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Abstract

This paper considers an infinite-horizon Markov decision process (MDP) that allows for
general non-exponential discount functions, in both discrete and continuous time. Due to the
inherent time inconsistency, we look for a randomized equilibrium policy (i.e., relaxed equilib-
rium) in an intra-personal game between an agent’s current and future selves. When we modify
the MDP by entropy regularization, a relaxed equilibrium is shown to exist by a nontrivial
entropy estimate. As the degree of regularization diminishes, the entropy-regularized MDPs
approximate the original MDP, which gives the general existence of a relaxed equilibrium in the
limit by weak convergence arguments. As opposed to prior studies that consider only determin-
istic policies, our existence of an equilibrium does not require any convexity (or concavity) of the
controlled transition probabilities and reward function. Interestingly, this benefit of considering
randomized policies is unique to the time-inconsistent case.

Keywords: time inconsistency, non-exponential discounting, Markov decision processes, re-
laxed controls, entropy regularization

1 Introduction

For Markov decision processes (MDPs) on an infinite horizon, discounting is a key feature that
allows the expected total reward to take a finite value. A widespread assumption in the literature
is exponential discounting, i.e., the discount rate is constant over time. There is, however, sub-
stantial evidence against exponential discounting. In behavioral economics (see e.g., Thaler [27],
Loewenstein and Thaler [24], Laibson [23]), it is well documented that the discount rate is em-
pirically time-varying and many non-exponential functions have been proposed to model empirical
discounting; see e.g., Huang and Zhou [19, Remark 3.1].

For the past fifteen years or so, non-exponential discounting has been seriously considered and
approached in stochastic control, and the involved mathematical challenge is now well understood.
In a nutshell, non-exponential discounting causes time inconsistency: an optimal control policy an
agent derives today will not be optimal from the eyes of the same agent tomorrow. As a dynamically
optimal policy over the entire time horizon no longer exists, Strotz [26] suggests that one instead
look for an equilibrium policy in an intra-personal game between one’s current and future selves.
A standard equilibrium (i.e., an equilibrium policy as a deterministic map on the state space) has
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been studied under non-exponential discounting in diffusion models (e.g., Ekeland and Lazrak [12],
Ekeland and Pirvu [14], Ekeland et al. [13], Yong [29], Bjork et al. [9], Huang and Nguyen-Huu
[17], Huang and Zhou [20], Bayraktar et al. [7, 8]), as well as in models of controlled Markov chains
(e.g., Balbus et al. [3], Chatterjee and Eyigungor [10], Balbus et al. [4], Balbus et al. [2], Huang and
Zhou [21], Balbus et al. [5], Bayraktar and Han [6]). Many of the studies establish the existence
of a standard equilibrium for a general state space (e.g., a Borel space), but require very specific
forms of discounting (e.g., quasi-hyperbolic or hyperbolic), the reward function (e.g., monotone and
supermodular), and the controlled transition probabilities (e.g., decomposable into supermodular
functions); see the assumptions in [3, 10, 4, 2, 5].! These conditions need not hold even in fairly
simple examples, such that a standard equilibrium may fail to exist; see e.g., [21, Remark 10].

This motivates us to consider relazed equilibria (i.e., randomized equilibrium policies), to possi-
bly extend the existence of equilibria to cases where discounting, reward functions, and controlled
transition probabilities are all general. To this end, it is natural to consider MDPs, which by
definition considers randomized control policies (i.e., relazed controls).

In the context of reinforcement learning, Alexander and Brown [1], Fedus et al. [15], and
Schultheis et al. [25] design algorithms to compute optimal relaxed controls for MDPs under
non-exponential discounting, but fail to realize that such policies are unsustainable due to time
inconsistency. To the best of our knowledge, only the recent work Jaskiewicz and Nowak [22] rec-
ognizes the issue of time inconsistency and applies Strotz’s game-theoretic approach to MDPs: they
prove that a relaxed equilibrium exists for discrete-time MDPs for a general state space, reward
function (bounded and continuous), and transition probabilities (transition densities exist and are
continuous), but require the discount function to be quasi-hyperbolic. In fact, their arguments
rely crucially on the specific form of a quasi-hyperbolic discount function (which is stylized and
tractable) and do not allow for other kinds of non-exponential discounting.

In this paper, we accommodate general discount functions and strive to establish the existence
of a relaxed equilibrium for the resulting time-inconsistent MDPs in both discrete and continuous
time. As we can no longer rely on the form of a discount function, our approach differs largely from
that in Jaskiewicz and Nowak [22].

Instead of working with the original MDP (i.e., (2.1) below) directly, we consider an entropy-
regularized version, where the entropy of a randomized control policy (i.e., a relaxed control) is
added to the functional to be maximized; see (2.4) below. Taking advantage of the form of the
entropy term, we characterize relaxed equilibria for the entropy-regularized MDP (which we call
reqular relaxed equilibria) as fixed points of an operator, which takes a tractable Gibbs-measure
form; see Proposition 2.1 and Corollary 2.1. By showing that the fixed-point operator continuously
maps a compact domain to itself, we conclude from Brouwer’s fixed-point theorem that a regular
relaxed equilibrium exists; see Theorem 2.1. Note that for the operator to map a compact domain
to itself, the growth of the entropy term needs to be contained appropriately, which is a known
mathematical challenge. To achieve this, we assume that the reward function and controlled tran-
sition probabilities are Lipschitz in the action variable (Assumption 2.2) and the action space U
fulfills a uniform cone condition (Assumption 2.3). Then, following an argument recently proposed
in Huang et al. [18, Section 4.3|, we get logarithmic growth of the entropy term uniformly in the
state variable (Lemma 2.1), which facilitates the proof of Theorem 2.1.

For the original MDP (2.1), relaxed equilibria can also be characterized as fixed points of an
operator (Proposition 2.2). However, the operator is an abstract set-valued map, which is, compared
with the concrete single-valued operator under entropy regularization, much less tractable and much

1[6] considers a finite-horizon discrete-time model, for which a recursive backward induction provides an equilib-
rium. This method does not work for an infinite horizon and therefore cannot be applied to our study.



less promising for numerical implementation; see Remark 2.6. Thus, we approximate the original
MDP by a sequence of entropy-regularized MDPs, with the degree of regularization (measured
by A > 0 in (2.4)) diminishing to zero. This yields a sequence of regular relaxed equilibria, one
for each entropy-regularized MDP. Intriguingly, the value functions corresponding to this sequence
are uniformly bounded: as shown in Lemma 2.2, the logarithmic growth of entropy (obtained in
Lemma 2.1 for each fixed A\ > 0) can be made uniform across all A > 0 small enough, thereby giving
a uniform bound for the value functions. Relying on this, a delicate probabilistic argument shows
that the sequence of regular relaxed equilibria for entropy-regularized MDPs (i.e., fixed points of
tractable Gibbs-form operators) converges weakly to a fixed point of the set-valued operator for
the original MDP. That is, a relaxed equilibrium for the original MDP exists; see Theorem 2.2.

All the above, established in discrete time, can be extended to continuous time. For entropy-
regularized continuous-time MDP, regular relaxed equilibria can again be characterized as fixed
points of an operator of the Gibbs-measure form; see Proposition 3.1 and Corollary 3.1. The
existence of a regular relaxed equilibrium is accordingly established in Theorem 3.1. Finally, we
approximate a continuous-time MDP by a sequence of its entropy-regularized versions, with di-
minishing degree of regularization, and find that the sequence of regular relaxed equilibria (one
for each entropy-regularized MDPs) converges to a relaxed equilibrium for the original MDP; see
Theorem 3.2. Note that our continuous-time results are reconciled with those in discrete time: as
shown in Theorem 5.1, when the time step tends to zero, (regular) relaxed equilibria in discrete
time converge to one in continuous time.

Our mathematical setup generalizes that in Huang and Zhou [21], where controlled Markov
chains (in both discrete and continuous time) are considered under non-exponential discounting.
Specifically, one chooses transition probabilities directly (i.e., an action is simply a vector of tran-
sition probabilities) in Huang and Zhou [21], while we allow for general actions that may affect
transition probabilities in a much more subtle way; see Remark 4.1 for details. In addition, Huang
and Zhou [21] focuses on deterministic policies (i.e., standard controls), while we include random-
ized ones (i.e., relaxed controls). A key result in Huang and Zhou [21] states that a standard
equilibrium exists, under a suitable condition on the transition probabilities and reward function;
moreover, if such a condition fails, a standard equilibrium may not exist in general. This crucially
explains the need of relaxed controls: unlike standard equilibria, a relaxed equilibrium generally
exists, as proved in Theorems 2.2 and 3.2. Hence, in the face of general controlled transition proba-
bilities and reward function, relaxed equilibria should certainly be considered; see Remark 4.2 and
the discussion below it.

Interestingly, the need of relaxed controls is unique to the time-inconsistent case. In the time-
consistent case of exponential discounting, even if one considers relaxed controls, the optimal value
achieved by a relaxed control can always be achieved alternatively by a standard control—it is then
necessary to consider only standard controls; see Remarks 4.4 and 4.6.

Let us stress that an entropy-regularized MDP, besides serving as a powerful approximation
tool, has it own meaning and application. As introduced in Ziebart et al. [30], Fox et al. [16] and
clearly explained in Wang et al. [28], an entropy-regularized MDP encodes the tradeoff between
exploitation and exploration in reinforcement learning, with the exploration part represented by
the added entropy term. This line of research has so far focused on time-consistent cases. The
only exception we know of is Dai et al. [11], where a relaxed equilibrium is found for a mean-
variance portfolio selection problem. Our results contribute to the burgeoning area of reinforcement
learning under time inconsistency: the regular relaxed equilibrium we found represents a learning
policy under time inconsistency induced by non-exponential discounting; see the discussion below
Theorem 2.2 and Remark 2.4.

