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ABSTRACT A promising type of Reconfigurable Intelligent Surface (RIS) employs tunable control of
its varactors using biasing transmission lines below the RIS reflecting elements. Biasing standing waves
(BSWs) are excited by a time-periodic signal and sampled at each RIS element to create a desired
biasing voltage and control the reflection coefficients of the elements. A simple rectifier can be used to
sample the voltages and capture the peaks of the BSWs over time. Like other types of RIS, attempting
to model and accurately configure a wave-controlled RIS is extremely challenging due to factors such
as device non-linearities, frequency dependence, element coupling, etc., and thus significant differences
will arise between the actual and assumed performance. An alternative approach to solving this problem
is data-driven: Using training data obtained by sampling the reflected radiation pattern of the RIS for
a set of BSWs, a neural network (NN) is designed to create an input-output map between the BSW
amplitudes and the resulting sampled radiation pattern. This is the approach discussed in this paper. In the
proposed approach, the NN is optimized using a Genetic Algorithm (GA) to minimize the error between
the estimated and measured radiation patterns. The BSW amplitudes are then designed via Simulated
Annealing (SA) to optimize a signal-to-leakage-plus-noise ratio measure by iteratively forward-propagating
the BSW amplitudes through the NN and using its output as feedback to determine convergence. The
resulting optimal solutions are stored in a lookup table to be used both as settings to instantly configure
the RIS and as a basis for determining more complex radiation patterns.

INDEX TERMS Neural network (NN), simulated annealing (SA), genetic algorithm (GA), reconfigurable
intelligent surface (RIS), machine learning (ML).

. INTRODUCTION
RECONFIGURABLE Intelligent Surface (RIS) is a
Apromising building block for next-generation wire-
less networks, potentially solving issues related to limited
coverage, sensitivity to blockages, high path loss, etc.,
by providing alternative propagation paths and enabling
beamforming for desired directions [1]. An RIS is a type
of metasurface [2], [3] consisting of periodic arrangements
of subwavelength-sized passive reflecting elements whose
reflection coefficients can be individually controlled.
The RIS architecture studied in this paper is illustrated in
Fig. 1, and is based on the general wave-controlled approach
described in [4]. In this approach, biasing standing waves

(BSWs) are excited on a transmission line (TL) behind the
RIS structure and sampled at discrete locations to provide
the DC bias voltages for varactor diodes that modulate
the reflection coefficients. In a previous paper [5], various
optimization algorithms were developed that demonstrate the
capability of the wave-controlled RIS to create beams and
nulls in the radiation pattern for multiple desired directions.
The performance of the optimization algorithms was demon-
strated for two different types of voltage sampling circuits:
a rectifier that is easier to implement but more difficult to
use for optimization, and a sample-and-hold circuit, which
is more costly to implement but enables analytical solutions
to the beam pattern optimization problem.

(© 2025 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
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FIGURE 1. Wave-controlled RIS composed of two physical layers [5]. Top layer: M
elements in each row along the x direction, where each element is connected to a
varactor diode. Bottom layer: N BSWs are excited on each TL to create the biasing
voltages sampled at each RIS element. Each row is controlled via the connection on
the left where a signal with N adjustable frequency components is injected by a
waveform generator. Adjacent metallic patches and varactors on the top layer, and
adjacent DC voltage outputs on the bottom layer are uniformly separated by distance
d, in the x direction and d, in the y direction.

In this work, we consider the rectifier implementation,
where the beam pattern optimization is nonlinear and
constrained, and we assume the RIS is deployed in an
unknown environment without knowledge of channel state
information (CSI). Thus, there is no exact mathematical
model that can be used to predict the response created by
the RIS to an excitation by the BSWs. Consequently, we
will turn to the use of machine learning (ML) tools to solve
the RIS configuration problem.

Optimizing the wireless propagation environment using
RIS has been prevalently explored through various
optimization algorithms, including model-based, ML-based,
and heuristic approaches, as well as hybrid methods combin-
ing multiple techniques [6]. While model-based optimization
offers theoretical rigor, its practical application is hindered
by discrepancies between simulations and real-world envi-
ronments and circuitry. Conventional mathematical models
fail to account for frequency-dependent behavior and device
nonlinearities, and direct control of individual RIS reflection
coefficients is constrained by element coupling.

The ML-based approaches discussed in [6] show applica-
tions in CSI prediction, RIS phase control and optimization,
and have demonstrated effectiveness in improving data rates
and secrecy rates. However, many rely on assumptions
regarding CSI availability, for example, considering using
partial CSI to predict full CSI or RIS phase shifts to
maximize the data rate. This is often impractical, or at
least difficult to implement, due to the complexity of
CSI acquisition with passive RIS [7], [8]. Additionally,
neural network (NN) architecture design presents its own
challenges, including susceptibility to overfitting. Common
mitigation techniques include adding dropout layers [9],
expanding datasets, and reducing the number of hidden
layers [10]. Yet, hyperparameter tuning remains case-specific
and labor-intensive. The specific types of nonlinearities
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exploited by the NN must be carefully chosen, such that it
may require many iterations to train an ML model, which
may not guarantee optimality. A systematic framework for
model development and evaluation is thus desirable. Other
work has shown the feasibility of using unsupervised learning
for Signal-to-Noise Ratio (SNR) maximization in a single-
user scenario, but it also prompts scalability concerns as
the size of the dataset grows with the number of RIS
elements [11].

Recent work has applied deep-learning methods to
capture the relationships between RIS configurations and
achievable rates [12]. It proposes using a Deep Neural
Network (DNN) to model the RIS-assisted environment
and optimize the achievable rate at a given user direction
by sweeping the entire codebook of RIS configurations
as inputs to the DNN for inference. However, inference
based on exhaustive codebook search introduces latency,
which grows significantly with the number of RIS elements
and allowable configurations. Other codebook approaches
used for channel estimation and passive beamforming RIS
design are explored in [13], [14], [15]. While codebook-
based approaches provide structured solutions, they rely
on predefined phase shifts, limiting flexibility in complex
environments. More training iterations would be required as
new users are introduced, or existing users move around.

In the approach presented in this paper, we address
these shortcomings. In particular, we focus on the use of
wave-controlled RIS, which as described above is a novel
architecture that accommodates the physical limitations of
an RIS and simplifies the hardware required to operate
it. The wave-controlled RIS achieves reduced-dimension
control of the M RIS elements by configuring N < M
BSW amplitudes on a TL. This approach also accounts
for the coupling between RIS elements by maintaining a
relatively smooth variation in the voltage profiles across
adjacent elements. We assume the BSW amplitudes can each
be configured continuously and are not confined to a discrete
codebook, thus enhancing the versatility of the system. We
address challenges in system modeling and optimization by
employing a data-driven method that does not require explicit
CSI or real-time feedback. Our methodology involves:

1) Training Data Collection: Randomly exciting the RIS
and sampling the received power at specific directions.

2) Neural Network Design and Optimization: Designing
an NN to estimate the input-output relationship
between BSW amplitudes and received powers, with
architecture refinement automated via a Genetic
Algorithm (GA).

3) Passive Beamforming via Simulated Annealing (SA):
Using a heuristic approach for offline optimization of
beam patterns based on a signal-to-leakage-plus-noise
ratio (SLNR) metric, using feedback from the NN
during iterations of the algorithm.

4) Efficient Lookup Table Deployment: Storing optimized
BSW configurations for rapid RIS beam steering and
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future complex radiation pattern adjustments, using the
existing configurations as initialization for SA.

By departing from conventional codebook-based methods
and eliminating the need for direct CSI acquisition, our
framework provides a more adaptable and scalable solution
for RIS optimization. Sampling powers at directions of
interest allows us to represent the entire RIS-aided wireless
environment as a radiation pattern which can be customized
based on desired quality of service metrics. We note
that previous success in using heuristic algorithms for
RIS optimization, in particular using SA and GA, has
been explored in literature, see for example [5], [16], [17].
However, in this work we introduce the novel approach
of using a GA as an automation tool to optimize the NN
architecture and hyperparameters, while using SA to generate
optimal sets of BSWs to configure the RIS phase shifts for
a desired beam pattern, employing feedback from the NN
during inference.

We would like to note that a main novelty in this paper
is the fact that its set of algorithms are specifically designed
for the wave-controlled RIS. However, we would also like
to note that the approaches used in this paper do not hold
only for the wave-controlled RIS, but also for other RIS
optimization scenarios where parameters other than the BSW
amplitudes can be optimized, such as varactor bias voltages
or direct reflection coefficients.

The paper is organized as follows. Section II presents
the electromagnetic and circuit models for simulating the
wave-controlled RIS. Section III outlines the ML-based
RIS control, dataset creation, and GA-driven optimization.
Section IV integrates SA and the ML model for beamforming
and nullforming, and shows simulation results. Section V
evaluates the performance gain achieved by employing the
lookup table, also backed by simulations.

Il. MODEL, ASSUMPTIONS, AND NOTATION

A. RIS MODEL

In Fig. 1, we show an RIS with uniform linear arrays (ULAs)
of M metallic patches in the x direction with period d,. The
figure shows three parallel linear arrays as an example. Each
RIS element is connected to a varactor diode which is used
to vary the reflective properties of the element, as illustrated
in Fig. 2. On the backside of the structure, there is a biasing
TL of length L along x on which a set of N BSWs are
excited over the entire length of the TL. We assume that
the fundamental standing wave is resonant with the total TL
length Ly, leading to the fundamental angular frequency
wp = 27fy = wvph/Lior [18]. The other BSWs oscillate at
the harmonic frequencies nfy, with n = 1,2,...,N. The
overall BSW signal, assuming a short circuit termination at
the end of the biasing TL, is given by

n (x + Lief)
Lot

where the individual BSWs are controlled by tuning
their amplitudes, which are stored in the vector W =

N
wx, 1) = Wo + Z W, sin(

n=1

) sin(nwpt), (1)
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FIGURE 2. RIS unit cell geometry. Each rectangular metallic conductor is biased by
the sampled voltage through a via and connected to a grounded varactor. The
reverse-biased varactors act as tunable capacitors to polarize the incident electric
field along the y direction.

