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ABSTRACT A promising type of Reconfigurable Intelligent Surface (RIS) employs tunable control of

its varactors using biasing transmission lines below the RIS reflecting elements. Biasing standing waves

(BSWs) are excited by a time-periodic signal and sampled at each RIS element to create a desired

biasing voltage and control the reflection coefficients of the elements. A simple rectifier can be used to

sample the voltages and capture the peaks of the BSWs over time. Like other types of RIS, attempting

to model and accurately configure a wave-controlled RIS is extremely challenging due to factors such

as device non-linearities, frequency dependence, element coupling, etc., and thus significant differences

will arise between the actual and assumed performance. An alternative approach to solving this problem

is data-driven: Using training data obtained by sampling the reflected radiation pattern of the RIS for

a set of BSWs, a neural network (NN) is designed to create an input-output map between the BSW

amplitudes and the resulting sampled radiation pattern. This is the approach discussed in this paper. In the

proposed approach, the NN is optimized using a Genetic Algorithm (GA) to minimize the error between

the estimated and measured radiation patterns. The BSW amplitudes are then designed via Simulated

Annealing (SA) to optimize a signal-to-leakage-plus-noise ratio measure by iteratively forward-propagating

the BSW amplitudes through the NN and using its output as feedback to determine convergence. The

resulting optimal solutions are stored in a lookup table to be used both as settings to instantly configure

the RIS and as a basis for determining more complex radiation patterns.

INDEX TERMS Neural network (NN), simulated annealing (SA), genetic algorithm (GA), reconfigurable

intelligent surface (RIS), machine learning (ML).

I. INTRODUCTION

ARECONFIGURABLE Intelligent Surface (RIS) is a

promising building block for next-generation wire-

less networks, potentially solving issues related to limited

coverage, sensitivity to blockages, high path loss, etc.,

by providing alternative propagation paths and enabling

beamforming for desired directions [1]. An RIS is a type

of metasurface [2], [3] consisting of periodic arrangements

of subwavelength-sized passive reflecting elements whose

reflection coefficients can be individually controlled.

The RIS architecture studied in this paper is illustrated in

Fig. 1, and is based on the general wave-controlled approach

described in [4]. In this approach, biasing standing waves

(BSWs) are excited on a transmission line (TL) behind the

RIS structure and sampled at discrete locations to provide

the DC bias voltages for varactor diodes that modulate

the reflection coefficients. In a previous paper [5], various

optimization algorithms were developed that demonstrate the

capability of the wave-controlled RIS to create beams and

nulls in the radiation pattern for multiple desired directions.

The performance of the optimization algorithms was demon-

strated for two different types of voltage sampling circuits:

a rectifier that is easier to implement but more difficult to

use for optimization, and a sample-and-hold circuit, which

is more costly to implement but enables analytical solutions

to the beam pattern optimization problem.
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FIGURE 1. Wave-controlled RIS composed of two physical layers [5]. Top layer: M

elements in each row along the x direction, where each element is connected to a

varactor diode. Bottom layer: N BSWs are excited on each TL to create the biasing

voltages sampled at each RIS element. Each row is controlled via the connection on

the left where a signal with N adjustable frequency components is injected by a

waveform generator. Adjacent metallic patches and varactors on the top layer, and

adjacent DC voltage outputs on the bottom layer are uniformly separated by distance

dx in the x direction and dy in the y direction.

In this work, we consider the rectifier implementation,

where the beam pattern optimization is nonlinear and

constrained, and we assume the RIS is deployed in an

unknown environment without knowledge of channel state

information (CSI). Thus, there is no exact mathematical

model that can be used to predict the response created by

the RIS to an excitation by the BSWs. Consequently, we

will turn to the use of machine learning (ML) tools to solve

the RIS configuration problem.

Optimizing the wireless propagation environment using

RIS has been prevalently explored through various

optimization algorithms, including model-based, ML-based,

and heuristic approaches, as well as hybrid methods combin-

ing multiple techniques [6]. While model-based optimization

offers theoretical rigor, its practical application is hindered

by discrepancies between simulations and real-world envi-

ronments and circuitry. Conventional mathematical models

fail to account for frequency-dependent behavior and device

nonlinearities, and direct control of individual RIS reflection

coefficients is constrained by element coupling.

The ML-based approaches discussed in [6] show applica-

tions in CSI prediction, RIS phase control and optimization,

and have demonstrated effectiveness in improving data rates

and secrecy rates. However, many rely on assumptions

regarding CSI availability, for example, considering using

partial CSI to predict full CSI or RIS phase shifts to

maximize the data rate. This is often impractical, or at

least difficult to implement, due to the complexity of

CSI acquisition with passive RIS [7], [8]. Additionally,

neural network (NN) architecture design presents its own

challenges, including susceptibility to overfitting. Common

mitigation techniques include adding dropout layers [9],

expanding datasets, and reducing the number of hidden

layers [10]. Yet, hyperparameter tuning remains case-specific

and labor-intensive. The specific types of nonlinearities

exploited by the NN must be carefully chosen, such that it

may require many iterations to train an ML model, which

may not guarantee optimality. A systematic framework for

model development and evaluation is thus desirable. Other

work has shown the feasibility of using unsupervised learning

for Signal-to-Noise Ratio (SNR) maximization in a single-

user scenario, but it also prompts scalability concerns as

the size of the dataset grows with the number of RIS

elements [11].

Recent work has applied deep-learning methods to

capture the relationships between RIS configurations and

achievable rates [12]. It proposes using a Deep Neural

Network (DNN) to model the RIS-assisted environment

and optimize the achievable rate at a given user direction

by sweeping the entire codebook of RIS configurations

as inputs to the DNN for inference. However, inference

based on exhaustive codebook search introduces latency,

which grows significantly with the number of RIS elements

and allowable configurations. Other codebook approaches

used for channel estimation and passive beamforming RIS

design are explored in [13], [14], [15]. While codebook-

based approaches provide structured solutions, they rely

on predefined phase shifts, limiting flexibility in complex

environments. More training iterations would be required as

new users are introduced, or existing users move around.

In the approach presented in this paper, we address

these shortcomings. In particular, we focus on the use of

wave-controlled RIS, which as described above is a novel

architecture that accommodates the physical limitations of

an RIS and simplifies the hardware required to operate

it. The wave-controlled RIS achieves reduced-dimension

control of the M RIS elements by configuring N � M

BSW amplitudes on a TL. This approach also accounts

for the coupling between RIS elements by maintaining a

relatively smooth variation in the voltage profiles across

adjacent elements. We assume the BSW amplitudes can each

be configured continuously and are not confined to a discrete

codebook, thus enhancing the versatility of the system. We

address challenges in system modeling and optimization by

employing a data-driven method that does not require explicit

CSI or real-time feedback. Our methodology involves:

1) Training Data Collection: Randomly exciting the RIS

and sampling the received power at specific directions.

