adjust the
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RIS gains to manage the destructive paths through the RIS.
For this purpose, we will relax the gains and redefine the
optimization problem as

maxi;nize f(0)

subject to 6, € P, n=1,2,...,N

Bl el0,1], n=1,2,....N (41

where
N 2
13061'010 + Z ﬁnﬁ;ej(a"+9")
n=1
By >0 n=0,1,...,N, 0 = (61,0, ..
[-7,7) forn=0,1,...,N.
Similar to our Lemma 1, let

f@) = (42)

.,0y), and «, €

N
g =ho+ Y hapyres,

n=1

(43)

so that we can state our second lemma as follows.

Lemma 2: To achieve the maximum of |g’|, a necessary
condition on (0], 65,...,0y) is that each 67 for n €
{n|B.* > 0} must satisfy

6, = arg max cos(6, + oy — /) (44)

ne(bK
where /u stands for the phase of optimum p = g'/1g'| with
¢’ in equation (43).
Proof: We can rewrite equation (9) as

N
18] = Bocos(an — /i) + Y BuBycos(B + oy — y). (45)

n=1

where B, > 0. Therefore, for |g’| to be the maximum value
possible, (44) follows as a necessary condition, completing
the proof. |

So far, similar to the development of Algorithm 1, we are
proceeding with the assumption that we know the optimum
w. Before coming up with the operational procedure for
Algorithm 2, we will state our third lemma regarding the
optimum RIS gain selection 8;* as follows:

Lemma 3: Given the optimum pu, the globally optimum
solution will be yielded by B;* = [cos(0,; + oy — /p)1.

Proof: In equation (45), define the function h(8)) =
BuBy cos(0; + oy — su) independently for every n =

1,2,...,N.For |¢'| to be the maximum value possible, given
0y, the function h(B]) should be maximized independently
forn=1,...,N. Note that h(f;) is a monotonic function.

Therefore, to achieve the maximization in |g'|, B]* needs to
satisfy

. . B
g _{1, if cos(6f +ap — Zu) > 0, 46)

—]o, ifcos(@j—}—an—éu) < 0.

Therefore, without loss of generality, the optimum solution

will be yielded by ON/OFF B, provided by the equality
By = [cos(On + an — /)1 (47)
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FIGURE 9. Range of values of Zu — 6, — a, for Case 1 with p € arc(S, : Spig1)-

Therefore, the proof is complete. |

To operate with Lemma 3, further analysis is required in
terms of finding when the cos(6 + «,, — Zu) < 0 case will
arise. For this purpose, assume for R < & that we have the
unique k such that wp > . We will revisit equation (15)
from Proposition 1, as we know from Lemma 2 that it
will hold whenever 8] > 0. Our 6, selections will make
sure that su — 6, — o, € (=251, %), given that u €
arc(spk * snk+1). Consider two cases, € arc(s,; : 5, rp1)
and p € arc(s, ro1 © S,.5e2)- As shown in Fig. 9 and Fig. 10,
in both cases the cosine value in (45) can take a negative
value, i.e., cos(6, +a, — Zu) < 0, resulting in the selection
of ) = 0. With this observation, we propose the following
proposition to be able to operate with Lemma 2 and Lemma 3.

., i -4 T
Proposition 2: Let s'. = @Fh+3) and 2. =
n, k@1 n, k@1

@+ %e1=3) | A sufficient condition for Br¥=01is

ne arc(srll’]—<€Bl : Si,/_(@l)' (48)

Proof: Consider the two and only cases that cos(6, + o, —
Zu) can take a negative value.

First, assume p € arc(s,g : 5, t)- Since wp/2 > 7/2, the
cosine value can take a negative value as shown in Fig. 9.
This happens if yu € arc(s, zg e/ “i™/% 1 s, 10)), as there
is no 6, € ®k such that cos(6, + o, — L) > 0.

Second, assume p € arc(s, ta : S, pe2)- Since —wi/2 <
—m /2, the cosine value can take a negative value as shown in
Fig. 10. This happens if 1 € arc(s, tg; : S,igi€ /%),
as there is no 6, € ®g such that cos(6, + a, — Zu) > 0.

