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Abstract—We investigate the use of conventional angle of
arrival (AoA) algorithms the Bartlett’s algorithm, the Minimum
Variance Distortion Response (MVDR or Capon) algorithm, and
the Minimum Norm algorithm for estimating the AoA 0 together
with our previously introduced algorithms linear regression (LR),
inverse of the root sum squares of channel coefficients (ISQ),
as well as a novel use of the MUSIC algorithm for estimating
the distance from the base station, p in the context of channel
charting. We carry out evaluations in terms of the visual quality
of the channel charts, the dimensionality reduction performance
measures trustworthiness (TW) and connectivity (CT), as well as
the execution time of the algorithms. We find that although the
Bartlett’s algorithm, MVDR, and Minimum Norm algorithms
have sufficiently close performance to techniques we studied
earlier, the Minimum Norm algorithm has significantly higher
computational complexity than the other two. Previously, we
found that the use of the MUSIC algorithm for estimation of
both 6 and p has a very high performance. In this paper,
we investigated and quantified the performance of the Bartlett
algorithm in its use for estimating both 6 and p, similar to the our
previously introduced technique of using MUSIC for estimating
both.

Index Terms—Channel charting, user equipment (UE), channel
state information (CSI), angle of arrival (AoA), multiple signal
classification (MUSIC), Bartlett algorithm, Minimum Variance
Distortion Response (MVDR or Capon) algorithm, Minimum
Norm algorithm.

I. INTRODUCTION

A channel chart is a chart created from channel state
information (CSI). It has the property of preserving the relative
geometry of the radio environment consisting of a base station
(BS) and user equipments (UEs) [1]. By employing this chart,
the BS locates the relative locations of the UEs. This has
the potential of enabling many applications such as handover,
cell search, user localization, etc. While most of the works
on this subject employed estimation of a channel chart using
dimensionality reduction techniques, in this paper we calculate
the channel chart directly by using model-based approaches.

We will begin our discussion by Fig. 1, which is a redrawn
and simplified version of [1, Fig. 3]. UE transmitters are
located in spatial geometry R”, where D = 2 or 3 [1]. The BS
receiver calculates CSI in radio geometry CM where M > D.
Then, a channel chart is created in RP" where D’ < D such
that the representation in R” / preserves the local geometry of
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Fig. 1. Summary of channel charting via dimensionality reduction [1].

the original spatial locations in RP | in other words, the relative
positions of the UEs. Reference [1] introduces and compares
three dimensionality reduction algorithms, namely principal
component analysis (PCA), Sammon’s mapping (SM), and
autoencoder (AE). PCA is a linear technique for dimensional-
ity reduction. It maps a high-dimensional point set (e.g., CSI
features) into a low-dimensional point set (e.g., the channel
chart) in an unsupervised approach. It does so by performing
dimensionality reduction only for the data points used in
calculations. It does not form a function one can use to
perform dimensionality reduction for future data points. For
that reason, strictly speaking, it is not a machine learning (ML)
algorithm, although sometimes it is quoted as an unsupervised
ML algorithm. SM is a nonlinear method for dimensionality
reduction which retains small pairwise distances between the
two point sets [1]. Similarly to PCA, it does not form a
function for dimensionality reduction of future data points.
Whereas, an AE is a deep artificial neural network used for
unsupervised dimensionality reduction [1]. Unlike PCA and
SM, it does perform learning. Thus, it can be used for future
data points.

Consider Fig. 1. In this figure, there are four blocks to carry
out channel charting. In the upper left, the spatial geometry in
RP is depicted. In the upper right block, the radio geometry
in CM is calcaulated. The lower blocks perform feature
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TABLE I
SIMULATION PARAMETERS.

H Parameter ‘ Value H

Uniform Linear Array (ULA)
with spacing A\/2 = 7.495 cm
Number of array antennas 32

Antenna array

Number of transmitters (UEs) 2048
Carrier frequency 2.0 GHz
Bandwidth 312.5 kHz
Number of clusters 0

Number of subcarriers 1 (up to 32 in the case of the

MM algorithm (Sec. I1I-B3))

extraction and forward charting to create channel charts. In
the approach in this paper we keep the upper two blocks,
as in [2]-[4]. In our approach, one replaces the lower two
blocks with model-based techniques to directly determine the
angle of arrival and the distance from the BS of the UE.
Thus, the relative positions of the UEs with respect to the
BS are preserved, and the basic goal of channel charting is
automatically satisfied.

