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Relaxed Equilibria for Time-Inconsistent Markov Decision Processes

Erhan Bayraktar∗ Yu-Jui Huang† Zhenhua Wang‡ Zhou Zhou§

Abstract

This paper considers an inûnite-horizon Markov decision process (MDP) that allows for
general non-exponential discount functions, in both discrete and continuous time. Due to the
inherent time inconsistency, we look for a randomized equilibrium policy (i.e., relaxed equilib-
rium) in an intra-personal game between an agent9s current and future selves. When we modify
the MDP by entropy regularization, a relaxed equilibrium is shown to exist by a nontrivial
entropy estimate. As the degree of regularization diminishes, the entropy-regularized MDPs
approximate the original MDP, which gives the general existence of a relaxed equilibrium in the
limit by weak convergence arguments. As opposed to prior studies that consider only determin-
istic policies, our existence of an equilibrium does not require any convexity (or concavity) of the
controlled transition probabilities and reward function. Interestingly, this beneût of considering
randomized policies is unique to the time-inconsistent case.

Keywords: time inconsistency, non-exponential discounting, Markov decision processes, re-
laxed controls, entropy regularization

1 Introduction

For Markov decision processes (MDPs) on an inûnite horizon, discounting is a key feature that
allows the expected total reward to take a ûnite value. A widespread assumption in the literature
is exponential discounting, i.e., the discount rate is constant over time. There is, however, sub-
stantial evidence against exponential discounting. In behavioral economics (see e.g., Thaler [27],
Loewenstein and Thaler [24], Laibson [23]), it is well documented that the discount rate is em-
pirically time-varying and many non-exponential functions have been proposed to model empirical
discounting; see e.g., Huang and Zhou [19, Remark 3.1].

For the past ûfteen years or so, non-exponential discounting has been seriously considered and
approached in stochastic control, and the involved mathematical challenge is now well understood.
In a nutshell, non-exponential discounting causes time inconsistency: an optimal control policy an
agent derives today will not be optimal from the eyes of the same agent tomorrow. As a dynamically
optimal policy over the entire time horizon no longer exists, Strotz [26] suggests that one instead
look for an equilibrium policy in an intra-personal game between one9s current and future selves.
A standard equilibrium (i.e., an equilibrium policy as a deterministic map on the state space) has
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been studied under non-exponential discounting in diûusion models (e.g., Ekeland and Lazrak [12],
Ekeland and Pirvu [14], Ekeland et al. [13], Yong [29], Björk et al. [9], Huang and Nguyen-Huu
[17], Huang and Zhou [20], Bayraktar et al. [7, 8]), as well as in models of controlled Markov chains
(e.g., Balbus et al. [3], Chatterjee and Eyigungor [10], Balbus et al. [4], Balbus et al. [2], Huang and
Zhou [21], Balbus et al. [5], Bayraktar and Han [6]). Many of the studies establish the existence
of a standard equilibrium for a general state space (e.g., a Borel space), but require very speciûc
forms of discounting (e.g., quasi-hyperbolic or hyperbolic), the reward function (e.g., monotone and
supermodular), and the controlled transition probabilities (e.g., decomposable into supermodular
functions); see the assumptions in [3, 10, 4, 2, 5].1 These conditions need not hold even in fairly
simple examples, such that a standard equilibrium may fail to exist; see e.g., [21, Remark 10].

This motivates us to consider relaxed equilibria (i.e., randomized equilibrium policies), to possi-
bly extend the existence of equilibria to cases where discounting, reward functions, and controlled
transition probabilities are all general. To this end, it is natural to consider MDPs, which by
deûnition considers randomized control policies (i.e., relaxed controls).

In the context of reinforcement learning, Alexander and Brown [1], Fedus et al. [15], and
Schultheis et al. [25] design algorithms to compute optimal relaxed controls for MDPs under
non-exponential discounting, but fail to realize that such policies are unsustainable due to time
inconsistency. To the best of our knowledge, only the recent work Jaśkiewicz and Nowak [22] rec-
ognizes the issue of time inconsistency and applies Strotz9s game-theoretic approach to MDPs: they
prove that a relaxed equilibrium exists for discrete-time MDPs for a general state space, reward
function (bounded and continuous), and transition probabilities (transition densities exist and are
continuous), but require the discount function to be quasi-hyperbolic. In fact, their arguments
rely crucially on the speciûc form of a quasi-hyperbolic discount function (which is stylized and
tractable) and do not allow for other kinds of non-exponential discounting.

In this paper, we accommodate general discount functions and strive to establish the existence
of a relaxed equilibrium for the resulting time-inconsistent MDPs in both discrete and continuous
time. As we can no longer rely on the form of a discount function, our approach diûers largely from
that in Jaśkiewicz and Nowak [22].

Instead of working with the original MDP (i.e., (2.1) below) directly, we consider an entropy-
regularized version, where the entropy of a randomized control policy (i.e., a relaxed control) is
added to the functional to be maximized; see (2.4) below. Taking advantage of the form of the
entropy term, we characterize relaxed equilibria for the entropy-regularized MDP (which we call
regular relaxed equilibria) as ûxed points of an operator, which takes a tractable Gibbs-measure
form; see Proposition 2.1 and Corollary 2.1. By showing that the ûxed-point operator continuously
maps a compact domain to itself, we conclude from Brouwer9s ûxed-point theorem that a regular
relaxed equilibrium exists; see Theorem 2.1. Note that for the operator to map a compact domain
to itself, the growth of the entropy term needs to be contained appropriately, which is a known
mathematical challenge. To achieve this, we assume that the reward function and controlled tran-
sition probabilities are Lipschitz in the action variable (Assumption 2.2) and the action space U
fulûlls a uniform cone condition (Assumption 2.3). Then, following an argument recently proposed
in Huang et al. [18, Section 4.3], we get logarithmic growth of the entropy term uniformly in the
state variable (Lemma 2.1), which facilitates the proof of Theorem 2.1.

For the original MDP (2.1), relaxed equilibria can also be characterized as ûxed points of an
operator (Proposition 2.2). However, the operator is an abstract set-valued map, which is, compared
with the concrete single-valued operator under entropy regularization, much less tractable and much

1[6] considers a finite-horizon discrete-time model, for which a recursive backward induction provides an equilib-
rium. This method does not work for an infinite horizon and therefore cannot be applied to our study.
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less promising for numerical implementation; see Remark 2.6. Thus, we approximate the original
MDP by a sequence of entropy-regularized MDPs, with the degree of regularization (measured
by » > 0 in (2.4)) diminishing to zero. This yields a sequence of regular relaxed equilibria, one
for each entropy-regularized MDP. Intriguingly, the value functions corresponding to this sequence
are uniformly bounded: as shown in Lemma 2.2, the logarithmic growth of entropy (obtained in
Lemma 2.1 for each ûxed » > 0) can be made uniform across all » > 0 small enough, thereby giving
a uniform bound for the value functions. Relying on this, a delicate probabilistic argument shows
that the sequence of regular relaxed equilibria for entropy-regularized MDPs (i.e., ûxed points of
tractable Gibbs-form operators) converges weakly to a ûxed point of the set-valued operator for
the original MDP. That is, a relaxed equilibrium for the original MDP exists; see Theorem 2.2.

All the above, established in discrete time, can be extended to continuous time. For entropy-
regularized continuous-time MDP, regular relaxed equilibria can again be characterized as ûxed
points of an operator of the Gibbs-measure form; see Proposition 3.1 and Corollary 3.1. The
existence of a regular relaxed equilibrium is accordingly established in Theorem 3.1. Finally, we
approximate a continuous-time MDP by a sequence of its entropy-regularized versions, with di-
minishing degree of regularization, and ûnd that the sequence of regular relaxed equilibria (one
for each entropy-regularized MDPs) converges to a relaxed equilibrium for the original MDP; see
Theorem 3.2. Note that our continuous-time results are reconciled with those in discrete time: as
shown in Theorem 5.1, when the time step tends to zero, (regular) relaxed equilibria in discrete
time converge to one in continuous time.