The paper is organized as follows. Section 2 introduces a time-inconsistent MDP in discrete time



that accommodates non-exponential discounting; an entropy-regularized version is also defined. We
prove the existence of regular relaxed equilibria for entropy-regularized MDPs (Section 2.1) and
obtain the existence of relaxed equilibria for the original MDP by an approximation argument
(Section 2.2). Section 3.1 (resp. Section 3.2) extends results in Section 2.1 (resp. Section 2.2)
to continuous time. Section 4 discusses when the use of relaxed controls is necessary. Section 5
shows that discrete-time (regular) relaxed equilibria converge to a (regular) relaxed equilibrium in
continuous time, as time step tends to zero. The appendix collects (longer) proofs.

2 Relaxed Equilibria in Discrete Time

Set Ng := NU{0}. Let U C R, for a fixed ¢ € N, be a compact action space with Leb(U/) > 0.
Consider a probability space (€2, F,P) that supports a discrete-time Markov process (X¢)ien, that
takes values in § = {1,2,...,d} for some d € N and is controlled by a U-valued process o. Assume
that the dynamics of X is time-homogeneous, i.e., for any ¢t € No, P(X¢41 =7 | Xt =i, = u) =
P(X1=j|Xo=1t4,a0 =u) for all i,j € S and w € U. For any action u € U, we will denote by p*
the associated transition matrix of X (i.e., P = P(X; =3 | Xo=14,ap = u) for all 4,j € S) and
write p}* for the ith row of p¥ for all i € S.

We call a: § — U a standard feedback control and denote by p® the transition matrix induced
by a. Specifically, the i*" row of p® (denoted by pg) is given by p? = p‘ix(i) forall : € S. Let P(U)
(resp. D(U)) denote the set of all probability measures (resp. density functions) on U. We call
m:S — P(U) a relaxed feedback control. Note that a standard feedback control « can be viewed
as a relaxed feedback control 7 by taking 7 (i) to be the Dirac measure concentrated on a(i) € U
for all 2 € S. We denote by II the set of all relaxed feedback controls.

Given 7 € II, the dynamics of X = X7 is determined as follows. At any time t € Ny, given that
X, =i €S, we sample u € U according to the probability measure 7(i) € P(U). The realization
of X4 is then governed by the transition probabilities p}' = {pij }es-

Remark 2.1. Given 7 € II, consider a Markov chain X™ whose transition matriz p™ is given by
Py = fUpfj(w(z))(du) for all i,5 € S. Note that X™ and X™ are different stochastic processes
that share the same law. That is, the paths (i.e., realizations) taken by X™ and X™ are generally
different, but the probability of which path will be taken is identical.

Given a reward function f : [0,00) x § x U — R, we define f#(t,i) := [;; f(t,i,u)pu(du) for all
w € P(U). For any 7 € II, the corresponding value function is given by

J(i) :=E, [i X0 (ke XT) ] , Vied. (2.1)
k=0

Remark 2.2. The t variable in f(t,i,u) does not represent “real calendar time” but “time differ-
ence,” that is, the difference between the current time and the time of a future reward; see Huang
and Zhou [21, Remark 1]. A typical example is

flt,i,u) =0(t)g(i,u), (2.2)

where g : S x U — R assigns a reward based on the current state ¢ and the action u employed and
§:[0,00) = [0,1] is a discount function, assumed to be nonincreasing with §5(0) = 1.

In this paper, we will investigate an entropy-regularized version of J™(i). To this end, let us
first introduce the notion of a regular relaxed feedback control.



Definition 2.1. A relazed feedback control w € 11 is reqular if for each i € S, there exists p; € D(U)
such that (w(i))(A) = [, pi(u)du for all Borel A C U and its Shannon differential entropy satisfies
H(p;) > —o0, where

H(p) = — /U n(p(w))p(u)du, ¥p € D(U), (2.3)

We denote by I1,. the set of all reqular feedback relaxed controls. Given w € 1l,., we will often identify
7(i) € P(U) with its density p; € D(U) and write “m € 1,7 and “{p;}ics € 11,7 interchangeably.

Now, for any A > 0 and 7 € 1I,., consider

JT(i) == E, {i ( FED (e, XY + Aa(km(w(x;;))) ] . Vies, (2.4)

k=0

where ¢ : [0,00) — [0,1] is a discount function, assumed to be nonincreasing with 6(0) = 1. To
ensure that J™ in (2.1) and JJ in (2.4) are well-defined, we impose the following.

Assumption 2.1. M := Y% (sup;es uer | (t, i, u)| +6(t)) < oo.

By Assumption 2.1, J™ is clearly finitely valued for all 7 € II. On the other hand, under our
assumption 0 < Leb(U) < oo, consider the uniform density v € D(U) given by v(u) := 1/Leb(U)
for all uw € U. For any p € D(U), we compute the Kullback-Leibler divergence

0 < Dgir(pllv) = /Upln (g) du = /Uplnpdu + In(Leb(U)), (2.5)

which gives H(p) = — [;In(p(u))p(u)du < In(Leb(U)) < oo for all p € D(U). This, along with
Definition 2.1, indicates that for any 7 € 11,

|H(7(i))| < oo forallieS. (2.6)

By Assumption 2.1, (2.6), and S being a finite set, J{ is finitely valued for all 7 € II,..

An agent who aims to maximize J™ (i) over all 7 € II may run into the issue of time inconsistency.
Specifically, given that Xo =i € S, the time-0 agent’s problem is sup, <7 J7 (7). At alater time ¢ > 0
with X; = j # i, the time-t agent’s problem is sup,cy J7(j). As the two problems sup,cr J™(7)
and sup,cr J™(j) need not share the same optimal control 7* € II, time-inconsistency may arise.
Such inconsistency results from the “time difference” variable ¢ in either the reward function f
or the discount function 0; see Remark 2.2. In the typical setup (2.2), it is well-known that
the optimization problems are time-consistent with §(t) = e~5* for some 8 > 0 (i.e., the case of
exponential discounting) but time-inconsistent in general.

As proposed in Strotz [26], a sensible reaction to time inconsistency is to take future selves’
disobedience into account and choose the best present action in response to that. Assuming that
all future selves reason in the same way, the agent searches for a (subgame perfect) equilibrium
strategy from which no future self has an incentive to deviate. To formulate such an equilibrium
strategy, we introduce, for any w,7’ € II, the concatenation of 7’ and 7 at time 1, denoted by
7’ @, m € II. Using 7’ ®; © € II means that the evolution of X is governed first by ' at time 0
and then by 7 from time 1 onward. That is, at time 0, given that Xo =i € S, we sample u € U
according to the measure 7’(i) € P(U) and the realization of X7 is then governed by the transition
probabilities pi' = {pfj }jes. At any time ¢t > 1, given that X; = j € S, we sample u € U according
to the measure 7(j) € P(U) and the realization of Xy is then governed by pjf = {pi} }res-



Definition 2.2. Given A > 0, we say © € 11, is a regular relazed equilibrium (for (2.4)) if for any
1 €S,
JTOT (@) — JT(E) <0, V' ell,. (2.7)

Similarly, we say m € 11 is a relaxed equilibrium (for (2.1)) if for any i € S,

JTET (i) — J7(i) <0, Va' ell (2.8)

2.1 Existence of Regular Relaxed Equilibria for Entropy-Regularized MDP (2.4)

Let us first focus on the existence of regular relaxed equilibria (for (2.4)). Fix A > 0. For any
m € II,., let us introduce the auxiliary value function

oo

Vi) = E; {Z (f“<X7$)(1 ok XT) +A6(1 + k)?—t(w(X,’j))) } ., Vies. (2.9)
k=0

For convenience, we will commonly write Vy™ as a vector in RY, i.e., V¥ = (V¥ (1), V7 (2), ..., V7 (d)).
To understand the meaning of V7, we need to take a closer look at J{ (i) in (2.4). Given that
Xy =i € S, notice that the first term in the summation of (2.4) is no longer random and can
be computed immediately. The remaining terms in the summation are still random and their
expectation depends on the realization of XT. Specifically,

B 3 (700 XD + 0O | X7 5] v vies. o
k=1

where the equality follows from the Markov property of X™. That is, V7 (j) is the expectation of
future rewards plus entropy conditioned on X7 = j.

Now, for the problem (2.4), given Xy = i € S and that all future selves will follow a relaxed
control m € II,., the agent at time O intends to find her best strategy (denoted by «' € II,.) in
response to that. Observe from (2.4) and (2.10) that

TEOm () = f7D(0,4) + AH(x' (i) + B[V (XT)]
- /U (£(0,,w) = AIn((7' () (w) + ¢ V) (' () ()

Hence, the best strategy «’ € II,. for the time-0 agent should satisfy

7' (i) € arg max/ <f(0,z',u) — An(p(w)) + pj' - Vf) p(u)du, VieS. (2.11)
peD(U) JU

Note that the set of maximizers on the right-hand side is a singleton and its unique element takes
the explicit form
% (FOLw+pEvT)
*
p; (u) = , ueUl.
Z [, ex (i) g,

As a result, by introducing a functional I'y : R¢ x S — D(U) defined by

el(f(O,i,u)-i-p?'y)

A
. d
ATt g, < D) T e RS, (2.12)

u i Iy, ) (u) :=




we can re-write (2.11) as
7' (i) =T\(V{,i) () e D(U), VieS. (2.13)

We have argued so far that 7’ € I, in (2.13) is the time-0 agent’s best response to her future
selves using m € II,.. If it happens that the best response 7’ € II, coincides with future selves’
strategy 7 € II,. (i.e., I'\(V,:) = m), then 7 € II, should be viewed as an equilibrium among the
current and future selves, as it is a strategy that will be upheld over time. This motivates us to
define an operator @) : IL. — II, by

(I>)\(7T) = F)\(V)?r’ ')’ (2.14)

and we conjecture that a fixed point of @) is a regular relaxed equilibrium for (2.4). In addition,

(VAW7)

as I'y(VY,-) = m consequently yields VAF A = V7, we also define an operator ¥ : R? — R? by

Ua(y) == V30,

and conjecture that a fixed point of ¥ must equal V{" for some regular relaxed equilibrium 7 € II,.
The next two results show that our conjectures are correct.

Proposition 2.1. Let Assumption 2.1 hold. For any A > 0,
m € I, is a reqular relaxed equilibrium <= @\(7) = 7.