II. CHANNEL MODELS

We employ three channel models, namely vanilla line-of-
sight (LOS), Quadriga LOS (QLOS), and Quadriga non-LOS
(QNLOS) [5]-[7]. These are the same models used in [1], as
well as our papers [2]-[4]. We start with the simplest, vanilla
LOS. Vanilla LOS is one LOS ray described as

h:p—r e—j(%Tp-Hb) (1)

where p is the distance between the transmitter and the receiver
and r is known as the path loss exponent. In (1), the first
term in the channel phase is linearly proportional with the
distance p. The second term ¢ is a uniformly distributed
random variable in [0, 27). The channel amplitude is a random
variable (Rician (QLOS) or Rayleigh (QNLOS)) which is
inversely proportional to the distance square for free space,
~p~2, ie., the path loss exponent r = 2.

Next we discuss the Quadriga channel model [S]-[7].
Quadriga stands for quasi deterministic radio channel gen-
erator. It is a statistical three-dimensional geometry-based
stochastic channel model employing ray tracing. According
to [5], it has the following features: i) three-dimensional
propagation (antenna modeling, geometric polarization, scat-
tering clusters), ii) continuous-time evolution, iii) spatially
correlated large- and small-scale fading, and iv) transition
between varying propagation scenarios. The Quadriga model
is very customizable. It has many features and details. The
model was validated by measurements in downtown Dresden,
Germany [7, Ch. 4] and in downtown Berlin, Germany [7, Ch.
5]. In this paper we used the parameters in Table I with the
Urban Macro-Cell (UMa) version of the Quadriga mode in
the simulations. Some details of the measurement setup are
available in [5, Sec. III], in specific detail in [5, Table II].

The signal-to-noise ratio (SNR) in channel model is cal-
culated by considering the power in the received signal (FP;)

Fig. 2. Angle of arrival () relation with phase.

and the power in the noise measured at the receiver (F,,). We
note that while the estimated channel would have some noise
added to it, the most significant component of the noise at the
receiver is additive white Gaussian thermal noise. Then, the
SNR at the receiver is given as SNR = P,./P,, where P, takes
into account the transmitted power and the channel model, see,
e.g., Sec. II-B in [8]. In the code [9] which we used as the
basis for our simulations, the calculation of SNR is carried
out by normalizing P, and then properly scaling the additive
white Gaussian thermal noise power P,, for all three channel
models.

III. ESTIMATING THE COORDINATES 6 AND p

We will use the symbol 6 for the angle of arrival (AOA) and
p for the distance between the BS and the UE. Note that one
can estimate 6 and p concurrently because they do not depend
on each other. In this section, we will first discuss how to
estimate 6 by using the MUSIC algorithm and then we will
discuss three algorithms to estimate p.

A. Estimating 6 Using MUSIC

Consider Fig. 2. One can see from this figure that each
antenna element receives a ray which travels an additional
distance %cos(&) as compared to the previous element. As a
result, the incremental phase shift for each antenna element is

eIm™cos(¥) Thus, one can compose the steering vector

A(e) — (17 ej7'r cos(G)7 ejer cos(G), s ej‘n'(NR—l) cos(Q))T’ (2)

where Npi is the number of receive antennas at the BS.
This vector is employed in determining the AOA as well
as in beamforming applications. The steering vector A () is
embedded within the CSI correlation matrix (R = E[hh]),
where h is the received channel vector at the BS along with
noise. The vector h is Ng x 1 where Ny is the number of
antennas at the BS. By decomposing R into its eigenvectors
and examining the corresponding eigenvalues, the eigenvectors
can be separated into a signal subspace S and a noise subspace

1654

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on September 16,2025 at 00:56:41 UTC from IEEE Xplore. Restrictions apply.



Algorithm 1 MUSIC Procedure for Estimating 6
Calculate the CSI across antennas and subcarriers covari-
ance matrix R = E[hh’]
Get the eigenvectors and eigenvalues of R
Separate system subspace S and noise subspace A by
defining a threshold
Calculate N by concatenating the eigenvectors of N
for § = 0 : 180 in increments of 1 do
Calculate the steering vector A(6)
Calculate the PMF(6)
end for
Search the PMF for a peak and find the corresponding 6

= Noer(I\}HA(G))

M. This is achieved by using the fact that the noise eigenvec-
tors will correspond to very small eigenvalues compared to
the signal space eigenvalues. The two subspaces S and N are
orthogonal. Let’s assume that the dimensionality of the noise
subspace A is p. Form the matrix N (dimension Ny X p)
by concatenating the eigenvectors of NA. The multiplication
of the noise subspace eigenvectors matrix N and the steering
vector will be almost zero. We can use this concept to find the
correct angle by sweeping 6 in the steering vector as described
in Algorithm 1 where PMF(0) is a probability mass function
within a scale of constant.