FIGURE 3. Geometry of the biasing TL. The length L, of the TL path for one unit cell
and the di dy bet two 1t rectifier circuits are detailed. These circuits,
which rectify the BSWs [5], are located at the bottom, with one assigned to each RIS
element. The voltage w(xn, t) is extracted from the biasing TL at the location m, while
the rectified voltage w(x,,) provides the bias to the varactor of the mth element.

w(xm, t) is rectified using the diode D, and by following its envelope or peaks through
the RC circuit shown, with a carefully chosen time constant to minimize voltage drops
in w(xn) due to capacitor discharge.

[Wy, Wa, ..., Wx]. The Wy term is a DC component used
to center the biasing of the varactors on their best working
range for capacitance control.

To minimize the control signaling overhead and reduce
the variation of the bias voltage from element to element,
it is desired that N <« M. Connected to each RIS element
with a vertical via is a rectifier circuit, shown in Fig. 3,
which rectifies the BSW signal at each RIS element location
X = mdy, withm =0, 1,2, ..M —1. We define the reference
point x = O at the location where the first rectifier is located
and Life as the length of the biasing TL in the x direction
before (to the left of) this detector. We also define Lyjgne as
the length of the biasing TL between the last rectifier and
the short circuit at the end of the TL on the right. The total
length of the waveguide along x is given by

Liot = Lieft + L + Lyight- 2
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The voltage variation along x for each BSW is based
on the phase velocity vph, which we assume due to low
frequency dispersion to be the same for all the waves. The
phase velocity is given by vpn = ¢/nsiow, Where c is the
speed of light and ngoyw is the slowness factor that depends
on the geometry and material properties of the biasing
TL. As shown in Fig. 3, L, represents the physical path
length between two adjacent DC voltage outputs along the
biasing TL, while d, is the corresponding separation along
the x direction. The effective refractive index, nefr, of the
biasing TL is determined by its effective permittivity ecgr as
nett = «/€eft. Consequently, the slowness factor in this case
is given by ngow = (Lp/dx)nett.

The voltage is uniformly sampled at discrete locations
X, = mdy, where m=0,1,..., M —1,and 0 <x,, < L.

We rewrite (1) in terms of the RIS element indices m as

w(mdy, t)

N
. (nm(mdy + Lieft) \ .
=Wo+ ) Wy s1n<LI—0tlft> sin(nawpt). (3)

n=1

The varactor diode connected to each RIS element is biased
in reverse using the rectifier circuit as in the inset of Fig. 3.
We assume that the rectified voltage of the BSWs at
each discrete location x,, is equivalent to the peak voltage
(maximum voltage at each location over time), yielding

w(mdy) = Wy
N
. ny (mdy + Lieft) ) .
+ max W, sin| —————— | sin(nwyp?) |,(4)
f (Zl " ( Lo (e )

with Wy taken out of the max,(-) term as it is a constant
independent of time. This positive voltage is then applied
at the cathode of the varactor, thus reverse-biasing it, deter-
mining its capacitive properties, and consequently tuning
the reflection coefficient of the RIS element to provide the
desired response.

Each RIS unit cell shown in Fig. 2 is designed with
(all dimensions in mm) A =20, A; =18.5, B=72.7,
By =36.7, D = 1.27. The dielectric spacer is the substrate
Rogers RT5880LZ, with relative permittivity €, = 2 and
dielectric loss tan(§) = 0.0021. To simulate the tunable
impedance of each RIS element, the equivalent circuit model
shown in Fig. 4 is used and optimized with full-wave
simulations [3], [19]. The unit cell elements have resistance
Ryg =0.1671 Q, capacitance Cq = 0.97821 pF, and induc-
tance Lg = 1.9177 nH. There is an additional inductive term
Ls = 1.5959 nH in parallel to the unit cell element and
varactor that accounts for the grounded substrate, creating
the “magnetic resonance” effect discussed in [2], [20], [21].

The varactor SMV1231-040LF provided by Skyworks
Solutions, Inc. is chosen due to its desirable characteristics,
including resistance below 0.6 €2 and low series inductance
(0.45 nH) for our frequencies of interest. The varactor is
modeled by an equivalent series RLC circuit with inductance
Ly, capacitance Cy(V), and resistance R, (V). The inductance
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FIGURE 4. Analytical model of the RIS unit cell including an RLC model of the
varactor to calculate the reflection coefficient as a function of frequency or varactor
biasing voltage. The equivalent impedance Zg;s is used to find the reflection
coefficient I'.
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FIGURE 5. Equivalent resistance and capacitance for the SMV1231-040LF varactor
as functions of the biasing voltage across the varactor model shown in Fig. 4.

L, = 2.34 nH is constant and models the package and
parasitic inductance when the varactor is connected across
the gap. The values for C,(V) and Ry(V) shown in Fig. 5
are obtained from a parametric sweep simulation using
Advanced Design System (ADS) software, as functions of
the reverse voltage bias across the varactor model provided
by the vendor, limited to the range [4 V, 15 V].
The total equivalent RIS impedance is expressed by

ZR1s

1 1
= | R4 +jwLq + | Ry + joLy + - Il- |jwLs,
JjwCy ) " joCyq
5

and is used to determine the reflection coefficient of the RIS
elements by

_Zris — 2o
Zris + 2o

where Zj is the free-space impedance. This model predicts
the magnitude and phase of the local reflection coefficient
for variable frequency and varactor biasing voltage V. An
example is given in Fig. 6, where the magnitude and phase of
the reflection coefficients as functions of the varactor reverse
bias voltage are plotted for the frequency f. = 2.45 GHz.

(6)
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FIGURE 6. Reflection magnitude and phase of the RIS unit cell described in Fig. 2

as functions of the reverse bias voltage across the varactor at the carrier frequency
f, = 2.45 GHz.

TABLE 1. Mathematical notations.

Variable | Definition

N Number of BSW frequencies

M Number of RIS elements

Wo Transmission line DC voltage bias

w BSW amplitudes vector

wp Fundamental BSW angular frequency

dy Distance between adjacent varactors

w(z,t) Transmission line voltage at location x and time ¢
T Diagonal matrix with RIS reflection coefficients
K Number of desired user-end Rx

L Number of eavesdropper Rx

hy Channel vector from the RIS to the k-th Rx

g Channel vector from the Tx to the RIS

Ps Average transmitted symbol power

o? Noise power of AWGN channel

SLNR Signal-to-leakage-plus-noise ratio

Nangles Number of sampled Rx directions in training dataset
Py Received power at direction 6

P Received power array at all ngnges directions

The main notations used in this work are summarized in
Table 1.

B. SIGNAL MODELS

We adopt the assumptions of [5], where all channels are
narrowband line-of-sight (LoS), flat-fading, and in the far-
field. There is a single-antenna transmitter (Tx) and K
single-antenna receivers (Rxs), with no direct path between
the Tx and each one of the Rxs. The signal y; at the k-th
Rx is given by

(7

where s is the transmitted signal, n; is Additive White
Gaussian Noise (AWGN), and h; and g are the M x 1
channels from the RIS to the k-th Rx and from the Tx to
the RIS [22]. The RIS response is represented by a diagonal
matrix containing the RIS reflection coefficients:

vk = hiTgs+ ny,

T = diag[['(0), (1), ..., (M — D)]. (8)
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The element responses are passive (|[I'(m)| <1 for all m =
0,1,...,M — 1) and are determined by the biasing voltage
applied to the m-th RIS element. The Tx is assumed to be
located at the broadside of the RIS, at the far-field, such that
there is normal incidence of the signal on all RIS elements,
so the Tx-RIS channel is given by

g=1[1,1,...,1], 9)

and the channels from the RIS to each Rx are given by the
steering vectors of the form

h(6) = [1, o0 2O e—j(M—l)x(ew]’ (10)

where 6y is the azimuth angle of the k-th Rx from the
RIS with spatial frequencies k(f) = 2m(dyf./c)sin(H).
We assume the far-field channels remain static during the
operation of the RIS, to ensure the integrity of the ML model
designed by the initial training data.