2) Neural Network Design and Optimization: Designing

an NN to estimate the input-output relationship

between BSW amplitudes and received powers, with

architecture refinement automated via a Genetic

Algorithm (GA).

3) Passive Beamforming via Simulated Annealing (SA):

Using a heuristic approach for offline optimization of

beam patterns based on a signal-to-leakage-plus-noise

ratio (SLNR) metric, using feedback from the NN

during iterations of the algorithm.

4) Efficient Lookup Table Deployment: Storing optimized

BSW configurations for rapid RIS beam steering and
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future complex radiation pattern adjustments, using the

existing configurations as initialization for SA.

By departing from conventional codebook-based methods

and eliminating the need for direct CSI acquisition, our

framework provides a more adaptable and scalable solution

for RIS optimization. Sampling powers at directions of

interest allows us to represent the entire RIS-aided wireless

environment as a radiation pattern which can be customized

based on desired quality of service metrics. We note

that previous success in using heuristic algorithms for

RIS optimization, in particular using SA and GA, has

been explored in literature, see for example [5], [16], [17].

However, in this work we introduce the novel approach

of using a GA as an automation tool to optimize the NN

architecture and hyperparameters, while using SA to generate

optimal sets of BSWs to configure the RIS phase shifts for

a desired beam pattern, employing feedback from the NN

during inference.

We would like to note that a main novelty in this paper

is the fact that its set of algorithms are specifically designed

for the wave-controlled RIS. However, we would also like

to note that the approaches used in this paper do not hold

only for the wave-controlled RIS, but also for other RIS

optimization scenarios where parameters other than the BSW

amplitudes can be optimized, such as varactor bias voltages

or direct reflection coefficients.

The paper is organized as follows. Section II presents

the electromagnetic and circuit models for simulating the

wave-controlled RIS. Section III outlines the ML-based

RIS control, dataset creation, and GA-driven optimization.

Section IV integrates SA and the ML model for beamforming

and nullforming, and shows simulation results. Section V

evaluates the performance gain achieved by employing the

lookup table, also backed by simulations.

II. MODEL, ASSUMPTIONS, AND NOTATION

A. RIS MODEL

In Fig. 1, we show an RIS with uniform linear arrays (ULAs)

of M metallic patches in the x direction with period dx. The

figure shows three parallel linear arrays as an example. Each

RIS element is connected to a varactor diode which is used

to vary the reflective properties of the element, as illustrated

in Fig. 2. On the backside of the structure, there is a biasing

TL of length L along x on which a set of N BSWs are

excited over the entire length of the TL. We assume that

the fundamental standing wave is resonant with the total TL

length Ltot, leading to the fundamental angular frequency

ωb = 2π fb = πvph/Ltot [18]. The other BSWs oscillate at

the harmonic frequencies nfb, with n = 1, 2, . . . ,N. The

overall BSW signal, assuming a short circuit termination at

the end of the biasing TL, is given by

w(x, t) = W0 +
N

∑

n=1

Wn sin

(

nπ(x+ Lleft)

Ltot

)

sin(nωbt), (1)

where the individual BSWs are controlled by tuning

their amplitudes, which are stored in the vector W =

FIGURE 2. RIS unit cell geometry. Each rectangular metallic conductor is biased by

the sampled voltage through a via and connected to a grounded varactor. The

reverse-biased varactors act as tunable capacitors to polarize the incident electric

field along the y direction.

FIGURE 3. Geometry of the biasing TL. The length Lp of the TL path for one unit cell

and the distance dx between two adjacent rectifier circuits are detailed. These circuits,

which rectify the BSWs [5], are located at the bottom, with one assigned to each RIS

element. The voltage w (xm, t) is extracted from the biasing TL at the location m, while

the rectified voltage w (xm) provides the bias to the varactor of the mth element.

w (xm, t) is rectified using the diode Dr and by following its envelope or peaks through

the RC circuit shown, with a carefully chosen time constant to minimize voltage drops

in w (xm) due to capacitor discharge.

[W1,W2, . . . ,WN]. The W0 term is a DC component used

to center the biasing of the varactors on their best working

range for capacitance control.

To minimize the control signaling overhead and reduce

the variation of the bias voltage from element to element,

it is desired that N � M. Connected to each RIS element

with a vertical via is a rectifier circuit, shown in Fig. 3,

which rectifies the BSW signal at each RIS element location

xm = mdx, with m = 0, 1, 2, ..M−1. We define the reference

point x = 0 at the location where the first rectifier is located

and Lleft as the length of the biasing TL in the x direction

before (to the left of) this detector. We also define Lright as

the length of the biasing TL between the last rectifier and

the short circuit at the end of the TL on the right. The total

length of the waveguide along x is given by

Ltot = Lleft + L+ Lright. (2)
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The voltage variation along x for each BSW is based

on the phase velocity vph, which we assume due to low

frequency dispersion to be the same for all the waves. The

phase velocity is given by vph = c/nslow, where c is the

speed of light and nslow is the slowness factor that depends

on the geometry and material properties of the biasing

TL. As shown in Fig. 3, Lp represents the physical path

length between two adjacent DC voltage outputs along the

biasing TL, while dx is the corresponding separation along

the x direction. The effective refractive index, neff, of the

biasing TL is determined by its effective permittivity εeff as

neff = √
εeff. Consequently, the slowness factor in this case

is given by nslow = (Lp/dx)neff.

The voltage is uniformly sampled at discrete locations

xm = mdx, where m = 0, 1, . . . ,M − 1, and 0 ≤ xm ≤ L.

We rewrite (1) in terms of the RIS element indices m as

w(mdx, t)

= W0 +
N

∑

n=1

Wn sin

(

nπ(mdx + Lleft)

Ltot

)

sin(nωbt). (3)

The varactor diode connected to each RIS element is biased

in reverse using the rectifier circuit as in the inset of Fig. 3.

We assume that the rectified voltage of the BSWs at

each discrete location xm is equivalent to the peak voltage

(maximum voltage at each location over time), yielding

w(mdx) = W0

+ max
t

(

N
∑

n=1

Wn sin

(

nπ(mdx + Lleft)

Ltot

)

sin(nωbt)

)

,(4)

with W0 taken out of the maxt(·) term as it is a constant

independent of time. This positive voltage is then applied

at the cathode of the varactor, thus reverse-biasing it, deter-

mining its capacitive properties, and consequently tuning

the reflection coefficient of the RIS element to provide the

desired response.

