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Abstract— Despite the rise of mobile robot deployments
in home and work settings, perceived safety of users and
bystanders is understudied in the human-robot interaction
(HRI) literature. To address this, we present a study designed
to identify elements of a human-robot encounter that correlate
with observed stress response. Stress is a key component
of perceived safety and is strongly associated with human
physiological response. In this study a Boston Dynamics
Spot and a Unitree Go1 navigate autonomously through a
shared environment occupied by human participants wearing
multimodal physiological sensors to track their electrocar-
diography (ECG) and electrodermal activity (EDA). The
encounters are varied through several trials and participants
self-rate their stress levels after each encounter. The study
resulted in a multidimensional dataset archiving various
objective and subjective aspects of a human-robot encounter,
containing insights for understanding perceived safety in such
encounters. To this end, acute stress responses were decoded
from the human participants’ ECG and EDA and compared
across different human-robot encounter conditions. Statistical
analysis of data indicate that on average (1) participants feel
more stress during encounters compared to baselines, (2)
participants feel more stress encountering multiple robots
compared to a single robot and (3) participants stress increases
during navigation behavior compared with search behavior.

I. INTRODUCTION

Autonomous mobile robot research has been ongoing for

decades for a wide range of real-world scenarios like delivery

[1], search [2], surveillance [3] and mapping [4]. As mobile

robots proliferate in communities, designers must consider

the impacts these systems have on the users, onlookers and

places they encounter. It becomes increasingly necessary

to study situations where humans and robots coexist in

common spaces, even if they are not directly interacting.

Subjective questionnaires have been popularly employed

in literature to measure preceived safety, preference and

human mental state during HRI [5, 6, 7, 8]. However,

questionnaires have poor temporal resolution and are subject

to many sources of bias including moderacy response bias

and memory effects induced by repetitive administration

[9]. Questionnaires also impact HRI, requiring researchers

to adopt rapidly administered questionnaires which have

limited detail and coverage or, in some cases, limit the choice

of robots to be studied to those like the Pepper robot with
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Fig. 1. An overview of the experiments. The Unitree Go1 and Boston
Dynamics Spot perform various mobile behaviors in shared spaces with
UT community members. Physiological measures are collected from the E4
wristwatch (green) [17] and chest e-tattoo (cyan) [18].

a user interface for questionnaires [10, 11]. To overcome

these limitations, physiological measures have also been

considered in HRI [12, 13, 14, 15]. Non-invasive physiolog-

ical sensing enables the tracking of the human internal state

in real-time, for example to evaluate stress during HRI [16].

We hypothesize these sensors allow tracking perceived

safety during human-robot encounters by decoding acute

stress levels from known biomarkers in ECG and EDA data.

This is significant in two ways: (1) To the best of our

knowledge, this is the first analysis of physiological response

to mobile robots navigating freely [11]. Our study deploys

two quadruped robots in a realistic apartment setting (Fig. 1).

(2) We characterize human-robot encounters. This subset of

human-robot interactions involve humans and robots coexist-

ing in a shared space with awareness of one another, who are

not actively interacting. Human-robot encounters represent

situations that are likely to dominate total interaction time

if mobile robots are deployed in home or other indoor envi-

ronments. Our results provide a few insights, based on phys-

iological signal analysis, regarding the elements of human-

robot encounters that affect the perceived safety of the robots

by humans. These insights can be used in future design where

perceived safety is a concern and pave the way for an online

pipeline whereby the signals from a user’s sensors could be

decoded to inform robot behavior in real-time [19, 20].

II. BACKGROUND

A. Stress Response and Comfort in HRI

Perceived safety during encounters with mobile robots

remains understudied in many domains [6, 10]. The

first group of works we find leverage more objective
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Fig. 2. Overview of an example experiment session designed to gain
insights into human responses to encounters with robots. On the left are
the list of 4 robot behaviors and 2 participant seating options. The order
of each are randomized and then inserted into the experiment session
as shown on the right side. The first step is receiving consent from the
participants. The nature video is repeated before and after the experimental
session as a relaxed baseline phsyiological state. After sensors are removed,
participants take part in an interview.

physiological measures to identify stress response. These

studies integrate robots in human activities with known

external stressors like seminar style presentations or

cognitive quizzes to evoke discomfort [16, 19, 21]. They ask

how replacing humans with robots impacts people’s response

to situations, however none consider mobile robots moving

freely through shared environments. The second group of

studies leverage more subjective measures, for example

statistical analysis of subjective questionnaires [6, 7, 22, 23,

24, 25] or qualitative evaluation of open form responses [26,

27, 28, 29]. Ultimately, the proposed study differentiates

from many works, using a combination of methods to

investigate perceived safety during mobile robot encounters.