The SNR at each Rx k is defined as the ratio of the
received signal power divided by the noise power o2

s :
E[w]i® _ |E[h{Tex]? _ pslh{Tg|

2 2 2 ’
O Oy O

SNRy = 11)
where p; is the average transmitted symbol power. To evalu-
ate the feasibility of shaping the radiation patterns generated
by the wave-controlled RIS, we define the following SLNR
(Signal-to-Leakage-plus-Noise Ratio) measure for K > 1
desired Rx and L > 0 undesired Rx (“eavesdroppers”):

(12)

) T poi2
min;e(12,... ky pslhy ;T'gl
max SLNR = max il } ST = 2g X
W W maxje(1,2,...1) pslh, ;Tg|* + o;

where each hg; denotes the channel from the RIS to the
i-th desired Rx, and k. ; denotes the channel from the RIS
to the j-th eavesdropper Rx. The independent variable used
for optimization is W, the vector containing all the BSW
amplitudes, which determines the reflection coefficients in I'.
We choose the SLNR metric since it is well suited for
quantifying performance in terms of beam patterns, and is
general enough to apply in cases whether or not one wishes
to steer a null in a particular direction.

lll. MACHINE LEARNING MODEL DESIGN AND
CALIBRATION

A. BACKGROUND

Numerous factors differentiate the ideal RIS model often
used in simulations from the actual behavior of an RIS
in a physical environment. Starting with the design of the
biasing TL, there may be impedance mismatches, losses,
and reflections along the path, creating signal losses and
distortion [23]. Since the wave-controlled RIS operates with
a wide range of BSWs, there may be frequency-dependent
losses along the biasing TL and other nonlinearities caused
by skin effects, noise, crosstalk, as well as jitter and
phase delays from the waveform generator. There is also
a non-negligible voltage drop across the rectifier diode.
Depending on the peak detector architecture, its output
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FIGURE 7. The RIS and channel response are represented by the function f(W)
which takes an input set of BSW amplitudes W and outputs a radiation pattern. The
radiation pattern P’ is sampled at specific locations and stored as P. An NN is then
trained to estimate the sampled power values P from the same data, where the MSE
between the actual and estimated power values is used as the loss function L.

voltage could be affected by the charging and discharging
times of the capacitor. These and other non-ideal effects are
difficult to model, and can only be characterized using full-
wave simulations or extensive experimental measurements.
Furthermore, the reflection coefficients created by the var-
actor biasing may not be perfectly modeled, as varactor
characteristics may vary due to environmental (thermal),
fabrication, and electrical conditions [24], as well as mutual
coupling between elements [25]. The metasurface response
also varies according to the angle of arrival of the incoming
signal [26]. Lastly, there is the issue of channel estimation
for the Tx-RIS and RIS-Rx links required to simulate the
performance of the entire system and optimize the resulting
beam patterns [27], [28], [29], [30].

Rather than relying on mathematical models that attempt
to mimic the RIS and physical environment, an alternative
is to use data from the environment in which the RIS is
deployed to characterize the behavior of the entire system
— from the input BSW amplitudes to the waveguide and
to the resulting radiation patterns. When an RIS is initially
deployed, CSI is unavailable and the waveform sampling
required to excite the metasurface is unknown. To learn
how the system behaves, we can excite the RIS with a
combination of BSW amplitudes and sample the power
obtained at receivers in different directions of interest. This
procedure can be repeated many times to obtain improved
knowledge of the input-output relationship of the system,
which can in turn be used to design an ML model that models
this relationship. The corresponding functional representation
of the system and the ML model training procedure can be
visualized as in Fig. 7. If the ML model is well calibrated,
it will provide a sufficiently accurate representation of
the nonlinear and complex mapping between the BSW
amplitudes and the sampled powers, and can be used to
perform offline optimization to obtain the desired beam
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patterns. Once found, the optimal BSW amplitudes are used
to excite the physical RIS and create the actual radiation
patterns. Thus, this ML-based approach does not require any
knowledge of CSI or channel estimation for the beam pattern
optimization.

The main problems that must be solved when using this
approach include

1) What combinations of BSW amplitudes should be used
to excite the RIS?

2) Which ML model provides a sufficiently generalized
representation of the system?

The answer to the first question requires some knowledge
of the system, such as how large should the maximum
voltage swing on the biasing TL be. For this question, for
example, we can simulate the ideal scenario where there is
no attenuation on the biasing TL, and use these results to
verify that the peak voltage generated by each set of BSW
amplitudes will not exceed the maximum voltage swing
constraint. The answer to the second question requires a
deeper analysis of available network architectures and their
optimization. Creating a map between the N input BSW
amplitudes and the nangles spatially distributed power values
at the receivers is fundamentally a regression problem. Since
the map is high-dimensional, nonlinear, and complex, most
kernel methods and surrogate function estimators that involve
linear transformations and interpolations between training
samples will fail. Such approaches also require large matrix
operations as more training samples are added [31], [32].
An NN, or more specifically, a fully-connected (dense)
Multilayer Perceptron (MLP) [33] is a better approach for
modeling the system, as they achieve universal function
approximation by leveraging multiple layers of nonlinear
functions with many hidden variables [34]. The MLP
approach takes an input set of N BSW amplitudes, prop-
agates them through multiple hidden layers with nonlinear
activation functions, and provides as output a set of nangles
power values from the corresponding radiation pattern,
sampled at discrete locations. This is a supervised learning
problem, where the network tries to minimize the mean
squared error (MSE) between the actual and estimated
outputs, while also generalizing the complex relationship
between the BSW amplitudes and their corresponding
radiation patterns. To come up with a good MLP architecture
for the given problem, one may manually design an optimal
MLP through trial-and-error, but this process is highly
time-consuming. Moreover, the architecture of the RIS, the
numbers of inputs and outputs, the frequencies of the BSWs,
the locations of the Rx, the channel models, and many
other factors affect the regression map, often in a case-
by-case manner. As a result, no single MLP architecture
can be generalized for every RIS modeling problem across
all environments. To address this challenge, rather than
manually tuning the MLP architecture for each case, an
optimization algorithm can automate the process by creating
an MLP that accurately models the input-output relationship
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while satisfying architectural constraints. We propose using
a GA that creates a diverse pool of MLPs trained via
back-propagation, refined through evolution, and optimized
to minimize validation loss — thereby enhancing model
performance [35], [36].

The following subsections will address the data processing
steps required to use the GA to generate an MLP that will
estimate the desired mapping with high accuracy. It is impor-
tant to note that the procedures discussed in this paper are not
only relevant for the specific wave-controlled RIS, rectifier-
based multi-user beamforming problem considered here. The
proposed procedure and algorithms can be generalized to
other RIS modeling and optimization problems, including
calibration of a wave-controlled RIS with the sample-and-
hold circuit in [5].

B. DATA GENERATION AND PROCESSING

Simulation of a wave-controlled RIS and corresponding wire-
less channels was executed using MATLAB with the models
defined in Section II. The RIS is modeled as a single-row
surface with M = 100 elements, biased by a superposition
of N =25 BSWs. The RIS elements are separated by
d, = 20 mm, while behind the surface the length of the TL
path between adjacent rectifiers is Ly = 131.42 mm. The
effective permittivity of the TL is e.¢r = 8.66, and therefore
the slowness factor is ngow = 19.34. The transmitted signal
has carrier frequency f. = 2.45 GHz, and the DC voltage
offset is Wy =4 V, as this is the minimal voltage required
to excite the varactor, and as seen in (3), the BSWs will
always create a higher voltage than W at any RIS element
location. This allows generation of voltages across the entire
allowable range of the varactor. The distance between the
beginning of the TL and the first RIS element along the x
direction is Lief = 0.5d,. The distance is the same between
the last RIS element and the end of the TL. For better
control of the voltage over the length L = 99d, used to
bias the RIS elements, an additional TL of the same length
and geometry as the first biasing TL is connected at its end
through a 50 mm connector. Thus, the overall length from
the last varactor to the end of the extended TL, normalized
by d./L,, is

d
al + 100d, ~ 100.884,

Lright = OSdX + 50mm - m
13)

This extended TL results in a fundamental BSW frequency
of fp = 1.93 MHz.

To enable good coverage of the 25-dimensional input
space, a dataset was generated with Npax = 100,000 pairs
of data arrays, each consisting of a random W array
of voltages as the input, and samples from the resulting
radiation pattern vector P in dB as outputs when the RIS
waveguide is excited by the corresponding BSWs. The
azimuth angles corresponding to the sampled points on
the radiation pattern are in the interval [—60°, 60°]. The
simulated 3 dB beamwidth for the given M = 100 element
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Algorithm 1 Dataset Generation
1: i< 0

2: while i < Ny,x do

3 W «[0,0,...,01"

4: W(n) < sample from |N (0, 012)| forn=1,...,N.

5: k < integer sample from U/(1, N).

6: S < unique set of k uniformly chosen integers from
1 to N.

7: W(n) < sample from [N(0, 03)| Vn € S.

8: Calculate maximum absolute value vy of the
resulting BSW superposition over time from Wy and W.

9: if vimax is out of varactor biasing bounds then

10: Go back to line 3.

11: end if

12: Sample the power at all nangles desired directions,
store in P.

13: Store W and P as W; and P;.

14: i<—i+1

15: end while

RIS is approximately 1.7°, so we used discrete steps of 1.5°
spaced uniformly between [ — 60°, 60°], resulting in power
samples at nupgles = 81 different angles.

To reduce the likelihood of producing chaotic radiation
patterns caused by fully randomized inputs which will
negatively affect the learning by the MLP [37], the following
methodology is proposed. Since the MLP will later be
used to estimate the model for optimization by SA, which
randomly perturbs all the BSW amplitudes in the input
vector to converge towards an optimal SLNR measure, a
small random Gaussian voltage with a standard deviation
o1 = 0.008 V whose absolute value is taken, is added to
all elements of an initially empty W. A randomly selected
subset of the BSW amplitudes is then excited by Gaussian-
distributed voltages with a much larger standard deviation
0.8 V, also converted to absolute values, to put
more emphasis on those BSWs and create more unique
radiation patterns. Note that only positive voltage amplitudes
are used to reduce the dataset complexity by truncating
the Gaussian distributions by taking the absolute values of
their samples. This ensures that only the amplitudes of the
BSWs are modulated, rather than both the amplitudes and
the phases. The entire procedure to create the training dataset
is described in Algorithm 1. Since we use back-propagation
and gradient descent, it is beneficial to normalize the data
to improve convergence [38]. In particular, we scale each
of the 100,000 W vectors to be within the range [0, 1],
and we scale the resulting power values in P to be in the
range [—1, 1].

o) =

C. NEURAL NETWORK OPTIMIZATION USING A
GENETIC ALGORITHM

Optimizing MLP hyperparameters is a challenging task due
to the high-dimensional, non-convex nature of the search
space. These hyperparameters—including the number of
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hidden layers, node counts, activation functions, and training
parameters—are not independent; rather, they interact in a
complex, non-linear fashion [39]. Traditional optimization
techniques such as grid search or gradient-based methods
often struggle with these challenges, either requiring exces-
sive computational resources or failing to escape local optima
in the search space.