Each RIS unit cell shown in Fig. 2 is designed with

(all dimensions in mm) A = 20, A1 = 18.5, B = 72.7,

B1 = 36.7, D = 1.27. The dielectric spacer is the substrate

Rogers RT5880LZ, with relative permittivity εr = 2 and

dielectric loss tan(δ) = 0.0021. To simulate the tunable

impedance of each RIS element, the equivalent circuit model

shown in Fig. 4 is used and optimized with full-wave

simulations [3], [19]. The unit cell elements have resistance

Rd = 0.1671 �, capacitance Cd = 0.97821 pF, and induc-

tance Ld = 1.9177 nH. There is an additional inductive term

Ls = 1.5959 nH in parallel to the unit cell element and

varactor that accounts for the grounded substrate, creating

the “magnetic resonance” effect discussed in [2], [20], [21].

The varactor SMV1231-040LF provided by Skyworks

Solutions, Inc. is chosen due to its desirable characteristics,

including resistance below 0.6 � and low series inductance

(0.45 nH) for our frequencies of interest. The varactor is

modeled by an equivalent series RLC circuit with inductance

Lv, capacitance Cv(V), and resistance Rv(V). The inductance

FIGURE 4. Analytical model of the RIS unit cell including an RLC model of the

varactor to calculate the reflection coefficient as a function of frequency or varactor

biasing voltage. The equivalent impedance ZRIS is used to find the reflection

coefficient �.

FIGURE 5. Equivalent resistance and capacitance for the SMV1231-040LF varactor

as functions of the biasing voltage across the varactor model shown in Fig. 4.

Lv = 2.34 nH is constant and models the package and

parasitic inductance when the varactor is connected across

the gap. The values for Cv(V) and Rv(V) shown in Fig. 5

are obtained from a parametric sweep simulation using

Advanced Design System (ADS) software, as functions of

the reverse voltage bias across the varactor model provided

by the vendor, limited to the range [4 V, 15 V].

The total equivalent RIS impedance is expressed by

ZRIS

=
(

Rd + jωLd +
(

Rv + jωLv + 1

jωCv

)

‖ 1

jωCd

)

‖jωLs,

(5)

and is used to determine the reflection coefficient of the RIS

elements by

� = ZRIS − Z0

ZRIS + Z0

, (6)

where Z0 is the free-space impedance. This model predicts

the magnitude and phase of the local reflection coefficient

for variable frequency and varactor biasing voltage V . An

example is given in Fig. 6, where the magnitude and phase of

the reflection coefficients as functions of the varactor reverse

bias voltage are plotted for the frequency fc = 2.45 GHz.
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FIGURE 6. Reflection magnitude and phase of the RIS unit cell described in Fig. 2

as functions of the reverse bias voltage across the varactor at the carrier frequency

fc = 2.45 GHz.

TABLE 1. Mathematical notations.

The main notations used in this work are summarized in

Table 1.

B. SIGNAL MODELS

We adopt the assumptions of [5], where all channels are

narrowband line-of-sight (LoS), flat-fading, and in the far-

field. There is a single-antenna transmitter (Tx) and K

single-antenna receivers (Rxs), with no direct path between

the Tx and each one of the Rxs. The signal yk at the k-th

Rx is given by

yk = hTk�gs+ nk, (7)

where s is the transmitted signal, nk is Additive White

Gaussian Noise (AWGN), and hk and g are the M × 1

channels from the RIS to the k-th Rx and from the Tx to

the RIS [22]. The RIS response is represented by a diagonal

matrix containing the RIS reflection coefficients:

� = diag[�(0), �(1), . . . , �(M − 1)]. (8)

The element responses are passive (|�(m)| ≤ 1 for all m =
0, 1, . . . ,M − 1) and are determined by the biasing voltage

applied to the m-th RIS element. The Tx is assumed to be

located at the broadside of the RIS, at the far-field, such that

there is normal incidence of the signal on all RIS elements,

so the Tx-RIS channel is given by

g = [1, 1, . . . , 1], (9)

and the channels from the RIS to each Rx are given by the

steering vectors of the form

h(θk) =
[

1, e−jκ(θk), e−j2κ(θk), . . . , e−j(M−1)κ(θk)
]

, (10)

where θk is the azimuth angle of the k-th Rx from the

RIS with spatial frequencies κ(θ) = 2π(dxfc/c) sin(θ).

We assume the far-field channels remain static during the

operation of the RIS, to ensure the integrity of the ML model

designed by the initial training data.

The SNR at each Rx k is defined as the ratio of the

received signal power divided by the noise power σ 2
s :

SNRk =
|E

[

yk
]

|2
σ 2
s

=
|E

[

hTk�gx
]

|2
σ 2
s

= ρs|hTk�g|
σ 2
s

, (11)

where ρs is the average transmitted symbol power. To evalu-

ate the feasibility of shaping the radiation patterns generated

by the wave-controlled RIS, we define the following SLNR

(Signal-to-Leakage-plus-Noise Ratio) measure for K ≥ 1

desired Rx and L ≥ 0 undesired Rx (“eavesdroppers”):

max
W

SLNR = max
W

mini∈{1,2,...,K} ρs|hTd,i�g|2

maxj∈{1,2,...,L} ρs|hTe,j�g|2 + σ 2
s

, (12)

where each hd,i denotes the channel from the RIS to the

i-th desired Rx, and he,j denotes the channel from the RIS

to the j-th eavesdropper Rx. The independent variable used

for optimization is W, the vector containing all the BSW

amplitudes, which determines the reflection coefficients in �.

We choose the SLNR metric since it is well suited for

quantifying performance in terms of beam patterns, and is

general enough to apply in cases whether or not one wishes

to steer a null in a particular direction.

III. MACHINE LEARNING MODEL DESIGN AND

CALIBRATION

A. BACKGROUND

Numerous factors differentiate the ideal RIS model often

used in simulations from the actual behavior of an RIS

in a physical environment. Starting with the design of the

biasing TL, there may be impedance mismatches, losses,

and reflections along the path, creating signal losses and

distortion [23]. Since the wave-controlled RIS operates with

a wide range of BSWs, there may be frequency-dependent

losses along the biasing TL and other nonlinearities caused

by skin effects, noise, crosstalk, as well as jitter and

phase delays from the waveform generator. There is also

a non-negligible voltage drop across the rectifier diode.

Depending on the peak detector architecture, its output
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FIGURE 7. The RIS and channel response are represented by the function f (W)

which takes an input set of BSW amplitudes W and outputs a radiation pattern. The

radiation pattern P′ is sampled at specific locations and stored as P. An NN is then

trained to estimate the sampled power values P̂ from the same data, where the MSE

between the actual and estimated power values is used as the loss function L.

voltage could be affected by the charging and discharging

times of the capacitor. These and other non-ideal effects are

difficult to model, and can only be characterized using full-

wave simulations or extensive experimental measurements.

