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Abstract The evolution of the spatial pattern of ocean surface warming affects global radiative feedback,
yet different climate models provide varying estimates of future patterns. Paleoclimate data, especially from
past warm periods, can help constrain future equilibrium warming patterns. By analyzing marine temperature
records spanning the past 10 million years with a regression‐based technique that removes temporal dimensions,
we extract long‐term ocean warming patterns and quantify relative sea surface temperature changes across the
global ocean. This analysis revealed a distinct pattern of amplified warming that aligns with equilibrated model
simulations under high CO2 conditions, yet differs from the transient warming pattern observed over the past
160 years. This paleodata‐model comparison allows us to identify models that better capture fundamental
aspects of Earth's warming response, while suggesting how ocean heat uptake and circulation changes modify
the development of warming patterns over time. By combining this paleo‐ocean warming pattern with
equilibrated model simulations, we characterized the likely evolution of global ocean warming as the climate
system approaches equilibrium.

Plain Language Summary The uneven ocean surface warming impacts regional climate and climate
sensitivity, but the future equilibrium warming pattern predicted by climate models is inconsistent. Paleoclimate
data from past warm climates can help constrain this pattern. Using a novel regression‐based technique and sea
surface temperature (SST) records over the past 10 million years, we established a spatial pattern of SST
changes in other regions relative to the Western Pacific Warm Pool. We found a distinct paleo‐ocean warming
pattern, which resembles some millennial‐length model simulations under an abrupt quadrupling of CO2

concentrations but differs from the warming pattern observed over the recent 160 years. This provides insights
into the potential future trajectory of the equilibrium pattern of ocean surface warming.

1. Introduction
The current transient warming during the Common Era is less than the equilibrium warming predicted by
Equilibrium Climate Sensitivity (ECS) (Forster et al., 2021), which measures the ultimate global mean surface
temperature change per doubling of atmospheric CO2 levels. This discrepancy is primarily a consequence of slow
feedback processes, including the ocean interior's heat capacity, carbon cycle changes, ice‐albedo and aerosol
feedbacks, and ocean circulation changes (Forster et al., 2021; Gebbie & Huybers, 2019). One process—the
dependence of the varying feedbacks on the evolving spatial pattern of ocean surface temperature changes,
commonly referred to as the “pattern effect” (Andrews & Webb, 2018; Andrews et al., 2015; Armour et al., 2013;
Gregory & Andrews, 2016; Lewis & Mauritsen, 2021)—has gained increasing attention. This effect arises from
the uneven sea surface temperature (SST) changes (Andrews et al., 2015) that create distinct ocean warming
patterns. These patterns impact atmospheric circulation and stability (Andrews et al., 2015; Dong et al., 2019;
Zhou et al., 2017), thus influencing cloud cover, precipitation, and heat transport. This intricate interplay can
amplify or dampen warming, influencing climate sensitivity to greenhouse gas emissions. One recent estimate
suggests that accounting for the pattern effect cloud increase committed global warming under present‐day
forcing by up to 1°C (Zhou et al., 2021).

However, the presence of vastly different equilibrium ocean “warming patterns” generated by different climate
models (Dong et al., 2020) raises concerns. Moreover, Coupled Model Intercomparison Project Phase 5 (CMIP5)
and 6 (CMIP6) simulations show systematic biases in reproducing the observed transient warming patterns (Wills
et al., 2022), highlighting the need to evaluate their long‐term equilibrium projections against independent
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constraints. These patterns represent the target that the contemporary ocean might evolve toward once radiative
equilibrium is achieved. However, the lack of precise knowledge about this “target” introduces major un-
certainties in estimating the energy influx due to the pattern effect, posing a key challenge in projecting future
warming patterns and their regional climate impacts (Forster et al., 2021).

To constrain these uncertainties in future warming patterns, we can examine periods in Earth's history when the
climate system was near equilibrium. Marine temperature records spanning millions of years provide a unique
opportunity to observe how warming patterns develop when the ocean has fully adjusted to elevated greenhouse
conditions. By comparing these long‐term patterns with climate model simulations, we can evaluate which
models best capture the fundamental physics of Earth's warming response, improving confidence in projections of
future regional climate change.

