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Abstract—We investigate the use of conventional angle of
arrival (AoA) algorithms the Bartlett’s algorithm, the Minimum
Variance Distortion Response (MVDR or Capon) algorithm, and
the Minimum Norm algorithm for estimating the AoA θ together
with our previously introduced algorithms linear regression (LR),
inverse of the root sum squares of channel coefficients (ISQ),
as well as a novel use of the MUSIC algorithm for estimating
the distance from the base station, ρ in the context of channel
charting. We carry out evaluations in terms of the visual quality
of the channel charts, the dimensionality reduction performance
measures trustworthiness (TW) and connectivity (CT), as well as
the execution time of the algorithms. We find that although the
Bartlett’s algorithm, MVDR, and Minimum Norm algorithms
have sufficiently close performance to techniques we studied
earlier, the Minimum Norm algorithm has significantly higher
computational complexity than the other two. Previously, we
found that the use of the MUSIC algorithm for estimation of
both θ and ρ has a very high performance. In this paper,
we investigated and quantified the performance of the Bartlett
algorithm in its use for estimating both θ and ρ, similar to the our
previously introduced technique of using MUSIC for estimating
both.

Index Terms—Channel charting, user equipment (UE), channel
state information (CSI), angle of arrival (AoA), multiple signal
classification (MUSIC), Bartlett algorithm, Minimum Variance
Distortion Response (MVDR or Capon) algorithm, Minimum
Norm algorithm.

I. INTRODUCTION

A channel chart is a chart created from channel state

information (CSI). It has the property of preserving the relative

geometry of the radio environment consisting of a base station

(BS) and user equipments (UEs) [1]. By employing this chart,

the BS locates the relative locations of the UEs. This has

the potential of enabling many applications such as handover,

cell search, user localization, etc. While most of the works

on this subject employed estimation of a channel chart using

dimensionality reduction techniques, in this paper we calculate

the channel chart directly by using model-based approaches.

We will begin our discussion by Fig. 1, which is a redrawn

and simplified version of [1, Fig. 3]. UE transmitters are

located in spatial geometry R
D, where D = 2 or 3 [1]. The BS

receiver calculates CSI in radio geometry C
M where M ≫ D.

Then, a channel chart is created in R
D′

where D′ ≤ D such

that the representation in R
D′

preserves the local geometry of
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Fig. 1. Summary of channel charting via dimensionality reduction [1].

the original spatial locations in R
D, in other words, the relative

positions of the UEs. Reference [1] introduces and compares

three dimensionality reduction algorithms, namely principal

component analysis (PCA), Sammon’s mapping (SM), and

autoencoder (AE). PCA is a linear technique for dimensional-

ity reduction. It maps a high-dimensional point set (e.g., CSI

features) into a low-dimensional point set (e.g., the channel

chart) in an unsupervised approach. It does so by performing

dimensionality reduction only for the data points used in

calculations. It does not form a function one can use to

perform dimensionality reduction for future data points. For

that reason, strictly speaking, it is not a machine learning (ML)

algorithm, although sometimes it is quoted as an unsupervised

ML algorithm. SM is a nonlinear method for dimensionality

reduction which retains small pairwise distances between the

two point sets [1]. Similarly to PCA, it does not form a

function for dimensionality reduction of future data points.

Whereas, an AE is a deep artificial neural network used for

unsupervised dimensionality reduction [1]. Unlike PCA and

SM, it does perform learning. Thus, it can be used for future

data points.

Consider Fig. 1. In this figure, there are four blocks to carry

out channel charting. In the upper left, the spatial geometry in

R
D is depicted. In the upper right block, the radio geometry

in C
M is calcaulated. The lower blocks perform feature
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TABLE I
SIMULATION PARAMETERS.