To efficiently navigate this optimization problem, we
leverage a GA, a global search technique inspired by natural
evolution [40]. GA excels in exploring large, non-convex
solution spaces by maintaining a diverse population of
candidate architectures and evolving them iteratively. Unlike
gradient-based methods, GA does not require differentiabil-
ity, making it well-suited for optimizing discrete and mixed
hyperparameters. Additionally, crossover and mutation oper-
ators enable GA to generate novel MLP architectures,
ensuring efficient convergence toward an optimal design.

While GA has been successfully applied to classification
tasks, as demonstrated in [41], its flexibility allows us to
adapt the approach for regression problems. By customizing
crossover and mutation mechanisms to handle variable
hyperparameter counts, GA becomes a powerful tool for
automating MLP architecture optimization, enhancing model
performance while eliminating manual tuning efforts. The
following GA adaptation ensures effective exploration of the
hyperparameter space, leading to robust MLP architectures
optimized for regression tasks:

o Initial population — We start with a collection of
MLP realizations or “individuals” with randomly chosen
numbers of epochs, batch sizes, numbers of hidden
layers, numbers of neurons in each layer, and types of
activation functions.

e Objective — The fitness of each MLP is defined as
the validation loss from training it on the same dataset
containing the RIS BSW amplitudes and corresponding
radiation patterns, by evaluating the MSE between the
predicted radiation patterns and the actual radiation
patterns for a given BSW amplitudes array.

o Parent selection — Parents are randomly selected
individuals from the population, and their children
are reproductions of themselves with probabilities for
crossover and mutation.

o Crossover — The number of epochs, batch size, and
number of hidden layers of the child are each chosen
to be equal to the corresponding value of one of the
parents with equal probability between the two parents.
For each hidden layer, the child will inherit randomly
the activation function and the number of nodes from the
corresponding layer of either parent. If the number of
hidden layers of the parents are different, then there may
be a case where the child inherits the larger number of
layers, which is best explained by an example. Suppose
that Parent A has 5 hidden layers, Parent B has 3 hidden
layers, and the child has 5 hidden layers. Hidden layers
1-3 of the child will have randomly chosen parameters
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between layers 1-3 of each parent. For layers 4-5, the
parameters will be randomly chosen between layers 4-5
of Parent A, or layer 3 of Parent B.

e Mutation — Only occurs when a child has a larger
number of hidden layers than one of the parents. This
involves random shuffling of the number of nodes and
activation functions between all hidden layers of the
child.

e Evolution — Only the fittest k individuals from the
current population (the original MLPs and the chil-
dren) move to the next generation, where individuals
reproduce again and the cycle repeats. The number k
decreases during each evolution step.

The algorithm converges after the populations evolve all the
way to a single MLP with the lowest validation loss.

In our simulations, the GA was implemented with ran-
domly chosen parameters for each MLP from the following
sets:

« Number of epochs: {80, 81, ..., 200}.

o Batch sizes: {32, 64, 128, 256, 512, 1024}.

o Number of hidden layers: {1, 2, ..., 6}.

« Number of nodes per hidden layer: {64, 128, 256, 512,
1024, 2048}.

o Activation functions [42]: {ReLU, PReLU, Sigmoid,
Tanh}.

The initial population has R randomly generated individuals.
Then, § randomly selected pairs of parents are chosen with
replacement to have 2 children each. From both the original
population and the new children, a population of k = §
individuals with the lowest validation loss is created. This
process is repeated until there is only a single individual left.
In our simulations, we chose R to be 64 as a good tradeoff
between the number of solutions explored versus the time
to convergence. A total of 190 MLPs were trained, and the
population evolved over 7 generations until the final MLP
was determined.

The MLPs were generated and trained using TensorFlow
Keras in Python [43]. All MLPs were trained with an L2
regularization penalty of 5 x 1077 to improve generaliza-
tion [44], using the Adam Optimizer [45] and the MSE
loss between the actual and predicted scaled power values.
The learning rate is reduced by half if the validation loss
stops improving after 20 consecutive epochs, and the training
is terminated if the validation loss does not improve after
30 consecutive epochs. The training set consisted of the
first 90,000 samples from the dataset and the validation set
consisted of the last 10,000 samples. The fitness of each
MLP was determined by its validation loss.

The final MLP architecture that resulted from the GA
optimization has 5 hidden layers with nodes and activation
functions as illustrated in Fig. 8. The MLP has a batch
size of 128 and goes through 147 training epochs. The
final MSE training loss was 7.4851 x 10™* and the final
MSE validation loss was 8.4779 x 107*. We note that
the converged MLP architecture may be sufficient for this
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FIGURE 8. lllustration of the proposed NN, including bias nodes (green) in the input
layer and each hidden layer. The number and type of activation functions in each layer
are given above each layer. The black arrows correspond to the weights between
neurons. Inputs flow from the left, through the neurons in the hidden layers of the
network, to the outputs on the right.

implementation of the wave-controlled RIS with rectifiers,
N = 25 BSWs, M = 100 elements, and the channel
models described in Section II. For other channel models
or RIS architectures, an MLP that effectively generalizes
the mapping between BSW amplitudes and received powers
will likely be different. This highlights the importance of
automating MLP parameter tuning using the prescribed GA.

IV. OFFLINE OPTIMIZATION USING SIMULATED
ANNEALING

A. MACHINE LEARNING MODEL PERFORMANCE

The NN models the system as the mapping RN — [Rangles
denoted by the nonlinear function f w) = P, where it is
desired that P ~ P, as illustrated in Fig. 7. We are interested
in offline optimization of the BSW amplitudes to configure
the RIS to produce a desired radiation pattern. For this
optimization, SA [46] is a reasonable choice, given our
prior success using it to create SLNR-optimized radiation
patterns for the wave-controlled RIS implemented with the
rectifiers [5]. In this case, the NN can be used to estimate
the powers sampled at specific directions after each update
of W as the SA converges towards improved SLNR values.
Once the algorithm converges to a particular set of optimal
BSW amplitudes, these amplitudes can be used to recon-
figure the physical RIS and generate the optimal radiation
pattern.

We used a similar SA algorithm as in [5] to determine
the BSW amplitudes that optimize the SLNR, as outlined in
Algorithm 2. This is a stochastic optimization that randomly
perturbs the set of BSW amplitudes as it searches for
improved SLNR. The algorithm starts at a “high energy”
state corresponding to a maximum temperature parameter
T, in which it is more likely to explore different BSW
amplitudes even if they do not necessarily produce better
SLNR values. This ultimately helps in escaping local
minima. As the algorithm converges over multiple iterations,
it moves to a “lower energy” state with a low value for
T, where it is less likely to explore solutions with lower
SLNR. The likelihood of moving from the current set of
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Algorithm 2 Simulated Annealing With Neural Network
1: W<«10,0,...,0]"
2: Whest < W
3: dpest < O
4: SLNRcyrrent <— SLNR calculated from (12) by forward-
propagating W through the NN.

5: SLNRpest < SLNR urrent

6: while i < ijpax do

7: if i — ibest > irst then

8 W < Whest

9: Ibest < L

10: SLNR yrrent <— SLNRpest

11: end if

12: T < Tscale| 1 — lm -

13: Woew(n) < W) + re|l, n=1,2,...,N
14: Calculate varactor DC voltages using (4).
15: if DC biases exceed varactor limits then
16: Increment i, go to line 6.

17: end if

18: SLNR;ew < SLNR calculated from (12) by forward-
propagating Wy, through the NN.
19: if SLNRpew > SLNRpes: then

20: SLNRyrrent < SLNRpew
21: SLNRpest < SLNRew
22: W <« Wiew

23: Whoest < Whew

24: Tpest < 1

25: else

26: Calculate p using (14)
27: if p > rand(1) then

28: W <« Wiew

29: SLNR urrent < SLNRjew
30: end if

31: end if

32: end while

BSW amplitudes W to the next one W, is given according
to a probability measure

1 SLNRpew > SLNR yrrent

p= Gw) (14)
¢ e SLNRHCW = SLNRCUH‘CHI?

which depends on the SLNR corresponding to W, the
new SLNR corresponding to Wyey, the temperature 7', and
a cooling factor constant k.. The advantage of the SA
algorithm is that it is not computationally intensive — the
random perturbations are simple addition and subtraction
operations, and the SLNR values are calculated from the
forward pass of the BSW amplitudes through the neural
network during inference. The algorithm is initialized with
W =1[0,0,...,0]".

Note that the SLNR optimization in this system is
constrained by the allowed range of DC biasing voltages
to the varactors (in this case, between [4 V and 15 V])
given by the peak-detection-over-time expression in (4). This
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TABLE 2. SLNR [dB] after convergence of simulated annealing for the NN system and the simulated system.