Furthermore, the reflection coefficients created by the var-

actor biasing may not be perfectly modeled, as varactor

characteristics may vary due to environmental (thermal),

fabrication, and electrical conditions [24], as well as mutual

coupling between elements [25]. The metasurface response

also varies according to the angle of arrival of the incoming

signal [26]. Lastly, there is the issue of channel estimation

for the Tx-RIS and RIS-Rx links required to simulate the

performance of the entire system and optimize the resulting

beam patterns [27], [28], [29], [30].

Rather than relying on mathematical models that attempt

to mimic the RIS and physical environment, an alternative

is to use data from the environment in which the RIS is

deployed to characterize the behavior of the entire system

– from the input BSW amplitudes to the waveguide and

to the resulting radiation patterns. When an RIS is initially

deployed, CSI is unavailable and the waveform sampling

required to excite the metasurface is unknown. To learn

how the system behaves, we can excite the RIS with a

combination of BSW amplitudes and sample the power

obtained at receivers in different directions of interest. This

procedure can be repeated many times to obtain improved

knowledge of the input-output relationship of the system,

which can in turn be used to design an ML model that models

this relationship. The corresponding functional representation

of the system and the ML model training procedure can be

visualized as in Fig. 7. If the ML model is well calibrated,

it will provide a sufficiently accurate representation of

the nonlinear and complex mapping between the BSW

amplitudes and the sampled powers, and can be used to

perform offline optimization to obtain the desired beam

patterns. Once found, the optimal BSW amplitudes are used

to excite the physical RIS and create the actual radiation

patterns. Thus, this ML-based approach does not require any

knowledge of CSI or channel estimation for the beam pattern

optimization.

The main problems that must be solved when using this

approach include

1) What combinations of BSW amplitudes should be used

to excite the RIS?

2) Which ML model provides a sufficiently generalized

representation of the system?

The answer to the first question requires some knowledge

of the system, such as how large should the maximum

voltage swing on the biasing TL be. For this question, for

example, we can simulate the ideal scenario where there is

no attenuation on the biasing TL, and use these results to

verify that the peak voltage generated by each set of BSW

amplitudes will not exceed the maximum voltage swing

constraint. The answer to the second question requires a

deeper analysis of available network architectures and their

optimization. Creating a map between the N input BSW

amplitudes and the nangles spatially distributed power values

at the receivers is fundamentally a regression problem. Since

the map is high-dimensional, nonlinear, and complex, most

kernel methods and surrogate function estimators that involve

linear transformations and interpolations between training

samples will fail. Such approaches also require large matrix

operations as more training samples are added [31], [32].

An NN, or more specifically, a fully-connected (dense)

Multilayer Perceptron (MLP) [33] is a better approach for

modeling the system, as they achieve universal function

approximation by leveraging multiple layers of nonlinear

functions with many hidden variables [34]. The MLP

approach takes an input set of N BSW amplitudes, prop-

agates them through multiple hidden layers with nonlinear

activation functions, and provides as output a set of nangles
power values from the corresponding radiation pattern,

sampled at discrete locations. This is a supervised learning

problem, where the network tries to minimize the mean

squared error (MSE) between the actual and estimated

outputs, while also generalizing the complex relationship

between the BSW amplitudes and their corresponding

radiation patterns. To come up with a good MLP architecture

for the given problem, one may manually design an optimal

MLP through trial-and-error, but this process is highly

time-consuming. Moreover, the architecture of the RIS, the

numbers of inputs and outputs, the frequencies of the BSWs,

the locations of the Rx, the channel models, and many

other factors affect the regression map, often in a case-

by-case manner. As a result, no single MLP architecture

can be generalized for every RIS modeling problem across

all environments. To address this challenge, rather than

manually tuning the MLP architecture for each case, an

optimization algorithm can automate the process by creating

an MLP that accurately models the input-output relationship
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while satisfying architectural constraints. We propose using

a GA that creates a diverse pool of MLPs trained via

back-propagation, refined through evolution, and optimized

to minimize validation loss – thereby enhancing model

performance [35], [36].

The following subsections will address the data processing

steps required to use the GA to generate an MLP that will

estimate the desired mapping with high accuracy. It is impor-

tant to note that the procedures discussed in this paper are not

only relevant for the specific wave-controlled RIS, rectifier-

based multi-user beamforming problem considered here. The

proposed procedure and algorithms can be generalized to

other RIS modeling and optimization problems, including

calibration of a wave-controlled RIS with the sample-and-

hold circuit in [5].

B. DATA GENERATION AND PROCESSING

Simulation of a wave-controlled RIS and corresponding wire-

less channels was executed using MATLAB with the models

defined in Section II. The RIS is modeled as a single-row

surface with M = 100 elements, biased by a superposition

of N = 25 BSWs. The RIS elements are separated by

dx = 20 mm, while behind the surface the length of the TL

path between adjacent rectifiers is Lp = 131.42 mm. The

effective permittivity of the TL is εeff = 8.66, and therefore

the slowness factor is nslow = 19.34. The transmitted signal

has carrier frequency fc = 2.45 GHz, and the DC voltage

offset is W0 = 4 V, as this is the minimal voltage required

to excite the varactor, and as seen in (3), the BSWs will

always create a higher voltage than W0 at any RIS element

location. This allows generation of voltages across the entire

allowable range of the varactor. The distance between the

beginning of the TL and the first RIS element along the x

direction is Lleft = 0.5dx. The distance is the same between

the last RIS element and the end of the TL. For better

control of the voltage over the length L = 99dx used to

bias the RIS elements, an additional TL of the same length

and geometry as the first biasing TL is connected at its end

through a 50 mm connector. Thus, the overall length from

the last varactor to the end of the extended TL, normalized

by dx/Lp, is

Lright = 0.5dx + 50mm · dx

131.42mm
+ 100dx ≈ 100.88dx

(13)

This extended TL results in a fundamental BSW frequency

of fb = 1.93 MHz.

To enable good coverage of the 25-dimensional input

space, a dataset was generated with Nmax = 100,000 pairs

of data arrays, each consisting of a random W array

of voltages as the input, and samples from the resulting

radiation pattern vector P in dB as outputs when the RIS

waveguide is excited by the corresponding BSWs. The

azimuth angles corresponding to the sampled points on

the radiation pattern are in the interval [−60◦, 60◦]. The

simulated 3 dB beamwidth for the given M = 100 element

Algorithm 1 Dataset Generation

1: i ← 0

2: while i < Nmax do

3: W ← [0, 0, . . . , 0]T

4: W(n) ← sample from |N (0, σ 2
1
)| for n = 1, . . . ,N.

5: k ← integer sample from U(1,N).

6: S ← unique set of k uniformly chosen integers from

1 to N.

7: W(n) ← sample from |N (0, σ 2
2
)| ∀n ∈ S.

8: Calculate maximum absolute value vmax of the

resulting BSW superposition over time from W0 and W.

9: if vmax is out of varactor biasing bounds then

10: Go back to line 3.