Parameter Value

Antenna array Uniform Linear Array (ULA)
with spacing λ/2 = 7.495 cm

Number of array antennas 32

Number of transmitters (UEs) 2048

Carrier frequency 2.0 GHz

Bandwidth 312.5 kHz

Number of clusters 0

Number of subcarriers 1 (up to 32 in the case of the
MM algorithm (Sec. III-B3))

extraction and forward charting to create channel charts. In

the approach in this paper we keep the upper two blocks,

as in [2]–[4]. In our approach, one replaces the lower two

blocks with model-based techniques to directly determine the

angle of arrival and the distance from the BS of the UE.

Thus, the relative positions of the UEs with respect to the

BS are preserved, and the basic goal of channel charting is

automatically satisfied.

II. CHANNEL MODELS

We employ three channel models, namely vanilla line-of-

sight (LOS), Quadriga LOS (QLOS), and Quadriga non-LOS

(QNLOS) [5]–[7]. These are the same models used in [1], as

well as our papers [2]–[4]. We start with the simplest, vanilla

LOS. Vanilla LOS is one LOS ray described as

h = ρ−r e−j( 2πρ
λ

+φ) (1)

where ρ is the distance between the transmitter and the receiver

and r is known as the path loss exponent. In (1), the first

term in the channel phase is linearly proportional with the

distance ρ. The second term φ is a uniformly distributed

random variable in [0, 2π). The channel amplitude is a random

variable (Rician (QLOS) or Rayleigh (QNLOS)) which is

inversely proportional to the distance square for free space,

∼ρ−2, i.e., the path loss exponent r = 2.

Next we discuss the Quadriga channel model [5]–[7].

Quadriga stands for quasi deterministic radio channel gen-

erator. It is a statistical three-dimensional geometry-based

stochastic channel model employing ray tracing. According

to [5], it has the following features: i) three-dimensional

propagation (antenna modeling, geometric polarization, scat-

tering clusters), ii) continuous-time evolution, iii) spatially

correlated large- and small-scale fading, and iv) transition

between varying propagation scenarios. The Quadriga model

is very customizable. It has many features and details. The

model was validated by measurements in downtown Dresden,

Germany [7, Ch. 4] and in downtown Berlin, Germany [7, Ch.

5]. In this paper we used the parameters in Table I with the

Urban Macro-Cell (UMa) version of the Quadriga mode in

the simulations. Some details of the measurement setup are

available in [5, Sec. III], in specific detail in [5, Table II].

The signal-to-noise ratio (SNR) in channel model is cal-

culated by considering the power in the received signal (Pr)

Fig. 2. Angle of arrival (θ) relation with phase.

and the power in the noise measured at the receiver (Pn). We

note that while the estimated channel would have some noise

added to it, the most significant component of the noise at the

receiver is additive white Gaussian thermal noise. Then, the

SNR at the receiver is given as SNR = Pr/Pn where Pr takes

into account the transmitted power and the channel model, see,

e.g., Sec. II-B in [8]. In the code [9] which we used as the

basis for our simulations, the calculation of SNR is carried

out by normalizing Pr and then properly scaling the additive

white Gaussian thermal noise power Pn for all three channel

models.

III. ESTIMATING THE COORDINATES θ AND ρ

We will use the symbol θ for the angle of arrival (AOA) and

ρ for the distance between the BS and the UE. Note that one

can estimate θ and ρ concurrently because they do not depend

on each other. In this section, we will first discuss how to

estimate θ by using the MUSIC algorithm and then we will

discuss three algorithms to estimate ρ.

A. Estimating θ Using MUSIC

Consider Fig. 2. One can see from this figure that each

antenna element receives a ray which travels an additional

distance λ
2 cos(θ) as compared to the previous element. As a

result, the incremental phase shift for each antenna element is

ejπ cos(θ). Thus, one can compose the steering vector

A(θ) = (1, ejπ cos(θ), ejπ2 cos(θ), . . . , ejπ(NR−1) cos(θ))T , (2)

where NR is the number of receive antennas at the BS.