Proof. Given m,n" € II,, since J;rl@l”(i) = fm0(0,4) + AH (7' (i) + B[V (XT)] for all i € S, a
direct calculation shows

JY (@) =I5 () = 7 O(0,4) + AH((0)) + /U (P} - V(' (i) ()

- (900 + X + [ 8 V@) vies.
U
It follows that (2.7) holds (i.e., 7 is a regular relaxed equilibrium) if and only if 7 (i) € D(U) fulfills

7(i) € arg max/ (f(O,z',u) — An(p(u)) + pj' - V,\”) p(u)du, ViesS. (2.15)
peD(U) JU

By the same arguments in (2.11)-(2.13), we can express (2.15) equivalently as 7 (i) = I'y(V],14) for
all i € S, which amounts to m = ®(m). O

Corollary 2.1. Let Assumption 2.1 hold and X\ > 0. For any y € R?,
y =V for some regular relazed equilibrium m € Il, <<= WV,(y) =v.

In particular, Wy(y) =y implies that T'\(y,-) € I, is a reqular relazed equilibrium.

Proof. 1f y = VT for a regular relaxed equilibrium 7 € II,., then by Proposition 2.1, 7 = ®(7) =
LA\(V, ) = T'a(y, ), which implies y = V' = V;A(y") = U, (y). Conversely, if y = ¥, (y) = V;A(y"),
set m := I'y\(y,-) € II,. Then, we have y = V" and thus 7 = I'\(y,:) = ['\(V],-) = ®5(7). By
Proposition 2.1, this implies that 7 is a regular relaxed equilibrium. U

To properly control the entropy of the fixed-point operator @, in (2.14), we need the following
two assumptions.



Assumption 2.2. The maps u— f(t,i,u) and uw— p{ are Lipschitz, uniformly in (t,1), i.e.,

‘f(i,t,'ZLl) - f('l,t,U,Q)’ + |p;ll1 _p?2|} < 0.
lur — uz| lur — ug|

O := sup sup { (2.16)

teNp,i€S u1,u2€lU,u1#n2

We will also assume that the action space U C R fulfills a uniform cone condition. To properly
state the condition, for any ¢ € [0,7/2], we note that

A= {u= (uy,...,ur) € R :ud + ... +u2 | < tan?(1)u?}

is a cone with vertex, axis, and angle being 0 € R* 1, u; = uy = ... = uy_; = 0, and ¢, respectively.
Now, given u € R, the region obtained by a rotation of v + A, in R’ about v will be called a cone
with vertexr u and angle .

Assumption 2.3. When ¢ > 1, there exists ¥ > 0 and ¢ € (0,7/2] such that for any u € U, there
is a cone with vertex u and angle 1 (denoted by cone(u,t)) that satisfies (cone(u,t) N By(u)) C U.
When { = 1, there exists ¥ > 0 such that for any u € U, either [u — 9, u| or [u,u + 9] is contained
inU.

Remark 2.3. Assumption 2.3 states that a cone with a fized size (determined by slant height ¥ and
angle ) can be attached to any u € U (i.e., taking u as its vertex) such that the cone is contained
entirely in U. This readily covers all polyhedrons and ellipsoids in RE.

We can now establish a key estimate of the entropy of the fixed-point operator ®, in (2.14),
whose proof is relegated to Appendix A.1.

Lemma 2.1. Let Assumptions 2.2 and 2.3 hold. Then,

sup [H(Ta(y, )] < élly)), vy € R, (2.17)
1€

where ¢ : Ry — Ry is defined by ¢(2) := k+£1In(1+2), with k > 0 depending on only £, X, Leb(U),
t, 9, and ©. Moreover, for A > 0 small enough, (2.17) can be improved to

sup [H(TA(y,7))] < o(\,y) = k1 + kol In A + £In(1 + [y]), Vy R, (2.18)
€S
where k1, ko > 0 depend on ¢, Leb(U), ¢, ¥, and O, but not on .

Now, we are ready to present the existence of a regular relaxed equilibrium, whose proof is
relegated to Appendix A.2.

Theorem 2.1. Let Assumptions 2.1, 2.2, and 2.3 hold. For any X\ > 0, there exists y € R* such
that Uy(y) = y. Hence, T')\(y,-) € 11, is a regular relaxed equilibrium for (2.4).

Interestingly, as the degree of regularization tends to zero (i.e., A | 0 in (2.4)), the next result
shows that the values generated by the corresponding regular relaxed equilibria (whose existence is
guaranteed by Theorem 2.1) are uniformly bounded, thanks to the entropy estimate in Lemma 2.1.
Its proof is relegated to Appendix A.3.

Lemma 2.2. Let Assumptions 2.1, 2.2, and 2.3 hold. Given {\,}nen in (0, 1] with A\, | 0, consider
{y"}nen in R such that y* = Wy, (y"). Then, sup,cy |y"| < oo.



2.2 Existence of Relaxed Equilibria for MIDP (2.1)

Now, we move on to prove the existence of a relaxed equilibrium for the original MDP (2.1).
Similarly to (2.9), for any 7 € II, we introduce the auxiliary value function

V(i) = E [ifﬂ(-’fﬂ) (1+kXT)|, Vies. (2.19)
k=0

For convenience, we will commonly write V™ as a vector in R?, i.e., V™ = (V7 (1),V™(2),..., V7 (d)).
Suppose that u + f(t,i,u) and u + p¥ are continuous. As U is compact, for any (y,i) € R x S,

E(y,1) := argmax {f(0,i,u) +pi' -y} CU (2.20)
uelU

is nonempty and closed. For any y € R? consider the collection
I'(y) :=={m € O :supp(n(?)) C E(y,i), Vi € S}, (2.21)

where supp(p) denotes the support of p € D(U). We can then define a set-valued operator ¥ :
R? — 2R by
U(y) = {V™":meT(y)} CR™L (2.22)

Moreover, we can also define a set-valued operator ® : IT — 2! by
O(r) :=T(V™) CIL (2.23)
Let us provide the following characterizations of relaxed equilibrium for (2.1).

Proposition 2.2. Let Assumption 2.1 hold and the maps w — f(t,i,u) and u— p¥ be continuous.
Then,
m € Il is a relaxed equilibrium <= w € ®(7). (2.24)

Moreover, for anyy € R?,
y = V7™ for some relazed equilibrium m € Il <= y € Y(y).

Proof. By the same argument in the proof of Proposition 2.1 (while ignoring the term AH(-)
therein), we observe that 7 € II is a relaxed equilibrium if and only if 7 (i) € P(U) fulfills

(i) € argmax/ (F(0,,u) + - V™) pu(du), Vi€ S,
uwePU) JU
which is equivalent to supp(n(i)) € E(V™,i) for all i € S, i.e., 1 € (V™) = (7).

For any y € R such that y € U(y), in view of (2.22), y = V™ for some 7 € T'(y). It follows
that m € T'(y) = T'(V™) = ®(m). By (2.24), this implies that 7 is a relaxed equilibrium. Conversely,
suppose that y = V7™ for some relaxed equilibrium 7 € II. By (2.24), 7 € ®(7) = (V™) = I'(y).
With y = V™ and 7 € T'(y), we immediately conclude y € ¥(y). O

With the aid of Lemma 2.2 and Proposition 2.2, we are ready to present the existence of a relaxed
equilibrium for (2.1), by approximating (2.1) using a sequence of entropy-regularized MDPs. The
detailed proof is relegated to Appendix A.4.

Theorem 2.2. Let Assumptions 2.1, 2.2, and 2.3 hold. Then, a relaxed equilibrium for (2.1)
exists.



This paper mainly takes the entropy-regularized MDP (2.4) as a powerful approximation tool for
the original MDP (2.1), as shown in the proof of Theorem 2.2 (see Appendix A.4). Yet, (2.4) does
have its own meaning and application. In the context of reinforcement learning (RL), an agent does
not know the model perfectly (e.g., the MDP’s transition probabilities may not be precisely known).
She then chooses her control actions for two different purposes—one is to enlarge her cumulative
payoff based on her present knowledge of the model (i.e., “exploitation”); the other is to obtain
more information about the model based on the observed MDP evolution (i.e., “exploration”). To
enhance “exploration,” the agent randomizes her control actions (i.e., chooses a relaxed control)
to more efficiently infer the model (from the more diverse MDP evolution), and the amount of
information gained can be measured by Shannon’s entropy of the randomization. This corresponds
to the second term in the expectation of (2.4). The chosen relaxed control also needs to serve the
“exploitation” purpose, which corresponds to the first term in the expectation of (2.4).

Remark 2.4. For typical RL without time inconsistency (e.g., 6(t) = e Pt for some B > 0 in
(2.4)), the agent’s goal is to find a relaxed control that mazximizes (2.4), thereby striking a balance
between “exploitation” and “exploration” (see e.g., Ziebart et al. [30], Fox et al. [16], Wang et al.
[28]). When § is a general discount function, the agent also needs to tackle the issue of time
inconsistency. That s, besides striking a balance between “exploitation” and “exploration,” she
also wants to maintain the balance among all disobedient future selves. The agent then aims for a
relaxed control for (2.4) that can be upheld by all current and future selves, i.e., a reqular relazed
equilibrium in Definition 2.2. Theorem 2.1 asserts that such a desired RL policy exists.

Remark 2.5. For A > 0, let w) € II, be a regular relazed equilibrium for (2.4). Given i € S,
(i) € PU) admits a density function for all X > 0 (as my is reqular; see Definition 2.1).
However, as X | 0, the weak limit 7*(i) of {mx(i)}nen may not admit a density function. This is
why in Theorem 2.2, we get only a relazed equilibrium, which is not necessarily reqular, for (2.1).

Remark 2.6. While Theorem 2.2 is a general existence result, its proof does suggest how we can
actually find a relazed equilibrium: as the original MDP (2.1) can be approximated by a sequence
of entropy-regularized ones (indexed by A > 0), one can compute a relazed equilibrium for each
reqularized problem and the limit (as A — 0) will be a relazed equilibrium of the original problem.