B. Stress Decoding from Physiological Signals

Non-invasive physiological recordings have been shown

to contain a wealth of information about human physical

and mental states [30, 31]. We are interested in mental

stress, particularly acute stress from short recordings. This

is fulfilled by electrodermal activity (EDA) recordings, or

galvanic skin response, which measures changes in skin

conductance over time on the palm, foot, or wrist [32, 33].

Skin conductance time series consists of two components:

tonic and phasic. Tonic refers to the low-frequency changes

in the baseline of the signal, while the phasic refers to

the sharp spikes followed by recovery to baseline in the

signal [34]. The phasic component is known to correspond

to psychological arousal events, allowing quantitative

determination of mental stress over time. Decoding acute

stress from tonic-phasic decompositions of EDA signals has

been demonstrated extensively [30, 32, 33, 35].

Another signal to detect mental stress is heart rate

variability (HRV) [36], which can be evaluated from any

modality for reliable heart beat information. HRV features

have been linked to a variety of both acute and chronic stress

in both real life and experimentally induced situations [31].

This is due to the fact that HRV reflects complex changes

in sympathetic and parasympathetic nervous systems which

manage the homeostasis of psychological arousal. HRV

is often evaluated over long recordings; however it can

be reliably estimated from ultra-short-term and short-term

recordings like our study [37, 38]. Acute stress has been

associated with decreases in HRV entropy in both experi-

mentally induced situations [38, 39] and real-life situations

[40, 41]. SDNN (Standard Deviation of NN intervals) and

RMSSD (Root Mean Square of Successive Differences)

are both measures commonly used in the analysis of heart

rate variability (HRV), which is the variation in the time

intervals between successive heartbeats. Decreases in SDNN

and RMSSD and increases in low-frequency bandpower

(0.04–0.15 Hz) compared to high-frequency (0.15–0.40 Hz)

are also commonly noted features of acute stress [31].

Estimation of mental stress from EDA and HRV is non-

trivial due to these signals being indirect measures of certain

changes caused by the autonomic nervous system, acting as

proxies for mental stress. Therefore, to maximize success,

raw signals from participants must be as high-quality and

free of noise and motion artifacts as possible, to ensure that

no information is lost to such factors. While this incentivizes

the use of clinical grade equipment, this conflicts with our

study goals where we are interested in realistic human-robot

encounters in an apartment setting. We conclude that state-

of-the-art wearable devices are more suitable to avoid lengthy

sensor set-up, skin preparation and cables that interfere with

movement or cause stress on their own. To this end, for ECG

(HRV), we used a wireless chest e-tattoo device [18] which is

accurate while being minimally intrusive due to its ultrathin

and lightweight form factor. Although this device records

both electrocerdiography (ECG) and seismocardiography

(SCG), only the former was used for analysis in this study.

For EDA, we used an Empatica E4 wristwatch [17], which,

according to a 2023 review on wearables used to assess

perceived stress [42], was used in 56.3% of such studies.

III. EXPERIMENT DESIGN

We conduct a study with 17 total participants over 9

sessions to investigate perceived safety in human robot

encounters. This study was independently reviewed and

approved by the University of Texas Institutional Review

Board (IRB #00004099). An overview of experimental

sessions are shown in Fig. 2. The blockwise randomization

of the trial configurations ensured that the effect of

confounding factors such as time were removed. Fig. 2

shows each configuration was also repeated twice to enhance

the repeatability of results from each configuration. The

research questions in this work are as follows:

• Q1 : Do participants have a stress response when robots

are present compared to baseline sessions?

• Q2 : What mobile robot dog behaviors cause human

stress response?