Finally, the two cases together can be expressed as

. _ . 1 2
a single arc around sn’k@l)/tz)y using s, - o) and S el
-7

as € arc(s, gg e’k D S @ E%). Since
Prp1 = P + i, the same arc can be expressed as p €
arc(e/@ntOitT) . o (“”+¢i®l_%)). Thus, the proof is complete.
|

With Proposition 1 and Proposition 2 together, we need
to consider K 4 1 arcs that the optimum g can be in for
every n = 1,...,N independently as there is an extra arc
introduced in Proposition 2 for n = 1,2,...,N. This is
because, when R < 7 and w; > 7, we will let Spidl =
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FIGURE 10. Range of values of 2 — 6} — &, for Case 2 with p € arc(S, g1 * Spio2)-

{srlz,l_(EBI ’ sﬁ,fc@l
numbers.

We specify the procedure explained in this section, which
achieves the global optimum solution when the RIS gains are
relaxed, i.e., ) € [0, 1], as Algorithm 2. Like Algorithm 1,
Algorithm 2 works as a search algorithm for the optimum
pn and therefore the optimum RIS configuration, based on
Lemma 2, Lemma 3, and Proposition 2. To initiate the
search, Algorithm 2 starts with /M= 0 and selects the RIS
coefficients with Lemma 2 and Lemma 3. Then, to try every
other candidate p and the corresponding RIS configuration,
Algorithm 2 only updates one or a small number of elements,
e.g., it may turn ON/OFF or update the phase of these
elements, achieving linear time complexity. After trying
N(K + 1) or fewer options, Algorithm 2 selects the RIS
configuration that achieves the maximum received power that
is guaranteed to be the global optimum by the analytical
analysis provided in this section. A complexity analysis
for Algorithm 2 is provided in Section X. We remark that
Algorithm 2 works with adjustable RIS gains, yet it achieves
the global optimum solution by setting an element either ON
or OFF. Also, note that Algorithm 2 is an extended version
of Algorithm 1 in Section III to work with adjustable RIS
gains when R < 7.

We present the CDF results for SNR Boost in Fig. 11
for K = 2, and in Fig. 12 for K = 4. In these results, we
consider a notable limitation on the RIS phase range such that
R < m,ie., R € {90° 120°}. The CDF results are presented
for N = 16, 64, and 256, using 10,000 realizations of the
channel model defined in [19] with « = 0. The discrete
phase shift selections are equally separated and chosen as
given in Fig. 1. We employed Algorithm 1, Algorithm 2,
and NPQ algorithms that we proposed in this paper, as well
as BCD algorithm [24]. Since we have R < m, Algorithm 1
will only serve as a pseudo-optimal solution, assuming that

" are strictly 1 for all n, so that we can observe the effect
of destructive paths and ON/OFF keying. All algorithms ran
over the same channel realization in each step. It can be seen
that the gap between Algorithm 2 and the other algorithms
increases for larger N, as well as for smaller R. This signifies

} so that s, ;4 will encode two complex
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FIGURE 12. CDF plots for SNR Boost with BCD [24], nonuniform polar quantization
(NPQ), Algorithm 1, and Algorithm 2 for K = 4 and R € {90°,120°}.

the power of using ON/OFF ] with larger RISs, having
more phase range limitations. Furthermore, using K = 4
instead of K = 2 mostly impacts the performance of NPQ
with R = 120°, making it more desirable due to its low
complexity. Finally, BCD can outperform NPQ, as it is
seemingly benefiting from the phase range restriction, e.g.,
this can be observed by comparing Fig. 3 and Fig. 12. Yet,
BCD is still outperformed by Algorithm 1.

With Algorithm 2 and R < 7, the normalized performance
results are presented in Fig. 13 for R = 90°, and in Fig. 14
for R = 120°. In both figures, the performance of NPQ
converges to the approximation ratio curve for large N, again
confirming our analytical analysis on E(R, K). Similar to the
CDF plots, the performance gain from using Algorithm 2
over both NPQ and Algorithm 1 increases for larger N. Also,
if R is sufficiently low, Algorithm 2 is always superior to
Algorithm 1. Similarly, Algorithm 1 is always superior to
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NPQ, even if a larger K is used for the latter. The underlying
reason for this again is that the performance gain from using
larger K diminishes significantly for low R.