This method is numerically viable as it circumvents the set-valued fized-point operator associated
with (2.1), i.e., ® in (2.23). Indeed, it is difficult numerically to implement a set-valued fixed-point
iteration, such that finding a relaxed equilibrium for (2.1) directly is not easy at all. By contrast, as
each regularized problem is associated with a single-valued fized-point operator, i.e., ) in (2.14), a
fized-point iteration can be implemented in a straightforward way. Certainly, to make this method
fully rigorous, it remains to show the theoretic convergence of the single-valued fized-point iteration,
which is a nontrivial problem in itself and will be left for future research.

3 Relaxed Equilibria in Continuous Time

In this section, we take up the same setup in the first two paragraphs of Section 2, except that
the controlled process X is now a continuous-time Markov chain. Specifically, each action v € U
is associated with a d x d rate matrix (or, generator) ¢"; namely, for each fixed i € S, q;; = 0 for
all j # 4 and ¢ = — E#i qZ“J In addition, each p € P(U) is associated with a d x d relaxed rate
matrix Q¥, defined by QZ = fU q%,u(du) for all i,j € S. At any current state i € S, given a relaxed

feedback control 7 : & — P(U), the dynamics of X is dictated by Q?(i), the i row of Q™. That

10



is, the time until the next jump to other states is exponentially distributed with parameter —Qz(i)
and the jump will take X to state j # i with probability —Q?j(l)/ QZ(Z)
For any m € II, the corresponding value function is given by

_E[/ F7D (5, X7V d } Vies. (3.1)

Similarly to (2.4), for any A > 0 and 7 € II,, we consider

JT (i) = E; [ / h ( FrX) (s, XT) + Aé(s)’H(w(Xs))) ds] . Vies, (3.2)

0
To ensure that J™ and jj\r are well-defined, we impose the following.
Assumption 3.1. M := 15" (supses.uer 1f (s, i, w)| + 6(s)) ds < oo.

We will commonly write J™ and jj\r as vectors in R?, ie., J™ = (J™(1),J7(2), ..., J(d)) and
T5 = (TE(0), T3 (2), o T ().

Similarly to Definition 2.2, to formulate an equilibrium strategy in continuous time, we intro-
duce, for any 7,7’ € II, the concatenation of 7’/ and 7 at time € > 0, denoted by 7’ ®. m € II. Using
this concatenated relaxed control means that the evolution of X is governed first by 7’ on the time
interval [0,e) and then by 7 on [g, 00).

Definition 3.1. Given X\ > 0, we say w € 11, is a regular relazed equilibrium (for (3.2)) if

TT'Qem N T
lim sup I3 () JL (@)

<0, Va' €ll, andi€ S. (3.3)
€l0 €

Similarly, we say m € 11 is a relazed equilibrium (for (3.1)) if it satisfies (3.3) with jj\rl&’r, j;f, and
7’ € 11, therein replaced by J7 '®em J7r and 7' € 11, respectively.

Similarly to (2.19), for any 7 € II, we introduce the auxiliary value function

VT (t,i) = K [ / h FrE) (¢t + s,XS)ds}, V(i) € [0,00) X S. (3.4)

0

In addition, similarly to (2.9), for any A > 0 and 7 € II,,, we introduce the auxiliary value function

VI(t,i) =B, [ / - ( ) (45, X)) + Nt + s)’H(w(Xs))> ds] . Y(t,i) €[0,00) xS, (3.5)

0

For convenience, we will commonly write XN/f (t) as a vector in R?, i.e.,
V() = (VX (8, 1), VT (£, 2), ..., VIT (£, ) € R™.

We will write V™ as a vector in R% in the same manner.
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3.1 Existence of Regular Relaxed Equilibria for Entropy-Regularized MDP (3.2)

Lemma 3.1. Let Assumption 3.1 hold and f(-,i,u) and 6(-) be continuous on [0,00). Given X\ > 0,
it holds for all i € S and w, 7' € 11, that

TTO (i) = Vi (e, 1) + ( F7D(0, 1) + NH(x' () + QT V- 17;(8)) e+o(e), asel0.  (3.6)
Similarly, it holds for alli € S and 7,7’ € II that

TV () = V™ (e,4) + ( F7000,4) +QF ™. Fﬂf(s)) e+o(e), aselO. (3.7)

Proof. The result follows from a similar argument in Huang and Zhou [21, Lemma 1]. O

Based on Lemma 3.1, we can now generalize the fixed-point characterization in Proposition 2.1
to continuous time. Consider a functional T'y : R x & — D(U) defined by

A
I ox (F0i0)+a)y) g,

ws Ty(y, i) (u) = e DU), V(y,i)eR?xS. (3.8)

It follows that I’ A(y,-) €11, for all y € R*. We can then define an operator v y: R4 — R by
Ta(y) =3¢,
Moreover, for any 7 € II,, as f,\(jf, -) € I1,., we can define an operator ®, : II, — II, by
Py\(7) = f)\(j;f, .

Proposition 3.1. Let Assumption 3.1 hold and f(-,i,u) and (-) be continuous on [0,00). For any
A >0, ~
m € I, is a reqular relaxed equilibrium <= @)(7) = 7.

The proof of Proposition 3.1 is relegated to Appendix A.5.

Corollary 3.1. Let Assumption 3.1 hold and suppose that f(-,i,u) and 6(-) are continuous on
[0,00). Given A > 0, it holds for all y € RY,

Y= j}f for some regular relaxed equilibrium m € 1, <= \T/A(y) =.

In particular, @A(y) =y implies that fx(y, ) € I, is a regular relaxed equilibrium for (3.2).

Proof. 1f y = j;\r for a regular relaxed equilibrium 7 € II,, then by Proposition 3.1, 7 = ® A(m) =

f)\(j;\r, \) = T'x(y, ), which implies y = j;f = j;k(y") = Wy(y). Conversely, if y = Wy(y) = j;k(y"),
set m := I'\(y,-) € II,. Then, we have y = J{ and thus 7 = I'y(y,-) = I'\(J},:) = ®x(7). By
Proposition 3.1, this implies that 7 is a regular relaxed equilibrium. U

By a similar argument in the proof of Theorem 2.1 and using Corollary 3.1, we can establish
the existence of regular relaxed equilibria for (3.2).

Theorem 3.1. Let Assumptions 3.1, 2.2 (with p{ therein replaced by g'), and 2.3 hold. Suppose
that f(-i,u) and 6(-) are continuous on [0,00). For any A\ > 0, there exists y € R? such that
Uy(y) =y. Hence, U')(y,-) € 1L, is a regular relaxed equilibrium for (3.2).
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3.2 Existence of Relaxed Equilibrium for MDP (3.1)

Let us now move on to prove the existence of a relaxed equilibrium for (3.1). Suppose that u
f(t,i,u) and u + ¥ are continuous. As U is compact, for any (y,i) € R? x S,

E(y,i) == argmax{f(0,4,u) + ¢ -y} CU (3.9)
uelU

is nonempty and closed. For any y € R?, consider the collection

I'(y) :={mw € 1 : supp(n(i)) C E(y,i), Vi € S}, (3.10)

where supp(p) denotes the support of p € D(U). We can then define a set-valued operator W :
R? — 2R by

U(y):={J" 7w eT(y)} CRL (3.11)
Moreover, we can also define a set-valued operator $: 11— 21 by

&(r):=T(J7) C1II

We can then generalize the fixed-point characterizations in Proposition 2.2 to continuous time.

Proposition 3.2. Let Assumption 3.1 hold and the maps v — f(t,i,u) and u— g¥ be continuous.
Then, B
m €1l is a relazed equilibrium <= w € ®(m). (3.12)

Moreover, for any y € R?,
y = J" for some relazed equilibrium 7 € Tl <= y € \T/(y)

Proof. By the same argument in the proof of Proposition 3.1 (except that now we use (3.7) instead
of (3.6)), we observe that m € II is a relaxed equilibrium if and only if 7 (i) € P(U) fulfills

(i) € argmax/ (f(O i,u) +q - J7r> p(du), ViesS,
REPU)

which is equivalent to supp(7 (7)) C E(J” i)forallie S, ie, me F(J”) = O(7).

For any y € Rd such that y € U(y), in view of (3.11), y = J™ for some 7 € I'(y). It follows
that 7 € ['(y) = (J ™) = &(r). By (2.24), this implies that  is a relaxed equilibrium. Conversely,
suppose that y = J7 for some relaxed equilibrium 7 € II. By (2.24), 7 € &(mr) = I(J™) = I(y).
With y = J™and 7 € F( ), we immediately conclude y € \IJ( ). O

Given an arbitrary sequence A, — 0+ with v" = ¥ A, (V") for all n € N, ie, r A, (V) 1s a relaxed
equilibrium under )\, the next theorem follows from similar arguments in Theorem 2.2.

Theorem 3.2. Let Assumptions 3.1, 2.2 (with p¥ therein replaced by q*), and 2.3 hold. Then, a
relaxed equilibrium for (3.1) exists.
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4 Discussion: When Do We Need Relaxed Equilibria?

4.1 The Discrete-time Case

Let us consider the discrete-time setup in Section 2. We first draw a detailed comparison between
Theorem 2.2 and Huang and Zhou [21, Theorem 4].

Remark 4.1. Huang and Zhou [21] consider the special case where d = ¢ and
pli=wu; VieS, withujeUC{yeRY:y>0, y1+ys+...+ys=1}. (4.1)

This essentially states that one can directly “decide” (rather than just “influence”) the transition
probabilities. By contrast, Theorem 2.2 only requires the map u — p} to be Lipschitz (Assump-
tion 2.2), without specifying any specific form of it. That is, Theorem 2.2 allows for more general
(and potentially more realistic) dependence of transition probabilities on the control action u € U.

Remark 4.2. By [21, Theorem 4], a standard equilibrium for (2.1) exists, provided that (i) (4.1)
holds, (ii) U is convez, and (iii) f(0,1,-) is concave for all i € S. If one of the conditions fails, it
1s unclear whether standard equilibria exist.