B. Estimating p

We will now discuss three methods on how to estimate p
[2]. Please refer to (1) with » = 2. This is the simple channel
ray model we will employ below.

1) Estimating p Using ISQ: In this method, we calculate
the square root inverse of the sum of CSI magnitudes for all

antennas as )
p= ; 3)
S Ve abs(hy)

n=0

where h,, is the channel between the UE and the n-th antenna
at the BS and Ny, is the number of antennas at the base station.
We call this algorithm as ISQ (inverse square root sum). The
algorithm is motivated by (1) with the path loss component
r=2.In (3), p = 1/+/abs(h,,) is calculating the average p.!
2) Estimating p Using LR: This is a learning-based, super-
vised approach. It is assumed that the location of 256 (out
of 2048) UEs are known. Then, a linear regression is carried
out with the logarithm of the sum of CSI magnitudes for all
antennas to find @ and b in
Np—1
p=aX +b, where X =log Z abs(hy,). (5)
n=0

INote that
1

r_
\/ﬁ 2550—1 abs(hy)

In other words, the true average p’ is proportional to p. Therefore, estimated
p is not to scale with the real p, but that will not affect the TW and CT.

p = '\/NRp. (4)

subcarriers
L3

N

Fig. 3. Phase change across subcarriers with distance.

Algorithm 2 MUSIC Procedure for Estimating p
Calculate the CSI across antennas and subcarriers covari-
ance matrix R = E[hh’]
Get the eigenvectors and eigenvalues of R
Separate system subspace S and noise subspace N by
defining a threshold
Calculate N by concatenating the eigenvectors of N
for p = 0: 1000 in increments of 1 do
Calculate vector B(p)
Calculate the PMF(p)
end for
Search the PMF for a peak and find the corresponding p

_ 1
" Normo(NHB(p))

For the first 256 UEs, we carry out a linear regression and
use the known p and X values to generate a and b. Then
for the rest of the UEs, we use (5) to estimate p based on
their X values. We name this algorithm the LR algorithm.
The unsupervised performance of the ISQ algorithm is almost
identical to the LR algorithm [2]. Noting the log operation in
(5), and the fact that linear regression will generate a < 0,
this is a different way of expressing (3). 2

3) Estimating p Using MUSIC: For this algorithm, we use
the same principle for estimating p as in estimating 6. We
assume the transmission is multicarrier-based, and we use
MUSIC to make use the phase difference among subcarriers.
Please refer to Fig. 3. Note that as the ray travels, the phases of
the subcarriers change with rate according to their frequencies.
If the subcarriers have a spacing of Af and we have Ng

2Note that
1 Np—1
X' =log (— > abs(hn)) = X —log(Ng).
NR n=0

Therefore, the true average X’ differs from X by a constant term, which can
be absorbed by b in (5).
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Fig. 4. 3D environment.

subcarriers, their phase relation with distance is given as

B(,O) — (1, e—j27\'pAf/c7 e—j27rp2Af/c7 . e—jQﬂp(Ns—l)Af/C)T

(6)
where p is the distance and c is the speed of light. The vector
B(p) will be used exactly as we used the steering vector A (6)
in estimating 6. The procedure is explained in Algorithm 2. We
call the combination of using MUSIC to estimate 6 and using
MUSIC to estimate p the MUSIC/MUSIC (MM) algorithm.

IV. SIMULATION ENVIRONMENT AND BASIS FOR
COMPARISON

We employed the simulation environment in [1] with the
purpose of comparing the performance in a fair fashion, as in
[2]. The simulation parameters we used are given in Table I at
SNR = 0 dB. SNR is defined as the ratio of the signal power
to the noise power and 0 dB means that the two are equal.
We used a three-dimensional environment exactly as in paper
[1] as shown in Fig. 4, where the antenna is 8.5 meters above
the plane of the UEs. The simulation environment is 1000m
x 500m. The 2048 UEs are placed randomly, except 234 of
the UEs are selected to make the word “VIP,” so we can see
if the channel chart preserves the shape.