Extracting warming patterns from individual locations, such as ocean drilling sites, requires careful consideration
of how paleoclimate data are compiled and analyzed. Various approaches have been developed, including
network‐based methods that analyze the spatial co‐variability structure of proxy records to reconstruct atmo-
spheric circulation patterns (Franke et al., 2017), and data assimilation techniques that integrate proxy records into
climate models to construct comprehensive patterns for specific time periods (Tierney et al., 2020, 2022). Another
method normalizes temperature changes from paleoclimate records, enabling direct comparison with modern
observations and model projections, independent of temporal variations (Liu et al., 2022). Building upon this
latter approach, we establish global ocean warming pattern by analyzing temperature data from sites spanning the
past 10 million years (Myr), focusing on relative temperature changes at each site compared to a reference region.

2. Compiling the Global SST Data for the Last 10 Myr

We compiled TEX86, UKʹ
37 and Mg/Ca data (Burls et al., 2021a; Lawrence et al., 2021), which were then used to

calculate SSTs for the global ocean over the past 10 Myr (Table S1 in Supporting Information S1 and Figure 1).
TEX86 were converted to SSTs using a Bayesian‐based spatially varying regression (BAYSPAR) calibration
(Tierney & Tingley, 2014), which considers the spatial variations in TEX86‐SST relationships. UKʹ

37 were con-
verted to SSTs using a Bayesian B‐spline approach (BAYSPLINE) (Tierney & Tingley, 2018), which better
handles the nonlinear relationship between UKʹ

37 and temperature as the UKʹ
37 index approaches 1 and SST closes

toward 29°C. This is particularly important for the tropical Sites U1338, 846, 850, 1241, and 722 in our
compilation. The Mg/Ca‐SST of Site 806 was adjusted using seawater Mg/Ca variations, and carbonate disso-
lution impact on Mg/Ca thermometry was also considered (Liu et al., 2022).

All SST records were calibrated to the same absolute time frame, GTS 2012 (Gradstein et al., 2012), which is
essential for aligning all records before the temporal domain was removed. If major advancements have been
made since the original publication of the SST records, we then utilized this new knowledge to enhance the

Software: Xiaoqing Liu
Supervision: Yi Ge Zhang,
Matthew Huber, Ping Chang
Validation: Xiaoqing Liu, Yi Ge Zhang,
Matthew Huber
Visualization: Xiaoqing Liu
Writing – original draft: Xiaoqing Liu,
Yi Ge Zhang, Matthew Huber
Writing – review & editing:
Xiaoqing Liu, Yi Ge Zhang,
Matthew Huber, Ping Chang, Lei Wang

Figure 1. Sites used in this study. The map shows the statistical mean of annual sea surface temperature derived from World
Ocean Atlas 2013 (Locarnini et al., 2018). Gray circles at each site represent paleo‐locations of the past 10 million years
(Myr) at a 1‐Myr window. Black circles indicate present locations. Blue contour lines indicate the 28.5°C isotherm that
defines the modern Western Pacific Warm Pool.
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chronology of these SST time‐series. Age estimates of Sites 594 and 1125 were updated using Bacon age‐
modeling software (Blaauw & Christen, 2011) (https://chrono.qub.ac.uk/blaauw/bacon.html) by combining
astronomically‐tuned Pliocene age models reported by Caballero‐Gill et al. (2019) and previously published age‐
depth relationships from Herbert et al. (2016). The ages of Site U1338 were updated using a revised bio-
magnetostratigraphic age model from Backman et al. (2016).

We focus on the past 10 Myr because this interval represents a period of relatively stable boundary conditions
compared to earlier geological periods, with continental configurations broadly similar to modern conditions.
While acknowledging that some boundary condition changes occurred during this interval, the overall tectonic
stability of this period makes it most appropriate for deriving warming patterns relevant to future climate pro-
jections under anthropogenic forcing. We note that our regression‐based methodology itself does not require
similar boundary conditions—it can extract warming patterns from any time period—but the constraint of
boundary condition similarity becomes important when applying these paleoclimate‐derived patterns to under-
stand modern and future climate evolution.