Finally, we present the average SNR Boost results of
our proposed algorithms versus R in Fig. 15 for K = 2,
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FIGURE 16. Average SNR Boost vs. R, for K = 4 and N € {16,64,256,1024).

and in Fig. 16 for K = 4. Both figures show that the
average performance of Algorithm 1 converges to that of
Algorithm 2, as R approaches w. On the other hand, NPQ
can provide an average SNR Boost that is significantly close
to both Algorithm 1 and Algorithm 2 as R increases, for
large N. Both Fig. 15 and Fig. 16 suggest in a sense that
Algorithm 1 and Algorithm 2 can be used interchangeably
to solve the problem in (41), where the selection depends
on whether R <m or R > 7.

Finally, we remark that the development of Algorithm 2
follows from the strict limitation on the RIS phase range, i.e.,
R < 7. Otherwise, an important side conclusion that follows
from Lemma 3 is that, Algorithm 1 can be extended to solve
the problem in (41) with 8 € [0,1] for n = 1,2,...,N,
when R > w. With R > 7, we know from Lemma 3 that
the solution that yields the global optimum will select 8], =
1 for n = 1,2,...,N. Therefore, both Algorithm 1 and
Algorithm 2 can be used to solve the general problem in (41)
for R > m and R < m, respectively. With this, the number of
required steps in the for loop would reduce from N(K + 1)
to NK. Further analysis regarding the number of required
steps and complexity is provided in Section X.

VIIl. REVISITING THE QUANTIZATION SOLUTION WITH
ON/OFF B},: EXTENDED NONUNIFORM POLAR
QUANTIZATION

In this section, we will propose a novel quantization
algorithm by enhancing the NPQ algorithm with ON/OFF
B, selections. The importance of the ON/OFF selections
has been established so far, showing significant performance
gains for R < m. A similar approach to exploit B in
Algorithm 2 can be used for the quantization solution.

The quantization approach comes from selecting the
closest option from the phase shifts set to the continuous
solution, which can achieve the maximum possible received
power given by (ZnN =1\?P/Bn)z. Similar to our analysis in
Section VII, let 8, = 65 Q — o for n=1,...,N. When
R < 7, depending on the value 0S°™, the difference between

gNPQ T

n and 0™ in (21) can be greater than 7, or less
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than —%, ie., |86, > % Therefore, such a path through

the nth RIS element would contribute destructively to the
overall performance, as could be deduced from E(R, K) =
(E[ cos(8,)])%. With the adjustable RIS gains, this can be
eliminated by an OFF selection, i.e., 8, = 0. Therefore, we
define the ENPQ algorithm with ON/OFF B;, which is an
algorithm to select the RIS coefficients, as

wENPQ — cos(8,)] exp(j@,ﬂ“’Q), (49)
where 9,1,\1 PQ are selected by the NPQ algorithm, and §, =
O,I:I PQ—@,fom. Note that for R > 7, ENPQ will select the same
RIS coefficients as the NPQ algorithm, because |5,| > %
will never occur.

IX. APPROXIMATION RATIO CALCULATION FOR ENPQ
We extend our approximation ratio calculations to find
the approximation ratio for the ENPQ algorithm, i.e.,
ER(R, K). With the independence assumption among 6,
it can be deduced from (25)-(28) that EJR(R,K) =
(E[cos(8,)] cos(8,))? 4 (E[[cos(8,)] Sin(5n)])% by includ-
ing the [cos(8x)] and [cos(d;)] terms. Due to the symmetry
in 8,, (E[[cos(8,)]sin(8,)])* = 0, so that Eg(R, K) =
(E[Tcos(8:)1 cos(8,)])%. Now, with the PDF of §, given in
Fig. 5, the expected value can be calculated as follows:

E[[cos(8,)] cos(5,)]

e K
= 2[/ [cos(8,)] cos(6,)— dé,
0 2w

T—R/2 1
+ / [cos(5,,)] cos(8,) — d6ni| (50)
R 21

2K-1)

where in the first integral, [cos(d,;)] = 1 as ﬁ < 7.