NN System Simulated System
Beam 1 | Beam 2 | Null I | Null 2 Avg Min Max Std. dev Avg Min Max Std. dev
0 ] ] ] Real 27.8578 | 27.2220 | 28.6893 | 0.5420 || 31.7187 | 30.5748 | 33.6562 | 0.8947
Estimated || 28.8694 | 27.8159 | 30.1901 | 0.8664 - - - -

i Real 327547 | 323752 | 339274 | 05156 || 33.6853 | 32.5867 | 34.3495 | 0.6721
253 i i i Estimated || 36.1271 | 352647 | 36.5626 | 0.3988 - - - -
300 ] 4050 ] Real 277722 | 24.0745 | 31.4893 | 3.3380 | 29.9627 | 25.6659 | 33.0271 | 2.1174

Estimated || 29.0995 | 25.0857 | 32.5343 | 3.2351 - - - -
1050 | 4050 ] ] Real 26.5683 | 22.9833 | 28.4797 | 23155 || 27.6214 | 25.8481 | 28.6254 | 0.9598

Estimated || 27.5753 | 24.1129 | 29.6426 | 2.2093 - - - -
1o5° 195 | 105 | 00 Re@ 19.3474 | 14.6896 | 24.4148 | 3.4994 || 214651 | 17.0254 | 24.7522 | 2.2578

Estimated || 20.7587 | 15.0296 | 24.4111 | 3.9277 - - - -

R ., Real 43228 | 2.1095 | 5.6858 | 1.0251 64071 | 23809 | 9.7270 | 2.5564
30 i 0 i Estimated || 6.0771 | 5.1976 | 7.5983 | 0.6638 - - - -

constraint can be estimated by applying each update of
W during each iteration of SA into the same expression
before evaluating the new SLNR. Since this expression does
not account for nonlinearities or frequency-dependent losses
along the transmission line, it can be used as a worst-case
metric to determine whether the varactor biasing limits may
be exceeded.

We compare the performance of SA executed offline by
inference using the MLP for W during each iteration estimate
the power values, against the performance of SA executed in
the deterministic simulation, where W excites the RIS and
the exact simulated power values at the Rx are calculated
at each iteration. The first system will be referred to as the
“NN System” and the second system will be referred to as
the “Simulated System.” The SA algorithms in both cases
have the same hyperparameters:

o Cooling factor: k. = 0.002.

e« Maximum number of iterations: iy,x = 2000.

« Random perturbations € for each BSW amplitude
chosen from € ~ N (0, 1).

o Scaling factor for random steps: A = 0.015.

o Maximum number of iterations between current SLNR
and previous best SLNR: i = 200.

o Temperature scaling factor: Tycae = 100.

The major difference between the two is that for the NN
system, only positive BSW amplitudes are used because the
network was trained only on positive amplitudes, whereas for
the simulated system, both positive and negative amplitudes
are used, to allow another degree of freedom that the NN
does not have. This provides a fair comparison between the
beam patterns achievable by each system, without limiting
the simulated system to the same constraint that the NN
system has. We studied multiple scenarios with single beams,
multiple beams, and combinations of beams and nulls,
and evaluated the performance of each system in terms
of SLNR after convergence, assuming a noise variance of
052 = 1in (12). Table 2 compares the SA performance using
feedback from the NN versus using direct Rx feedback from
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the simulated setup where the RIS response and channel
models are exact. The final results are divided into two
categories: “Estimated,” which reports the final SLNR value
that SA in the NN system converged to, and “Real,” which
is the SLNR found by the deterministic simulation using the
optimal W arrays that SA in each system converged to.

We note that the simulated average SLNR in all cases is
quite close between the offline optimization using the NN
and the online optimization from the simulation, with the
worst matching having around 4 dB of difference between
the average SLNRs of the two. This indicates that the MLP
was able to generalize the true mapping between BSW
amplitudes and radiation patterns to high accuracy. Even for
cases where the objective function includes forming deep
nulls, which are sensitive to small changes in the reflection
coefficients, the MLP nearly matches the performance of the
simulated scenario.

Note that the cases illustrated in Table 2 only involve
angles on which the MLP was trained. It would also be
useful to generalize the algorithm to create beams and nulls
in any arbitrary direction within the sampled range.

B. ANGLE INTERPOLATION
When uniformly sampling the radiation pattern to create the
initial dataset, we used the 3 dB beamwidth as the criterion
for maximum angular separation between any two sampled
Rx directions to reconstruct the radiation pattern. As stated
previously, this helps with beamforming and nullforming
at Rx directions between any two neighboring sampled
directions, because attempting to change the power directed
towards one direction will significantly affect the power
directed toward its nearby directions within a beamwidth.
We can estimate the power values at Rx directions between
the discrete samples through linear interpolation, as follows.
We define the floating-point index of each angle of interest
0* as

0* — Omin

Omax -

15)

i= X (nangles - 1)7

Qmin
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TABLE 3. SLNR [dB] after convergence of simulated annealing for the NN system and the simulated system for arbitrary directions.

NN System Simulated System
Beam 1 | Beam 2 | Null 1 | Null 2 Avg Min Max Std. dev Avg Min Max Std. dev
50 i 500 i Real 254248 | 11.0920 | 30.4218 5.8103 29.2951 | 26.4624 | 31.4586 1.6349
Estimated || 25.7507 | 13.4766 | 30.3057 5.0270 - - - -
200 500 10° _4g° Real 5.7627 2.1418 12.4138 3.4949 24.4674 | 20.9093 | 27.9945 2.2030
Estimated 14.0304 | 11.2299 | 18.1563 2.3760 - - - -

where O, is the smallest (most negative) angle sampled
in the training dataset (in this case, —60°) and 6p,x is the
largest (most positive) angle in the training dataset (60°).
Since the powers are sampled at discrete angles represented
by integer indices in the interval [0, napgles — 1], we calculate
the fractional part of i as

Ai=i—li]. (16)

Finally, we define Py- and Py+ as the powers sampled at
the angles corresponding to |i| and [i], respectively. When
evaluating the SLNR measure, we calculate the power at

Algorithm 3 Adaptive Optimization and Lookup Table
Construction
1: Ppax < —00
: W <1[0,0,...,01"
if lookup table does not contain any of @peym then
for each 0 in Opeyy do
Py, < max power (17) of 6 in training dataset.
if Py, > Pmax then
Pax < Pg,
W <« W, (set of BSW amplitudes corre-
sponding to Pg, from dataset).

A A i

interpolated directions using the convex combination % end if
10: end for
Py = (1 = Aj)Pyg- + AiPg+. (17)  11:  Define an empty objective function C based on

We simulated two cases involving beam- and nullforming
using the same SA algorithm as before, except that the power

the SLNR measure from (12), initially not taking into
account any beam or null directions.

calculated in each direction by the MLP in the NN system 12: for each 6 in ob_eam do ]

is defined as in (17). The simulated system is allowed to > Update C to include the SNR corresponding to
sample the power in any given direction rather than being beam dll‘eC.th.Il O in tl}e numerator O.f (.12)'

confined to a discrete grid. The results are summarized in Optimize W using SA to maximize C. .
Table 3 averaged over 10 simulations. We note that the MLP 15: Store W, beam directions from C, and SLNR in
performance is degraded in this case, although it is able 6 the i(l)l(:lk}l(l))rtable‘

to create both beams and nulls. This degradation can be
seen both by the low mean SLNRs and the high standard
deviations. The primary reason for this degradation is that the
SLNR objective function becomes too complicated for SA
to maximize when we start with an empty W vector, since it
must account for more directions in both beamforming and
nullforming. In the next section we consider the use of a
lookup table to improve algorithm convergence, by storing
optimal W vectors in memory and using them as initialization
for SA for more complex cases.

V. ADAPTIVE OPTIMIZATION USING A LOOKUP TABLE

A lookup table can be used to store BSW amplitude
arrays that correspond to radiation patterns that were already
optimized for different cases. This serves two main purposes:
First, the optimal arrays can be used to configure the RIS
instantly to create desired radiation patterns that have already
been generated in the past, thus requiring fewer executions
of the SA algorithm. Second, the optimal arrays can be used
to optimize related, but more complex radiation patterns,
by being the initial arrays used in the SA algorithm. For
example, if there was a requirement in the past to generate
a beam at direction 01, the same BSW amplitudes that were
designed to create this beam can be used as the baseline to
produce a radiation pattern with a beam at 67 and another
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17: Update C to include the SNRs corresponding to all
null directions 6@, if any, in the denominator of (12).

18: Optimize W using SA to maximize C.

19: Store W, beam and null directions from C, and SLNR
in the lookup table.

20: else

21: Find the W that creates peaks in the directions from
the largest subset 0, of Opeam from the lookup table.
If two or more subsets with the same cardinality exist,
choose the one with the highest SLNR and initialize C
to the corresponding objective function with its beam
and null directions.

22: Perform the steps in lines 12-19, starting with C from
line 21, iterating through all 6, € {#peam \ 05} and then
all @y, if any.

23: end if

beam at 6. This approach greatly helps with convergence
as multiple beams and/or multiple nulls are desired, as
demonstrated here.

We propose the following approach to construct the lookup
table, as outlined in Algorithm 3, where Opeym and Oy
are arrays respectively containing the K and L directions
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TABLE 4. SLNR [dB] after convergence of simulated annealing for the NN system using the lookup table.