This vector is employed in determining the AOA as well

as in beamforming applications. The steering vector A(θ) is

embedded within the CSI correlation matrix (R = E[hhH ]),
where h is the received channel vector at the BS along with

noise. The vector h is NR × 1 where NR is the number of

antennas at the BS. By decomposing R into its eigenvectors

and examining the corresponding eigenvalues, the eigenvectors

can be separated into a signal subspace S and a noise subspace

1654

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on September 16,2025 at 00:56:41 UTC from IEEE Xplore.  Restrictions apply. 



Algorithm 1 MUSIC Procedure for Estimating θ

Calculate the CSI across antennas and subcarriers covari-

ance matrix R = E[hhH ]
Get the eigenvectors and eigenvalues of R

Separate system subspace S and noise subspace N by

defining a threshold

Calculate N by concatenating the eigenvectors of N

for θ = 0 : 180 in increments of 1 do

Calculate the steering vector A(θ)
Calculate the PMF(θ) = 1

Norm2(NHA(θ))
end for

Search the PMF for a peak and find the corresponding θ

N . This is achieved by using the fact that the noise eigenvec-

tors will correspond to very small eigenvalues compared to

the signal space eigenvalues. The two subspaces S and N are

orthogonal. Let’s assume that the dimensionality of the noise

subspace N is p. Form the matrix N (dimension NR × p)

by concatenating the eigenvectors of N . The multiplication

of the noise subspace eigenvectors matrix N and the steering

vector will be almost zero. We can use this concept to find the

correct angle by sweeping θ in the steering vector as described

in Algorithm 1 where PMF(θ) is a probability mass function

within a scale of constant.

B. Estimating ρ

We will now discuss three methods on how to estimate ρ
[2]. Please refer to (1) with r = 2. This is the simple channel

ray model we will employ below.

1) Estimating ρ Using ISQ: In this method, we calculate

the square root inverse of the sum of CSI magnitudes for all

antennas as

ρ =
1

√

∑NR−1
n=0 abs(hn)

, (3)

where hn is the channel between the UE and the n-th antenna

at the BS and NR is the number of antennas at the base station.

We call this algorithm as ISQ (inverse square root sum). The

algorithm is motivated by (1) with the path loss component

r = 2. In (3), ρ = 1/
√

abs(hn) is calculating the average ρ.1

2) Estimating ρ Using LR: This is a learning-based, super-

vised approach. It is assumed that the location of 256 (out

of 2048) UEs are known. Then, a linear regression is carried

out with the logarithm of the sum of CSI magnitudes for all

antennas to find a and b in

ρ = aX + b, where X = log

NR−1
∑

n=0

abs(hn). (5)

1Note that

ρ′ =
1

√

1

NR

∑NR−1

n=0
abs(hn)

=
√

NRρ. (4)

In other words, the true average ρ′ is proportional to ρ. Therefore, estimated
ρ is not to scale with the real ρ, but that will not affect the TW and CT.

Fig. 3. Phase change across subcarriers with distance.

Algorithm 2 MUSIC Procedure for Estimating ρ

Calculate the CSI across antennas and subcarriers covari-

ance matrix R = E[hhH ]
Get the eigenvectors and eigenvalues of R

Separate system subspace S and noise subspace N by

defining a threshold

Calculate N by concatenating the eigenvectors of N

for ρ = 0 : 1000 in increments of 1 do

Calculate vector B(ρ)
Calculate the PMF(ρ) = 1

Norm2(NHB(ρ))
end for

Search the PMF for a peak and find the corresponding ρ

For the first 256 UEs, we carry out a linear regression and

use the known ρ and X values to generate a and b. Then

for the rest of the UEs, we use (5) to estimate ρ based on

their X values. We name this algorithm the LR algorithm.

The unsupervised performance of the ISQ algorithm is almost

identical to the LR algorithm [2]. Noting the log operation in

(5), and the fact that linear regression will generate a < 0,

this is a different way of expressing (3). 2

3) Estimating ρ Using MUSIC: For this algorithm, we use

the same principle for estimating ρ as in estimating θ. We

assume the transmission is multicarrier-based, and we use

MUSIC to make use the phase difference among subcarriers.

Please refer to Fig. 3. Note that as the ray travels, the phases of

the subcarriers change with rate according to their frequencies.