In addition to a visual comparison of channel charts, we
will use continuity (CT) and trustworthiness (TW) as objective
performance measures [1], [2]. CT specifies if neighbors in
the original space are close in the representation space. TW
measures how well the feature mapping avoids introducing
new neighbor relations that were not present in the original
space. For mathematical descriptions of point-wise and global
CT and TW, we refer the reader to [1], [2] Point-wise and
global CT and TW are between O and 1, with larger values
being better [1].

V. ALGORITHMS FOR AOA ESTIMATION

We will discuss three relatively simple algorithms on AoA
estimation from the literature. For an introduction to this
subject, see, e.g., [10], [11].

A. Bartlett’s Algorithm

With our earlier definition of the autocorrelation matrix R
and the steering vector A(6), this algorithm computes

A (O)RA(0)
AT(0)A(0)

and then finds the maximum of Ppggyyert(6). For a ULA, the
denominator is a constant, and it is sufficient to work with

PBartlett(e) = AH(Q)RA(H) (8)

PBartlett (9) = (7)

For a derivation of this algorithm via optimization, see, e.g.,
[11].

B. MVDR (Capon’s) Algorithm

The full name for this algorithm is Minimum Vari-
ance Distortionless Algorithm (MVDR). It is also know as
Capon’s algorithm. Its spatial spectrum Py pr(6), similar to
Ppartiett(0), is given as
B 1
AHORIAG)
Once again, after calculation, one searches for the maximum
of Pyyvpr(#) to determine the AoA.

Pyvpr(6) 9)

C. Minimum Norm Algorithm

This algorithm carries out an eigenspace analysis as in
MUSIC. It performs the eigenvalue decomposition

D, 0

_ H _
R =USU" = [U, Un][ o oo

] U, UJ" (10
where U, corresponds to the signal subspace, consisting of
K signal eigenvectors; U,, corresponds to the noise subspace,
consisting of N — K noise eigenvectors; Dy is a K x K
diagonal matrix with signal eigenvalues as the entries; and I
is an (N — K) x (N — K) identity matrix. Then, the Minimum
Norm Algorithm computes the spatial spectrum as
B 1
 AH())U,UHeeHU,UHA(h)

where e is the first column of the identity matrix of size N x
N.

PMinNorm(9> (1])

VI. SIMULATION RESULTS

We will first consider the ability of the Bartlett, MVDR,
and Minimum Norm AoA algorithms to estimate 6 and one
of LR, ISQ, and MUSIC algorithms to estimate p. The results
in terms of channel charts are given in Figs 5-7. Based on
these charts, one can state that for any of Bartlett, MVDR,
and Minimum Norm algorithms for estimating 6, the MUSIC
algorithm to estimate 6 appears to be the best, while the LR
and ISQ algorithms not appearing performing much different
from each other.

On the other hand, Table II tabulates the execution runtimes
of the algorithms in Fig. 5-7. According to this table, the
execution times of MUSIC for 6 are much larger than those
of LR and ISQ. It can be seen that in execution times,
using MUSIC for estimating p causes a large runtime, while
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Fig. 5. Channel charts with Bartlett algorithm for # and LR (left column),
ISQ (middle column), and MUSIC (right column) algorithms for p for the 3D
LOS (top row), QLOS (middle row), and QNLOS (bottom row) channels.

MIOALE Los i U=204a an =32 MVDRIS LoS wih U=2045 ang 8=32
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I s o
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Fig. 6. Channel charts with MVDR algorithm for 6 and LR (left column),
ISQ (middle column), and MUSIC (right column) algorithms for p for the 3D
LOS (top row), QLOS (middle row), and QNLOS (bottom row) channels.

using LR or ISQ have similar runtimes. On the other hand,
among Bartlett, MVDR, and Minimum Norm for estimating
6, Minimum Norm has a very large runtime against Bartlett
and MVDR. This means, we can eliminate Minimum Norm
from consideration in estimating 6.

We tabulate the TW and CT values of the algorithms in
Figs. 5-7 for LOS, QLOS, and QNLOS channels at 102
nearest points in Table III. Since we have already eliminated
Minimum Norm algorithm, we conclude from this table that
the Bartlett algorithm may have an edge over the MVDR
algorithm in terms of TW and CT performance. To investigate
this further, we consider Figs. 8-10 in LOS, QLOS, and

Fig. 7. Channel charts with Minimum Norm algorithm for 6 and LR (left
column), ISQ (middle column), and MUSIC (right column) algorithms for p
for the 3D LOS (top row), QLOS (middle row), and QNLOS (bottom row)
channels.

TABLE I
EXECUTION RUNTIMES OF THE ALGORITHMS IN FIGS. 5-7. THE UNITS
ARE IN SECONDS. THE RESULTS ARE THE AVERAGES OF THREE RUNS.