In particular, when (iii) fails, [21, Remark 10] shows that standard equilibria do not exist in a
concrete example, where S = {1,2}, 0(+) is a quasi-hyperbolic discount function, f(t,i,u) is of the
form (2.2) with g(i,u) bounded and continuous (but non-concave) in u, and p} = u; Vi € {1,2}
with u; € U = {y € R? : y > 0,y1 +y2 = 1}. This simple setup allows us to verify Assumptions 2.1,
2.2, and 2.3 immediately. Hence, although there is no standard equilibrium, a relaxzed equilibrium
exists in this example by Theorem 2.2.

Remarks 4.1 and 4.2 show the importance of Theorem 2.2: unlike standard equilibria, a relaxed
equilibrium for (2.1) exists much more generally, without the need of conditions (i), (ii), and (iii)
in Remark 4.2. Hence, in the face of general controlled transition probabilities (beyond the special
form (4.1)) and non-concave reward functions, relaxed equilibria should certainly be considered.

After learning that relaxed equilibria are needed in cases where standard equilibria may not
exist, let us now investigate the other side of the picture: for cases where both standard and relaxed
equilibria are known to exist, does the consideration of relaxed equilibria provide any added value?
As shown in the next result, it is not necessary to consider relaxed equilibria in such a case, as any
value achieved by a relaxed equilibrium can be recovered by a suitable standard equilibrium.

Proposition 4.1. Assume (4.1) and that U therein is convex. Suppose that f(t,i,u) takes the
form (2.2), with g(i,-) therein concave for alli € S. Also, let Assumptions 2.1, 2.2, and 2.3 hold.
Then, for any relazed equilibrium 7 € 11 for (2.1), o™ : S — R? defined by o™ (i) == [, u(w(i))(du),
Vi € S, is a standard equilibrium such that J (-) = J™(-).

Proof. Note that the convexity of U ensures that a™(i) € U for all i € S. As w € II is a relaxed
equilibrium for (2.1), by (2.24),

supp(n(i)) € E(V™,i) = argmax{g(i,u) +u-V"}, VieS, (4.2)
uel

where the equality follows from (2.20) and (4.1). Given i € S, if E(V7™,i) is a singleton, (4.2)
implies that m(i) € P(U) concentrates on the unique element in E(V7,4), which coincides with
o by definition. Hence, f™(t,i) = f*"(t,4) trivially holds for all t € No. If E(V™,i) is not a
singleton, in view of its form in (4.2), u + g(i,u) must be linear on E(V™ 7). It follows that

fw(l) (t’i) = /U5(t)g(z,u)(7r(z))(du) = 6(t)g(i’ a) = faﬂ (t,i), VteNo.
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With 70 (t,i) = " (i) for all t € Ng and i € S, we conclude from (2.1) that J*"(-) = J7(-). O

It is interesting to note that Jaskiewicz and Nowak [22] also establish results in the same spirit
as Proposition 4.1, under a specific form of discounting.

Remark 4.3. Under quasi-hyperbolic discounting, [22, Theorem 3.4] asserts the existence of a
relazed equilibrium m that is almost a standard one: for each state i, the support of the probability
7(i) contains at most two points in the action space. Moreover, [22, Theorem 3.5] shows that
additional “atomless” assumptions can further reduce the support of w(i) to contain only one point,
i.e., the relaxed equilibrium reduces to a standard one. As opposed to Proposition 4.1, these results
hold for fairly general reward functions (without the need of concavity) and transition probabilities
(without the need of linear dependence on u).

Such generality, however, hinges crucially on quasi-hyperbolic discounting. In a nutshell, by
using the structure of quasi-hyperbolic discounting, the original time-inconsistent problem can be
expressed as a functional of an auxiliary time-consistent problem (under exponential discounting);
see [22, (2.3)-(2.4)]. A detailed analysis is then performed on the time-consistent problem, which
contributes to proving [22, Theorems 3.4 and 3.5]; see [22, Section 7]. This method, quite specific
to quasi-hyperbolic discounting, cannot be easily extended to the case of a general discount function.

Finally, we would like to point out that the need of relaxed controls is unique to the case of
time inconsistency. When the problem sup, .y J7 (i) is time-consistent (e.g., under exponential
discounting), one can consider without loss of generality only standard controls.

Remark 4.4. Let f(t,i,u) takes the form (2.2) with 6(t) = e P for some B > 0. As there is no
time inconsistency under exponential discounting, the optimal value J*(i) := sup,en J™(4) fulfills
the Bellman equation

—J*(i) + sup / <g(z’,u) + e Ppu. J*) u(du) =0, ViesS. (4.3)
nePU) JU

Suppose that an optimal relaxed control ™ € 11 ewists, i.e., J* = J*. Our goal is to show that J*

can be achieved by a standard control—such that there is no need to consider relaxed controls.
Giveni € S, let u +— p% and u > g(i,u) be continuous such that arg max,,c;;{g(i,u)+e Pp¥-J*}

is nonempty. For any standard control o with (i) € argmax, .y {g(i,u) +e Ppl-J*} foralli € S,

T () = g(i,a(i)) + e PPt = T (6), Vies,
where the second equality follows from (4.3) and (i) € argmax, c;;{g(i,u) +e Pp- J*}. Similarly,
JoO (i) = g(i, ali)) + e PptW T = (i a(i) + e PRt T = (i), Vies.
Iterating this argument yields J*®m™ = J* for all m € N. It follows that
* (- : AQmT [\ 71: o —Bm a(Xm— * « _TOs .
J(i) = Tim Jo%n (i) = lim (J (i) + e PR [py ) (g — T )]) = Jo%i), Vies.

That is, the optimal value is achieved by the standard feedback control a.
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4.2 The Continuous-time Case

Let us consider the continuous-time setup in Section 3. As we will see, many observations we made
in Section 4.1 still hold in continuous time. To begin with, we draw a detailed comparison between
Theorem 3.2 and Huang and Zhou [21, Theorem 3].

Remark 4.5. In [21], one considers the special case where £ =d —1 and

qi' = <u1, ey U1, — ZUj,Ui+1, ...,ud> VieS, withuelUC C{ye€ Ry > 0}. (4.4
i

This essentially states that one can directly “decide” (rather than just “influence”) the transition
rates. By contrast, Theorem 3.2 only requires the map u — q}* to be Lipschitz (Assumption 2.2,
with p} therein replaced by q}'), without specifying any specific form of it. That is, Theorem 3.2
allows for more general (and potentially more realistic) dependence of transition rates on the control
action u € U.

By [21, Theorem 3], a standard equilibrium for (3.1) exists, provided that (i) (4.4) holds, (ii)
U is convex, and (iii) f(0,%,-) is concave for all i € S. If one of the conditions fails, it is unclear
whether standard equilibria exist. In particular, when (iii) fails, the next example has no standard
equilibrium.

Example 4.1. Let S = {1,2} and U = [0,1]. For any u € U, we take the rate matriz ¢* to be ¢} =
(—u,u) and g% = (u,—u). Consider §(t) := (et +e72%)/2 for t > 0 and take f(t,i,u) = 6(t)gi(u),
i=1,2, where g1(u) == — g u and go(u) =X — /T —u are strictly convez on U. Thanks to [21,
Theorem 1], a = (a(1),a(2)) = (a*,b*) is a standard equilibrium if and only if

arg max { g1 (a) — (V@ )(0,1) = vV )(0,2)) } =
a€l0,1]

arg max {92([)) + b(V(a*vb*)(()’ 1) — V(a*7b*)(0’ 2))} — b
be(0,1]

The strict convezity of g1 and g then implies that there are only four possibilities for a standard
equilibrium o = (a*,b*), i.e., (0,0), (0,1), (1,0), and (1,1). By calculations similar to [21, (37)-
(39)], we have

VOO(0,1) - VO (0,2) = 3. 48— 5,
V(170)(07 1) - V(I’O)(Oﬂ2) - _% : (1_85 + %) € (_%70)7
vO 1) —vOD©0,2) =-Z-2+1) <L
V(Ll)(O» 1) - V(l’l)(072) = _% : (% + %) € (_%70)7
which imply
arg max,c(g 11 {g2(8) + VOV (0,1) = VO (0,2))} = 1 £ 0;
arg max, .1 {91 (@) — (VD (0,1) = V9 (0,2))} =0 £ 1
arg max e o) {91 (a) — a(VOD(0,1) — VO (0,2))} = 1 £ 0;
arg max, e {91 () — (VD (0,1) = VD (0,2))} =0 # 1.

Therefore, we conclude that there exists no standard equilibrium. Despite this, since Assumptions
3.1, 2.2 (with p} therein replaced by q}'), and 2.3 can be immediately verified in the present setting,
Theorem 3.2 asserts that a relaxzed equilibrium exists.
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Remark 4.5 and Example 4.1 show the importance of Theorem 3.2: unlike standard equilibria,
a relaxed equilibrium for (2.1) exists much more generally, without the need of conditions (i),
(ii), and (iii) mentioned above Example 4.1. Hence, in the face of general controlled transition
rates (beyond the special form (4.4)) and non-concave reward functions, relaxed equilibria should
certainly be considered.

Let us now investigate the other side of the picture: for cases where both standard and relaxed
equilibria are known to exist, does the consideration of relaxed equilibria provide any added value?
As shown in the next result, it is not necessary to consider relaxed equilibria in such a case, as any
value achieved by a relaxed equilibrium can be recovered by a suitable standard equilibrium.

Proposition 4.2. Assume (4.4) and that U therein is convex. Suppose that f(t,i,u) takes the
form (2.2), with g(i,-) therein concave for alli € S. Also, let Assumptions 2.1, 2.2 (with p} therein
replaced by ql) and 2.5 hold Then for any relazed equilibrium w € 11 for (2. 1) .8 - R?
defined by o (i) == [;; u( , Vi €8, is a standard equilibrium such that J" () = J™(-).

The proof of Proposition 4.2 is similar to that of Proposition 4.1, with p}* and V™(-) therein
replaced by ¢} and ‘N/“(O, -), respectively.

Finally, we would like to point out that, in line with the discrete-time setting, the need of
relaxed controls is unique to the case of time inconsistency. When the problem sup, .y j”(z) is
time-consistent (e.g., under exponential discounting), one only needs to consider standard controls.