However, an important limitation in our model‐data comparison is that the SST changes recorded in proxy data
over the past 10 Myr were influenced by both CO2 and non‐CO2 forcings—including changes in paleogeography,
solar constant, and aerosols—whereas future climate simulations used in this study are driven exclusively by CO2

forcing. Different forcing mechanisms can produce distinct spatial patterns of surface temperature change. For
example, while increasing atmospheric CO2 levels generally lead to relatively uniform global warming, paleo-
geographic changes can have more localized effects. Specifically, the closure of the Bering Strait during the
Miocene–Pliocene and the opening of the Canadian Arctic Archipelago during the Miocene are both thought to
have warmed the North Atlantic through their impact on ocean circulation (Brierley & Fedorov, 2016; Liu
et al., 2024; Otto‐Bliesner et al., 2017). The amplification factors estimated from our paleo‐data therefore reflect
the combined effect of multiple forcings and may not be directly comparable to simulations driven by CO2 alone.
Despite this difference, we believe our comparison provides valuable insights into the spatial characteristics of
future equilibrium warming.

3. Establishing the Warming Pattern Over the Last 10 Myr
Building on compiled proxy data for SST reconstructions of the past 10 Myr (Table S1 in Supporting Infor-
mation S1) around the world's ocean and a study focused on the Western Pacific Warm Pool (WPWP) (Liu
et al., 2022), we use a regression‐based method to identify the global ocean's warming pattern. Specifically, SST
records from non‐WPWP regions are regressed against WPWP SST (Figure 2b, Text S1 in Supporting Infor-
mation S1). The amplification factor relative to the WPWP is defined as the slope of a significant linear regression
(p‐value < 0.05) between the SST change in non‐WPWP regions and the WPWP (Figure 2b), based on York
Regression (York et al., 2004), a weighted least squares regression method that accounts for uncertainties in
bivariate data, along with the correlation between those uncertainties. This approach enables direct comparisons
among paleoclimate, modern‐climate, and projected future climate without considering temporal changes.

WPWP—the largest and warmest surface waterbody on Earth—was selected for three primary reasons: (a) the
unavailability of direct paleoclimate proxy records of global mean surface temperature over the studied interval,
(b) its convective coupling to the upper atmosphere and top‐atmosphere energy balance (Fu et al., 1994), which
allows its SST to exhibit strong coherence with global mean surface temperature on long timescales (Cleveland
Stout et al., 2023), (c) the warming of other regions relative to the WPWP is closely tied to global radiative
feedback (Dong et al., 2019; Fueglistaler, 2019), and (d) its geographical location far from the cryosphere and
continents, facilitating more statistically robust and interpretable relationships. These physical characteristics
make WPWP temperatures particularly relevant for understanding both past and future warming patterns. Our
regression‐based approach remains valid across a wide range of temperatures, as theoretical and modeling studies
(Sud et al., 2008; Williams et al., 2009) have rebutted the concept of a “tropical thermostat,” suggesting no
physical basis for a maximum ocean temperature. Indeed, paleo‐SST records support this view, showing tem-
peratures exceeding 32°C during the late Miocene (Liu et al., 2022; Zhang et al., 2014), further justifying our use
of linear regression against WPWP temperatures across the entire temperature range observed in our data set.

By combining the WPWP SST stack with 17 non‐WPWP SST records around the global ocean with necessary
temporal resolution and data quality (Table S1 in Supporting Information S1 and Figure 1), we quantified the
amplified warming of each non‐WPWP site relative to the WPWP, thereby establishing the warming pattern (Text
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S1 in Supporting Information S1). Plate movement's impact on these records seems minor as the SST changes
resulting from paleogeographic changes alone fall within the uncertainty range of the reconstructed SST (Text S2
and Figure S1 in Supporting Information S1). The majority of the sites yield amplification factors larger than 1
(Figure 3a), indicating amplified warming of most of the world's ocean relative to the WPWP during Earth's
distant history. Also, warming is amplified to a greater extent in high latitudes than in middle latitudes (Figure 3a

Figure 2. Transforming two sea surface temperature (SST) time series into an amplification factor. (a), Western Pacific Warm
Pool (WPWP) SST stack and binned SST of Site 1021. Warm Pool SST stack (red line) was calculated using TEX86‐SST
from Sites U1488 (Liu et al., 2022), 806 and 1143 (Zhang et al., 2014) and seawater Mg/Ca‐adjusted Mg/Ca‐SST from Site
806 (Liu et al., 2022). The blue line indicates UKʹ

37 ‐derived SSTs of Site 1021 (Herbert et al., 2016), which were binned over
200 kyr, with 50% overlap. (b), Determining the amplification factor for Site 1021 by scatter plotting the SST data of the WPWP
and Site 1021 from the same binning intervals, and then performing a linear regression analysis. Error bars indicate 1σ, and the
black line represents York Regression. The p‐value from this linear regression is less than 0.0001, indicating the linear
relationship is statistically significant. The slope, that is, the amplification factor for Site 1021, is 2.42 ± 0.23 (2σ).