NN System
Beam 1 | Beam 2 | Null 1 | Null 2 Avg Min Max Std. dev
e ] ] ] Simulated || 33.6676 | 33.6292 | 33.7279 | 0.0361
Estimated || 35.9271 | 35.8175 | 36.0131 | 0.0503
i Simulated || 33.9228 | 33.8352 | 33.9872 | 0.0549
253 i i i Estimated || 36.9640 | 36.8946 | 37.0644 | 0.0615
i i Simulated || 27.6829 | 26.5275 | 28.4869 | 0.6647
30 i 495 i Estimated || 34.2191 | 33.9985 | 344114 | 0.1206
105 | 00 ] ] Simulated || 28.3460 | 27.2197 | 28.9696 | 0.7212
Estimated || 28.6516 | 27.6357 | 29.2950 | 0.6165
ose | 4050 1050 | 4050 Sirr.lulated 23.0232 | 20.5317 | 25.1426 | 1.6340
Estimated || 27.9592 | 27.6960 | 28.3134 | 0.2082
300 ] o ] Simulated || 53311 | 47714 | 59562 | 0.3877
Estimated || 7.5584 | 7.4377 | 7.6830 | 0.0720
. i Simulated || 31.4067 | 29.3688 | 32.9923 | 1.2463
-3 i 0 i Estimated || 32.4866 | 32.3519 | 32.6637 | 0.1030
m o 10e a0 SirrTulated 254036 | 21.8868 | 27.9905 | 1.7480
Estimated || 26.1828 | 25.2871 | 26.7366 | 0.4128

in which beams and nulls are to be created. Assume for
example that we wish to create a single beam in a specific
direction. Given the large dataset used for training, which is
the collection of random W vectors and their corresponding
sampled power values, we find the BSW amplitude input
W that corresponds to the highest power (Ppax) in the
same direction as the desired beam, and we use W as
the initialization for SA. After SA converges, we store the
resulting W in the lookup table with its corresponding beam
direction. To create beams in two directions, we repeat the
same procedure — find the strongest beam between the two
in the lookup table and use this result as the basis to design
the second beam using SA. The same procedure can be
generalized for larger numbers of beams as well. When
forming both beams and nulls, we repeat the same procedure
as above to create all the beams first, and then create all the
nulls in the last optimization steps. The table may contain
an entry of the form:

Beams: {6y, Opp,... }; Nulls: {6,1, On2,... }; SLNR: y; W.

We analyze the performance of SA assisted by the lookup
table in Table 4. It is evident that the starting points created
in Algorithm 3 significantly improve the SLNR in nearly
all cases, allowing the offline optimization using the NN to
achieve superior performance over the online optimization in
the simulated system. Furthermore, the standard deviations
of the SLNR values are significantly smaller than before,
indicating that the lookup table-based initializations reduce
the risk that SA will not converge to a good solution. To
further illustrate this result, all test cases are plotted in Fig. 9.

It is observed from the plots that the offline and adap-
tive data-based optimizations successfully create radiation
patterns that satisfy the criteria defined by the objective
functions, creating peaks and nulls at the desired directions.
However, peaks are also created in unintended directions,
especially in the broadside (0°) direction and at angles

VOLUME 6, 2025

symmetric with the desired beams, which may lead to
undesirable behavior in a given environment [47]. This is at
least partially due to the use of the SLNR measure, which
does not penalize radiation patterns with spurious beams. But
a careful choice of the parameters used when creating the
training dataset for the machine learning model can reduce
such artifacts. For example, taking the case of Fig. 9(b) with
a single desired beam at 30°, it was found that setting the
dominant BSW amplitude in an optimal W array to 3.5 V
yields a higher peak at 30° with more attenuation at 0°,
as seen in Fig. 10. The ML model was likely unable to
explore this scenario since this value is too close to the
maximum value the model was trained on. Thus, there is a
low probability of such a high value appearing frequently
enough in the dataset for its effects to be accurately modeled.
Moreover, by increasing the maximum number of BSW
frequencies from N = 25 to N = 50, more degrees of
freedom are available for beam pattern optimization at higher
frequencies. This also helps reduce the reflected power of
the symmetric beam at —30°, as shown in Fig. 11. These
observations lead to the following conclusions:

o The voltage range of the randomly generated BSW
amplitudes used for training should be carefully chosen
depending on the desired performance of the RIS. If the
requirement from the ML model is to explore a wide
range of radiation patterns, one should use relatively
low random voltage amplitudes such as those used in
this paper to avoid saturating the varactor voltage limits
while allowing more BSWs to be activated at once. On
the contrary, one can generate input arrays where fewer
BSWs are excited, but with higher amplitudes, that
will dominate the RIS biasing profile. This approach
may also reduce the amount of data required for model
training.
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FIGURE 9. Radiation patterns generated by the optimized NN, using SA and the lookup table.
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FIGURE 10. Generating a peak at 30° using SA and a dominant BSW at 3.5V. SNR at
30° is 33.5964 dB, peak at 0° is 13.3634 dB lower than the desired peak.

o The number of BSWs and their frequencies should be
chosen depending on the hardware constraints and the
complexity of the system model. Using more BSWs
creates a tradeoff between the increased control over
the radiation patterns generated by the RIS, and the
higher-dimensional optimization problems, potentially
increased amount of data collection required when
generating an ML model, hardware complexity of the
RIS, and control signal overhead.

An inherent weakness of using a lookup table to store
optimal RIS configurations is that its size increases exponen-
tially with the number of beam pattern constraints. Possible
solutions to this problem include interpolation between con-
figurations in the lookup table, using for example manifold
methods [48], empirical interpolation [49], or additional ML
models to reduce the memory requirements of the lookup
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FIGURE 11. Generating a peak at 30° using SA and N = 50 BSWs instead of N = 25.
SNR at 30° is 34.2803 dB, symmetric peak at —30° is attenuated by 3.9183 dB.

table and the required number of SA executions for beam
pattern optimization.

VI. CONCLUSION AND FURTHER RESEARCH

We have presented a novel data-driven approach for opti-
mizing wave-controlled RIS without requiring extensive
modeling of the RIS behavior or channel state information.
The RIS is simulated in an environment where the channel
models are unknown. It is excited with random combinations
of BSW amplitudes, and received powers are sampled
at various directions of interest for each set of input
BSWs. An NN that generalizes the relationship between the
BSW amplitudes and the corresponding radiation patterns is
designed and optimized using a GA, achieving low training
and validation losses on the collected data. SA is then used
for offline beam pattern optimization using the NN-generated
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model. The optimal BSW weights are then used to excite
the simulated RIS to create the desired radiation patterns.
In conjunction, a lookup table is used to store optimal
sets of BSW amplitudes to rapidly determine the biasing
voltages for standard beam patterns and to create baselines
for more complicated radiation patterns. The combination of
the lookup table and SA was demonstrated to be capable of
achieving superior performance in terms of SLNR in both
sampled and interpolated directions via offline optimization
using the NN, compared to simulated scenarios where live
feedback from the receivers is used to determine convergence
for SA.

The GA that was used in this paper to optimize the
NN architecture for RIS modeling is applicable to many
other optimization and modeling problems. The optimal
NN architecture created for our application resembles an
autoencoder that learns the general features from the BSW
amplitude combinations in the first few hidden layers
and maps them to the resulting radiation pattern as the
information propagates through subsequent layers. Designing
a good NN architecture to model high-dimensional nonlinear
mappings is often not an intuitive or a straightforward
task, requiring significant tuning and verification. This is
especially crucial for regression problems where the model
must generalize well for both the training and validation
data. The GA was proven to be effective in automating
the tuning process and determining system parameters that
allow the NN to accurately represent the given model.
Overall, the combination of backpropagation, GA, and SA
was shown to lead to desirable RIS performance in the
absence of an accurate physical model for the RIS or the
environment, and provides a promising avenue for other RIS-
related applications.

We would like to reiterate that a main novelty in this
paper is the fact its algorithms are specifically designed for
a wave-controlled RIS. On the other hand, the algorithms
presented in this paper that specifically employ synthesis of
BSW amplitudes, namely Algorithm 1 (Dataset Generation)
and Algorithm 2 (Simulated Annealing), do not have to
strictly use BSW amplitudes as the optimization parameters.
The dataset generation could be different depending on
choice of parameters, such as varactor voltage biases or
reflection coefficients instead of BSW amplitudes and
modified depending on the use-case (e.g., using a codebook
or randomly generating the feature vectors). SA can apply
to other objective functions instead of SLNR and optimize
for other parameters as well.

Future work will also discuss the use of the data-driven
approach presented in this work with the sample-and-
hold implementation of the wave-controlled RIS described
in [5]. An extension to the conventional RIS structure
we discussed is stackable RIS systems, sometimes called
Stacked Intelligent Metasurfaces (SIMs) [50], [S1]. They
are an advanced form of RIS that consist of multiple
layers of programmable metasurfaces. SIMs are capable of
performing more complex and powerful manipulation of
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electromagnetic waves compared to single-layer RIS which
results in advanced signal processing, beamforming and
beam steering, enhanced coverage and throughput, increased
energy efficiency, etc. Employing our proposed wave control
on stacked metasurfaces can be very advantageous because
of the simplified hardware requirement; the control wiring
of each element on each metasurface can be substituted by
only one biasing TL for each metasurface. Biasing TLs could
be placed in multiple layers below the stacked metasurfaces
or next to each other in the same layer with DC-supporting
vias connected to the elements of each metasurface. The
presence of ground planes under the stacked metasurfaces
(to separate the biasing TLs) would require using the
multilayer RIS in reflection mode. When multiple biasing
TLs are used, particular attention should be paid to be
sure that the biasing signals do not interfere with each
other, by either using ground plane separations or by using
electromagnetic barriers made of shielding vias (like metallic
pins) between the biasing TLs on the same layer to improve
isolation. Further extensions to the basic RIS system are
under consideration, such as Simultaneously Transmitting
and Reflecting RISs (STAR-RISs) and other novel ways to
extend the bandwidth of RIS structures. The use of wave
control for these applications can be a new area of research.