Our mathematical setup generalizes that in Huang and Zhou [21], where controlled Markov
chains (in both discrete and continuous time) are considered under non-exponential discounting.
Speciûcally, one chooses transition probabilities directly (i.e., an action is simply a vector of tran-
sition probabilities) in Huang and Zhou [21], while we allow for general actions that may aûect
transition probabilities in a much more subtle way; see Remark 4.1 for details. In addition, Huang
and Zhou [21] focuses on deterministic policies (i.e., standard controls), while we include random-
ized ones (i.e., relaxed controls). A key result in Huang and Zhou [21] states that a standard
equilibrium exists, under a suitable condition on the transition probabilities and reward function;
moreover, if such a condition fails, a standard equilibrium may not exist in general. This crucially
explains the need of relaxed controls: unlike standard equilibria, a relaxed equilibrium generally
exists, as proved in Theorems 2.2 and 3.2. Hence, in the face of general controlled transition proba-
bilities and reward function, relaxed equilibria should certainly be considered; see Remark 4.2 and
the discussion below it.

Interestingly, the need of relaxed controls is unique to the time-inconsistent case. In the time-
consistent case of exponential discounting, even if one considers relaxed controls, the optimal value
achieved by a relaxed control can always be achieved alternatively by a standard control4it is then
necessary to consider only standard controls; see Remarks 4.4 and 4.6.

Let us stress that an entropy-regularized MDP, besides serving as a powerful approximation
tool, has it own meaning and application. As introduced in Ziebart et al. [30], Fox et al. [16] and
clearly explained in Wang et al. [28], an entropy-regularized MDP encodes the tradeoû between
exploitation and exploration in reinforcement learning, with the exploration part represented by
the added entropy term. This line of research has so far focused on time-consistent cases. The
only exception we know of is Dai et al. [11], where a relaxed equilibrium is found for a mean-
variance portfolio selection problem. Our results contribute to the burgeoning area of reinforcement
learning under time inconsistency: the regular relaxed equilibrium we found represents a learning
policy under time inconsistency induced by non-exponential discounting; see the discussion below
Theorem 2.2 and Remark 2.4.

The paper is organized as follows. Section 2 introduces a time-inconsistent MDP in discrete time
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that accommodates non-exponential discounting; an entropy-regularized version is also deûned. We
prove the existence of regular relaxed equilibria for entropy-regularized MDPs (Section 2.1) and
obtain the existence of relaxed equilibria for the original MDP by an approximation argument
(Section 2.2). Section 3.1 (resp. Section 3.2) extends results in Section 2.1 (resp. Section 2.2)
to continuous time. Section 4 discusses when the use of relaxed controls is necessary. Section 5
shows that discrete-time (regular) relaxed equilibria converge to a (regular) relaxed equilibrium in
continuous time, as time step tends to zero. The appendix collects (longer) proofs.

2 Relaxed Equilibria in Discrete Time

Set N0 := N * {0}. Let U ¢ R3, for a ûxed 3 * N, be a compact action space with Leb(U) > 0.
Consider a probability space (',F ,P) that supports a discrete-time Markov process (Xt)t*N0

that
takes values in S = {1, 2, ..., d} for some d * N and is controlled by a U -valued process ³. Assume
that the dynamics of X is time-homogeneous, i.e., for any t * N0, P(Xt+1 = j | Xt = i, ³t = u) =
P(X1 = j | X0 = i, ³0 = u) for all i, j * S and u * U . For any action u * U , we will denote by pu

the associated transition matrix of X (i.e., puij := P(X1 = j | X0 = i, ³0 = u) for all i, j * S) and

write pui for the ith row of pu for all i * S.
We call ³ : S ³ U a standard feedback control and denote by p³ the transition matrix induced

by ³. Speciûcally, the ith row of p³ (denoted by p³i ) is given by p³i = p
³(i)
i for all i * S. Let P(U)

(resp. D(U)) denote the set of all probability measures (resp. density functions) on U . We call
Ã : S ³ P(U) a relaxed feedback control. Note that a standard feedback control ³ can be viewed
as a relaxed feedback control Ã by taking Ã(i) to be the Dirac measure concentrated on ³(i) * U
for all i * S. We denote by £ the set of all relaxed feedback controls.

Given Ã * £, the dynamics of X = XÃ is determined as follows. At any time t * N0, given that
Xt = i * S, we sample u * U according to the probability measure Ã(i) * P(U). The realization
of Xt+1 is then governed by the transition probabilities pui = {puij}j*S .

Remark 2.1. Given Ã * £, consider a Markov chain X̄Ã whose transition matrix pÃ is given by
pÃij :=

∫
U puij(Ã(i))(du) for all i, j * S. Note that X̄Ã and XÃ are different stochastic processes

that share the same law. That is, the paths (i.e., realizations) taken by X̄Ã and XÃ are generally
different, but the probability of which path will be taken is identical.

Given a reward function f : [0,>) × S × U ³ R, we deûne fµ(t, i) :=
∫
U f(t, i, u)µ(du) for all

µ * P(U). For any Ã * £, the corresponding value function is given by

JÃ(i) := Ei

[ >∑

k=0

fÃ(Xπ
k ) (k,XÃ

k )

]
, "i * S. (2.1)

Remark 2.2. The t variable in f(t, i, u) does not represent “real calendar time” but “time differ-
ence,” that is, the difference between the current time and the time of a future reward; see Huang
and Zhou [21, Remark 1]. A typical example is

f(t, i, u) = ·(t)g(i, u), (2.2)

where g : S × U ³ R assigns a reward based on the current state i and the action u employed and
· : [0,>) ³ [0, 1] is a discount function, assumed to be nonincreasing with ·(0) = 1.

In this paper, we will investigate an entropy-regularized version of JÃ(i). To this end, let us
ûrst introduce the notion of a regular relaxed feedback control.
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Definition 2.1. A relaxed feedback control Ã * £ is regular if for each i * S, there exists Ãi * D(U)
such that (Ã(i))(A) =

∫
A Ãi(u)du for all Borel A ¦ U and its Shannon differential entropy satisfies

H(Ãi) > 2>, where

H(Ã) := 2
∫

U
ln(Ã(u))Ã(u)du, "Ã * D(U). (2.3)

We denote by £r the set of all regular feedback relaxed controls. Given Ã * £r, we will often identify
Ã(i) * P(U) with its density Ãi * D(U) and write “Ã * £r” and “{Ãi}i*S * £r” interchangeably.

Now, for any » > 0 and Ã * £r, consider

JÃ
» (i) := Ei

[ >∑

k=0

(
fÃ(Xπ

k )(k,XÃ
k ) + »·(k)H

(
Ã(XÃ

k )
)) ]

, "i * S, (2.4)

where · : [0,>) ³ [0, 1] is a discount function, assumed to be nonincreasing with ·(0) = 1. To
ensure that JÃ in (2.1) and JÃ

» in (2.4) are well-deûned, we impose the following.

Assumption 2.1. M :=
∑>

t=0

(
supi*S,u*U |f(t, i, u)| + ·(t)

)
< >.