Remark 4.6. Let f(t,i,u) take the form (2.2) with §(t) = e 5 for some 3 > 0. As there is no
time inconsistency under exponential discounting, the optimal value J*(i) := sup, ey J™ (i) fulfills
the Bellman equation

=370+ s [ (glin) +a- ) ) =

REPU)

Suppose that an optimal relaxed control w* € 11 ewists, i.e., J = J*. Then, arguments i Re-
mark 4.4 can be adapted to the present continuous-time settmg and show that J* = J*  for any
standard control a with o(i) € argmax, . {g(i,u) + ¢ - J*} for all i € S.

5 Convergence from Discrete Time to Continuous Time

In this section, we take up the same continuous-time setup as in Section 3. For a step size h > 0
small enough, we construct a discrete-time approximation as follows. Let {X g}keNo be a discrete-
time controlled Markov process as in Section 2, with its transition matrix given by

(pn)y :=hg! +e YuelU, i€S, (5.1)
where {e;}¢_, is the standard basis of R?. Consider the reward function
fn(k,i,u) :== f(kh,i,u)h Vk € Ny, (5.2)

where f(t,i,u) is the reward function from Section 3. For any 7 € II, J™ in (2.1) now takes the
form

JhT (i) == E, [Z FrE) (kX,’;” :hEi[i/{}f(kh,Xﬁ,u)(w(Xﬁ))(du) . YieS. (5.3)
k=0
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Similarly, the auxiliary value function V*7 (i) is defined as in (2.19) with f and X™ therein replaced
by f5 and X", respectively. In addition, for any A > 0 and 7 € II,, we recall J{ in (2.4) and define

I (0= ) = 1| 3 (5700 D) + sy (x)) |
k=0
= ; 3 hu T h U T h 7 . .
_hEz{A;O(/Uﬂkh,Xk, ) (m(XE))(du) + AB(RYH( <Xk>))} VieS. (5.4)

Similarly, the auxiliary value function VAh’”(z') is defined as in (2.9) with f, X, and A replaced by
fn, X", and h\, respectively.
Let us now we study the convergence of value functions from discrete time to continuous time.

Lemma 5.1. Let Assumptions 3.1, 2.2 (with p} therein replaced by ¢!), and 2.3 hold. Suppose
that f(-,i,u) and §(-) are continuous on [0,00). Take any sequence {hy,}nen in (0,1] with h, | 0.

(a) For any {7"}nen and 7 in II such that 7" (i) — 7>°(i) weakly for all i € S,
Vi () 5 VT (0,4) = 7 (i), i€ S.

(b) For any A > 0 and {y" }nen with y™ — y> for some y> € R, we have 'y, \(y", i) — TA(y>, 1)
for alli € §. Therefore,

v P W) gy A= (0,4) = JAETIG6), vie s.

The proof of Lemma 5.1 is relegated to Appendix A.6.

We are ready to present our main convergence result from discrete time to continuous time: as
the time step h, > 0 tends to zero, a regular relaxed equilibrium (resp. a relaxed equilibrium) 7
in discrete time (with time step h,) ultimately converges to a regular relaxed equilibrium (resp. a
relaxed equilibrium) in continuous time.

Theorem 5.1. Let Assumptions 3.1, 2.2 (with p} therein replaced by ¢'), and 2.3 hold. Suppose
that f(-,i,u) and §(-) are continuous on [0,00). Take any {hy,}nen in (0,1] with hy, | 0.

(a) Given X\ > 0, let 7" € 11, be a regular relazed equilibrium for J/}\““7r in (5.4) for all m € N.
Then, for each i € S, (i) € D(U) converges pointwise to some 7°°(i) € D(U), up to a
subsequence. Moreover, 7% € 11, is a regular relaxed equilibrium for J{ in (3.2).

(b) Let 7™ € 11 be a relazed equilibrium for J"™ in (5.3) for all n € N. Then, for each i € S,
7" (i) € P(U) converges weakly to some 7>°(i) € P(U), up to a subsequence. Moreover,
7w € 11 is a relaxed equilibrium for J™ in (3.1).

The proof of Theorem 5.1 is relegated to Appendix A.7.

A  Proofs

A.1 Proof of Lemma 2.1

Fix i € S and y € R%. For an arbitrary @ € U, thanks to Assumption 2.2,

|[(F(0,4,w) +pf - y) = (f(0,i,@) +pi" - y)| <O+ yDlu —al, Vuel. (A.1)
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This, along with (2.12), implies

__ expGUOE) +pfy]) 1
Jor exp(31F(0, 4, w) +p - yDdu ~ fiexp (= 1L+ [y])u — al])du’
where the inequality follows from dividing by exp(+[f(0,i,@) + pf - y]) the numerator and the

denominator and then using the estimate (A.1).
Now let us prove (2.17) for ¢ > 1. By Assumption 2.3,

/e—%awnu—mduz/ e—%(1+|y>|u—ﬁ|du:/ eSO+ gy (A3)
U cone(,t)NBy (1) A,NBy(0)

VueU, (A.2)

where the equality follows from a translation from % to 0 € RY and an appropriate rotation about
0 € RY. Let us estimate the right-hand side of (A.3) in the next two cases. If %(1 + |y|)9 < 1,

/ eSO+ gy > o1 Leb(A, N By(0)) =: Ko,
ALﬂBg(O)

If £(1+ [y])¥ > 1, consider the two positive constants

L

s T 1
Ky ::/ sing_z(gol)dgpl---/ sin(yg—2)dwr_2 dee1 and Ko ::/ X lem2dz.
0 0 0

By using the ¢/-dimensional spherical coordinates, we have

€] 9 Y €]
/ o= S (Hylul g, — Kl/ 1= Q) g
ANBy(0) 0

A 5/%(1+y|)19 . ( A )5
=Ki|——— 27re Fdz > Ki Ko | ———— |
1<@<1+|y|>> 0 = e+ )

where the second line follows from the change of variable z = %(1 + |y|)r. Combining the above
two cases, we conclude from (A.2) and (A.3) that

—tL

L
Do) < max{ o et (S 10) b= s (2.4)

with C' := maX{KLO, ﬁ (%)é} > 0, which depends on ¢, ¥, ©, XA and ¢ (Recall that Ky, K1, and Ko
depend on ¢, ¥, and £). Tt follows that In(T'x(y, )(u)) < In C+£1In(1+|y|) for all (y,i,u) € RIxSxU.

AsT')\(y,i) € D(U) by definition, this implies

sup [ 1n(C(y: 1)) Tay, ) (w)du < InC o+ Eln(L+[yl), vy € R

€S JU
On the other hand, (2.5) readily shows that sup;cs [;; In(TA(y,%)(w)) T (y, i) (u)du > — In(Leb(U)).
Hence, in view of (2.3), we conclude that

sup [H(Ta(y, 1)) = sup | [ In(Ta,1) ()P () e

1€S i€S |JU

< |In(Leb(U))| + [In C| 4 £In(1 + |y|), Vy € RY, (A.5)

which shows (2.17) holds. For ¢ = 1, by following arguments simiar to the above, with A, N By(0),
Ko, K1, and K> replaced by [0,9], e~ 9,1, and fol e ?dz = 1— e~ !, respectively, we can obtain the
desired estimate in (2.17) for ¢ = 1.

Now, for A > 0 small enough, the constant C' > 0 in (A.4) simply becomes ﬁ (%)Z (for both
the cases £ > 1 and ¢ = 1). The estimate (A.5) then directly implies (2.18).
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A.2 Proof of Theorem 2.1

First, let us establish the continuity of ¥y : R? — R?. Take an arbitrary sequence {¢"},en in R?
such that y™ — 3> for some y>® € R As f(0,i,u) and py are continuous in u (Assumption 2.2),
U is compact, and S is a finite set, we conclude from the dominated convergence theorem that

sup
1€S

/ exFOiu) 4y gy, —/ exVObWFPEy™lqy| 0, as n — oo (A.6)
U U

In view of (2.12), this particularly implies that for any i € S, T'x(y",4)(u) — Tx(y>°,i)(u) for all
u € U. Moreover, for any ¢ € S, observe that

< /U IIn (TA(y"™,4)(u)) —In (Tx(y>,0)(w)) | Ta(y™, 7) (u)du

[ i (0320 ) [ [P D (w) ~ T, ) (w) du
U

In (/ e%[f(o,i,v)-l-l?f'yn]di)) —In </ e%[f((],i,v)+p;/.yoo}dv>
. U

T sup |In (Ta(y™, ) ()| / ITA(y™, 8) () — Ta (™, 6) (u)] du, (A7)
uelU U

1
<3 <sup Ipi“|> ly" =y +
uelU

where the first inequality follows from (2.3) and the second inequality is due to (2.12). As u
f(0,4,u) and uw — p¥ are continuous on the compact set U, we get the boundedness of u — |p}|
and u — I'y\(y>°,7)(u). Particularly, in view of (2.12), u + I'x(y>°,7)(u) is bounded away from
zero. This in turn implies that v — In (Fx(y‘x’,i)(u)) is bounded. Hence, as n — oo, we can
now conclude from y" — y* and (A.6) that the right-hand side of (A.7) vanishes. That is,
'H(F)\(yn,’b)) _>/H(F)\(yoo72)) _

For any n € N, consider the Markov chain X" with transition matrix p" given by pj; :=
fU p?jf,\(y",i)(u)du for all 4,5 € S, as well as the Markov chain X* with transition matrix p
given by p7y = fU pl-“jFA(yoo,i)(u)du for all 4,7 € S. For each i € S, note that the pointwise con-
vergence '\ (y", i) — I'x(y>°,i) in D(U) already implies the weak convergence of the corresponding
probability measures. This, along with u — p}* being continuous for all © € S, yields the convergence
of the transition matrices, i.e., p* — p°>° component by component, which in turn implies that the
law of X" converges weakly to that of X°°. In view of Remark 2.1, the law of X" (resp. X°)
coincides with that of XTA(®") (resp. er(yw")). That is, we actually have the law of XTA(®")
converging weakly to that of XT2#™+) Now, we can adapt an argument in the proof of Huang and
Zhou [21, Theorem 3| to our present setting. Specifically, by Skorokhod’s representation theorem,
there exist S-valued processes Y,, and Y, defined on some probability space (€2, F, P), such that
the law of Y,, coincides with that of XT2¥") the law of ¥ coincides with that of XTA¥™) and
Y," = Y} for all k € Ng P-a.s. As S is a finite set, for each k € Ny, we in fact have Y, =Y}, for
n € N large enough. It follows that for any i € S,

VW) () = B [Z </U FOA+ kY )T (Y™, Y (w)du + A(1 + k)H (Ta(y", Yk”))> ]
k=0

LB LZ:O ([ 70+ B YE D0, V) wdu + 26+ DR YE) ) | = V000
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where the convergence follows from the dominated convergence theorem, Y* = Y;>* for n € N
large enough, and T'\(y",i) — I'\(y>°,7) and ’H(F,\(y",i)) — ’H(I‘,\(yoo,i)) for all i € S. Let us
stress that the dominated convergence theorem is applicable here thanks to Assumptions 2.1 and
Lemma 2.1. We therefore conclude that ¥y : R — R? is continuous.