If the subcarriers have a spacing of ∆f and we have NS

2Note that

X′ = log

(

1

NR

NR−1
∑

n=0

abs(hn)

)

= X − log(NR).

Therefore, the true average X′ differs from X by a constant term, which can
be absorbed by b in (5).
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Fig. 4. 3D environment.

subcarriers, their phase relation with distance is given as

B(ρ) = (1, e−j2πρ∆f/c, e−j2πρ2∆f/c, . . . , e−j2πρ(Ns−1)∆f/c)T

(6)

where ρ is the distance and c is the speed of light. The vector

B(ρ) will be used exactly as we used the steering vector A(θ)
in estimating θ. The procedure is explained in Algorithm 2. We

call the combination of using MUSIC to estimate θ and using

MUSIC to estimate ρ the MUSIC/MUSIC (MM) algorithm.

IV. SIMULATION ENVIRONMENT AND BASIS FOR

COMPARISON

We employed the simulation environment in [1] with the

purpose of comparing the performance in a fair fashion, as in

[2]. The simulation parameters we used are given in Table I at

SNR = 0 dB. SNR is defined as the ratio of the signal power

to the noise power and 0 dB means that the two are equal.

We used a three-dimensional environment exactly as in paper

[1] as shown in Fig. 4, where the antenna is 8.5 meters above

the plane of the UEs. The simulation environment is 1000m

× 500m. The 2048 UEs are placed randomly, except 234 of

the UEs are selected to make the word “VIP,” so we can see

if the channel chart preserves the shape.

In addition to a visual comparison of channel charts, we

will use continuity (CT) and trustworthiness (TW) as objective

performance measures [1], [2]. CT specifies if neighbors in

the original space are close in the representation space. TW

measures how well the feature mapping avoids introducing

new neighbor relations that were not present in the original

space. For mathematical descriptions of point-wise and global

CT and TW, we refer the reader to [1], [2] Point-wise and

global CT and TW are between 0 and 1, with larger values

being better [1].

V. ALGORITHMS FOR AOA ESTIMATION

We will discuss three relatively simple algorithms on AoA

estimation from the literature. For an introduction to this

subject, see, e.g., [10], [11].

A. Bartlett’s Algorithm

With our earlier definition of the autocorrelation matrix R

and the steering vector A(θ), this algorithm computes

PBartlett (θ) =
A

H(θ)RA(θ)

AH(θ)A(θ)
(7)

and then finds the maximum of PBartlett (θ). For a ULA, the

denominator is a constant, and it is sufficient to work with

PBartlett (θ) = A
H(θ)RA(θ). (8)

For a derivation of this algorithm via optimization, see, e.g.,

[11].

B. MVDR (Capon’s) Algorithm

The full name for this algorithm is Minimum Vari-

ance Distortionless Algorithm (MVDR). It is also know as

Capon’s algorithm. Its spatial spectrum PMVDR(θ), similar to

PBartlett (θ), is given as

PMVDR(θ) =
1

AH(θ)R−1A(θ)
. (9)

Once again, after calculation, one searches for the maximum

of PMVDR(θ) to determine the AoA.

C. Minimum Norm Algorithm

This algorithm carries out an eigenspace analysis as in

MUSIC. It performs the eigenvalue decomposition

R = UΣU
H = [Us Un]

[

Ds 0

0 σ2
I

]

[Us Un]
H

(10)

where Us corresponds to the signal subspace, consisting of

K signal eigenvectors; Un corresponds to the noise subspace,

consisting of N − K noise eigenvectors; Ds is a K × K
diagonal matrix with signal eigenvalues as the entries; and I

is an (N−K)×(N−K) identity matrix. Then, the Minimum

Norm Algorithm computes the spatial spectrum as

PMinNorm(θ) =
1

AH(θ)UnU
H
n eeHUnU

H
n A(θ)

(11)

where e is the first column of the identity matrix of size N ×

N .