By Assumption 2.1, JÃ is clearly ûnitely valued for all Ã * £. On the other hand, under our
assumption 0 < Leb(U) < >, consider the uniform density ¿ * D(U) given by ¿(u) := 1/ Leb(U)
for all u * U . For any Ã * D(U), we compute the Kullback-Leibler divergence

0 f DKL(Ã‖¿) :=

∫

U
Ã ln

(Ã
¿

)
du =

∫

U
Ã ln Ãdu + ln(Leb(U)), (2.5)

which gives H(Ã) = 2
∫
U ln(Ã(u))Ã(u)du f ln(Leb(U)) < > for all Ã * D(U). This, along with

Deûnition 2.1, indicates that for any Ã * £r,

|H(Ã(i))| < > for all i * S. (2.6)

By Assumption 2.1, (2.6), and S being a ûnite set, JÃ
» is ûnitely valued for all Ã * £r.

An agent who aims to maximize JÃ(i) over all Ã * £ may run into the issue of time inconsistency.
Speciûcally, given that X0 = i * S, the time-0 agent9s problem is supÃ*Π JÃ(i). At a later time t > 0
with Xt = j 6= i, the time-t agent9s problem is supÃ*Π JÃ(j). As the two problems supÃ*Π JÃ(i)
and supÃ*Π JÃ(j) need not share the same optimal control Ã7 * £, time-inconsistency may arise.
Such inconsistency results from the <time diûerence= variable t in either the reward function f
or the discount function ·; see Remark 2.2. In the typical setup (2.2), it is well-known that
the optimization problems are time-consistent with ·(t) = e2³t for some ³ > 0 (i.e., the case of
exponential discounting) but time-inconsistent in general.

As proposed in Strotz [26], a sensible reaction to time inconsistency is to take future selves9
disobedience into account and choose the best present action in response to that. Assuming that
all future selves reason in the same way, the agent searches for a (subgame perfect) equilibrium
strategy from which no future self has an incentive to deviate. To formulate such an equilibrium
strategy, we introduce, for any Ã, Ã2 * £, the concatenation of Ã2 and Ã at time 1, denoted by
Ã2 ·1 Ã * £. Using Ã2 ·1 Ã * £ means that the evolution of X is governed ûrst by Ã2 at time 0
and then by Ã from time 1 onward. That is, at time 0, given that X0 = i * S, we sample u * U
according to the measure Ã2(i) * P(U) and the realization of X1 is then governed by the transition
probabilities pui = {puij}j*S . At any time t g 1, given that Xt = j * S, we sample ū * U according
to the measure Ã(j) * P(U) and the realization of Xt+1 is then governed by pūj = {pūjk}k*S .
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Definition 2.2. Given » > 0, we say Ã * £r is a regular relaxed equilibrium (for (2.4)) if for any
i * S,

JÃ2·1Ã
» (i) 2 JÃ

» (i) f 0, "Ã2 * £r. (2.7)

Similarly, we say Ã * £ is a relaxed equilibrium (for (2.1)) if for any i * S,

JÃ2·1Ã(i) 2 JÃ(i) f 0, "Ã2 * £. (2.8)

2.1 Existence of Regular Relaxed Equilibria for Entropy-Regularized MDP (2.4)

Let us ûrst focus on the existence of regular relaxed equilibria (for (2.4)). Fix » > 0. For any
Ã * £r, let us introduce the auxiliary value function

V Ã
» (i) := Ei

[ >∑

k=0

(
fÃ(Xπ

k )(1 + k,XÃ
k ) + »·(1 + k)H

(
Ã(XÃ

k )
)) ]

, "i * S. (2.9)

For convenience, we will commonly write V Ã
» as a vector in Rd, i.e., V Ã

» = (V Ã
» (1), V Ã

» (2), ..., V Ã
» (d)).

To understand the meaning of V Ã
» , we need to take a closer look at JÃ

» (i) in (2.4). Given that
X0 = i * S, notice that the ûrst term in the summation of (2.4) is no longer random and can
be computed immediately. The remaining terms in the summation are still random and their
expectation depends on the realization of XÃ

1 . Speciûcally,

Ei

[ >∑

k=1

(
fÃ(Xπ

k )(k,XÃ
k ) + »·(k)H

(
Ã(XÃ

k )
)) ∣∣∣∣ X

Ã
1 = j

]
= V Ã

» (j), "j * S, (2.10)

where the equality follows from the Markov property of XÃ. That is, V Ã
» (j) is the expectation of

future rewards plus entropy conditioned on XÃ
1 = j.

Now, for the problem (2.4), given X0 = i * S and that all future selves will follow a relaxed
control Ã * £r, the agent at time 0 intends to ûnd her best strategy (denoted by Ã2 * £r) in
response to that. Observe from (2.4) and (2.10) that

JÃ2·1Ã
» (i) = fÃ2(i)(0, i) + »H(Ã2(i)) + Ei[V

Ã
» (XÃ2

1 )]

=

∫

U

(
f(0, i, u) 2 » ln((Ã2(i))(u)) + pui · V Ã

»

)
(Ã2(i))(u)du.

Hence, the best strategy Ã2 * £r for the time-0 agent should satisfy

Ã2(i) * arg max
Ã*D(U)

∫

U

(
f(0, i, u) 2 » ln(Ã(u)) + pui · V Ã

»

)
Ã(u)du, "i * S. (2.11)

Note that the set of maximizers on the right-hand side is a singleton and its unique element takes
the explicit form

Ã7i (u) :=
e

1

λ

(
f(0,i,u)+pui ·V

π
λ

)

∫
U e

1

λ

(
f(0,i,u)+pui ·V

π
λ

)
du

, u * U.

As a result, by introducing a functional �» : Rd × S ³ D(U) deûned by

u 7³ �»(y, i)(u) :=
e

1

λ(f(0,i,u)+pui ·y)
∫
U e

1

λ(f(0,i,v)+pvi ·y)dv
* D(U), "(y, i) * Rd × S, (2.12)
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we can re-write (2.11) as
Ã2(i) = �»(V Ã

» , i)(·) * D(U), "i * S. (2.13)

We have argued so far that Ã2 * £r in (2.13) is the time-0 agent9s best response to her future
selves using Ã * £r. If it happens that the best response Ã2 * £r coincides with future selves9
strategy Ã * £r (i.e., �»(V Ã

» , ·) = Ã), then Ã * £r should be viewed as an equilibrium among the
current and future selves, as it is a strategy that will be upheld over time. This motivates us to
deûne an operator §» : £r ³ £r by

§»(Ã) := �»(V Ã
» , ·), (2.14)

and we conjecture that a ûxed point of §» is a regular relaxed equilibrium for (2.4). In addition,

as �»(V Ã
» , ·) = Ã consequently yields V

Γλ(V
π
λ ,·)

» = V Ã
» , we also deûne an operator «» : Rd ³ Rd by

«»(y) := V
Γλ(y,·)
» ,

and conjecture that a ûxed point of «» must equal V Ã
» for some regular relaxed equilibrium Ã * £r.

The next two results show that our conjectures are correct.

Proposition 2.1. Let Assumption 2.1 hold. For any » > 0,

Ã * £r is a regular relaxed equilibrium ñó §»(Ã) = Ã.

Proof. Given Ã, Ã2 * £r, since JÃ2·1Ã
» (i) = fÃ2(i)(0, i) + »H(Ã2(i)) + Ei[V

Ã
» (XÃ2

1 )] for all i * S, a
direct calculation shows

JÃ2·1Ã
» (i) 2 JÃ

» (i) = fÃ2(i)(0, i) + »H(Ã2(i)) +

∫

U
(pui · V Ã

» )(Ã2(i))(u)du

2
(
fÃ(i)(0, i) + »H(Ã(i)) +

∫

U
(pui · V Ã

» )(Ã(i))(u)du

)
, "i * S.