Figure 3. Comparing amplification factors derived from geological data spanning the last 10 million years with those from
the CESM simulations. (a) Map shows the model‐derived warming patterns of the global ocean. Amplification factors were
determined by analyzing model outputs from Community Earth System Model version 1.0.4 (CESM104) run with abrupt
atmospheric CO2 quadrupling above pre‐industrial levels integrated over 5,900 years (Rugenstein, Bloch‐Johnson, Abe‐
Ouchi et al., 2020). Only regions where the linear regression between Western Pacific Warm Pool (WPWP) SSTs and local
SSTs is significant (p‐value < 0.05) were included in our analyses (shown with color). Filled diamonds and squares indicate
10‐million‐year amplification factors derived from UKʹ

37 and TEX86‐based SSTs (Text S4 in Supporting Information S1),
respectively. Red square and triangle symbols represent the WPWP sites used for producing the WPWP sea surface temperature
stack. (b), Comparison between model‐derived amplification factors and proxy‐derived results. The gray dashed line represents
the 1:1 relationship. Error bars indicate two standard errors of the amplification factor. The blue line indicates York Regression
(York et al., 2004) with an R‐squared of 0.42 (Text S5 in Supporting Information S1) excluding two apparent outliners from Site
982 (UKʹ

37 and TEX86), shown as the gray markers. The blue text (0.87 ± 0.05, 1σ) around this line indicates the slope of the
linear relationship.
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and Figure S2 in Supporting Information S1), providing evidence for the concept of polar or high latitude
amplification. This pattern may be enhanced by potential changes in UKʹ

37 seasonality during warmer periods,
when annual rather than summer production would decrease apparent warming at high‐latitude sites (Tierney
et al., 2025). While our study reveals key insights into long‐term warming patterns, we acknowledge the limited
spatial coverage of SST proxy records, particularly in open ocean and high‐latitude regions. Future studies can
refine our understanding of global warming patterns and climate sensitivity by incorporating new proxy records
from underrepresented regions, especially the Southern Ocean.

The amplification factors derived from linear regression for the entire data set (Figure 3) align with those averaged
across five different subsets of the data set, which are segmented based on different degrees of the WPWP
warming, ranging from 1 to 5°C with a step of 1°C (Text S3 and Figure S3–S5 in Supporting Information S1).
This consistency (Figure S5 in Supporting Information S1) indicates that linear regression accurately represents
the relationships between non‐WPWP and WPWP SSTs across various levels of global warming, presumably
capturing an inherent characteristic of the earth's climate system. While linear regression might not encompass all
the complexities of the Earth's climate system, it provides a first‐order approximation that is useful for under-
standing the basic physics and patterns of warming.

4. Comparing the Paleo‐Warming Pattern With Model Outputs
Applying the regression methods described earlier, we can extend the analysis to both model‐predicted future SST
changes and recent observed SST change to obtain normalized warming patterns of the global ocean. The model
outputs used for comparison in this study are derived from LongRunMIP (Rugenstein, Bloch‐Johnson, Abe‐
Ouchi et al., 2020) simulations under an abrupt quadrupling of atmospheric CO2 concentration relative to pre-
industrial levels (abrupt‐4×CO2). These millennial‐length simulations are particularly valuable as they allow us to
examine how models project the evolution of warming patterns toward their equilibrium state (Text S6 in
Supporting Information S1). Previous research, with a specific focus on the Pacific Ocean, has highlighted the
Community Earth System Model (CESM1.0.4) as a noteworthy example, demonstrating its ability to capture high
latitude amplifications based on paleo‐SST records (Liu et al., 2022). In a similar vein, here we demonstrate that
the CESM simulations exhibit a noteworthy level of agreement with the warming patterns established through the
analysis of paleo‐SST records from 15 sites distributed worldwide (Text S7 in Supporting Information S1,
Figure 3).

The amplification factor comparison between the 10‐Myr paleoclimate records and the CESM output demon-
strates a striking agreement, with the majority of data points closely aligned along the 1:1 line (Figure 3). This
agreement is particularly noteworthy given the substantial differences in data acquisition methods and timescales
involved, suggesting that CESM captures fundamental aspects of Earth's equilibrium climate response.