Whereas, in the second integral, when w — R/2 > %, ie.,
R < m, the upper limit of the integral should be updated
as 7 as [cos(8,)] = 0 when [8,] > 7. Therefore, (50) is
rewritten as

E[[cos(8,)] cos(5,)]
= E[cos(5,)]
_R s
—2 / T s X as, + / T cos(8y)— ds,
0 2 ﬁ 2

1 R
= —|(K—1)sin{ ———— 1]. 51
71|:( )Sm<2(K—l)>+ :| (51)
where we keep the sin(-) function instead of sinc(-) this time
for a clearer notation. Thus, the approximation ratio for the
ENPQ algorithm is

on 1 _ R 2
E%R, K) = ;[(K -1 s1n(m> + 1] . (52)

An illustration for the theoretical calculations of the approx-
imation Eg?f(R, K) is given in Fig. 17, where it can be seen
that EJ5(R, K) converges to the approximation ratio of the
NPQ, i.e., E(R,K), as R reaches m. We remark on the
importance of using the ON/OFF ] for R < m. This can be
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seen from Fig. 17 that as R approaches zero, while E(R, K)
becomes zero with all the elements being ON, E_g(R, K) on
the other hand becomes 0.1. Therefore, even with 6, being
the same for n =1, ..., N, i.e., no phase shifts selection as
R becomes zero, ON/OFF selections solely could beat the
performance of B for up to K = 8 phase shift selections
when R < 7 /3. Furthermore, when there are K = 2 discrete
phase shifts with ON/OFF g, the average performance is
better than the case when 8] = 1 with up to K = 8 discrete
phase shifts, for R < 2m/3.

With NPQ and R < 7, the normalized performance results
are presented in Fig. 18 for R = 90°, and in Fig. 19 for R =
150°. As a validity check for our EQg(R, K) calculation, we
remark that the numerical results for ENPQ indeed converge
to the theoretical approximation ratio. For a lower value of
R =90° in Fig. 18, the simple quantization approach with
ON/OFF B, selections outperforms the optimum solution
with 87 = 1 for N > 100. On the other hand, when R is high
enough, say R = 150° as in Fig. 19, there is not such a loss
due to the limited RIS phase range that ENPQ could exploit
with ON/OFF B, resulting in Algorithm 1 being superior.

X. CONVERGENCE TO OPTIMALITY

We will now discuss the convergence of Algorithm 1
and Algorithm 2 to the optimal solution for g = 1
and B, € [0,1], n = 1,..., N, respectively. We know
from Lemma 1 and Proposition I that Algorithm 1 will
converge to the global optimum. Whereas, convergence
to the global optimality of Algorithm 2 is guaranteed by
Lemma 2, Lemma 3, Proposition I, and Proposition 2.
The required complexity is analyzed under two main
components, which are the search complexity and the time
complexity. The number of steps required will correspond
to the search complexity. On the other hand, the num-
ber of complex vector additions will quantify the time
complexity [20]. We remark that since 6, = ¢ in Step
6 of Algorithm 1 and in Step 15 of Algorithm 2, by
using the Euler’s formula, the term A,y (&% — ej(¢k’61)) can
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simply be expressed as 2k, sin(wy g /2)e/ et @vei+m)/2)
Therefore, each iteration of these algorithms will only incur
one complex vector addition. Next, we will discuss the
required complexity of both algorithms to achieve global
optimality, individually.

First, for Algorithm 1, the for loop from Step 4 to Step
11 takes Zf‘:l O(N()]) = O(NK) steps. With this, one
vector addition is performed for each updated element.
Together with the N vector additions in Step 3, Algorithm 1
incurs N(K + 1) vector additions in total.

Second, for Algorithm 2, the for loop from Step 6 to Step
27 takes YK, O(IN(\)]) = ON(K + 1)) steps. With this,
there are K+ 1 arcs to be considered for each element, where
only one vector addition is performed for each of those arcs.
Together with the N vector additions in Step 5, Algorithm 2
incurs N(K + 2) vector additions in total. Note that, since
the number of steps is larger for Algorithm 2, the required
number of vector additions performed is also slightly larger
than for Algorithm 1.