Bartlett/LR Bartlett/ISQ Bartlett/MUSIC
LoS 0.4212 0.4154 16.0008
QLoS 0.4330 0.4113 15.9934
QNLoS 0.4789 0.4679 15.8993

MVDR/LR MVDR/ISQ MVDR/MUSIC
LoS 6.4927 6.3431 21.0445
QLoS 6.4952 6.4381 21.2382
QNLoS 6.4735 6.4374 21.2727

Min. Norm/LR | Min. Norm/ISQ | Min. Norm/MUSIC

LoS 13.5298 13.1709 28.1667
QLoS 12.8640 13.1466 27.7734
QNLoS 13.0934 13.0816 28.0243

QNLOS channels for k£ nearest neighbors for values of & in
the range 0-102. A careful study of these plots indicate that,
in terms of TW and CT performance, Bartlett algorithm can
indeed be a contender even though it can be implemented in
a simple fashion.

In our work [2], we came to the conclusion that using
the MUSIC algorithm for estimating both # and p among
the algorithms studied in that paper, including LR and ISQ.
We call the resulting algorithm MUSIC/MUSIC, or MM.
We show the performance of employing the MM algorithm
in Fig. 11. In Table IV we provide TW and CT values at
102 nearest points using the MM algorithm. We provide the
running times of using the MM algorithm in Table V. We
show the performance of employing the Bartlett algorithm
for estimation of both 6 and p in Fig. 12. In Table VI
we provide TW and CT values at 102 nearest points using
Bartlett algorithm for both 6 and p. We provide the running
times of using the Bartlett algorithm to estimate both 6
and p in Table VII. In implementing the Bartlett algorithm,
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TABLE III
TW AND CT VALUES OF THE ALGORITHMS IN FIGS. 5-6 FOR LOS, QLOS, AND QNLOS CHANNELS.

Measure | Channel | Bartlett | Bartlett | Bartlett | MVDR/ | MVDR/ | MVDR/ | MinNorm/ | MinNorm/ | MinNorm/
LR 1SQ MUSIC LR I1SQ MUSIC LR ISQ MUSIC
LOS 0.9930 | 0.9885 | 0.9998 0.9796 0.9753 0.9864 0.9330 0.9885 0.9998
™ QLOS 0.9203 | 0.9205 | 0.9975 0.8882 0.8889 0.9607 0.9192 0.9194 0.9960
QNLOS | 0.9322 | 0.9324 | 0.9857 0.8887 0.8898 0.9362 0.9234 0.9238 0.9769
LOS 0.9968 | 0.9940 | 0.9998 0.9816 0.9761 0.9864 0.9968 0.9940 0.9998
CT QLOS 0.9622 | 0.9483 | 0.9989 0.9158 0.9068 0.9601 0.9606 0.9468 0.9974
QNLOS | 0.9682 | 0.9631 0.9872 0.9082 0.9067 0.9354 0.9552 0.9513 0.9773
5 LoS with 9:2048 ﬂ'ld B=3§ 1 QNLoS with U=2048 and B=32
”Ar \ 4 v v v
0.995 23,2,‘;’%“--&:::: Zi:g:::@ - -0 - MinNormLR TW e S+t LEEEE ZLEE - -G - MinNormLR TW
o _@..-—--G—--""3 = -0 - MinNormLR CT 098 _gm=" =6 - -G - MinNormLR CT
099l - - - -3 - MinNormISQ TW 3253-8:-;_—&.:-:—:—: s - -3 - MinNormISQ TW
P e i B |- 3 - MinNomISQ CT e oo RIS S DI -0 - MINemiISQCT
0.985 /’,P_,_._-Ac::::g:::: - == 2R |- =< = MinNormMUSIC TW 096 28 adm - = - MinNormMUSIC TW
' ,’/c,‘" - < = MinNormMUSIC CT Bt = SO :::::8:_‘:_'.8 - < - MinNormMUSIC CT
= 08 ;,;'1’,*_--—*-----*--—-*—"":’ - % - BartlettLR TW " - -% - BartlettLR TW
S e ooy - ==X |- % - BartletiLR CT O 0.94 - =% - BartleiLR CT
B oor5k ¢ _,~'$___-'3.'.‘.‘.‘.§-_-_~_—_ -—+ - BarletiSQTW = 4e=zzzfmtt 22222 |- + - BarletisQ W
g 0 K §«"" - — - BartlettlSQ CT ® A - —+ - BartlettlSQ CT
E il % - % - BartlettMUSIC TW = 092 _____G____D,____e__---o-----ﬂ - —% - BartlettMUSIC TW
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e - =% - MVDRLR TW T ----fec-=cdec-zzz¥ |- & - MVDRLRTW
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- - - MVDRISQ TW - % - MVDRISQ TW
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0.955 - -/ - MVDRMUSIC CT - -A - MVDRMUSIC CT
0.95 : : : : : ‘
0 20 40 60 80 100 " 20 40 60 80 100
k-nearest neighbors k-nearest neighbors
Fig. 8. TW and CT values for an LOS channel. Fig. 10. TW and CT values for a QNLOS channel.
TABLE IV
1 - = TW AND CT VALUES AT 102 NEAREST POINTS FOR EMPLOYING THE
AT BT ~ -0 - MinNormLR TW MUSIC ALGORITHM TO ESTIMATE BOTH 6 AND p.
0988&352°" - -G - MinNormLR CT
S - -3 - MinNormISQ TW Measure | Channel | MUSIC/MUSIC
thz\ é:::::é:::: R e --D-MinNormISQCT LOS 0.9998
0.96 :‘::ﬁ_:_:_:_:_ﬁ____,?_-.-—&;;fré <=0 MinNormMUSIC TW T™W QLOS 0.9975
Zas ‘—ﬁ:::::gﬂ::::@:-—-ﬁ = ¢ = MinNormMUSIC CT QNLOS 0.9854
— ST =t - =% - BartlettLR TW L.OS 0.9998
O 094 - =% - BartletiLR CT :
© ; - — - BartletliSQ TW CT QLOS 0.9989
g S0sy - —+ - BartlettlSQ CT QNLOS 0.9867
092 R e T o --e====9 |- % - BarlettMUSIC TW
k= =_,.-‘.=:::$:_" e g - =% - BartlettMUSIC CT TABLE V
ST s - - - -4 |- o - MVDRLRTW RUNNING TIMES FOR EMPLOYING THE MUSIC ALGORITHM TO ESTIMATE
0.9 - =% - MVDRLRCT BOTH 6 AND p.
b = -2 - MVDRISQ TW
______ - ---=® |_ % - MVDRISQ CT :
088 -=lpmm==We=" - - - - MVDRMUSIC TW Channel | Runtime (s)
£ - -/ - MVDRMUSIC CT LOS 20.6577
QLOS 20.6061
0.86 . - - : - NLOS 20.8503
0 20 40 60 80 100 Q