Now, we are ready to show that a fixed point of ¥y exists. For any y € R?,

) = 36| <E [i (|| + A6<t>|H<n<y,Xt>>|)}

= (A.8)
<M+)\Z(5 o(lyl) < (1+Ao(lyl)) M

t=0

where the first inequality stems from (2.9), M > 0 is the constant in Assumption 2.1, and the
second inequality follows from (2.17) in Lemma 2.1. Note from (2.17) that ¢ : R, — R+ grows
sublinearly (i.e., ¢(a)/a — 0 as @ — 00). Hence, o — (1 + Ap(a)) M also grows sublinearly, such
that

o i=sup{a>0:a < (1+ Ap(a)M} < co.

If |y| > o*, by (A.8) and the definition of o*, |[¥(y)| < (1+Xo(|y|))M < |y|. If |y| < o*, by (A.8), ¢
being increasing, and the definition of o, we obtain |V (y)| < M (1+A¢(Jy|) < M(1+)\¢( )) < a*.
We then conclude |y (y)| < max{|y|,a*} for all y € R%. Hence, for any r > o, ¥5(B,.(0)) C B,(0).
As ¥, : R* — R%is continuous, this implies that ¥y has a fixed point y € m, thanks to Brouwer’s
fixed-point theorem. By Corollary 2.1, I'y(y, ) € II, is a regular relaxed equilibrium for (2.4).

A.3 Proof of Lemma 2.2

Note that the existence of the sequence {y"},en is guaranteed by Theorem 2.1. By using (2.18) in
Lemma 2.1 in the calculation (A.8), we get |, (y)| < (1 + )up(A,y))M for all y € R, where ¢ is
specified in (2.18) and M > 0 is the constant in Assumption 2.1. In view of (2.18),

Ap(\,y) = k1A + ko] AIn Al + X In(1 + |y]),

where k1, K9 > 0 are constants independent of A. Since [AInA| — 0 as A | 0, the above equation
implies that for all A € (0,1], Ap(A,y) < n(ly|), with n(z) == K(1 + In(1 + 2)) for some K > 0
independent of A € (0, 1]. We therefore obtain

Wa()] < (L+n(y))M, VyeR?and € (0,1]. (A.9)

As n: Ry — R+ grows sublinearly (i.e., n(a)/a — 0 as a« — o0), a — (1 + n(a))M also grows
sublinearly, such that o := sup{a > 0: a < (14+n(a))M} < co. By using (A.9) and the definition
of a*, we may repeat the argument in the last paragraph of the proof of Theorem 2.1 and obtain

<lyl, iflyl>a*,
i VA € (0,1].
| A(y)|{§a*’ it 1y < o (0,1]

Now, for each n € N, as y" = U, (y"), the above inequality entails |y"| < a*. This readily implies
Supyexe 47| < a* < 00,
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A.4 Proof of Theorem 2.2

Take any sequence {\,}nen in (0,1] with A, | 0. By Theorem 2.1, for each n € N, there exists
y" € R? such that ¥y, (y") = y" and 7" := Ty, (y",-) € II, is a regular relaxed equilibrium for
(2.4) (with A = X, therein). As the sequence {y"},en is bounded in R? (Lemma 2.2), it has a
subsequence (without relabeling) that converges to some 3y € R?. On the other hand, as U is
compact, P(U) is compact under the topology of weak convergence of probability measures. Hence,
for each i € S, {n"(i) }nen in P(U) has a subsequence (without relabeling) that converges weakly
to some 7*(i) € P(U). This gives rise to 7* € II (which is not necessarily regular).

Now, we claim that 7* € T'(y*>°). In view of (2.21), we need to show that 7*(i) € P(U) is
supported by the closed set E(y>°,i) C U in (2.20) for all ¢ € S. As this holds trivially when
E(y®,i) = U, we assume E(y*>°,i) C U in the following. Our goal is to prove that for any i € S,
(7*(4)) (B (ug)) = 0 for all ug € U and r > 0 such that

B (up) NE(y>°,i) =0 and B,(ug) CU.

Note that this readily implies supp(7*(i)) C E(y°°, ) for all 1 € S, as desired. To this end, take a
continuous and bounded function h : U — [0, 1] such that

h(u)=1 foru € By(up) and h(u) =0 foru ¢ B, q/(uo), (A.10)

where d := dist(m,E(voo,i)) is strictly positive, as B,(up) and E(v>,1) are disjoint closed
sets. Consider A := max,cy {f(0,7,u) +p¥ - y>} < co. Note that d > 0 implies
5::A—sup{f(0,i,u)+pi“'y°° :uem} > 0.
Also, by the continuity of u > f(0,4,u) + p} - y*>,
L:=Leb({u e U: f(0,i,u) +pj' - y>* > A—¢/2}) > 0.

As y™ — y*°, for all n € N large enough, we have

L
A—sup{f(O,z’,u) +pi -yt iue Br(uo)} > %, Leb <{u eU: f(0,i,u)+p-y" > A—%}) > 5

This, along with the definition of I'y, (y",4) in (2.12), yields

du

1imsup/ h(uw)Ty, (y", 1) (u)du < limsup/ . —
n—oo JU n—o00 JB, | 45(uo) erﬁ(f(O,z,U)—i-pi Y )du

= limsu / . du
nne mfUe%n(f(O,z,u)+p$~y”—(A—a/2))du
_¢/2
. (& An
< lim sup/ du
n—00 JB.yq/2(uo) f{ueU:f(O,i,u)+p§‘-y”2A—%e} Ldu
2 _e/2 _
<limsup —e *n Leb <Br+d/2(u0)) =0. (A.11)
n—oo L

Now, as h is continuous, bounded, and satisfies (A.10),

(i) (Brw)) < /U A(u) (7 (i) (du) = Tim [ h(u)(x"(5))(du)

n—oo U

= lim [ h(uw)Ty, (", i) (u)du =0,

n—oo U

22



where the first equality follows from 7" (i) — 7*(i) weakly in P(U) and the last equality is due to
(A.11). The claim “7* € I'(y>°)” is then established.

Now, we set out to prove V, ") ym - Consider the Markov chain X™ with transition
matrix p" given by pj = Jor pUFAn( ,i)(u)du for all 4,7 € S, as well as the Markov chain X* with
transition matrix p* given by p;; := fU pfj(w*(z))(du) for all 4,7 € S. Similarly to the discussion
in the last paragraph of the proof of Theorem 2.1, p" — p* component by component (thanks to
Ty, (y",i) — 7*(i) weakly for all i € S), whence the law of X" converges weakly to that of X*,
which in turn implies that the law of X" ®") converges weakly to that of X™" (by Remark 2.1).
By Skorokhod’s representation theorem, there exist S-valued processes Y;, and Y, defined on some
probability space (2, F, P), such that the law of Y;, coincides with that of X Pxn (™) the law of Y
coincides with that of X™ , and Y,' = Y} for all k € Ny P-a.s. As S is a finite set, for each k € Ny,
we in fact have Y} =Y}, for n € N large enough. It follows that for any 7 € S,

V)\I;L/\n(y )( Ef[zé(l +k7)/\nH (Fk(yn’ykn))]
k=0

:E’P[g [ sk on 6 ) |
—>EP[ (/ F(1+ b, Ye, u)m *(Yk)(u)du>] — V), (A.12)

where the convergence follows from Y} =Y}, for n € N large enough, I'y(y",i) — 7" (i) weakly for
alli € S, and u — f(t,4,u) being continuous on the compact set U. Moreover, by (2.18) in Lemma
2.1, the boundedness of {y" }ren, and Y2 d(1 + k) < oo (Assumption 2.1), there exist constants
C1,C5 > 0 independent of {\, },en such that

2514—]@)\ sup [H(Tx, (y".4))| = (Cidn + Codn| In Ay ) Zél+k‘ ) — 0 asn— oo,
k=0 (S k=0

which implies that EF [ Y72 (1 + k)M H (Ta(y™, Y}")) | — 0. We then conclude from (A.12) that
V@ (i) 5 v (i) for all i € S.

Finally, recall that ¥ (y") = y" means y" = V)\ann (")

. As a result,

y>© = lim y" = lim Vf”( R Vs U(y™), (A.13)

n—o00 n—o00 v

where the inclusion follows from 7* € I'(y*°). In view of (2.22) and (2.23), the above relation
implies 7* € ®(7*). Hence, by Proposition 2.2, 7* is a relaxed equilibrium for (2.1).