Finally, since in each step of both Algorithm 1 and
Algorithm 2, only one or a small number of elements are
updated, the time complexity of both algorithms will be

7461



PEKCAN et al.: RECEIVED POWER MAXIMIZATION USING NONUNIFORM DISCRETE PHASE SHIFTS FOR RISs

36

34 7
o
T 32 i
=
[ %]
o
o
M

~
% 30 P P Algorithm 2, R = 150°] |
5 ¥ e _ = |= = = Algorithm 2, R = 90°
7.7 -7 ENPQ, R = 150°
zZ - P — — —ENPQ, R =90
28 F _- Algorithm 1, R = 150° | 4
_- — — — Algorithm 1, R = 90°
L - BCD, R = 150"
- — — —BCD, R=90°
7 — 1507
Pt L. NPQ, R =150 |
- — — —NPQ, R=90

100 110 120 130 140 150 160 170 180 190 200
N

FIGURE 20. 1st percentile SNR Boost results vs. N, for K = 2 and R € {90°,150°}.

10* w
BCD
Algorithm 2
Algorithm 1
ENPQ
— — —NPQ

Vector Additions
2

02 T | | | | | | | |
100 110 120 130 140 150 160 170 180 190 200
N

FIGURE 21. Time complexity results vs. N, for K = 2.

linear in N. A detailed comparison with the recent literature
is provided in the next section.

Xl. PERFORMANCE AND COMPLEXITY COMPARISONS

In this section, we will discuss performance and complexity
in a comparative way with the works from the literature.

Firstly, to give a comparative trade-off between the presented
algorithms in this paper, we present the performance results,
i.e., 1st percentile SNR Boost [12], in Fig. 20, and complex-
ity results, i.e., number of vector additions, in Fig. 21 for
K = 2. Moreover, in Fig. 20, we consider R = 90° and R =
150° to analyze the severe restriction and mild restriction
on the RIS phase range, respectively, for K = 2. In these
results, we assume that the quantization algorithms will incur
N vector additions to produce the resulting SNR Boost value.
Yet, even for the 1st percentile performance, ENPQ can
perform surprisingly well while requiring lower complexity,
especially for lower R. Regarding the comparison of the
optimum algorithms and the quantization algorithms, we
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focus on Algorithm 2 versus ENPQ and Algorithm 1 versus
NPQ. Algorithm 2 incurs four times the vector additions
required by ENPQ while providing about 1 dB and 2 dB gain
for R = 150° and R = 90°, respectively. On the other hand,
Algorithm 1 incurs three times the vector additions required
by NPQ yet can provide more than 3 dB gain for R = 90°.
This additional gain that Algorithm 1 can provide vanishes
for larger R. Finally, in Fig. 20, BCD can provide more
performance than NPQ and ENPQ for R € {90°, 150°} and
R = 150°, respectively. However, it comes with a significant
jump in complexity.

Regarding the comparisons with the literature, as we
discussed in Section I, the works that deal with the exact
problem introduced in this paper, i.e., the nonuniform
discrete phase shifts and RIS phase range restriction, are
not extensive, being restricted to [20], [21], [22]. Therefore,
we will provide a discussion as to the comparative
performance of this work with those from the literature,
ie., [20], [21], [22].

A. PERFORMANCE COMPARISON WITH THE
LITERATURE

The work in this paper is an extension of [19] in that the
problem is the same power maximization one but the phase
range R is less than 27, the discrete phase shifts set ®g
can be arbitrary, and the RIS gains B8] € [0, 1] can be
adjustable. We first show that the same set of necessary
and sufficient conditions apply to the problem with the
limited phase range when B, =1 forn =1,2,...,N and
we develop new conditions on the optimality when ] €
[0, 1]. Assuming B, =1 forn=1,2,..., N, we developed
an optimal algorithm, Algorithm 1, an extension of [19,
Algorithm 1], as well as a suboptimal algorithm called NPQ.
For B, € [0, 1], using the new conditions on the optimality,
we developed another optimal algorithm, Algorithm 2, as an
extension of Algorithm 1 in this paper for R < m, as well
as a novel suboptimal algorithm called ENPQ. Simulation
results show that the performance results of Algorithm 1
and NPQ, or similarly Algorithm 2 and ENPQ, for single-
input single-output (SISO) systems are close, especially for
large N. We remark that the algorithms in this paper cover
a wide range of scenarios regarding discrete beamforming
optimization with RISs, e.g., RIS phase range restriction,
adjustable RIS gains, and arbitrarily selected nonuniform
discrete phase shifts.