Two outliers, specifically Site 982, show a much larger model‐derived amplification factor compared to paleo‐
results (Figure 3b). The model predicts a substantial warming of approximately 6°C for Site 982 (57.516°N,
15.866°W) in the North Atlantic, while the WPWP experiences a much smaller warming of 1.4°C over the
simulated 5,900 years. The large warming projected for the North Atlantic by the CESM is probably attributed
to a pronounced strengthening of Atlantic meridional overturning circulation (Jansen et al., 2018) and the
resulting enhanced northward ocean heat transport. Excluding these two apparent outliners, the York
Regression analysis between the modeled and geological data‐based amplification factors shows a slope of
0.87 ± 0.05 (p‐value < 0.0001, Figure 3b), indicative of an agreement between the two data sets.

In addition to CESM, the LongRunMIP (Rugenstein, Bloch‐Johnson, Abe‐Ouchi et al., 2020) project includes
eight other models that conducted abrupt‐4×CO2 simulations, allowing us to evaluate which models effectively
capture the ocean warming pattern. Their warming patterns are computed (Figure 4) and compared with paleo‐
results (Figures 5a–5h). By analyzing the deviation of the regression line from the 1:1 line (Text S7 in Supporting
Information S1, Figures 5a–5h), which represents the proximity of the slope in the York Regression to 1, we find
that CCSM3, HadGEM2, and MPIESM11 models demonstrate strong agreement with paleo‐results (Figures 5a,
5e, and 5g).

Besides York Regression, we also apply Orthogonal Distance Regression (ODR) (Figure S6 in Supporting In-
formation S1), which accounts for errors of both variables but uses a different minimization approach. ODR
yields similar regression slopes to those derived from York Regression, albeit with large uncertainties. To
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estimate the uncertainty of the regression slope, we apply a bootstrapping approach, resampling our available sites
independently with replacement and performing York regression 10,000 times. The resulting slope distributions
(Figure S7 in Supporting Information S1) show that the median values align with slopes derived from York
regression and ODR using all sites, with uncertainties comparable to those from ODR, particularly in models with
lower regression slope uncertainties.

Figure 4. Amplification factors obtained from model simulations of LongRunMIP other than Community Earth System
Model. (a–h) Show amplification factors estimated from the sea surface temperature (SST) outputs of CCSM3,
CNRMCM61, FAMOUS, HadCM3L, HadGEM2, IPSLCM5A, MPIESM11, and MPIESM12, respectively. Symbols are
same as those shown in Figure 3a. Filled diamonds and squares indicate 10‐million‐year amplification factors derived from
UKʹ

37 ‐based and TEX86‐based SSTs, respectively.
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Figure 5.
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To comprehensively assess the pattern similarity between paleo‐results and multiple model simulations, we go
beyond York Regression slopes and use a Taylor Diagram. This diagram incorporates various metrics, such as
standard deviations (STD) of amplification factors, correlation coefficients, and root‐mean‐square differences
(RMSD), to evaluate model performance (Figure S8 in Supporting Information S1). Due to the high RMSD
values (>0.6), we use STD and correlation coefficients as supplementary criteria to York Regression slopes,
which is our primary method for ranking these models (Figure S9 in Supporting Information S1). MPIESM12
ranks third in terms of STD similarity to the paleo‐data, following CESM104 and CCSM3 (Figures S8 and S9 in
Supporting Information S1). This, combined with York Regression results, allows us to group CESM104,
CCSM3, HadGEM2, MPIESM11, and MPIESM12 into one category, Group A (Figure 5i), which demonstrate
similar warming patterns to paleo‐results (Figures 5a, 5e, and 5g and Figure S8 in Supporting Information S1).
The remaining LongRunMIP models, including CNRM‐CM6‐1, FAMOUS, HadCM3L, and IPSL‐CM5A, are
categorized as Group B (Figure 5i), as their simulated warming patterns deviate from paleo‐results (Figures 5b–5d
and 5f and Figure S8 in Supporting Information S1, and Table S2 in Supporting Information S1). This classi-
fication provides a new framework for evaluating model performances in projecting future warming patterns,
based on their ability to reproduce fundamental aspects of Earth's climate response observed in the geological
record.