REFERENCES

[1] C. Pan et al., “Reconfigurable intelligent surfaces for 6G systems:
Principles, applications, and research directions,” IEEE Commun.
Mag., vol. 59, no. 6, pp. 14-20, Jun. 2021.

[2] F. Capolino, A. Vallecchi, and M. Albani, “Equivalent transmission
line model with a lumped X-circuit for a metalayer made of pairs
of planar conductors,” IEEE Trans. Antennas Propag., vol. 61, no. 2,
pp. 852-861, Feb. 2013.

[3] D. Hanna, M. S. Melo, F. Shan, and F. Capolino, “A versatile
polynomial model for reflection by a reflective intelligent surface with
varactors,” in Proc. IEEE Int. Symp. Antennas Propagat. USNC-URSI
Radio Sci. Meeting (AP-S/URSI), 2022, pp. 679-680.

[4] E. Ayanoglu, F. Capolino, and A. L. Swindlehurst, “Wave-controlled
metasurface-based reconfigurable intelligent surfaces,” IEEE Wireless
Commun., vol. 29, no. 4, pp. 86-92, Aug. 2022.

[5] G. Ben-Itzhak, M. Saavedra-Melo, B. Bradshaw, E. Ayanoglu,
F. Capolino, and A. Lee Swindlehurst, “Design and operation prin-
ciples of a wave-controlled reconfigurable intelligent surface,” IEEE
Open J. Commun. Soc., vol. 5, pp. 7730-7751, 2024.

[6] H. Zhou, M. Erol-Kantarci, Y. Liu, and H. V. Poor, “A survey on
model-based, heuristic, and machine learning optimization approaches
in RIS-aided wireless networks,” IEEE Commun. Surveys Tuts.,
vol. 26, no. 2, pp. 781-823, 2nd Quart., 2024.

[71 G. Zhou, C. Pan, H. Ren, P. Popovski, and A. L. Swindlehurst,
“Channel estimation for RIS-aided multiuser Millimeter-wave
systems,” [EEE Trans. Signal Process., vol. 70, pp. 1478-1492,
Mar. 2022.

[8] C. Pan et al., “An overview of signal processing techniques for
RIS/IRS-aided wireless systems,” IEEE J. Sel. Topics Signal Process.,
vol. 16, no. 5, pp. 883-917, Aug. 2022.

[9] X. Hu, C. Masouros, and K.-K. Wong, “Reconfigurable intelligent

surface aided mobile edge computing: From optimization-based

to location-only learning-based solutions,” IEEE Trans. Commun.,

vol. 69, no. 6, pp. 3709-3725, Jun. 2021.

Y. Song, M. R. A. Khandaker, F. Tariq, K.-K. Wong, and A. Toding,

“Truly intelligent reflecting surface-aided secure communication using

deep learning,” in Proc. IEEE 93rd Veh. Technol. Conf. (VTC), 2021,

pp. 1-6.

J. Gao, C. Zhong, X. Chen, H. Lin, and Z. Zhang, “Unsupervised

learning for passive beamforming,” IEEE Commun. Lett., vol. 24,

no. 5, pp. 1052-1056, May 2020.

[10]

(11]

6663



BEN-ITZHAK et al.: AI-DRIVEN OPTIMIZATION OF WAVE-CONTROLLED RISs

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

(21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

(29]

(30]

[31]

[32]

6664

B. Sheen, J. Yang, X. Feng, and M. M. U. Chowdhury, “A deep
learning based modeling of reconfigurable intelligent surface assisted
wireless communications for phase shift configuration,” IEEE Open
J. Commun. Soc., vol. 2, pp. 262-272, 2021.

J. An et al., “Codebook-based solutions for reconfigurable intelligent
surfaces and their open challenges,” IEEE Wireless Commun., vol. 31,
no. 2, pp. 134-141, Apr. 2024.

Z. Yu, J. An, L. Gan, H. Li, and S. Chatzinotas, “Weighted codebook
scheme for RIS-assisted point-to-point MIMO communications,” IEEE
Wireless Commun. Lett., vol. 14, no. 5, pp. 1571-1575, May 2025.
J. An, C. Xu, L. Gan, and L. Hanzo, “Low-complexity channel
estimation and passive beamforming for RIS-assisted MIMO systems
relying on discrete phase shifts,” IEEE Trans. Commun., vol. 70, no. 2,
pp. 1245-1260, Feb. 2022.

Z. Yahong, L. Cuiran, and L. Yongjie, “Simulated annealing genetic
algorithm based RIS phase optimization in the high-speed communi-
cation of the railways,” in Proc. 8th Int. Conf. Commun., Image Signal
Process. (CCISP), 2023, pp. 1-5.

Z. Peng, T. Li, C. Pan, H. Ren, W. Xu, and M. D. Renzo,
“Analysis and optimization for RIS-aided multi-pair communications
relying on statistical CSI,” IEEE Trans. Veh. Technol., vol. 70, no. 4,
pp. 3897-3901, Apr. 2021.

M. Saavedra-Melo, K. Rouhi, and F. Capolino, “Wave-controlled
RIS: A novel method for reconfigurable elements biasing,” in Proc.
IEEE Int. Symp. Antennas Propagat. USNC-URSI Radio Sci. Meeting
(USNC-URSI), 2023, pp. 979-980.

F. Costa and M. Borgese, “Electromagnetic model of reflective intel-
ligent surfaces,” IEEE Open J. Commun. Soc., vol. 2, pp. 1577-1589,
2021.

D. Sievenpiper, L. Zhang, R. F. J. Broas, N. G. Alexopolous, and
E. Yablonovitch, “High-impedance electromagnetic surfaces with a
forbidden frequency band,” IEEE Trans. Microw. Theory Techn.,
vol. 47, no. 11, pp. 2059-2074, Nov. 1999.

S. R. Best and D. L. Hanna, “Design of a broadband dipole in close
proximity to an EBG ground plane,” I[EEE Antennas Propag. Mag.,
vol. 50, no. 6, pp. 52-64, Dec. 2008.

E. Basar, M. Di Renzo, J. De Rosny, M. Debbah, M.-S. Alouini,
and R. Zhang, “Wireless communications through reconfigurable
intelligent surfaces,” IEEE Access, vol. 7, pp. 116753-116773, 2019.
R. Achar and M. S. Nakhla, “Simulation of high-speed interconnects,”
Proc. IEEE, vol. 89, no. 5, pp. 693-728, May 2001.

A. Sedra, K. Smith, T. Carusone, and V. Gaudet, Microelectronic
Circuits (Oxford Series in Electrical and Computer Engineering).
Oxford, U.K.: Oxford Univ. Press, 2020.

G. Gradoni and M. Di Renzo, “End-to-end mutual coupling
aware communication model for reconfigurable intelligent sur-
faces: An electromagnetic-compliant approach based on mutual
impedances,” IEEE Wireless Commun. Lett., vol. 10, no. 5,
pp- 938-942, May 2021.

M. Yazdi and M. Albooyeh, “Analysis of metasurfaces at oblique inci-
dence,” IEEE Trans. Antennas Propag., vol. 65, no. 5, pp. 2397-2404,
May 2017.

S. Basharat, S. A. Hassan, H. Pervaiz, A. Mahmood, Z. Ding,
and M. Gidlund, “Reconfigurable intelligent surfaces: Potentials,
applications, and challenges for 6G wireless networks,” IEEE Wireless
Commun., vol. 28, no. 6, pp. 184-191, Dec. 2021.

X. Wei, D. Shen, and L. Dai, “Channel estimation for RIS assisted
wireless communications—Part I: Fundamentals, solutions, and future
opportunities,” IEEE Commun. Lett., vol. 25, no. 5, pp. 1398-1402,
May 2021.

D. Mishra and H. Johansson, “Channel estimation and low-complexity
beamforming design for passive intelligent surface assisted MISO
wireless energy transfer,” in Proc. IEEE Int. Conf. Acoust., Speech
Signal Process. (ICASSP), 2019, pp. 4659-4663.

A. L. Swindlehurst, G. Zhou, R. Liu, C. Pan, and M. Li, “Channel
estimation with reconfigurable intelligent surfaces—A general frame-
work,” Proc. IEEE, vol. 110, no. 9, pp. 1312-1338, Sep. 2022.

V. Franc and V. Hlava¢, “Greedy algorithm for a training set reduction
in the kernel methods,” in Proc. 10th Int. Conf. Comput. Anal. Images
Patterns, 2003, pp. 426—433.

Y. Sun, P. Babu, and D. P. Palomar, “Majorization-minimization
algorithms in signal processing, communications, and machine learn-
ing,” IEEE Trans. Signal Process., vol. 65, no. 3, pp. 794-816,
Feb. 2017.

[33]

[34]

[35]

[36]

(37

(38]

(391

[40]

[41]

[42]

[43]

[44]

[45]

[46]

(471

[48]

[49]

(501

(511

M.-C. Popescu, V. Balas, L. Perescu-Popescu, and N. Mastorakis,
“Multilayer perceptron and neural networks,” WSEAS Trans. Circuits
Syst., vol. 8, pp. 579-588, Jul. 2009.

K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward
networks are universal approximators,” Neural Netw., vol. 2, no. 5,
pp- 359-366, 1989.

M. A.J. Idrissi, H. Ramchoun, Y. Ghanou, and M. Ettaouil, “Genetic
algorithm for neural network architecture optimization,” in Proc. 3rd
Int. Conf. Logist. Opera. Manage. (GOL), 2016, pp. 1-4.