The work in [20] attempts to maximize the capacity in
the channel from the BS to the UE via the RIS, where they
only consider R < m. Since it claims global optimality, the
performance would be the same as Algorithm 2 for R < 7,
but, we will see in the next subsection that Algorithm 2
will require significantly fewer number of complex vector
additions. With this, the work in [20] compares its capacity
results with that of CPP, a suboptimal algorithm similar
to NPQ. However, our novel algorithm ENPQ is more
competitive against Algorithm 2 than NPQ for R < 7, e.g.,
in Fig. 18, and in [20] this kind of analysis is not present
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as they only compare with CPP, which does not perform
well when R < . Reference [21] tries to maximize Long-
Term Average Received Power (LARP), where the average
is taken in the statistical sense via an expectation operator.
This paper provides simulation results in terms of a number
of channel models, i.e., Rician, Rayleigh, and pure LOS
fading. Performance results for LARP are provided in [21,
Fig. 4] for the three fading models for RIS sizes of 1-
10* elements employing continuous phase shifts. There are
other simulation results provided, such as LARP against
decrement of phase shifting capability, incident angle, phase
shifting capacity, or control voltage. However, [21] does
not have a result we can use to compare with ours. And,
unlike this work, [21] does not provide an indication of
what the theoretical maximum gain in LARP is. Neither
does it have a similar result to our necessary and sufficient
conditions for global optimality. Reference [22] studies the
problem of minimizing the transmit power at the BS while
the received power is above a certain threshold. It can be
considered as the extension of divide-and-sort (DaS) search
algorithm proposed in [25] for uniform discrete phase shifts
and it can be perhaps interpreted as the dual of our received
power maximization problem. Reference [22] proposes an
algorithm called partition-and-traversal (PAT) for that pur-
pose. Reference [22] claims to ensure global optimality and
shows a perfect fit with exhaustive search results for RIS
elements up to 50 in [22, Fig. 4]. In addition, [22] discusses
two suboptimal algorithms, which are manifold optimization
(Manopt) and semidefinite relaxation-semidefinite program
(SDR-SDP). We remark that in [22], RIS gains are set to be
always ON for the sake of optimization. Yet, in this work,
our extensive analysis shows the importance of ON/OFF
selections when R < m, and this kind of analysis is missing
in [22]. In [22, Fig. 7], the performance of PAT, exhaustive
search, Manopt, and SDR are depicted. Since the PAT claims
global optimality, it would give the same performance as
Algorithm 1. With this, neither Manopt nor SDR comes any
close to the performance of NPQ as suboptimal algorithms.
Yet, we remark that Algorithm 2 is guaranteed to perform
better than PAT whenever R < 7 and ENPQ can also perform
better than PAT when, for example, R = 90° as shown in
Fig. 18.

B. COMPLEXITY COMPARISON WITH THE LITERATURE

Among [20], [21], [22] from the literature that deal with the
same problem considered in this paper, only [20] and [22]
claim global optimality. Hence, we compare the complexity
of our optimum algorithms with these references. We remark
that the solution for the same problem using uniformly
distributed discrete phase shifts requires significantly less
complexity. A detailed complexity analysis for the uniform
case is provided in [19]. Now, we will carry out the
complexity analysis for the nonuniform case in three main
components: The sorting requirement, the number of search
steps required, and the number of complex vector additions.
While the number of search steps corresponds to the search
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space size, the number of complex vector additions will
represent the overall computational time complexity.

Firstly, the algorithms work with the sorted s,; according
to their arguments, i.e., the update rule N'(X;) requires
sorting. The sorting enables elementwise updates between
the search steps to achieve linear time complexity, which
was mostly ignored by the literature when solving the
problem with uniform discrete phase shifts [19]. The same
requirement persists with the nonuniform phase shifts.
Assuming X; are uniformly distributed, the sorting in
N () will take O(N) time on average [14]. Besides this,
more generally, to sort the L < NK or L' < N(K +
1) arguments in the update rules of Algorithm 1 and
Algorithm 2, traditional sorting algorithms may require
O(Llog(L)) and O(L'log(L")) complexity for Algorithm 1
and Algorithm 2, respectively. We remark that the authors
in [20] develop a special sorting algorithm that can work
with complexity O(N(K + 1) log(K + 1)), however, it is
assumed that the sorting of the cascaded channel phases
would be readily provided, i.e., o, are assumed to be
sorted.