The comparison of multi‐model mean of amplification factors between Group A and B shows stronger amplified
warming in middle and high latitudes for Group A (Figure 5j). The larger high‐latitude amplification factors in
Group A (Text S8 and Figure S10 in Supporting Information S1) are unlikely due to the higher ECS, as not all
Group A models have higher ECS than Group B models (Table S2 in Supporting Information S1). Also, analyses
of CMIP5 and CMIP6 model outputs reveal no strong correlation between high latitude amplification and ECS
(Text S9 and Figure S11 in Supporting Information S1), and this lack of dependency of high‐latitude amplifi-
cation on ECS is also suggested by Zhu et al. (2024), which shows that meridional temperature structure at the
same global mean surface temperature level for the Eocene is similar across three CESM versions with different
ECS values. Instead, Group A's stronger amplification likely stems from more effective positive feedback, such as
surface albedo (Crook et al., 2011; Screen & Simmonds, 2010; Taylor et al., 2013), water vapor feedbacks, and
cloud feedbacks (Taylor et al., 2013; Vavrus, 2004). This is supported by Group A's stronger shortwave clear‐sky
feedbacks and longwave cloud feedbacks at high latitudes (Text S10, Figures S12b and S12e in Supporting
Information S1), despite counterbalancing effects from long‐wave clear‐sky feedbacks and shortwave cloud
feedbacks (Figures S12c and S12d in Supporting Information S1). Other factors such as lapse rate feedback
(Goosse et al., 2018; Pithan & Mauritsen, 2014; Stuecker et al., 2018) and atmospheric/ocean heat transport
(Alexeev & Jackson, 2013; Goosse et al., 2018; Lu & Cai, 2010), might also contribute to inter‐model differences
in high‐latitude amplification. However, evaluating their specific contribution using the radiative kernel tech-
nique is not feasible here due to the unavailability of essential feedback‐associated variables (e.g., cloud profile)
in the LongRunMIP outputs.

The “pattern effect” in modern climatology emphasizes the importance of zonal SST patterns across the tropical
Pacific, particularly the differential warming between the western Pacific ascent regions and the eastern Pacific
subsidence regions (Andrews & Webb, 2018; Dong et al., 2019; Zhou et al., 2017). While the spatial coverage of
paleo‐SST records in this study is limited compared to modern observations, our analysis provides key insights
into the long‐term evolution of these patterns. For example, the eastern equatorial Pacific is relatively well
represented for establishing long‐term SSTs, as indicated by Sites 846 (3.1°S, 90.8°W), 850 (1.5°N, 110.3°W),
and U1338 (2.5°N, 118.0°W) in our analyses (Figure 3): the majority of the models capture the amplified

Figure 5. Comparing amplification factors between the last 10 million years geological data and model simulations from LongRunMIP. (a–h) show comparisons
between data and model results obtained from CCSM3, CNRMCM61, FAMOUS, HadCM3L, HadGEM2, IPSLCM5A, MPIESM11, and MPIESM12, respectively.
Diamonds and squares indicate amplification factors derived from UKʹ

37 and TEX86‐based sea surface temperatures (SSTs), respectively, and blue lines indicate York
Regression using all the data, while the light‐blue line in (e) indicates York Regression excluding the rightmost data point (Site 594). In (a), the linear relationship between
the SST of Site 608 and the Western Pacific Warm Pool SST from model outputs is not significant at 5% significance level, indicating the absence of the amplification
factor for Site 608, and thus not shown in the plot. (i), Paleo‐results versus model results of each site. Note that the x‐axis in (i) and (j) are identical. In (i), the x‐axis is
represented by the latitude of the sites, while in (j), the sites names are displayed. Black and purple circles represent amplification factors based on UKʹ

37 ‐SST and TEX86‐
SST, respectively. Orange symbols indicate models whose amplification factors are overall consistent with paleo‐results, including CCSM3, CESM104, HadGEM2,
MPIESM11, and MPIESM12 (Group A). Blue symbols indicate the rest of the models, including CNRM‐CM6‐1, FAMOUS, HadCM3L, and IPSL‐CM5A (Group B).
Error bars indicate two standard errors. (j), Comparisons between paleo‐results and the multi‐model mean of Group A and B. Orange and blue error bars indicate two
standard errors of the ensemble mean.
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warming derived from UKʹ
37 proxy at Site 846 and/or 850 (Figure S13 in Supporting Information S1), suggesting

that models reproduce the weakening of zonal SST gradients across the tropical Pacific under long‐term warming.
However, while the zonal gradient is reduced, it never completely disappears, maintaining the fundamental east‐
west temperature structure (Zhang et al., 2014). There is a discrepancy at Site U1338, where the amplified
warming predicted by the models is not found in the proxy data (Figure 4), likely due to UKʹ