11: end if

12: Sample the power at all nangles desired directions,

store in P.

13: Store W and P as Wi and Pi.

14: i ← i+ 1

15: end while

RIS is approximately 1.7◦, so we used discrete steps of 1.5◦

spaced uniformly between [ − 60◦, 60◦], resulting in power

samples at nangles = 81 different angles.

To reduce the likelihood of producing chaotic radiation

patterns caused by fully randomized inputs which will

negatively affect the learning by the MLP [37], the following

methodology is proposed. Since the MLP will later be

used to estimate the model for optimization by SA, which

randomly perturbs all the BSW amplitudes in the input

vector to converge towards an optimal SLNR measure, a

small random Gaussian voltage with a standard deviation

σ1 = 0.008 V whose absolute value is taken, is added to

all elements of an initially empty W. A randomly selected

subset of the BSW amplitudes is then excited by Gaussian-

distributed voltages with a much larger standard deviation

σ2 = 0.8 V, also converted to absolute values, to put

more emphasis on those BSWs and create more unique

radiation patterns. Note that only positive voltage amplitudes

are used to reduce the dataset complexity by truncating

the Gaussian distributions by taking the absolute values of

their samples. This ensures that only the amplitudes of the

BSWs are modulated, rather than both the amplitudes and

the phases. The entire procedure to create the training dataset

is described in Algorithm 1. Since we use back-propagation

and gradient descent, it is beneficial to normalize the data

to improve convergence [38]. In particular, we scale each

of the 100,000 W vectors to be within the range [0, 1],

and we scale the resulting power values in P to be in the

range [−1, 1].

C. NEURAL NETWORK OPTIMIZATION USING A

GENETIC ALGORITHM

Optimizing MLP hyperparameters is a challenging task due

to the high-dimensional, non-convex nature of the search

space. These hyperparameters–including the number of

6656 VOLUME 6, 2025



hidden layers, node counts, activation functions, and training

parameters–are not independent; rather, they interact in a

complex, non-linear fashion [39]. Traditional optimization

techniques such as grid search or gradient-based methods

often struggle with these challenges, either requiring exces-

sive computational resources or failing to escape local optima

in the search space.

To efficiently navigate this optimization problem, we

leverage a GA, a global search technique inspired by natural

evolution [40]. GA excels in exploring large, non-convex

solution spaces by maintaining a diverse population of

candidate architectures and evolving them iteratively. Unlike

gradient-based methods, GA does not require differentiabil-

ity, making it well-suited for optimizing discrete and mixed

hyperparameters. Additionally, crossover and mutation oper-

ators enable GA to generate novel MLP architectures,

ensuring efficient convergence toward an optimal design.

While GA has been successfully applied to classification

tasks, as demonstrated in [41], its flexibility allows us to

adapt the approach for regression problems. By customizing

crossover and mutation mechanisms to handle variable

hyperparameter counts, GA becomes a powerful tool for

automating MLP architecture optimization, enhancing model

performance while eliminating manual tuning efforts. The

following GA adaptation ensures effective exploration of the

hyperparameter space, leading to robust MLP architectures

optimized for regression tasks:

• Initial population – We start with a collection of

MLP realizations or “individuals” with randomly chosen

numbers of epochs, batch sizes, numbers of hidden

layers, numbers of neurons in each layer, and types of

activation functions.

• Objective – The fitness of each MLP is defined as

the validation loss from training it on the same dataset

containing the RIS BSW amplitudes and corresponding

radiation patterns, by evaluating the MSE between the

predicted radiation patterns and the actual radiation

patterns for a given BSW amplitudes array.

• Parent selection – Parents are randomly selected

individuals from the population, and their children

are reproductions of themselves with probabilities for

crossover and mutation.

• Crossover – The number of epochs, batch size, and

number of hidden layers of the child are each chosen

to be equal to the corresponding value of one of the

parents with equal probability between the two parents.

For each hidden layer, the child will inherit randomly

the activation function and the number of nodes from the

corresponding layer of either parent. If the number of

hidden layers of the parents are different, then there may

be a case where the child inherits the larger number of

layers, which is best explained by an example. Suppose

that Parent A has 5 hidden layers, Parent B has 3 hidden

layers, and the child has 5 hidden layers. Hidden layers

1-3 of the child will have randomly chosen parameters

between layers 1-3 of each parent. For layers 4-5, the

parameters will be randomly chosen between layers 4-5

of Parent A, or layer 3 of Parent B.

• Mutation – Only occurs when a child has a larger

number of hidden layers than one of the parents. This

involves random shuffling of the number of nodes and

activation functions between all hidden layers of the

child.

• Evolution – Only the fittest k individuals from the

current population (the original MLPs and the chil-

dren) move to the next generation, where individuals

reproduce again and the cycle repeats. The number k

decreases during each evolution step.

The algorithm converges after the populations evolve all the

way to a single MLP with the lowest validation loss.

In our simulations, the GA was implemented with ran-

domly chosen parameters for each MLP from the following

sets:

• Number of epochs: {80, 81, . . . , 200}.

• Batch sizes: {32, 64, 128, 256, 512, 1024}.

• Number of hidden layers: {1, 2, . . . , 6}.

• Number of nodes per hidden layer: {64, 128, 256, 512,

1024, 2048}.

• Activation functions [42]: {ReLU, PReLU, Sigmoid,

Tanh}.

The initial population has R randomly generated individuals.

Then, R
2
randomly selected pairs of parents are chosen with

replacement to have 2 children each. From both the original

population and the new children, a population of k = R
2

individuals with the lowest validation loss is created. This

process is repeated until there is only a single individual left.

In our simulations, we chose R to be 64 as a good tradeoff

between the number of solutions explored versus the time

to convergence. A total of 190 MLPs were trained, and the

population evolved over 7 generations until the final MLP

was determined.

The MLPs were generated and trained using TensorFlow

Keras in Python [43]. All MLPs were trained with an L2

regularization penalty of 5 × 10−7 to improve generaliza-

tion [44], using the Adam Optimizer [45] and the MSE

loss between the actual and predicted scaled power values.

The learning rate is reduced by half if the validation loss

stops improving after 20 consecutive epochs, and the training

is terminated if the validation loss does not improve after

30 consecutive epochs. The training set consisted of the

first 90,000 samples from the dataset and the validation set

consisted of the last 10,000 samples. The fitness of each

MLP was determined by its validation loss.