It follows that (2.7) holds (i.e., Ã is a regular relaxed equilibrium) if and only if Ã(i) * D(U) fulûlls

Ã(i) * arg max
Ã*D(U)

∫

U

(
f(0, i, u) 2 » ln(Ã(u)) + pui · V Ã

»

)
Ã(u)du, "i * S. (2.15)

By the same arguments in (2.11)-(2.13), we can express (2.15) equivalently as Ã(i) = �»(V Ã
» , i) for

all i * S, which amounts to Ã = §»(Ã).

Corollary 2.1. Let Assumption 2.1 hold and » > 0. For any y * Rd,

y = V Ã
» for some regular relaxed equilibrium Ã * £r ñó «»(y) = y.

In particular, «»(y) = y implies that �»(y, ·) * £r is a regular relaxed equilibrium.

Proof. If y = V Ã
» for a regular relaxed equilibrium Ã * £r, then by Proposition 2.1, Ã = §»(Ã) =

�»(V Ã
» , ·) = �»(y, ·), which implies y = V Ã

» = V
Γλ(y,·)
» = «»(y). Conversely, if y = «»(y) = V

Γλ(y,·)
» ,

set Ã := �»(y, ·) * £r. Then, we have y = V Ã
» and thus Ã = �»(y, ·) = �»(V Ã

» , ·) = §»(Ã). By
Proposition 2.1, this implies that Ã is a regular relaxed equilibrium.

To properly control the entropy of the ûxed-point operator §» in (2.14), we need the following
two assumptions.

7



Assumption 2.2. The maps u 7³ f(t, i, u) and u 7³ pui are Lipschitz, uniformly in (t, i), i.e.,

� := sup
t*N0,i*S

sup
u1,u2*U,u1 6=n2

{ |f(i, t, u1) 2 f(i, t, u2)|
|u1 2 u2|

+
|pu1

i 2 pu2

i |
|u1 2 u2|

}
< >. (2.16)

We will also assume that the action space U ¢ R3 fulûlls a uniform cone condition. To properly
state the condition, for any » * [0, Ã/2], we note that

&» := {u = (u1, ..., u3) * R3 : u21 + ... + u2321 f tan2(»)u23}

is a cone with vertex, axis, and angle being 0 * Rd21, u1 = u2 = ... = u321 = 0, and », respectively.
Now, given u * R3, the region obtained by a rotation of u + &» in R3 about u will be called a cone
with vertex u and angle ».

Assumption 2.3. When 3 > 1, there exists Ó > 0 and » * (0, Ã/2] such that for any u * U , there
is a cone with vertex u and angle » (denoted by cone(u, »)) that satisfies (cone(u, ») +BÓ(u)) ¦ U .
When 3 = 1, there exists Ó > 0 such that for any u * U , either [u2 Ó, u] or [u, u + Ó] is contained
in U .

Remark 2.3. Assumption 2.3 states that a cone with a fixed size (determined by slant height Ó and
angle ³) can be attached to any u * U (i.e., taking u as its vertex) such that the cone is contained
entirely in U . This readily covers all polyhedrons and ellipsoids in R3.

We can now establish a key estimate of the entropy of the ûxed-point operator §» in (2.14),
whose proof is relegated to Appendix A.1.

Lemma 2.1. Let Assumptions 2.2 and 2.3 hold. Then,

sup
i*S

|H(�»(y, i)| f Ç(|y|), "y * Rd, (2.17)

where Ç : R+ ³ R+ is defined by Ç(z) := »+3 ln(1+z), with » > 0 depending on only 3, », Leb(U),
», Ó, and �. Moreover, for » > 0 small enough, (2.17) can be improved to

sup
i*S

|H(�»(y, i))| f ×(», y) := »1 + »2| ln»| + 3 ln(1 + |y|), "y * Rd, (2.18)

where »1, »2 > 0 depend on 3, Leb(U), », Ó, and �, but not on ».

Now, we are ready to present the existence of a regular relaxed equilibrium, whose proof is
relegated to Appendix A.2.

Theorem 2.1. Let Assumptions 2.1, 2.2, and 2.3 hold. For any » > 0, there exists y * Rd such
that «»(y) = y. Hence, �»(y, ·) * £r is a regular relaxed equilibrium for (2.4).

Interestingly, as the degree of regularization tends to zero (i.e., » ³ 0 in (2.4)), the next result
shows that the values generated by the corresponding regular relaxed equilibria (whose existence is
guaranteed by Theorem 2.1) are uniformly bounded, thanks to the entropy estimate in Lemma 2.1.
Its proof is relegated to Appendix A.3.

Lemma 2.2. Let Assumptions 2.1, 2.2, and 2.3 hold. Given {»n}n*N in (0, 1] with »n ³ 0, consider
{yn}n*N in Rd such that yn = «»n(yn). Then, supn*N |yn| < >.
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2.2 Existence of Relaxed Equilibria for MDP (2.1)

Now, we move on to prove the existence of a relaxed equilibrium for the original MDP (2.1).
Similarly to (2.9), for any Ã * £, we introduce the auxiliary value function

V Ã(i) := Ei

[ >∑

k=0

fÃ(Xπ
k ) (1 + k,XÃ

k )

]
, "i * S. (2.19)

For convenience, we will commonly write V Ã as a vector in Rd, i.e., V Ã = (V Ã(1), V Ã(2), ..., V Ã(d)).
Suppose that u 7³ f(t, i, u) and u 7³ pui are continuous. As U is compact, for any (y, i) * Rd × S,

E(y, i) := arg max
u*U

{f(0, i, u) + pui · y} ¦ U (2.20)

is nonempty and closed. For any y * Rd, consider the collection

�(y) := {Ã * £ : supp(Ã(i)) ¦ E(y, i), "i * S} , (2.21)

where supp(Ã) denotes the support of Ã * D(U). We can then deûne a set-valued operator « :

Rd ³ 2R
d

by
«(y) := {V Ã : Ã * �(y)} ¦ Rd. (2.22)

Moreover, we can also deûne a set-valued operator § : £ ³ 2Π by

§(Ã) := �(V Ã) ¦ £. (2.23)

Let us provide the following characterizations of relaxed equilibrium for (2.1).

Proposition 2.2. Let Assumption 2.1 hold and the maps u 7³ f(t, i, u) and u 7³ pui be continuous.
Then,

Ã * £ is a relaxed equilibrium ñó Ã * §(Ã). (2.24)

Moreover, for any y * Rd,

y = V Ã for some relaxed equilibrium Ã * £ ñó y * «(y).

Proof. By the same argument in the proof of Proposition 2.1 (while ignoring the term »H(·)
therein), we observe that Ã * £ is a relaxed equilibrium if and only if Ã(i) * P(U) fulûlls

Ã(i) * arg max
µ*P(U)

∫

U
(f(0, i, u) + pui · V Ã)µ(du), "i * S,

which is equivalent to supp(Ã(i)) ¦ E(V Ã, i) for all i * S, i.e., Ã * �(V Ã) = §(Ã).
For any y * Rd such that y * «(y), in view of (2.22), y = V Ã for some Ã * �(y). It follows

that Ã * �(y) = �(V Ã) = §(Ã). By (2.24), this implies that Ã is a relaxed equilibrium. Conversely,
suppose that y = V Ã for some relaxed equilibrium Ã * £. By (2.24), Ã * §(Ã) = �(V Ã) = �(y).
With y = V Ã and Ã * �(y), we immediately conclude y * «(y).

With the aid of Lemma 2.2 and Proposition 2.2, we are ready to present the existence of a relaxed
equilibrium for (2.1), by approximating (2.1) using a sequence of entropy-regularized MDPs. The
detailed proof is relegated to Appendix A.4.