A.5 Proof of Proposition 3.1
Fix 7 € II,. By taking 7’ = 7 in (3.6) and noting J’T®E7r( ) = JA( ) = ‘7}\”(0,1’), we get
Vi(e,i) — VI (0,i) = (f” (0,9) + MNH(r (i) + QT .17;(5)) e, Vies. (A.14)

This implies that ¢ — ‘7/\”(15,1') is continuous. Moreover, when we divide both sides by £ > 0 and
take € | 0, since t — V'(¢,4) is continuous for all i € S, we get

OV (0,1) + F70(0,4) + MH(x (i) + QFV - VT (0) =0, Vies. (A.15)
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Now, for any n" € II,., thanks to (3.6) and (A.14),
Ve (0,) = Vi (0,3) = (7D 0,0) + X1 () + QT ¥ - Vi (e)
— [O0,4) + XH((i) + Q7D Vi (e)))e + ofe)
It follows that

1/~ ~
tim = (V797 (0,)  V7(0.1)
= (/79,0 + M (@) + QF P V(@) = (FD0,0) + M) + QT - Vi (e))

= F70(0,1) + (7' () + QT V- VT (0) + 8, V5 (0,4), VieS, (A.16)

where the last line follows from the continuity of ¢ — Vf (t,7) for all i € S and (A.15). Hence, 7 is
a regular relaxed equilibrium for (3.2) if and only if

AVT0.0) + sup (£2(0,0) + H(p) + Q- TT(0)) <0, Vies.
pED(U)

In view of (A.15), this holds if and only if

(i) € arg max ( F2(0,9) + NH(p) + Q7 - 17;(0))
peD(U)

= arg max/ (f(O,z’,u) —Anp(u) + ¢ - ‘7,\”(0)>p(u)du, VieS. (A.17)
peD(U) JU

As the set on the right-hand side above is a singleton that contains the density
. o £0,iu) 42V (0))

u) = —
pr(u) 3 (f0.i0) 447 -V (0) g,

Jue

the relation (A.17) amounts to 7 (i) = f)\(f;\r, i) for all i € S, which is equivalent to m = @ ().

= TA(V31(0),8)(w) = TA(J5, ) (u), weT,

A.6 Proof of Lemma 5.1

(a) For notational convenience, we will write X" for the discrete-time Markov chain whose tran-
sition matrix is P" = {P"(i)};es with its i"*-row given by

Pr(i) = /U (9 ) (™ () (du) = /U (ong? + ) (7)) (ds) = Q7" Pl + e,

where the second equality follows from (5.1). We will also write X™ and X for the continuous-
time Markov chains with generators {Q! (Z)}ieg and {Q7 (Z)}ieg, respectively. For each n € N,
note that the transition matrix of the discrete-time Markov chain { X7, } pen 18 P =A{P"(i) bies

with its i**-row given by

Pri) == e; + QF Vhy + o(hn) = P™(i) + o(hy). (A.18)
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In the following, we will adapt the arguments in the proof of Huang and Zhou [21, Lemma 3] to
the present setting. For any 7 € S, observe that

Vi (i) = V7 (0,)

/ I<:+1 Y, X )(w"(X,?”)) (du)]

> /Uf ((k+ Do, Xy, ) <w"<thn>><du>] '
k=0

8

< hp|E;

—E;

+ s [Z [ £ (0 Do X, 0) <w"<X£hn>><du>]
k=0"U

| [ [ rexr e ) @]
E; [/OOO/Uf(t,Xt",u)(w"( m)) (du) dt] U /ftXtoo, (X,f’o))(du)dtH.

(A.19)

Let I, I3, and I§ denote the second, third, and fourth lines, respectively, in the above inequality.
Let us first deal with I'. By Assumption 3.1, for any € > 0, we can take 7" > 0 such that

/ sup |f(t,i,u)|dt < e. (A.20)
T iu
It follows that
T/hn
< hl B [ (e Do, ) (560 ()
k=0 u (A.21)

_/Uf((k:+1)hn,X,?hn,u) (7™(XP ) (du)H+2E

In addition, (A.18) implies (ﬁ)k(z) = (/\Pi")k(i)—l—k:o(hn)(l—l—o(hn))k, where (ﬁ)k(z) (resp. (P™)k(i))
denotes the i*"-column of the matrix (P") (resp. (P™)*). By writing Jor f(khuy, - u) (7" (-)) (du) for

the vector ([, f(khn, 1, u) (7" vy iy Fkha, d,u)(7(d))(du)) € R, we observe that
E; [/Uf (0e+ 1)hn,X,’;n,u> = (xp) (du)} = (/ F((k+1)h, - u du)>
B [ [ 7t Do X0 7 (50,) @] = P ([ 500+ 0 ()a))
U U
(A.22)
It then follows from that
__T/hn T/hn
IT < hpM Y ko(hn)(1+ o(hn))F + 26 < hyM Y = 0(hn) (1 + )T/ 4 2¢
k=0 k=0 "
T/hn p
— Z < +1> o(hy) + 2 = o(1) + 2e.
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We then obtain lim,,_,o I7" < 2¢. As € > 0 is arbitrary, we conclude lim,,_, I{" = 0.
We now deal with [§. For any ¢ > 0, consider 7" > 0 as in (A.20). Then, observe that

I3 < ST By ] + 2¢, with

k+1

(k+1)hn
= o [ Db X ) (2O, ) = [ [ X0 (0 () )]

n

Set Ay := {there is no jump for X" in the time interval (khy, (k + 1)h,]}. As f(-,4,-) is continu-
ous, it is uniformly continuous on the compact set [0,7] x U. Hence, there exists a modulus of
continuity L, independent of ¢ and u, such that |f(¢,i,u) — f(s,4,u)| < L(|t —s]|) for all ¢,s € [0,T].
It follows that

Eilne] < Eilne | A]P(Ar) + Eilne | ARJP(AL) < L(hn)hn(1 = o(1)) + O(hn)o(1) = o(hn).
Hence, I3 < Zfi’gn o(hyn) + 2¢ = o(1) + 2e, which implies lim,_,o [§ < 2¢. As € > 0 is arbitrary,
we conclude lim,, o I3 = 0.

Finally, we deal with I3'. For any i € S, as u qu is continuous and U is compact, the fact
“r (i) — w°(i) weakly” readily implies an(i) — Q?oo @ That is, the rate matrix of X™ converges
to that of X*° (component by component). Then, we may follow the argument in the proof of
Huang and Zhou [21, Theorem 3| (particularly, from the third last line of p. 448 to the fourth line
on p. 449) to obtain lim, oI5 = 0. As I{, I3, and I3 all converge to zero, we conclude from
(A.19) that V™" (i) — V7 (0,4).

(b) For any ¢ € S and u € U, thanks to (2.12), (5.2), and (5.1),

) — expliiy (f, (0iw) + (a)i - ™) exp[R(f(0,5,u) + g2 y")]
P Jor exp s (F (0,4, u) + (pr) - y™)du— fyy exp[(£(0,7,) + g - y™)]du
e RUO bW +a v )] 5
7 Trepi (70 i v g you T mee (A2

where the convergence follows from y™ — y°°. In view of (3.8), the above implies I'y, x(y",7)(u) =
Ta(y™, i) (u) — Ta(y®>®,7)(uw). Hence, H(Tp,A(y™ i) = H(TA(y™, i) — H(TA(y>°, 7)), where the
convergence follows from an argument similar to (A.7). By taking 7" := 'y, A(y",-), the desired
result follows from the arguments in part (a) and H(Tp, A (y",7)) = H(TA(y*>°, 7)) for all i € S.

A.7 Proof of Theorem 5.1

(a) For any n € N, set y" := V)\h"’”n € R As 7" € II, is a regular relaxed equilibrium for
(5.4), Proposition 2.1 implies 7" = &y, »(7"), i.e., 7"(i) = Ty, A(y",4). In addition, Corollary 2.1
implies W), \(y") = y". Hence, by Lemma 2.2, {y"},en is bounded in R?. For any subsequence of
{y"}nen (without relabeling) that converges to some y> € R?, Lemma 5.1 (b) asserts I, x(y", 1) —
Ix(y®°, 7). Thus, 7°(i) := limy 0o 7 (2) = (¥, 7) is well-defined for all i € S. Now, note that

— hm Vh”7rhn>\(yn7') — ij(yoo7,)

[e9) . n . hp, ™
y>* = lim y" = lim V," A\ A\ ,

n—oo n—o0 n—o0

where the last equality follows from Lemma 5.1 (b). That is, we have y> = v A(y>). By Corol-
lary 3.1, this implies 7°° = T')(y°°, -) is a regular relaxed equilibrium for (3.2).
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(b) As U is compact, P(U) is compact under the topology of weak convergence of probability
measures. Hence, for each i € S, {7 (i) }nen in P(U) has a subsequence (without relabeling) that
converges weakly to some 7*(i) € P(U). By Proposition 2.2, for each n € N,

supp(n™ (1)) € arg max { £,(0,1,) + (pa) - V""" |
uelU

— arg max { £(0,4,u) + g - th”"} —E (thﬂf”, z) . Vies, (A.24)
uelU

where the first equality follows from (5.2) and (5.1) and the last equality holds in view of (3.9). By

Proposition 3.2, to show that 7 is a relaxed equilibrium, it suffices to prove 7> € O(7™), ie.,

supp(7>(i)) € E(J™ ,4) for all i € S. By contradiction, suppose that for some i € S, there exist

up € U and r > 0 such that

dist (Br(uo),ﬁ(ﬁ"",i)) >0 and (7%0))(B,(ug)) > 0 (A.25)

By the weak convergence of 7" (i) to 7°°(i), liminf, (7" (7))(By(uo)) > (7°°(i))(Br(up)) > 0.
This, along with (A.24), implies B, (ug) N E(V"™" i) £ 0 for n € N large enough. Take u, €
By (up) N E(Vh"’“", i) € U for n € N large enough. As {u,}nen is a bounded sequence, it converges
up to a subsequence to some u* € B,.(ug) NU. Now, by Lemma 5.1 (a),

FOvi) " T =t {70 w0) VT

n—oo

. . u Ay, ™ . u g™
u, 3 > Pl
—nhm 1(;16530({7‘(0,2,11)+qZ V } 1(;16530({7‘(0,2,11)—i—qZ J },
Where the SeCOHd equallty fOHOWS fI"OIn Un € E(L hnﬂr", Z) and the lnequahty hOldS bS/ eXChanging

the limit and maximization. As u* € U, the above inequality is in fact an equality, which implies
u* € E(J™,i). The fact u* € B,(ug) N E(J™ " ,i) readily contradicts the first condition in (A.25).
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