VI. SIMULATION RESULTS

We will first consider the ability of the Bartlett, MVDR,

and Minimum Norm AoA algorithms to estimate θ and one

of LR, ISQ, and MUSIC algorithms to estimate ρ. The results

in terms of channel charts are given in Figs 5-7. Based on

these charts, one can state that for any of Bartlett, MVDR,

and Minimum Norm algorithms for estimating θ, the MUSIC

algorithm to estimate θ appears to be the best, while the LR

and ISQ algorithms not appearing performing much different

from each other.

On the other hand, Table II tabulates the execution runtimes

of the algorithms in Fig. 5–7. According to this table, the

execution times of MUSIC for θ are much larger than those

of LR and ISQ. It can be seen that in execution times,

using MUSIC for estimating ρ causes a large runtime, while
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Fig. 5. Channel charts with Bartlett algorithm for θ and LR (left column),
ISQ (middle column), and MUSIC (right column) algorithms for ρ for the 3D
LOS (top row), QLOS (middle row), and QNLOS (bottom row) channels.

Fig. 6. Channel charts with MVDR algorithm for θ and LR (left column),
ISQ (middle column), and MUSIC (right column) algorithms for ρ for the 3D
LOS (top row), QLOS (middle row), and QNLOS (bottom row) channels.

using LR or ISQ have similar runtimes. On the other hand,

among Bartlett, MVDR, and Minimum Norm for estimating

θ, Minimum Norm has a very large runtime against Bartlett

and MVDR. This means, we can eliminate Minimum Norm

from consideration in estimating θ.

We tabulate the TW and CT values of the algorithms in

Figs. 5–7 for LOS, QLOS, and QNLOS channels at 102

nearest points in Table III. Since we have already eliminated

Minimum Norm algorithm, we conclude from this table that

the Bartlett algorithm may have an edge over the MVDR

algorithm in terms of TW and CT performance. To investigate

this further, we consider Figs. 8–10 in LOS, QLOS, and

Fig. 7. Channel charts with Minimum Norm algorithm for θ and LR (left
column), ISQ (middle column), and MUSIC (right column) algorithms for ρ
for the 3D LOS (top row), QLOS (middle row), and QNLOS (bottom row)
channels.

TABLE II
EXECUTION RUNTIMES OF THE ALGORITHMS IN FIGS. 5–7. THE UNITS

ARE IN SECONDS. THE RESULTS ARE THE AVERAGES OF THREE RUNS.

Bartlett/LR Bartlett/ISQ Bartlett/MUSIC

LoS 0.4212 0.4154 16.0008
QLoS 0.4330 0.4113 15.9934
QNLoS 0.4789 0.4679 15.8993

MVDR/LR MVDR/ISQ MVDR/MUSIC

LoS 6.4927 6.3431 21.0445
QLoS 6.4952 6.4381 21.2382
QNLoS 6.4735 6.4374 21.2727

Min. Norm/LR Min. Norm/ISQ Min. Norm/MUSIC

LoS 13.5298 13.1709 28.1667
QLoS 12.8640 13.1466 27.7734
QNLoS 13.0934 13.0816 28.0243

QNLOS channels for k nearest neighbors for values of k in

the range 0–102. A careful study of these plots indicate that,

in terms of TW and CT performance, Bartlett algorithm can

indeed be a contender even though it can be implemented in

a simple fashion.

In our work [2], we came to the conclusion that using

the MUSIC algorithm for estimating both θ and ρ among

the algorithms studied in that paper, including LR and ISQ.

We call the resulting algorithm MUSIC/MUSIC, or MM.

We show the performance of employing the MM algorithm

in Fig. 11. In Table IV we provide TW and CT values at

102 nearest points using the MM algorithm. We provide the

running times of using the MM algorithm in Table V. We

show the performance of employing the Bartlett algorithm

for estimation of both θ and ρ in Fig. 12. In Table VI

we provide TW and CT values at 102 nearest points using

Bartlett algorithm for both θ and ρ. We provide the running

times of using the Bartlett algorithm to estimate both θ
and ρ in Table VII. In implementing the Bartlett algorithm,
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TABLE III
TW AND CT VALUES OF THE ALGORITHMS IN FIGS. 5–6 FOR LOS, QLOS, AND QNLOS CHANNELS.