Theorem 2.2. Let Assumptions 2.1, 2.2, and 2.3 hold. Then, a relaxed equilibrium for (2.1)
exists.
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This paper mainly takes the entropy-regularized MDP (2.4) as a powerful approximation tool for
the original MDP (2.1), as shown in the proof of Theorem 2.2 (see Appendix A.4). Yet, (2.4) does
have its own meaning and application. In the context of reinforcement learning (RL), an agent does
not know the model perfectly (e.g., the MDP9s transition probabilities may not be precisely known).
She then chooses her control actions for two diûerent purposes4one is to enlarge her cumulative
payoû based on her present knowledge of the model (i.e., <exploitation=); the other is to obtain
more information about the model based on the observed MDP evolution (i.e., <exploration=). To
enhance <exploration,= the agent randomizes her control actions (i.e., chooses a relaxed control)
to more eûciently infer the model (from the more diverse MDP evolution), and the amount of
information gained can be measured by Shannon9s entropy of the randomization. This corresponds
to the second term in the expectation of (2.4). The chosen relaxed control also needs to serve the
<exploitation= purpose, which corresponds to the ûrst term in the expectation of (2.4).

Remark 2.4. For typical RL without time inconsistency (e.g., ·(t) = e2³t for some ³ > 0 in
(2.4)), the agent’s goal is to find a relaxed control that maximizes (2.4), thereby striking a balance
between “exploitation” and “exploration” (see e.g., Ziebart et al. [30], Fox et al. [16], Wang et al.
[28]). When · is a general discount function, the agent also needs to tackle the issue of time
inconsistency. That is, besides striking a balance between “exploitation” and “exploration,” she
also wants to maintain the balance among all disobedient future selves. The agent then aims for a
relaxed control for (2.4) that can be upheld by all current and future selves, i.e., a regular relaxed
equilibrium in Definition 2.2. Theorem 2.1 asserts that such a desired RL policy exists.

Remark 2.5. For » > 0, let Ã» * £r be a regular relaxed equilibrium for (2.4). Given i * S,
Ã»(i) * P(U) admits a density function for all » > 0 (as Ã» is regular; see Definition 2.1).
However, as » ³ 0, the weak limit Ã7(i) of {Ã»(i)}n*N may not admit a density function. This is
why in Theorem 2.2, we get only a relaxed equilibrium, which is not necessarily regular, for (2.1).

Remark 2.6. While Theorem 2.2 is a general existence result, its proof does suggest how we can
actually find a relaxed equilibrium: as the original MDP (2.1) can be approximated by a sequence
of entropy-regularized ones (indexed by » > 0), one can compute a relaxed equilibrium for each
regularized problem and the limit (as » ³ 0) will be a relaxed equilibrium of the original problem.

This method is numerically viable as it circumvents the set-valued fixed-point operator associated
with (2.1), i.e., § in (2.23). Indeed, it is difficult numerically to implement a set-valued fixed-point
iteration, such that finding a relaxed equilibrium for (2.1) directly is not easy at all. By contrast, as
each regularized problem is associated with a single-valued fixed-point operator, i.e., §» in (2.14), a
fixed-point iteration can be implemented in a straightforward way. Certainly, to make this method
fully rigorous, it remains to show the theoretic convergence of the single-valued fixed-point iteration,
which is a nontrivial problem in itself and will be left for future research.

3 Relaxed Equilibria in Continuous Time

In this section, we take up the same setup in the ûrst two paragraphs of Section 2, except that
the controlled process X is now a continuous-time Markov chain. Speciûcally, each action u * U
is associated with a d × d rate matrix (or, generator) qu; namely, for each ûxed i * S, quij g 0 for
all j 6= i and quii = 2∑

j 6=i q
u
ij. In addition, each µ * P(U) is associated with a d × d relaxed rate

matrix Qµ, deûned by Qµ
ij :=

∫
U quijµ(du) for all i, j * S. At any current state i * S, given a relaxed

feedback control Ã : S ³ P(U), the dynamics of X is dictated by Q
Ã(i)
i , the ith row of QÃ(i). That
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is, the time until the next jump to other states is exponentially distributed with parameter 2Q
Ã(i)
ii

and the jump will take X to state j 6= i with probability 2Q
Ã(i)
ij /Q

Ã(i)
ii .

For any Ã * £, the corresponding value function is given by

J̃Ã(i) := Ei

[ ∫ >

0
fÃ(Xπ

s ) (s,XÃ
s ) ds

]
, "i * S. (3.1)

Similarly to (2.4), for any » > 0 and Ã * £r, we consider

J̃Ã
» (i) := Ei

[ ∫ >

0

(
fÃ(Xs)(s,XÃ

s ) + »·(s)H
(
Ã(Xs)

))
ds

]
, "i * S, (3.2)

To ensure that J̃Ã and J̃Ã
» are well-deûned, we impose the following.

Assumption 3.1. M̃ :=
∫>
0

(
supi*S,u*U |f(s, i, u)| + ·(s)

)
ds < >.

We will commonly write J̃Ã and J̃Ã
» as vectors in Rd, i.e., J̃Ã = (J̃Ã(1), J̃Ã(2), ..., J̃Ã(d)) and

J̃Ã
» = (J̃Ã

» (1), J̃Ã
» (2), ..., J̃Ã

» (d)).
Similarly to Deûnition 2.2, to formulate an equilibrium strategy in continuous time, we intro-

duce, for any Ã, Ã2 * £, the concatenation of Ã2 and Ã at time · > 0, denoted by Ã2·· Ã * £. Using
this concatenated relaxed control means that the evolution of X is governed ûrst by Ã2 on the time
interval [0, ·) and then by Ã on [·,>).

Definition 3.1. Given » > 0, we say Ã * £r is a regular relaxed equilibrium (for (3.2)) if

lim sup
·³0

J̃Ã2·εÃ
» (i) 2 J̃Ã

» (i)

·
f 0, "Ã2 * £r and i * S. (3.3)

Similarly, we say Ã * £ is a relaxed equilibrium (for (3.1)) if it satisfies (3.3) with J̃Ã2·εÃ
» , J̃Ã

» , and

Ã2 * £r therein replaced by J̃Ã2·εÃ, J̃Ã, and Ã2 * £, respectively.

Similarly to (2.19), for any Ã * £, we introduce the auxiliary value function

Ṽ Ã(t, i) := Ei

[ ∫ >

0
fÃ(Xs)(t + s,Xs)ds

]
, "(t, i) * [0,>) × S. (3.4)

In addition, similarly to (2.9), for any » > 0 and Ã * £r, we introduce the auxiliary value function

Ṽ Ã
» (t, i) := Ei

[∫ >

0

(
fÃ(Xs)(t + s,Xs) + »·(t + s)H(Ã(Xs))

)
ds

]
, "(t, i) * [0,>) × S. (3.5)

For convenience, we will commonly write Ṽ Ã
» (t) as a vector in Rd, i.e.,

Ṽ Ã
» (t) = (Ṽ Ã

» (t, 1), Ṽ Ã
» (t, 2), ..., Ṽ Ã

» (t, d)) * Rd.

We will write Ṽ Ã as a vector in Rd in the same manner.
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3.1 Existence of Regular Relaxed Equilibria for Entropy-Regularized MDP (3.2)

Lemma 3.1. Let Assumption 3.1 hold and f(·, i, u) and ·(·) be continuous on [0,>). Given » > 0,
it holds for all i * S and Ã, Ã2 * £r that

J̃Ã2·εÃ
» (i) = Ṽ Ã

» (·, i) +
(
fÃ2(i)(0, i) + »H(Ã2(i)) + Q

Ã2(i)
i · Ṽ Ã

» (·)
)
· + o(·), as · ³ 0. (3.6)

Similarly, it holds for all i * S and Ã, Ã2 * £ that

J̃Ã2·εÃ(i) = Ṽ Ã(·, i) +
(
fÃ2(i)(0, i) + Q

Ã2(i)
i · Ṽ Ã(·)

)
· + o(·), as · ³ 0. (3.7)

Proof. The result follows from a similar argument in Huang and Zhou [21, Lemma 1].