• Q3 : Do participants feel more comfortable when seated

together vs. when isolated?
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Fig. 6. Statistical comparison for the principal features HRVCMSEn and nsEDRfreq in each possible experimental condition, with all subject data. Error
bars show the 95% confidence interval. Asterisks indicate statistical significance after two-sided Mann-Whitney-Wilcoxon tests with Bonferroni correction
for multiple comparisons - ns: 0.05 < p; *: 0.01 < p ≤ 0.05; **: 0.001 < p ≤ 0.01; ***: 0.0001 < p ≤ 0.001; ****: p ≤ 0.0001.

other than one before prediction is evaluated on data from the

unseen subject. This process is repeated the same number of

times as the number of subjects to cover all possible train-test

splits. LOSO cross-validation therefore ensures that the re-

ported performance accounts for the classifier’s ability to pre-

dict the type of human-robot encounter experienced by any

potential unseen person wearing the same sensors. We de-

cided to use random undersampling boosting (RusBoost) [50]

for the binary classification and multi-class adaptive boosting

(AdaBoost) [51] for the multi-class classification. For the

former, RusBoost was chosen for its known robustness to

class imbalances resulting from our study design where

subjects spent more time encountering robot(s) rather than

not, whereas for the multi-class classification, this was not a

concern due to the further categorization of robot encounters

into types. The maximum number of splits was fixed at 20.

V. RESULTS

All of the data taken during experiments including

from robots, microphones, and physiological sensors

is published for open access at [52] and a video

of experimental encounters can be found at https:

//youtu.be/3xu5AoBYi44. Quantitative results are

also reported in the data repository. Fig. 7 demonstrates

screenshots from several encounters with human participants.

For data from all subjects combined, the Mann-Whitney-

Wilcoxon two-sided test was used with Bonferroni correction

for multiple comparisons. On average, we found that subjects

were: more stressed whenever the robots were in the shared

environment compared to when they were not; more

stressed when the robots were travelling together rather than

alone; and more stressed when the robots were navigating

compared to searching (Fig. 6(a-c)). Whether the subjects

were located alone or together did not induce significant

changes in the stress features examined (Fig. 6(d)).

For subject-specific data (Fig. 5), to control for inter-

subject variability, repeated measures ANOVA was used

to investigate the effect of experiment conditions on

the trial-level EDA response (nsEDRfreq). As noted

on Table I, we found that the EDA response within

subjects was significantly altered across the 10 trials.

Specifically, individual subjects had their EDA response

change significantly depending on the presence of a robot

(Baseline-Robot) and robot behavior.

The predictive value of the extracted HRV and EDA

features were validated by classifying human-robot

encounters via machine learning according to Section

IV-C. The resulting LOSO-validated confusion matrices

are presented in Tables II - V. As hinted by the statistical

significance of differences in principal features (Fig. 6)

between the encounter conditions, it is within expectation

that the binary classifier for identifying robot encounters

was the most effective, followed by 3-class classifiers for

single- vs. multi-robot encounters and encounters with

navigating robots vs. searching robots. Classifying isolated-

vs. together-seating encounters was the least effective.

In Fig 6, the values are adjusted with Bonferroni cor-

rection. The two-sided Mann-Whitney-Wilcoxon tests with

Bonferroni correction that yields pairwise across-subjects

significance is different from the p-values reported in Table

I, which instead refers to the within-subject analysis with

repeated measures ANOVA. Specifically, the p-values in

Table I are the p-values of the F-statistic, which simply shows

how likely is it that the null hypothesis of “no difference

among group means” is true. Therefore, for this analysis, to

the best of our knowledge, adjustment is not necessary. There
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is, however, a procedure for instead getting pairwise (e.g.

isolated-baseline, social-baseline, social-isolated) adjusted p-

values for within-subjects RMANOVA, but it is very compli-

cated and will result in similar information to Fig. 5, which

presents the pairwise comparisons across subjects, which is

a more generalizable result than the within-subjects one.

TABLE I

RESULTS OF THE REPEATED MEASURES ANOVA FOR THE NUMBER OF

PHASIC EDA RESPONSES DURING EACH ENCOUNTER CONDITION

F value p-value

Trials (df = 9) 2.763 0.00588∗∗

Baseline-Robot (df = 1) 13.477 0.000365∗∗∗

Participant Seating (df = 1) 0.463 0.498

Robot Behavior (df = 1) 5.986 0.0159∗

Single-Multi Robot (df = 1) 2.215 0.139

∗∗∗p-value ≤ 0.001; ∗∗p-value ≤ 0.01; ∗p-value ≤ 0.05.