The final MLP architecture that resulted from the GA

optimization has 5 hidden layers with nodes and activation

functions as illustrated in Fig. 8. The MLP has a batch

size of 128 and goes through 147 training epochs. The

final MSE training loss was 7.4851 × 10−4 and the final

MSE validation loss was 8.4779 × 10−4. We note that

the converged MLP architecture may be sufficient for this

VOLUME 6, 2025 6657



BEN-ITZHAK et al.: AI-DRIVEN OPTIMIZATION OF WAVE-CONTROLLED RISs

FIGURE 8. Illustration of the proposed NN, including bias nodes (green) in the input

layer and each hidden layer. The number and type of activation functions in each layer

are given above each layer. The black arrows correspond to the weights between

neurons. Inputs flow from the left, through the neurons in the hidden layers of the

network, to the outputs on the right.

implementation of the wave-controlled RIS with rectifiers,

N = 25 BSWs, M = 100 elements, and the channel

models described in Section II. For other channel models

or RIS architectures, an MLP that effectively generalizes

the mapping between BSW amplitudes and received powers

will likely be different. This highlights the importance of

automating MLP parameter tuning using the prescribed GA.

IV. OFFLINE OPTIMIZATION USING SIMULATED

ANNEALING

A. MACHINE LEARNING MODEL PERFORMANCE

The NN models the system as the mapping R
N → R

nangles

denoted by the nonlinear function f̂ (W) = P̂, where it is

desired that P̂ ≈ P, as illustrated in Fig. 7. We are interested

in offline optimization of the BSW amplitudes to configure

the RIS to produce a desired radiation pattern. For this

optimization, SA [46] is a reasonable choice, given our

prior success using it to create SLNR-optimized radiation

patterns for the wave-controlled RIS implemented with the

rectifiers [5]. In this case, the NN can be used to estimate

the powers sampled at specific directions after each update

of W as the SA converges towards improved SLNR values.

Once the algorithm converges to a particular set of optimal

BSW amplitudes, these amplitudes can be used to recon-

figure the physical RIS and generate the optimal radiation

pattern.

We used a similar SA algorithm as in [5] to determine

the BSW amplitudes that optimize the SLNR, as outlined in

Algorithm 2. This is a stochastic optimization that randomly

perturbs the set of BSW amplitudes as it searches for

improved SLNR. The algorithm starts at a “high energy”

state corresponding to a maximum temperature parameter

T , in which it is more likely to explore different BSW

amplitudes even if they do not necessarily produce better

SLNR values. This ultimately helps in escaping local

minima. As the algorithm converges over multiple iterations,

it moves to a “lower energy” state with a low value for

T , where it is less likely to explore solutions with lower

SLNR. The likelihood of moving from the current set of

Algorithm 2 Simulated Annealing With Neural Network

1: W ← [0, 0, . . . , 0]T

2: Wbest ← W

3: ibest ← 0

4: SLNRcurrent ← SLNR calculated from (12) by forward-

propagating W through the NN.

5: SLNRbest ← SLNRcurrent

6: while i < imax do

7: if i− ibest ≥ irst then

8: W ← Wbest

9: ibest ← i

10: SLNRcurrent ← SLNRbest

11: end if

12: T ← Tscale

(

1 − i
imax

)

13: Wnew(n) ← |W(n) + λε|, n = 1, 2, . . . ,N

14: Calculate varactor DC voltages using (4).

15: if DC biases exceed varactor limits then

16: Increment i, go to line 6.

17: end if

18: SLNRnew ← SLNR calculated from (12) by forward-

propagating Wnew through the NN.

19: if SLNRnew > SLNRbest then

20: SLNRcurrent ← SLNRnew

21: SLNRbest ← SLNRnew

22: W ← Wnew

23: Wbest ← Wnew

24: ibest ← i

25: else

26: Calculate p using (14)

27: if p ≥ rand(1) then

28: W ← Wnew

29: SLNRcurrent ← SLNRnew

30: end if

31: end if

32: end while

BSW amplitudes W to the next one Wnew is given according

to a probability measure

p =
{

1 SLNRnew > SLNRcurrent

e

(

− SLNR−SLNRnew
kcT

)

SLNRnew ≤ SLNRcurrent,
(14)

which depends on the SLNR corresponding to W, the

new SLNR corresponding to Wnew, the temperature T , and

a cooling factor constant kc. The advantage of the SA

algorithm is that it is not computationally intensive – the

random perturbations are simple addition and subtraction

operations, and the SLNR values are calculated from the

forward pass of the BSW amplitudes through the neural

network during inference. The algorithm is initialized with

W = [0, 0, . . . , 0]T .

Note that the SLNR optimization in this system is

constrained by the allowed range of DC biasing voltages

to the varactors (in this case, between [4 V and 15 V])

given by the peak-detection-over-time expression in (4). This
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TABLE 2. SLNR [dB] after convergence of simulated annealing for the NN system and the simulated system.

49.5°

10.5°

0°

constraint can be estimated by applying each update of

W during each iteration of SA into the same expression

before evaluating the new SLNR. Since this expression does

not account for nonlinearities or frequency-dependent losses

along the transmission line, it can be used as a worst-case

metric to determine whether the varactor biasing limits may

be exceeded.

We compare the performance of SA executed offline by

inference using the MLP forW during each iteration estimate

the power values, against the performance of SA executed in

the deterministic simulation, where W excites the RIS and

the exact simulated power values at the Rx are calculated

at each iteration. The first system will be referred to as the

“NN System” and the second system will be referred to as

the “Simulated System.” The SA algorithms in both cases

have the same hyperparameters:

• Cooling factor: kc = 0.002.

• Maximum number of iterations: imax = 2000.

• Random perturbations ε for each BSW amplitude

chosen from ε ∼ N (0, 1).

• Scaling factor for random steps: λ = 0.015.

• Maximum number of iterations between current SLNR

and previous best SLNR: irst = 200.

• Temperature scaling factor: Tscale = 100.

The major difference between the two is that for the NN

system, only positive BSW amplitudes are used because the

network was trained only on positive amplitudes, whereas for

the simulated system, both positive and negative amplitudes

are used, to allow another degree of freedom that the NN

does not have. This provides a fair comparison between the

beam patterns achievable by each system, without limiting

the simulated system to the same constraint that the NN

system has. We studied multiple scenarios with single beams,

multiple beams, and combinations of beams and nulls,

and evaluated the performance of each system in terms

of SLNR after convergence, assuming a noise variance of

σ 2
s = 1 in (12). Table 2 compares the SA performance using

feedback from the NN versus using direct Rx feedback from

the simulated setup where the RIS response and channel

models are exact. The final results are divided into two

categories: “Estimated,” which reports the final SLNR value

that SA in the NN system converged to, and “Real,” which

is the SLNR found by the deterministic simulation using the

optimal W arrays that SA in each system converged to.

We note that the simulated average SLNR in all cases is

quite close between the offline optimization using the NN

and the online optimization from the simulation, with the

worst matching having around 4 dB of difference between

the average SLNRs of the two. This indicates that the MLP

was able to generalize the true mapping between BSW

amplitudes and radiation patterns to high accuracy. Even for

cases where the objective function includes forming deep

nulls, which are sensitive to small changes in the reflection

coefficients, the MLP nearly matches the performance of the

simulated scenario.