Based on Lemma 3.1, we can now generalize the ûxed-point characterization in Proposition 2.1
to continuous time. Consider a functional �̃» : Rd × S ³ D(U) deûned by

u 7³ �̃»(y, i)(u) :=
e

1

λ(f(0,i,u)+qui ·y)
∫
U e

1

λ(f(0,i,v)+qvi ·y)dv
* D(U), "(y, i) * Rd × S. (3.8)

It follows that �̃»(y, ·) * £r for all y * Rd. We can then deûne an operator «̃» : Rd ³ Rd by

«̃»(y) := J̃
Γ̃λ(y,·)
» .

Moreover, for any Ã * £r, as �̃»(J̃Ã
» , ·) * £r, we can deûne an operator §̃» : £r ³ £r by

§̃»(Ã) := �̃»

(
J̃Ã
» , ·

)
.

Proposition 3.1. Let Assumption 3.1 hold and f(·, i, u) and ·(·) be continuous on [0,>). For any
» > 0,

Ã * £r is a regular relaxed equilibrium ñó §̃»(Ã) = Ã.

The proof of Proposition 3.1 is relegated to Appendix A.5.

Corollary 3.1. Let Assumption 3.1 hold and suppose that f(·, i, u) and ·(·) are continuous on
[0,>). Given » > 0, it holds for all y * Rd,

y = J̃Ã
» for some regular relaxed equilibrium Ã * £r ñó «̃»(y) = y.

In particular, «̃»(y) = y implies that �̃»(y, ·) * £r is a regular relaxed equilibrium for (3.2).

Proof. If y = J̃Ã
» for a regular relaxed equilibrium Ã * £r, then by Proposition 3.1, Ã = §̃»(Ã) =

�̃»(J̃Ã
» , ·) = �̃»(y, ·), which implies y = J̃Ã

» = J̃
Γ̃λ(y,·)
» = «̃»(y). Conversely, if y = «̃»(y) = J̃

Γ̃λ(y,·)
» ,

set Ã := �̃»(y, ·) * £r. Then, we have y = J̃Ã
» and thus Ã = �̃»(y, ·) = �̃»(J̃Ã

» , ·) = §̃»(Ã). By
Proposition 3.1, this implies that Ã is a regular relaxed equilibrium.

By a similar argument in the proof of Theorem 2.1 and using Corollary 3.1, we can establish
the existence of regular relaxed equilibria for (3.2).

Theorem 3.1. Let Assumptions 3.1, 2.2 (with pui therein replaced by qui ), and 2.3 hold. Suppose
that f(·, i, u) and ·(·) are continuous on [0,>). For any » > 0, there exists y * Rd such that
«̃»(y) = y. Hence, �̃»(y, ·) * £r is a regular relaxed equilibrium for (3.2).
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3.2 Existence of Relaxed Equilibrium for MDP (3.1)

Let us now move on to prove the existence of a relaxed equilibrium for (3.1). Suppose that u 7³
f(t, i, u) and u 7³ qui are continuous. As U is compact, for any (y, i) * Rd × S,

Ẽ(y, i) := arg max
u*U

{f(0, i, u) + qui · y} ¦ U (3.9)

is nonempty and closed. For any y * Rd, consider the collection

�̃(y) := {Ã * £ : supp(Ã(i)) ¦ E(y, i), "i * S} , (3.10)

where supp(Ã) denotes the support of Ã * D(U). We can then deûne a set-valued operator «̃ :

Rd ³ 2R
d

by
«̃(y) :=

{
J̃Ã : Ã * �̃(y)

}
¦ Rd. (3.11)

Moreover, we can also deûne a set-valued operator §̃ : £ ³ 2Π by

§̃(Ã) := �̃(J̃Ã) ¦ £.

We can then generalize the ûxed-point characterizations in Proposition 2.2 to continuous time.

Proposition 3.2. Let Assumption 3.1 hold and the maps u 7³ f(t, i, u) and u 7³ qui be continuous.
Then,

Ã * £ is a relaxed equilibrium ñó Ã * §̃(Ã). (3.12)

Moreover, for any y * Rd,

y = J̃Ã for some relaxed equilibrium Ã * £ ñó y * «̃(y).

Proof. By the same argument in the proof of Proposition 3.1 (except that now we use (3.7) instead
of (3.6)), we observe that Ã * £ is a relaxed equilibrium if and only if Ã(i) * P(U) fulûlls

Ã(i) * arg max
µ*P(U)

∫

U

(
f(0, i, u) + qui · J̃Ã

)
µ(du), "i * S,

which is equivalent to supp(Ã(i)) ¦ Ẽ(J̃Ã, i) for all i * S, i.e., Ã * �̃(J̃Ã) = §̃(Ã).
For any y * Rd such that y * «̃(y), in view of (3.11), y = J̃Ã for some Ã * �̃(y). It follows

that Ã * �̃(y) = �̃(J̃Ã) = §̃(Ã). By (2.24), this implies that Ã is a relaxed equilibrium. Conversely,
suppose that y = J̃Ã for some relaxed equilibrium Ã * £. By (2.24), Ã * §̃(Ã) = �̃(J̃Ã) = �̃(y).
With y = J̃Ã and Ã * �̃(y), we immediately conclude y * «̃(y).

Given an arbitrary sequence »n ³ 0+ with vn = «̃»n(vn) for all n * N, i.e., �̃»n(v) is a relaxed
equilibrium under »n, the next theorem follows from similar arguments in Theorem 2.2.

Theorem 3.2. Let Assumptions 3.1, 2.2 (with pui therein replaced by qui ), and 2.3 hold. Then, a
relaxed equilibrium for (3.1) exists.
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4 Discussion: When Do We Need Relaxed Equilibria?

4.1 The Discrete-time Case

Let us consider the discrete-time setup in Section 2. We ûrst draw a detailed comparison between
Theorem 2.2 and Huang and Zhou [21, Theorem 4].

Remark 4.1. Huang and Zhou [21] consider the special case where d = 3 and

pui := ui "i * S, with ui * U ¦ {y * Rd : y g 0, y1 + y2 + ... + yd = 1}. (4.1)

This essentially states that one can directly “decide” (rather than just “influence”) the transition
probabilities. By contrast, Theorem 2.2 only requires the map u 7³ pui to be Lipschitz (Assump-
tion 2.2), without specifying any specific form of it. That is, Theorem 2.2 allows for more general
(and potentially more realistic) dependence of transition probabilities on the control action u * U .

Remark 4.2. By [21, Theorem 4], a standard equilibrium for (2.1) exists, provided that (i) (4.1)
holds, (ii) U is convex, and (iii) f(0, i, ·) is concave for all i * S. If one of the conditions fails, it
is unclear whether standard equilibria exist.

In particular, when (iii) fails, [21, Remark 10] shows that standard equilibria do not exist in a
concrete example, where S = {1, 2}, ·(·) is a quasi-hyperbolic discount function, f(t, i, u) is of the
form (2.2) with g(i, u) bounded and continuous (but non-concave) in u, and pui := ui "i * {1, 2}
with ui * U = {y * R2 : y g 0, y1 +y2 = 1}. This simple setup allows us to verify Assumptions 2.1,
2.2, and 2.3 immediately. Hence, although there is no standard equilibrium, a relaxed equilibrium
exists in this example by Theorem 2.2.