37 values reaching their
upper limit value for the late Miocene. The models' strong performance in reproducing long‐term zonal SST
gradient weakening contrasts with their poor performance in capturing the historically observed strengthening of
these gradients (Heede & Fedorov, 2021; Seager et al., 2019; Wills et al., 2022), highlighting the importance of
timescale in understanding tropical Pacific climate dynamics. Although the paleo‐SST records cannot capture the
complexity of modern pattern effects, our analysis of zonal warming patterns over extended timescales advances
our understanding of Earth's climate system dynamics.

5. Comparing the Paleo‐Warming Pattern With Recent Observations
Our approach of using paleo‐SSTs to build long‐term, equilibrium warming patterns of the ocean also provides
an opportunity to assess their relationship with the observed ocean warming of the Common Era, which is yet
to fully unfold. Popular SST data sets such as HadISST2.1, ERSSTv5, and COBE‐SST2 which depict global
ocean warming over the past 160 years, show slight deviations in the warming pattern (Figure 6a, Text S11,
Figures S14a and S14c in Supporting Information S1) due to differences in the methods used for correcting
historical SST biases (Kent et al., 2017; Smith & Reynolds, 2002). Nevertheless, all three SST data sets show
that recent amplification factors are significantly lower than those over the past 10 Myr (Figure 6b, Figures
S14b and S14d in Supporting Information S1). This contrast between modern and paleo‐patterns offers crucial
insights into future warming evolution: the modern pattern reflects a transient state influenced by ocean heat
uptake, while the paleo‐pattern represents the system's equilibrium response–essential for understanding long‐
term climate projections.

The Neogene records show larger amplification factors compared to those during the instrumental period
(Figure 6 and Figure S14 in Supporting Information S1), especially at sites in the North Atlantic and Southern
Ocean. This pattern is similar to the differences observed between equilibrium runs and transient 1–150 year runs
simulated by some of the LongRunMIP models, such as CCSM3, CESM, MPIESM11, and MPIESM12, where

Figure 6. Comparing amplification factors between the last 10 million years (Myr) and the last 160 years. (a), The map shows
the warming pattern of the global ocean. The color represents the amplification factors over a period of 160 years (1850–
2010) derived from the HadISST2.1 data set. Stippling on the map indicate areas where the amplification factor is not
available. This absence is due to the lack of a significant linear relationship between the sea surface temperature (SST) at a
particular grid point and the Western Pacific Warm Pool (WPWP) SST, determined at a 5% significance level (Text S11 in
Supporting Information S1). Filled diamonds and squares indicate 10‐million‐year amplification factors derived from UKʹ

37 ‐
based and TEX86‐based SSTs, respectively. Red square and triangle symbols represent the WPWP sites used for producing the
WPWP SST stack. (b), Comparing amplification factors between the recent 160 years and the past 10 Myr with a cross plot.
Error bars indicate two standard errors. The gray dashed line represents the 1:1 line, and the blue line indicates York Regression
with a slope of 7.88 ± 3.44 (1σ). For grid points closest to the paleo‐locations of Sites 850 or 1338, the averaged SST from 1850
to 2010 does not exhibit a significant linear relationship with the WPWP SST (p‐value > 0.05), and therefore data from Sites
850 and 1338 are not included in the cross plot (b).
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equilibrium runs also display larger amplification factors (Figure 7). These findings align with the stronger
warming of these regions shown in equilibrium climate change simulations compared to the transient climate
change simulations (Huang et al., 2020; King et al., 2020). The current reduced warming in the North Atlantic and
Southern Ocean is likely due to deep‐ocean heat uptake and changes in meridional overturning circulation (Jansen
et al., 2018; Li et al., 2013). This suggests a temporary modulation, indicating additional warming in these regions
as the climate system moves toward equilibrium. In addition, the observed pattern of warming over the last
160 years could be affected by internal modes of variability (Dessler, 2020), which are likely averaged out in the
paleo‐SST records.