Note that the cases illustrated in Table 2 only involve

angles on which the MLP was trained. It would also be

useful to generalize the algorithm to create beams and nulls

in any arbitrary direction within the sampled range.

B. ANGLE INTERPOLATION

When uniformly sampling the radiation pattern to create the

initial dataset, we used the 3 dB beamwidth as the criterion

for maximum angular separation between any two sampled

Rx directions to reconstruct the radiation pattern. As stated

previously, this helps with beamforming and nullforming

at Rx directions between any two neighboring sampled

directions, because attempting to change the power directed

towards one direction will significantly affect the power

directed toward its nearby directions within a beamwidth.

We can estimate the power values at Rx directions between

the discrete samples through linear interpolation, as follows.

We define the floating-point index of each angle of interest

θ∗ as

i = θ∗ − θmin

θmax − θmin
×

(

nangles − 1
)

, (15)
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TABLE 3. SLNR [dB] after convergence of simulated annealing for the NN system and the simulated system for arbitrary directions.

where θmin is the smallest (most negative) angle sampled

in the training dataset (in this case, −60◦) and θmax is the

largest (most positive) angle in the training dataset (60◦).
Since the powers are sampled at discrete angles represented

by integer indices in the interval [0, nangles−1], we calculate

the fractional part of i as


i = i− �i�. (16)

Finally, we define Pθ− and Pθ+ as the powers sampled at

the angles corresponding to �i� and �i�, respectively. When

evaluating the SLNR measure, we calculate the power at

interpolated directions using the convex combination

Pθ∗ = (1 − 
i)Pθ− + 
iPθ+ . (17)

We simulated two cases involving beam- and nullforming

using the same SA algorithm as before, except that the power

calculated in each direction by the MLP in the NN system

is defined as in (17). The simulated system is allowed to

sample the power in any given direction rather than being

confined to a discrete grid. The results are summarized in

Table 3 averaged over 10 simulations. We note that the MLP

performance is degraded in this case, although it is able

to create both beams and nulls. This degradation can be

seen both by the low mean SLNRs and the high standard

deviations. The primary reason for this degradation is that the

SLNR objective function becomes too complicated for SA

to maximize when we start with an empty W vector, since it

must account for more directions in both beamforming and

nullforming. In the next section we consider the use of a

lookup table to improve algorithm convergence, by storing

optimalW vectors in memory and using them as initialization

for SA for more complex cases.

V. ADAPTIVE OPTIMIZATION USING A LOOKUP TABLE

A lookup table can be used to store BSW amplitude

arrays that correspond to radiation patterns that were already

optimized for different cases. This serves two main purposes:

First, the optimal arrays can be used to configure the RIS

instantly to create desired radiation patterns that have already

been generated in the past, thus requiring fewer executions

of the SA algorithm. Second, the optimal arrays can be used

to optimize related, but more complex radiation patterns,

by being the initial arrays used in the SA algorithm. For

example, if there was a requirement in the past to generate

a beam at direction θ1, the same BSW amplitudes that were

designed to create this beam can be used as the baseline to

produce a radiation pattern with a beam at θ1 and another

Algorithm 3 Adaptive Optimization and Lookup Table

Construction
1: Pmax ← −∞
2: W ← [0, 0, . . . , 0]T

3: if lookup table does not contain any of θbeam then

4: for each θb in θbeam do

5: Pθb ← max power (17) of θb in training dataset.

6: if Pθb > Pmax then

7: Pmax ← Pθb

8: W ← Wb (set of BSW amplitudes corre-

sponding to Pθb from dataset).

9: end if

10: end for

11: Define an empty objective function C based on

the SLNR measure from (12), initially not taking into

account any beam or null directions.

12: for each θb in θbeam do

13: Update C to include the SNR corresponding to

beam direction θb in the numerator of (12).

14: Optimize W using SA to maximize C.

15: Store W, beam directions from C, and SLNR in

the lookup table.

16: end for

17: Update C to include the SNRs corresponding to all

null directions θnull, if any, in the denominator of (12).

18: Optimize W using SA to maximize C.

19: StoreW, beam and null directions from C, and SLNR

in the lookup table.

20: else

21: Find the W that creates peaks in the directions from

the largest subset θ s,b of θbeam from the lookup table.

If two or more subsets with the same cardinality exist,

choose the one with the highest SLNR and initialize C

to the corresponding objective function with its beam

and null directions.

22: Perform the steps in lines 12-19, starting with C from

line 21, iterating through all θb ∈ {θbeam \ θ s,b} and then

all θnull, if any.

23: end if

beam at θ2. This approach greatly helps with convergence

as multiple beams and/or multiple nulls are desired, as

demonstrated here.

We propose the following approach to construct the lookup

table, as outlined in Algorithm 3, where θbeam and θnull
are arrays respectively containing the K and L directions
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TABLE 4. SLNR [dB] after convergence of simulated annealing for the NN system using the lookup table.

in which beams and nulls are to be created. Assume for

example that we wish to create a single beam in a specific

direction. Given the large dataset used for training, which is

the collection of random W vectors and their corresponding

sampled power values, we find the BSW amplitude input

W that corresponds to the highest power (Pmax) in the

same direction as the desired beam, and we use W as

the initialization for SA. After SA converges, we store the

resulting W in the lookup table with its corresponding beam

direction. To create beams in two directions, we repeat the

same procedure – find the strongest beam between the two

in the lookup table and use this result as the basis to design

the second beam using SA. The same procedure can be

generalized for larger numbers of beams as well. When

forming both beams and nulls, we repeat the same procedure

as above to create all the beams first, and then create all the

nulls in the last optimization steps. The table may contain

an entry of the form:

Beams: {θb1, θb2,. . . }; Nulls: {θn1, θn2,. . . }; SLNR: y;W.

We analyze the performance of SA assisted by the lookup

table in Table 4. It is evident that the starting points created

in Algorithm 3 significantly improve the SLNR in nearly

all cases, allowing the offline optimization using the NN to

achieve superior performance over the online optimization in

the simulated system. Furthermore, the standard deviations

of the SLNR values are significantly smaller than before,

indicating that the lookup table-based initializations reduce

the risk that SA will not converge to a good solution. To

further illustrate this result, all test cases are plotted in Fig. 9.

It is observed from the plots that the offline and adap-

tive data-based optimizations successfully create radiation

patterns that satisfy the criteria defined by the objective

functions, creating peaks and nulls at the desired directions.