Remarks 4.1 and 4.2 show the importance of Theorem 2.2: unlike standard equilibria, a relaxed
equilibrium for (2.1) exists much more generally, without the need of conditions (i), (ii), and (iii)
in Remark 4.2. Hence, in the face of general controlled transition probabilities (beyond the special
form (4.1)) and non-concave reward functions, relaxed equilibria should certainly be considered.

After learning that relaxed equilibria are needed in cases where standard equilibria may not
exist, let us now investigate the other side of the picture: for cases where both standard and relaxed
equilibria are known to exist, does the consideration of relaxed equilibria provide any added value?
As shown in the next result, it is not necessary to consider relaxed equilibria in such a case, as any
value achieved by a relaxed equilibrium can be recovered by a suitable standard equilibrium.

Proposition 4.1. Assume (4.1) and that U therein is convex. Suppose that f(t, i, u) takes the
form (2.2), with g(i, ·) therein concave for all i * S. Also, let Assumptions 2.1, 2.2, and 2.3 hold.
Then, for any relaxed equilibrium Ã * £ for (2.1), ³Ã : S ³ Rd defined by ³Ã(i) :=

∫
U u(Ã(i))(du),

"i * S, is a standard equilibrium such that J³π
(·) = JÃ(·).

Proof. Note that the convexity of U ensures that ³Ã(i) * U for all i * S. As Ã * £ is a relaxed
equilibrium for (2.1), by (2.24),

supp(Ã(i)) ¦ E(V Ã, i) = arg max
u*U

{g(i, u) + u · V Ã}, "i * S, (4.2)

where the equality follows from (2.20) and (4.1). Given i * S, if E(V Ã, i) is a singleton, (4.2)
implies that Ã(i) * P(U) concentrates on the unique element in E(V Ã, i), which coincides with
³Ã by deûnition. Hence, fÃ(i)(t, i) = f³π

(t, i) trivially holds for all t * N0. If E(V Ã, i) is not a
singleton, in view of its form in (4.2), u 7³ g(i, u) must be linear on E(V Ã, i). It follows that

fÃ(i)(t, i) =

∫

U
·(t)g(i, u)(Ã(i))(du) = ·(t)g(i, ³Ã) = f³π

(t, i), "t * N0.
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With fÃ(i)(t, i) = f³π
(t, i) for all t * N0 and i * S, we conclude from (2.1) that J³π

(·) = JÃ(·).

It is interesting to note that Jaśkiewicz and Nowak [22] also establish results in the same spirit
as Proposition 4.1, under a speciûc form of discounting.

Remark 4.3. Under quasi-hyperbolic discounting, [22, Theorem 3.4] asserts the existence of a
relaxed equilibrium Ã that is almost a standard one: for each state i, the support of the probability
Ã(i) contains at most two points in the action space. Moreover, [22, Theorem 3.5] shows that
additional “atomless” assumptions can further reduce the support of Ã(i) to contain only one point,
i.e., the relaxed equilibrium reduces to a standard one. As opposed to Proposition 4.1, these results
hold for fairly general reward functions (without the need of concavity) and transition probabilities
(without the need of linear dependence on u).

Such generality, however, hinges crucially on quasi-hyperbolic discounting. In a nutshell, by
using the structure of quasi-hyperbolic discounting, the original time-inconsistent problem can be
expressed as a functional of an auxiliary time-consistent problem (under exponential discounting);
see [22, (2.3)-(2.4)]. A detailed analysis is then performed on the time-consistent problem, which
contributes to proving [22, Theorems 3.4 and 3.5]; see [22, Section 7]. This method, quite specific
to quasi-hyperbolic discounting, cannot be easily extended to the case of a general discount function.

Finally, we would like to point out that the need of relaxed controls is unique to the case of
time inconsistency. When the problem supÃ*Π JÃ(i) is time-consistent (e.g., under exponential
discounting), one can consider without loss of generality only standard controls.

Remark 4.4. Let f(t, i, u) takes the form (2.2) with ·(t) = e2³t for some ³ > 0. As there is no
time inconsistency under exponential discounting, the optimal value J7(i) := supÃ*Π JÃ(i) fulfills
the Bellman equation

2J7(i) + sup
µ*P(U)

∫

U

(
g(i, u) + e2³pui · J7

)
µ(du) = 0, "i * S. (4.3)

Suppose that an optimal relaxed control Ã7 * £ exists, i.e., JÃ7

= J7. Our goal is to show that J7

can be achieved by a standard control—such that there is no need to consider relaxed controls.
Given i * S, let u 7³ pui and u 7³ g(i, u) be continuous such that arg maxu*U{g(i, u)+e2³pui ·J7}

is nonempty. For any standard control ³ with ³(i) * arg maxu*U{g(i, u)+e2³pui ·J7} for all i * S,

J³·1Ã7

(i) = g(i, ³(i)) + e2³p
³(i)
i · J7 = J7(i), "i * S,

where the second equality follows from (4.3) and ³(i) * arg maxu*U{g(i, u)+e2³pui ·J7}. Similarly,

J³·2Ã7

(i) = g(i, ³(i)) + e2³p
³(i)
i · J³·1Ã7

= g(i, ³(i)) + e2³p
³(i)
i · JÃ7

= J7(i), "i * S.

Iterating this argument yields J³·mÃ7

= J7 for all m * N. It follows that

J7(i) = lim
m³>

J³·mÃ7

(i) = lim
m³>

(
J³(i) + e2³mE

[
p
³(Xm21)
Xm21

· (J7 2 J³)
])

= J³(i), "i * S.

That is, the optimal value is achieved by the standard feedback control ³.
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4.2 The Continuous-time Case

Let us consider the continuous-time setup in Section 3. As we will see, many observations we made
in Section 4.1 still hold in continuous time. To begin with, we draw a detailed comparison between
Theorem 3.2 and Huang and Zhou [21, Theorem 3].

Remark 4.5. In [21], one considers the special case where 3 = d2 1 and

qui :=

(
u1, ..., ui21,2

∑

j 6=i

uj , ui+1, ..., ud

)
"i * S, with u * U ¦ {y * Rd21 : y g 0}. (4.4)

This essentially states that one can directly “decide” (rather than just “influence”) the transition
rates. By contrast, Theorem 3.2 only requires the map u 7³ qui to be Lipschitz (Assumption 2.2,
with pui therein replaced by qui ), without specifying any specific form of it. That is, Theorem 3.2
allows for more general (and potentially more realistic) dependence of transition rates on the control
action u * U .

By [21, Theorem 3], a standard equilibrium for (3.1) exists, provided that (i) (4.4) holds, (ii)
U is convex, and (iii) f(0, i, ·) is concave for all i * S. If one of the conditions fails, it is unclear
whether standard equilibria exist. In particular, when (iii) fails, the next example has no standard
equilibrium.

Example 4.1. Let S = {1, 2} and U = [0, 1]. For any u * U , we take the rate matrix qu to be qu1 =
(2u, u) and qu2 = (u,2u). Consider ·(t) := (e2t + e22t)/2 for t g 0 and take f(t, i, u) = ·(t)gi(u),
i = 1, 2, where g1(u) := 27

8

:
u and g2(u) := 19

9 2
:

1 2 u are strictly convex on U . Thanks to [21,
Theorem 1], ³ = (³(1), ³(2)) = (a7, b7) is a standard equilibrium if and only if

arg max
a*[0,1]

{
g1(a) 2 a(V (a7,b7)(0, 1) 2 V (a7,b7)(0, 2))

}
= a7,

arg max
b*[0,1]

{
g2(b) + b(V (a7,b7)(0, 1) 2 V (a7,b7)(0, 2))

}
= b7.