H. Ramchoun, Y. Ghanou, M. Ettaouil, and M. A. J. Idrissi,
“Multilayer perceptron: Architecture optimization and training,” Int. J.
Interact. Multimedia Artif. Intell., vol. 4, no. 1, pp. 26-30, Jun. 2016.
H. Taghvaee et al., “Radiation pattern prediction for metasurfaces:
A neural network-based approach,” Sensors, vol. 21, no. 8, p. 2765,
2021.

J. Sola and J. Sevilla, “Importance of input data normalization for the
application of neural networks to complex industrial problems,” I[EEE
Trans. Nucl. Sci., vol. 44, no. 3, pp. 1464-1468, Jun. 1997.

L. N. Smith, “A disciplined approach to neural network hyper-
parameters: Part 1—Learning rate, batch size, momentum, and weight
decay,” 2018, arXiv:1803.09820.

S. Forrest, “Genetic algorithms,” ACM Comput. Surv., vol. 28, no. 1,
pp- 77-80, 1996.

J. V. Domashova, S. S. Emtseva, V. S. Fail, and A. S. Gridin,
“Selecting an optimal architecture of neural network using genetic
algorithm,” Procedia Comput. Sci., vol. 190, pp. 263-273, Jan. 2021.
B. Ding, H. Qian, and J. Zhou, “Activation functions and their
characteristics in deep neural networks,” in Proc. Chin. Control Decis.
Conf. (CCDC), 2018, pp. 1836-1841.

M. Abadi et al. “TensorFlow: Large-scale machine learning on hetero-
geneous systems.” 2015. [Online]. Available: https://www.tensorflow.
org/

G. Shi, J. Zhang, H. Li, and C. Wang, “Enhance the performance of
deep neural networks via L2 regularization on the input of activa-
tions,” Neural Process. Lett., vol. 50, no. 1, pp. 57-75, Aug. 2019.
D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” 2017, arXiv:1412.6980.

V. Cerny, “Thermodynamical approach to the Traveling salesman
problem: An efficient simulation algorithm,” J. Optim. Theory Appl.,
vol. 45, pp. 41-51, Jan. 1985.

M. Merluzzi and A. Clemente, “Anomalous and specular reflections
of reconfigurable intelligent surfaces: Configuration strategies and
system performance,” IEEE Wireless Commun. Lett., vol. 13, no. 10,
pp. 2707-2711, Oct. 2024.

R. Zimmermann, “Manifold interpolation,” Model Order Reduct.,
vol. 1, pp. 229-274, Nov. 2021.

S. Chaturantabut and D. C. Sorensen, ‘“Nonlinear model reduction via
discrete empirical interpolation,” SIAM J. Sci. Comput., vol. 32, no. 5,
pp. 2737-2764, 2010.

J. An et al., “Stacked intelligent metasurface-aided MIMO transceiver
design,” IEEE Wireless Commun., vol. 31, no. 4, pp. 123-131,
Aug. 2024.

J. An et al., “Stacked intelligent metasurfaces for efficient holographic
MIMO communications in 6G,” IEEE J. Sel. Areas Commun., vol. 41,
no. 8, pp. 2380-2396, Aug. 2023.

GAL BEN-ITZHAK (Graduate Student Member,
IEEE) received the B.S. and M.S. degrees in
electrical engineering from the University of
California at Irvine, Irvine, CA, USA, in 2023
and 2024, respectively, where he is currently pur-
suing the Ph.D. degree. His current research and
professional interests include high-speed commu-
nications, optimization, digital signal processing,
high-speed circuit design, and signal integrity.

VOLUME 6, 2025



~IEEE

s IEEE Open Journal of the
Com3oc  communications Society

MIGUEL SAAVEDRA-MELO (Graduate Student
Member, IEEE) received the B.S. and M.S. degrees
in electronic engineering from the Universidad
Nacional de Colombia, Bogotd, Colombia, in 2014
and 2018, respectively. He is currently pursuing
the Ph.D. degree in electrical engineering with
the University of California at Irvine, Irvine, CA,
USA. His current research interests include elec-
tron beam devices, reflective intelligent surfaces,
and high-power microwaves.

ENDER AYANOGLU (Fellow, IEEE) received the

Ph.D. degree in electrical engineering from
Stanford University, Stanford, CA, USA, in
1986. He was with the Bell Laboratories

Communications Systems Research Laboratory,
Holmdel, NJ, USA. From 1999 to 2002, he was
a Systems Architect with Cisco Systems Inc.,
San Jose, CA, USA. Since 2002, he has been
a Professor with the Department of Electrical
Engineering and Computer Science, University
of California at Irvine, Irvine, CA, USA, where
he was the Director of the Center for Pervasive Communications and
Computing and the Conexant-Broadcom Endowed Chair, from 2002 to
2010. He was a recipient of the IEEE Communications Society Stephen
O. Rice Prize Paper Award in 1995, the IEEE Communications Society
Best Tutorial Paper Award in 1997, and the IEEE Communications Society
Communication Theory Technical Committee Outstanding Service Award
in 2014. In 2023, he received the IEEE Communications Society Joseph
L. LoCicero Award for outstanding contributions to IEEE Communications
Society journals as an Editor, the Editor-in-Chief (EiC), and the Founding
EiC. From 2000 to 2001, he was the Founding Chair of the IEEE-ISTO
Broadband Wireless Internet Forum, an industry standards organization.
He served on the Executive Committee for the IEEE Communications
Society Communication Theory Committee from 1990 to 2002, and its
Chair from 1999 to 2002. From 1993 to 2014, he was an Editor of
IEEE TRANSACTIONS ON COMMUNICATIONS. He was the Editor-in-Chief
of IEEE TRANSACTIONS ON COMMUNICATIONS from 2004 to 2008,
and the IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS-
Series on Green Communications and Networking from 2014 to 2016.
He was the Founding Editor-in-Chief of IEEE TRANSACTIONS ON GREEN
COMMUNICATIONS AND NETWORKING from 2016 to 2020. He served as
an IEEE Communications Society Distinguished Lecturer from 2022 to
2023 and will serve in the same capacity in 2024-2025.

VOLUME 6, 2025

FILIPPO CAPOLINO (Fellow, IEEE) received the
Laurea (cum laude) and Ph.D. degrees in electri-
cal engineering from the University of Florence,
Italy, in 1993 and 1997, respectively. From
1997 to 1999, he was a Fulbright and then
a Postdoctoral Fellow with the Department of
Aerospace and Mechanical Engineering, Boston
University, Boston, MA, USA. From 2000 to
2001, part of 2005 and in 2006, he was
a Research Assistant Visiting Professor with
the Department of Electrical and Computer
Engineering, University of Houston, Houston, TX, USA. From 2002 to
2008, he was an Assistant Professor with the Department of Information
Engineering, University of Siena, Italy. He has been a Visiting Professor
with the Fresnel Institute, Marseille, France, in 2003, and with the Centre de
Recherche Paul Pascal, Bordeaux, France, 2010. He is currently a Professor
with the Department of Electrical Engineering and Computer Science,
University of California at Irvine, Irvine, CA, USA. In 2022, he held the title
of Cathedra of Excellence with the University of Carlos III, Madrid, Spain.
He is an Editor of the Metamaterials Handbook (Boca Raton, FL, USA:
CRC Press, 2009). His current research interests include metamaterials and
their applications, antennas and wireless systems, sensors in both microwave
and optical ranges, millimeter wave technology, electron beam devices,
plasmonics, microscopy, optical devices, and applied electromagnetics in
general. He received the R. W. P. King Prize Paper Award from the IEEE
Antennas and Propagation Society for the Best Paper of the Year 2000, by
an author under 36. He was the Founder and an EU Coordinator of the
EU Doctoral Programs on Metamaterials from 2004 to 2009. From 2002
to 2008, he served as an Associate Editor for the IEEE TRANSACTIONS
ON ANTENNAS AND PROPAGATION. He is a Fellow of OPTICA.

A. LEE SWINDLEHURST (Fellow, IEEE) received
the B.S. and M.S. degrees in electrical engineering
from Brigham Young University (BYU) in 1985
and 1986, respectively, and the Ph.D. degree in
electrical engineering from Stanford University in
1991. He was with the Department of Electrical
and Computer Engineering, BYU from 1990 to
2007, where he served as the Department Chair
from 2003 to 2006. From 1996 to 1997, he
held a joint appointment as a Visiting Scholar
with Uppsala University and the Royal Institute
of Technology, Sweden. From 2006 to 2007, he was on leave working
as the Vice President of Research with ArrayComm LLC, San Jose,
CA, USA. Since 2007, he has been with the Electrical Engineering and
Computer Science Department, University of California Irvine, where he
is a Distinguished Professor and currently serving as the Department
Chair. His research focuses on array signal processing for radar, wireless
communications, and biomedical applications. He received the 2000 IEEE
W. R. G. Baker Prize Paper Award, the 2006 IEEE Communications Society
Stephen O. Rice Prize in the Field of Communication Theory, the 2006,
2010, and 2021 IEEE Signal Processing Society’s Best Paper Awards, the
2017 IEEE Signal Processing Society Donald G. Fink Overview Paper
Award, the Best Paper award at the 2020 and 2024 IEEE International
Conferences on Communications, the 2022 Claude Shannon-Harry Nyquist
Technical Achievement Award from the IEEE Signal Processing Society,
and the 2024 Fred W. Ellersick Prize from the IEEE Communications
Society. From 2014 to 2017, he was also a Hans Fischer Senior Fellow in
the Institute for Advanced Studies at the Technical University of Munich,
and in 2016, he was elected as a Foreign Member of the Royal Swedish
Academy of Engineering Sciences (IVA).

6665