However, peaks are also created in unintended directions,

especially in the broadside (0◦) direction and at angles

symmetric with the desired beams, which may lead to

undesirable behavior in a given environment [47]. This is at

least partially due to the use of the SLNR measure, which

does not penalize radiation patterns with spurious beams. But

a careful choice of the parameters used when creating the

training dataset for the machine learning model can reduce

such artifacts. For example, taking the case of Fig. 9(b) with

a single desired beam at 30◦, it was found that setting the

dominant BSW amplitude in an optimal W array to 3.5 V

yields a higher peak at 30◦ with more attenuation at 0◦,
as seen in Fig. 10. The ML model was likely unable to

explore this scenario since this value is too close to the

maximum value the model was trained on. Thus, there is a

low probability of such a high value appearing frequently

enough in the dataset for its effects to be accurately modeled.

Moreover, by increasing the maximum number of BSW

frequencies from N = 25 to N = 50, more degrees of

freedom are available for beam pattern optimization at higher

frequencies. This also helps reduce the reflected power of

the symmetric beam at −30◦, as shown in Fig. 11. These

observations lead to the following conclusions:

• The voltage range of the randomly generated BSW

amplitudes used for training should be carefully chosen

depending on the desired performance of the RIS. If the

requirement from the ML model is to explore a wide

range of radiation patterns, one should use relatively

low random voltage amplitudes such as those used in

this paper to avoid saturating the varactor voltage limits

while allowing more BSWs to be activated at once. On

the contrary, one can generate input arrays where fewer

BSWs are excited, but with higher amplitudes, that

will dominate the RIS biasing profile. This approach

may also reduce the amount of data required for model

training.
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FIGURE 9. Radiation patterns generated by the optimized NN, using SA and the lookup table.

FIGURE 10. Generating a peak at 30◦ using SA and a dominant BSW at 3.5V. SNR at

30◦ is 33.5964 dB, peak at 0◦ is 13.3634 dB lower than the desired peak.

• The number of BSWs and their frequencies should be

chosen depending on the hardware constraints and the

complexity of the system model. Using more BSWs

creates a tradeoff between the increased control over

the radiation patterns generated by the RIS, and the

higher-dimensional optimization problems, potentially

increased amount of data collection required when

generating an ML model, hardware complexity of the

RIS, and control signal overhead.

An inherent weakness of using a lookup table to store

optimal RIS configurations is that its size increases exponen-

tially with the number of beam pattern constraints. Possible

solutions to this problem include interpolation between con-

figurations in the lookup table, using for example manifold

methods [48], empirical interpolation [49], or additional ML

models to reduce the memory requirements of the lookup

FIGURE 11. Generating a peak at 30◦ using SA and N = 50 BSWs instead of N = 25.

SNR at 30◦ is 34.2803 dB, symmetric peak at −30◦ is attenuated by 3.9183 dB.

table and the required number of SA executions for beam

pattern optimization.

VI. CONCLUSION AND FURTHER RESEARCH

We have presented a novel data-driven approach for opti-

mizing wave-controlled RIS without requiring extensive

modeling of the RIS behavior or channel state information.

The RIS is simulated in an environment where the channel

models are unknown. It is excited with random combinations

of BSW amplitudes, and received powers are sampled

at various directions of interest for each set of input

BSWs. An NN that generalizes the relationship between the

BSW amplitudes and the corresponding radiation patterns is

designed and optimized using a GA, achieving low training

and validation losses on the collected data. SA is then used

for offline beam pattern optimization using the NN-generated
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model. The optimal BSW weights are then used to excite

the simulated RIS to create the desired radiation patterns.

In conjunction, a lookup table is used to store optimal

sets of BSW amplitudes to rapidly determine the biasing

voltages for standard beam patterns and to create baselines

for more complicated radiation patterns. The combination of

the lookup table and SA was demonstrated to be capable of

achieving superior performance in terms of SLNR in both

sampled and interpolated directions via offline optimization

using the NN, compared to simulated scenarios where live

feedback from the receivers is used to determine convergence

for SA.

The GA that was used in this paper to optimize the

NN architecture for RIS modeling is applicable to many

other optimization and modeling problems. The optimal

NN architecture created for our application resembles an

autoencoder that learns the general features from the BSW

amplitude combinations in the first few hidden layers

and maps them to the resulting radiation pattern as the

information propagates through subsequent layers. Designing

a good NN architecture to model high-dimensional nonlinear

mappings is often not an intuitive or a straightforward

task, requiring significant tuning and verification. This is

especially crucial for regression problems where the model

must generalize well for both the training and validation

data. The GA was proven to be effective in automating

the tuning process and determining system parameters that

allow the NN to accurately represent the given model.

Overall, the combination of backpropagation, GA, and SA

was shown to lead to desirable RIS performance in the

absence of an accurate physical model for the RIS or the

environment, and provides a promising avenue for other RIS-

related applications.

We would like to reiterate that a main novelty in this

paper is the fact its algorithms are specifically designed for

a wave-controlled RIS. On the other hand, the algorithms

presented in this paper that specifically employ synthesis of

BSW amplitudes, namely Algorithm 1 (Dataset Generation)

and Algorithm 2 (Simulated Annealing), do not have to

strictly use BSW amplitudes as the optimization parameters.

The dataset generation could be different depending on

choice of parameters, such as varactor voltage biases or

reflection coefficients instead of BSW amplitudes and

modified depending on the use-case (e.g., using a codebook

or randomly generating the feature vectors). SA can apply

to other objective functions instead of SLNR and optimize

for other parameters as well.

Future work will also discuss the use of the data-driven

approach presented in this work with the sample-and-

hold implementation of the wave-controlled RIS described

in [5]. An extension to the conventional RIS structure

we discussed is stackable RIS systems, sometimes called

Stacked Intelligent Metasurfaces (SIMs) [50], [51]. They

are an advanced form of RIS that consist of multiple

layers of programmable metasurfaces. SIMs are capable of

performing more complex and powerful manipulation of

electromagnetic waves compared to single-layer RIS which

results in advanced signal processing, beamforming and

beam steering, enhanced coverage and throughput, increased

energy efficiency, etc. Employing our proposed wave control

on stacked metasurfaces can be very advantageous because

of the simplified hardware requirement; the control wiring

of each element on each metasurface can be substituted by

only one biasing TL for each metasurface. Biasing TLs could

be placed in multiple layers below the stacked metasurfaces

or next to each other in the same layer with DC-supporting

vias connected to the elements of each metasurface. The

presence of ground planes under the stacked metasurfaces

(to separate the biasing TLs) would require using the

multilayer RIS in reflection mode. When multiple biasing

TLs are used, particular attention should be paid to be

sure that the biasing signals do not interfere with each

other, by either using ground plane separations or by using

electromagnetic barriers made of shielding vias (like metallic

pins) between the biasing TLs on the same layer to improve

isolation. Further extensions to the basic RIS system are

under consideration, such as Simultaneously Transmitting

and Reflecting RISs (STAR-RISs) and other novel ways to

extend the bandwidth of RIS structures. The use of wave

control for these applications can be a new area of research.
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