Secondly, the number of search steps required to ensure
global optimality should be considered. In this paper, our
algorithms consider repetitions among s,; and have the
potential to reduce the search steps further, i.e., L < NK and
L < N(K+1) for Algorithm 1 and Algorithm 2, respectively.
In [20], the required number of steps is fixed to N(K + 1),
which is more than or the same as Algorithm 2 and is
not reduced for R > m. In [22], the complexity analysis
is provided in terms of the search space size only, where
the proposed PAT algorithm would incur 2NK steps for the
special case of SISO. In [22, Fig. 5], the plot for the SISO
scenario shows around 7 dB increase in the search space for
increasing the number of elements from 20 to 100. Since
1010g(100/20) ~ 7 dB, this would correspond to a linear
complexity in the number of elements.

Finally, the number of vector additions required by our
algorithms is N(K + 1) when R > 7w and N(K + 2) when
R < 7, i.e., for Algorithm 1 and Algorithm 2, respectively.
In [20], the proposed partitioning based optimization (PBO)
requires N(2K + 3) complex vector additions. Consequently,
PBO incurs at least N(K+1) extra vector additions compared
to our algorithms, with the number of extra additions
increasing linearly with both the number of RIS elements
and the number of discrete phase shifts.

We summarize the performance comparisons in Table 1
for clarity. While the focus was on the optimal algorithms
in this section, the suboptimal algorithms are also presented
in Table 1.

Xll. EXTENSION TO THE MULTIUSER SCENARIO

In the literature, ample research on RIS deals with multiple
users, where the problem is generally formulated as an
optimization problem to maximize the overall through-
put [26], [27], or similarly the sum rate [28], [29], [30], [31].
These approaches commonly consider inter-user interference.
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TABLE 1. Comparison of Algorithms 1-2 and NPQ-ENPQ with algorithms from the
literature.

Search Steps Time Optimality
Complexity Guarantee
[12] Projection of — Local
CPP Phase Selections
[20] N(K +1) O(N(2K + 3)) Global
PBO For R < 180°
ey | KEL LN ~ O(N) Local
GBQ (N> K)
[22] 2NK — Global, R > 180°
PAT (SISO) Local, R < 180°
NPQ Deterministic — Local
For R > 180°
ENPQ Deterministic — Local
For R < 180°
Algo. < NK O(N(K +1)) Global
1 For R > 180°
Algo. < N(K+1) O(N(K +2)) Global
2 For R < 180°

In [26], the authors investigate the joint beamforming
problem for a multiuser SISO communication aided by an
active RIS. Reference [27] maximizes the throughput of
an RIS-assisted UAV-to-ground user communications while
simultaneously minimizing the average total power consump-
tion, where the RIS is assumed to have continuous phase
shifts. From the perspective of sum rate maximization, the
sum of weighted rates is maximized with successive convex
approximation in [28], the sum rate is maximized in [29] via
joint beamforming for the BS and an RIS with discrete phase
shifts, achievable sum rate maximization is performed while
the RIS uses continuous phase shifts in [30], and the authors
in [31] maximize the sum rate by eliminating the inter-user-
interference with the assumption of zero force precoding at
the BS and continuous phase shifts at the RIS. Moreover, the
problem of maximizing the minimum SNR among multiple
users has also drawn significant attention from the recent
literature, with continuous [32], [33], and discrete phase
shifts [34], [35], [36], [37]. In [32], the authors consider
maximizing the minimum of the achievable rates of the users
given SNR, whereas, in [33], the max-min beamforming
gain is achieved based on matrix lifting and linear matrix
inequality techniques. For the max-min SNR problem with
discrete phase RISs, SDR and gradient descent/ascent (GDA)
approaches are used in [34], BCD is used in [35] for
passive beamforming, and a CSI-free beamforming approach
is developed in both [36] and [37] based on the received
power data. In these works, the optimization problems are
naturally NP-hard and global optimality is hard to achieve
with discrete phase RISs. Therefore, results are mostly
approximations and sub-optimal.