TABLE II

ROBOT ENCOUNTERS VS. BASELINE

Predicted

A
ct

u
al

Baseline Robot
Baseline 70.0% 30.0%

Robot 17.5% 82.5%

TABLE III

SINGLE VS. MULTI-ROBOT ENCOUNTERS

Predicted

A
ct

u
al

Baseline Single Multi
Baseline 56.7% 36.7% 6.7%

Single 20.0% 46.7% 33.3%

Multi 10.0% 33.3% 56.7%

TABLE IV

ENCOUNTERS WITH NAVIGATING VS. SEARCHING ROBOTS

Predicted

A
ct

u
al

Baseline Navigation Search
Baseline 53.3% 0.0% 43.3%

Navigation 3.3% 65.0% 31.7%

Search 16.7% 30.0% 53.3%

TABLE V

ENCOUNTERS IN ISOLATED VS. SOCIAL SEATING

Predicted

A
ct

u
al

Baseline Isolated Social
Baseline 56.7% 33.3% 10.0%

Isolated 26.8% 46.4% 26.8%

Social 7.8% 46.9% 45.3%

VI. DISCUSSION

Fig. 6 and Tables II - V suggest that for the average human

participant, sharing indoor spaces with mobile quadrupedal

robots was associated with statistically significant physio-

logical changes indicative of acute stress, which provides a

response to Q1. Further, it was possible to distinguish, with

higher than chance-level accuracy, specific characteristics

(single v. multi robot and navigation v. search) about the

human-robot encounters based on the ECG and EDA signals.

These statistical correlations provide insight to research ques-

tions Q2. These observations should be critically examined

for potential insights for designers of robots and human-robot

interaction.

For instance, we found that the average participant was

more stressed by robots on navigation behavior than those

on search behavior. One could hypothesize that this was due

to robots on search inherently spending more time near the

participants, giving them an opportunity to become more fa-

miliar with the robot. Indeed, familiarity, which is influenced

by interaction duration and frequency, is one of the major

factors behind perceived safety [10]. However, to confirm

this idea, further analysis of the data may be necessary (e.g.

correlate human-robot distance with stress features to decou-

ple navigation/search behavior from distance; interview and

questionnaire data collected may contain information about

how differently the subjects perceived robots on navigation

vs. search). While less statistically significant, we also found

that the average participant was more stressed encountering

multiple robots travelling together rather than alone. This

could suggest that whenever possible, mobile robots should

travel alone, at least in similar physical settings as our

experiment (i.e. closed indoors space occupied by humans),

to maximize perceived safety. We also found that whether

the subjects were alone or together was not associated with

significant differences in physiological features of stress,

responding to Q3. This could indicate that the level of stress

perecieved by people due to the co-location by mobile robots

may not pose significant difference when they are deployed

in environments where people work alone vs environments

where multiple people work alongside each other.

Fig. 5 and Table I suggest that these changes were consis-

tent when examined on a per-participant basis. This could po-

tentially allow longer-term tracking of individuals’ perceived

safety of mobile robots when combined with the appropriate

wearable sensing technology and wireless data acquisition

hardware, as demonstrated in this study. Overall, this study

outlined an objective approach to recording human-robot

encounters, and investigated factors affecting perceived

safety of mobile quadrupeds in indoor environments by

analyzing human physiological markers of acute stress.

VII. CONCLUSIONS

We presented results found from experimental human-

robot encounters in an indoor apartment setting with

members of the University of Texas at Austin. Particularly,

we found that participants showed a measurable response

to the robots over the baseline, multiple robots compared to

a single robot, and under navigation compared with search

behavior. Results were computed using statistical analysis

of features found from electrodermal activity and heart rate

variability recorded during experiments. One can hypothesize

that the classifier may generalize to other HRI scenarios

where participants are seated in a comfortable indoor

environment when robots are present. Further, this classifier

may provide a baseline from which to continue to develop

an online classifier for acute mental stress, which may be

used to control robot behavior. The complete open access

database can be found at [52] and includes a plethora of
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