Measure Channel Bartlett Bartlett Bartlett MVDR/ MVDR/ MVDR/ MinNorm/ MinNorm/ MinNorm/
LR ISQ MUSIC LR ISQ MUSIC LR ISQ MUSIC

TW
LOS 0.9930 0.9885 0.9998 0.9796 0.9753 0.9864 0.9330 0.9885 0.9998
QLOS 0.9203 0.9205 0.9975 0.8882 0.8889 0.9607 0.9192 0.9194 0.9960
QNLOS 0.9322 0.9324 0.9857 0.8887 0.8898 0.9362 0.9234 0.9238 0.9769

CT
LOS 0.9968 0.9940 0.9998 0.9816 0.9761 0.9864 0.9968 0.9940 0.9998
QLOS 0.9622 0.9483 0.9989 0.9158 0.9068 0.9601 0.9606 0.9468 0.9974
QNLOS 0.9682 0.9631 0.9872 0.9082 0.9067 0.9354 0.9552 0.9513 0.9773

Fig. 8. TW and CT values for an LOS channel.

Fig. 9. TW and CT values for a QLOS channel.

Cholesky factorization of the autocorrelation matrix R is made

for reduction in computational complexity. From the results

presented, clearly the Bartlett algorithm has a substantial

reduction in computational complexity without a discernible

reduction in the quality of the channel charts or performance

Fig. 10. TW and CT values for a QNLOS channel.

TABLE IV
TW AND CT VALUES AT 102 NEAREST POINTS FOR EMPLOYING THE

MUSIC ALGORITHM TO ESTIMATE BOTH θ AND ρ.

Measure Channel MUSIC/MUSIC

TW
LOS 0.9998
QLOS 0.9975
QNLOS 0.9854

CT
LOS 0.9998
QLOS 0.9989
QNLOS 0.9867

TABLE V
RUNNING TIMES FOR EMPLOYING THE MUSIC ALGORITHM TO ESTIMATE

BOTH θ AND ρ.

Channel Runtime (s)

LOS 20.6577
QLOS 20.6061
QNLOS 20.8503

measures TW and CT.

VII. CONCLUSION

The LR, ISQ, and MM algorithms we presented in [2]

significantly outperformed the three algorithms in the seminal

paper [1], PCA, SM, and AE, in terms of performance. In this

paper, we investigated the performance of the more conven-

tional AoA estimation algorithms Bartlett, Minimum Variance
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Fig. 11. Channel charts and TW and CT values for employing the MUSIC
algorithm to estimate both θ and ρ.

TABLE VI
TW AND CT VALUES AT 102 NEAREST POINTS FOR EMPLOYING THE

BARTLETT ALGORITHM TO ESTIMATE BOTH θ AND ρ.

Measure Channel Bartlett/Bartlett

TW
LOS 0.9998
QLOS 0.9974
QNLOS 0.9871

CT
LOS 0.9998
QLOS 0.9988
QNLOS 0.9892

TABLE VII
RUNNING TIMES FOR EMPLOYING THE BARTLETT ALGORITHM TO

ESTIMATE BOTH θ AND ρ.

Channel Runtime (s)

LOS 1.1203
QLOS 1.1407
QNLOS 1.1373

Distortion Response (MVDR or Capon), and Minimum Norm

algorithms. As in [1], we measured the performance in terms

of the visual appearance of the channel charts, as well as con-

nectivity (CT) and trustworthiness (TW). We also considered

execution time or running time of the algorithms. In our study

of the use of the MUSIC algorithm to estimate θ and one of

Bartlett, MVDR, or Minimum Norm algorithms, we conclude

that all three conventional algorithms can be competitive.

Fig. 12. Channel charts and TW and CT values for employing the Bartlett
algorithm to estimate both θ and ρ.
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