RIS partitioning has also drawn attention as an alternative
approach to the aforementioned solutions. The main idea is
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to partition the RIS into multiple groups of elements, where a
certain group serves a single user [38], [39], [40], [41], [42].
It is shown in [42] that the interference among other groups
of elements in a multiuser scenario can be neglected when
the RIS is a uniform linear array. So, the multiuser problem
can boil down to optimizing an RIS partition for a single
user, which is a motivating factor to study the single-user
problem [20], as we did in this paper.

We extend our results for a multicast network, assuming
perfect channel state information (CSI), similar to the
scenarios considered in [12], [14], [19]. Consider a max-min
SNR problem with U > 2 receivers with a transmit power
of P =30 dBm, i.e.,

P|130,u8ja0'u + Zi’l\]:l ﬂn’uej(an.u+0;l) |2

max min > , (53)
O,edbx U OM
where 62 = —90 dBm is the noise variance at each receive

s =
antenna, hp , = ,80’,4@7“0-“ is the direct channel, and A, , =
ﬁ,l,uej"‘"v“ is the reflected channel through the n-th RIS
element for the u-th receiver.

The way we extend our algorithms is as follows. For
NPQ and ENPQ, each algorithm is repeated for each user,
then the RIS configuration that maximizes the minimum
SNR among the users is selected. On the other hand,
while performing Algorithm 1-2 for user u, we decide the
best possible solution in the for loop of Algorithm 1-2 by
maximizing the minimum channel gain among all users.
Therefore, Algorithm 1 and Algorithm 2 incur NU(K + 1)
and NU(K + 2) vector additions, respectively. Then, this
process is repeated for each user, to select the best option
among U possibilities, which results in O(NU?(K + 1)) and
O(NU?(K+2)) time complexity in total for Algorithm 1 and
Algorithm 2. We remark that NPQ and ENPQ algorithms
will also require vector additions unlike the single-user
scenario, because we need to search for the maximum
available powers. Therefore, both suboptimal algorithms will
result in O(NU?) time complexity.

The CDF plots for the minimum SNR performance of
the multicast extension are given in Fig. 22 and Fig. 23 for
R =90° and R = 150°, respectively when K = 2 and N €
{16, 64, 256}. The results show that both Algorithm 1 and
NPQ with the always ON approach perform better than their
extended versions with ON/OFF consideration when R < 7.
This difference gets smaller for larger R since these pair
of algorithms would provide the same outcome, as given in
Fig. 15. Overall, it can be seen that Algorithm 1 can provide
superior performance compared to the quantization approach,
i.e., NPQ. When R = 90°, the average gain of Algorithm 1
against NPQ is 3.0 dB for N = 16 and 4.4 dB for N =
256. When R = 150°, the average gain of Algorithm 1
against NPQ is 3.6 dB for N = 16 and about 5.0 dB for
N = 256. Therefore, considering the complexity jump in
the quantization approach for the multiuser extension, our
optimal algorithm can become an even better option. Note
that these gains with Algorithm 1 get larger as N increases.
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Xill. CONCLUSION
In this paper, to maximize the received power at a UE, we
provided necessary and sufficient conditions for determina-
tion of the RIS coefficients that are subject to nonuniform
discrete phase shifts. We employed these conditions to
achieve the optimum solution in linear time and with less
complexity than the existing solutions in the literature. Also,
we established a foundation on the RIS phase range R with
the nonuniform discrete phase shifts structure. We proved
that the optimum placement of the nonuniform discrete phase
shifts would be equally separated over the RIS phase range.
Then, we showed that whenever R < m, adjusting RIS gains
can bring significant performance, and the globally optimum
solution would be yielded by the RIS elements being either
ON or OFF.

In addition to the optimum algorithms, we also calculated
the approximation ratio for the nonuniform discrete phase

VOLUME 5, 2024

shifts by employing the intuitive quantization algorithm.
Furthermore, with the ON/OFF RIS gains, we proposed
a novel quantization algorithm named ENPQ, a low-
complexity algorithm that can bring significant performance
when there is a notable limitation in the RIS phase range,
with which we also provided a secondary closed-form
solution for the approximation ratio for nonuniform discrete
phase shifts.
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