k-nearest neighbors

Fig. 9. TW and CT values for a QLOS channel.

Cholesky factorization of the autocorrelation matrix R is made
for reduction in computational complexity. From the results
presented, clearly the Bartlett algorithm has a substantial
reduction in computational complexity without a discernible
reduction in the quality of the channel charts or performance

measures TW and CT.

VII. CONCLUSION

The LR, ISQ, and MM algorithms we presented in [2]
significantly outperformed the three algorithms in the seminal
paper [1], PCA, SM, and AE, in terms of performance. In this
paper, we investigated the performance of the more conven-
tional AoA estimation algorithms Bartlett, Minimum Variance
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Fig. 11. Channel charts and TW and CT values for employing the MUSIC
algorithm to estimate both 6 and p.

TABLE VI

TW AND CT VALUES AT 102 NEAREST POINTS FOR EMPLOYING THE
BARTLETT ALGORITHM TO ESTIMATE BOTH 6 AND p-

Measure | Channel | Bartlett/Bartlett
LOS 0.9998

™ QLOS 0.9974
QNLOS 0.9871
LOS 0.9998

CT QLOS 0.9988
QNLOS 0.9892

TABLE VII

RUNNING TIMES FOR EMPLOYING THE BARTLETT ALGORITHM TO
ESTIMATE BOTH 6 AND p.

Channel | Runtime (s)
LOS 1.1203
QLOS 1.1407
QNLOS 1.1373

Distortion Response (MVDR or Capon), and Minimum Norm
algorithms. As in [1], we measured the performance in terms
of the visual appearance of the channel charts, as well as con-
nectivity (CT) and trustworthiness (TW). We also considered
execution time or running time of the algorithms. In our study
of the use of the MUSIC algorithm to estimate # and one of
Bartlett, MVDR, or Minimum Norm algorithms, we conclude
that all three conventional algorithms can be competitive.
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Fig. 12. Channel charts and TW and CT values for employing the Bartlett
algorithm to estimate both € and p.
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