Amplification factors can vary with warming levels (Figure S3f in Supporting Information S1), potentially
explaining differences between the recent 160 years (∼0.6°C WPWP warming) and the Neogene period (∼4.5°C
WPWP warming). However, our segmented analysis by warming levels reveals that the pattern of amplified
warming remains largely consistent across different degrees of warming (Figure S3f in Supporting Informa-
tion S1), indicating that the spatial pattern of amplification factors is relatively stable under diverse mean climate
conditions.

Figure 7. Comparing amplification factors between equilibrium and transient climate simulations obtained from LongRunMIP. (a–i) Show amplification factors
estimated from transient 1–150 year runs generated by CCSM3, CESM, CNRMCM61, FAMOUS, HadCM3L, HadGEM2, IPSLCM5A, MPIESM11, and MPIESM12,
respectively. (j–r) Show the differences from their corresponding equilibrium runs, which are displayed in Figures 3a and 4.
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6. Projecting the Future, Equilibrium Warming Pattern of the Global Ocean
The diverging warming patterns observed on different timescales imply that the future equilibrium warming
pattern will display stronger amplified warming in middle and high latitudes compared to the current transient
pattern, with significant implications for long‐term adaptation in these regions. Given the similarity of Group A
models (CESM, CCSM3, HadGEM2, MPIESM11, and MPIESM12) to the paleo‐warming pattern, we utilize
their ensemble mean equilibrium patterns to project future ocean warming (Figure 8a). Figure 8a shows the
expected warming in different oceanic regions relative to a 1°C increase in WPWP surface temperature.

It is important to note that the timescale for reaching equilibrium in our projection is on the order of thousands of
years, far beyond most policy‐relevant climate projections. However, this long‐term perspective offers valuable
insights into the Earth's climate trajectory. Our projected equilibrium pattern (Figure 8b) shows a strong corre-
lation (coefficient ∼0.67) with projected warming patterns from 2101 to 2300 under a high CO2 emission scenario
(Figure S15 in Supporting Information S1), while revealing more pronounced high‐latitude warming, particularly
in the North Atlantic and Southern Ocean (Figure 8b). This discrepancy between equilibrium and century‐scale
projections underscores the importance of considering long‐term climate evolution.

The expected transition from transient to equilibrium ocean surface warming patterns (Andrews et al., 2015;
Dong et al., 2019; Gregory & Andrews, 2016; Sherwood et al., 2020; Wills et al., 2022) has a notable impact on
the global radiative feedback changes (Dong et al., 2019), which in turn affects ECS (Sherwood et al., 2020).
Previous work using relatively short (150‐year) abrupt 4×CO2 simulations (Zhou et al., 2021) showed that the
pattern effect increases equilibrium committed warming by ∼1°C. Our estimates of the pattern effect based on
millennial timescale simulations show an even stronger pattern effect (Text S12 in Supporting Information S1,
Table 1) than estimates from 150‐year simulations (Andrews et al., 2022; Modak & Mauritsen, 2023), due to the
climate feedback parameter λ increasing by 14%–59% from centennial to millennial time scales (Table 1).
Consequently, the projected committed warming is likely stronger than previously estimated (Table 1). As
demonstrated in LongRunMIP simulations, extending the run length from centennial to millennial timescales
results in sustained high‐latitude warming, increasing the high‐latitude amplification factor, particularly for the
North Atlantic and Southern Ocean (Figures S16, S17, and Text S13 in Supporting Information S1).

Our findings suggest that current observations and near‐term projections might underestimate equilibrium
warming in high‐latitude regions. The alignment between paleo‐data and leading climate models indicates that,
given sufficient time, the Earth system may approach a warming pattern similar to that seen in the geological past.
However, reaching such equilibrium states may take several millennia and follow a nonlinear trajectory. Future
research comparing transient and equilibrium simulations with proxy records across different time periods could
help better constrain the evolution of warming patterns, enhancing projections for policy‐relevant timescales.

Figure 8. Future pattern of amplified warming relative to the Western Pacific Warm Pool (WPWP). (a), Equilibrium pattern
of amplified warming relative to the WPWP. The colors show the multi‐model mean of amplification factors derived from
CESM, CCSM3, HadGEM2, MPIESM11, and MPIESM12. Blue dashed lines show the contour of amplification factors.
Symbols are paleo‐results identical to those shown in Figure 3a. (b), Differences between the equilibrium warming pattern
(a) and predicted future warming pattern from 2101 to 2300 (Figure S15 in Supporting Information S1) that was based on a
simulation from an extension of the SSP585 scenario for CMIP6.
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