The strict convexity of g1 and g2 then implies that there are only four possibilities for a standard
equilibrium ³ = (a7, b7), i.e., (0, 0), (0, 1), (1, 0), and (1, 1). By calculations similar to [21, (37)-
(39)], we have

ù
üüüüú
üüüüû

V (0,0)(0, 1) 2 V (0,0)(0, 2) = 23
4 · 10

9 = 25
6 ;

V (1,0)(0, 1) 2 V (1,0)(0, 2) = 2 5
12 · (158 + 1

9) * (27
8 , 0);

V (0,1)(0, 1) 2 V (0,1)(0, 2) = 2 5
12 · (2 + 1

9) < 27
8 ;

V (1,1)(0, 1) 2 V (1,1)(0, 2) = 2 7
24 · (238 + 1

9) * (27
8 , 0),

which imply ù
üüüüú
üüüüû

arg maxb*[0,1]{g2(b) + b(V (0,0)(0, 1) 2 V (0,0)(0, 2))} = 1 6= 0;

arg maxa*[0,1]{g1(a) 2 a(V (1,0)(0, 1) 2 V (1,0)(0, 2))} = 0 6= 1;

arg maxa*[0,1]{g1(a) 2 a(V (0,1)(0, 1) 2 V (0,1)(0, 2))} = 1 6= 0;

arg maxa*[0,1]{g1(a) 2 a(V (1,1)(0, 1) 2 V (1,1)(0, 2))} = 0 6= 1.

Therefore, we conclude that there exists no standard equilibrium. Despite this, since Assumptions
3.1, 2.2 (with pui therein replaced by qui ), and 2.3 can be immediately verified in the present setting,
Theorem 3.2 asserts that a relaxed equilibrium exists.
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Remark 4.5 and Example 4.1 show the importance of Theorem 3.2: unlike standard equilibria,
a relaxed equilibrium for (2.1) exists much more generally, without the need of conditions (i),
(ii), and (iii) mentioned above Example 4.1. Hence, in the face of general controlled transition
rates (beyond the special form (4.4)) and non-concave reward functions, relaxed equilibria should
certainly be considered.

Let us now investigate the other side of the picture: for cases where both standard and relaxed
equilibria are known to exist, does the consideration of relaxed equilibria provide any added value?
As shown in the next result, it is not necessary to consider relaxed equilibria in such a case, as any
value achieved by a relaxed equilibrium can be recovered by a suitable standard equilibrium.

Proposition 4.2. Assume (4.4) and that U therein is convex. Suppose that f(t, i, u) takes the
form (2.2), with g(i, ·) therein concave for all i * S. Also, let Assumptions 2.1, 2.2 (with pui therein
replaced by qui ), and 2.3 hold. Then, for any relaxed equilibrium Ã * £ for (2.1), ³Ã : S ³ Rd

defined by ³Ã(i) :=
∫
U u(Ã(i))(du), "i * S, is a standard equilibrium such that J³π

(·) = JÃ(·).

The proof of Proposition 4.2 is similar to that of Proposition 4.1, with pui and V Ã(·) therein

replaced by qui and Ṽ Ã(0, ·), respectively.
Finally, we would like to point out that, in line with the discrete-time setting, the need of

relaxed controls is unique to the case of time inconsistency. When the problem supÃ*Π J̃Ã(i) is
time-consistent (e.g., under exponential discounting), one only needs to consider standard controls.

Remark 4.6. Let f(t, i, u) take the form (2.2) with ·(t) = e2³t for some ³ > 0. As there is no
time inconsistency under exponential discounting, the optimal value J̃7(i) := supÃ*Π J̃Ã(i) fulfills
the Bellman equation

2³J̃7(i) + sup
µ*P(U)

∫

U

(
g(i, u) + qui · J̃7

)
µ(du) = 0.

Suppose that an optimal relaxed control Ã7 * £ exists, i.e., J̃Ã7

= J̃7. Then, arguments in Re-
mark 4.4 can be adapted to the present continuous-time setting and show that J̃³ = J̃Ã7

for any
standard control ³ with ³(i) * arg maxu*U{g(i, u) + qui · J̃7} for all i * S.

5 Convergence from Discrete Time to Continuous Time

In this section, we take up the same continuous-time setup as in Section 3. For a step size h > 0
small enough, we construct a discrete-time approximation as follows. Let {Xh

k }k*N0
be a discrete-

time controlled Markov process as in Section 2, with its transition matrix given by

(ph)ui := hqui + ei "u * U, i * S, (5.1)

where {ei}di=1 is the standard basis of Rd. Consider the reward function

fh(k, i, u) := f(kh, i, u)h "k * N0, (5.2)

where f(t, i, u) is the reward function from Section 3. For any Ã * £, JÃ in (2.1) now takes the
form

Jh,Ã(i) := Ei

[ >∑

k=0

f
Ã(Xh

k )

h

(
k,Xh

k

) ]
= hEi

[ >∑

k=0

∫

U
f(kh,Xh

k , u)(Ã(Xh
k ))(du)

]
, "i * S. (5.3)
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Similarly, the auxiliary value function V h,Ã(i) is deûned as in (2.19) with f and XÃ therein replaced
by fh and Xh, respectively. In addition, for any » > 0 and Ã * £r, we recall JÃ

» in (2.4) and deûne

Jh,Ã
» (i) := JÃ

h»(i) = Ei

[ >∑

k=0

(
f
Ã(Xh

k )

h (k,Xh
k ) + h»·(k)H

(
Ã(Xh

k )
)) ]

= hEi

[ >∑

k=0

(∫

U
f(kh,Xh

k , u)(Ã(Xh
k ))(du) + »·(k)H

(
Ã(Xh

k )
))]

, "i * S. (5.4)

Similarly, the auxiliary value function V h,Ã
» (i) is deûned as in (2.9) with f , X, and » replaced by

fh, Xh, and h», respectively.
Let us now we study the convergence of value functions from discrete time to continuous time.

Lemma 5.1. Let Assumptions 3.1, 2.2 (with pui therein replaced by qui ), and 2.3 hold. Suppose
that f(·, i, u) and ·(·) are continuous on [0,>). Take any sequence {hn}n*N in (0, 1] with hn ³ 0.

(a) For any {Ãn}n*N and Ã> in £ such that Ãn(i) ³ Ã>(i) weakly for all i * S,

V hn,Ãn
(i) ³ Ṽ Ã>

(0, i) = J̃Ã>

(i), i * S.

(b) For any » > 0 and {yn}n*N with yn ³ y> for some y> * Rd, we have �hn»(yn, i) ³ �»(y>, i)
for all i * S. Therefore,

V
hn,Γhnλ(y

n,·)
» (i) ³ Ṽ Γ̃λ(y

>,·)(0, i) = J̃ Γ̃λ(y
>,·)(i), "i * S.

The proof of Lemma 5.1 is relegated to Appendix A.6.
We are ready to present our main convergence result from discrete time to continuous time: as

the time step hn > 0 tends to zero, a regular relaxed equilibrium (resp. a relaxed equilibrium) Ãn

in discrete time (with time step hn) ultimately converges to a regular relaxed equilibrium (resp. a
relaxed equilibrium) in continuous time.

Theorem 5.1. Let Assumptions 3.1, 2.2 (with pui therein replaced by qui ), and 2.3 hold. Suppose
that f(·, i, u) and ·(·) are continuous on [0,>). Take any {hn}n*N in (0, 1] with hn ³ 0.

(a) Given » > 0, let Ãn * £r be a regular relaxed equilibrium for Jhn,Ã
» in (5.4) for all n * N.

Then, for each i * S, Ãn(i) * D(U) converges pointwise to some Ã>(i) * D(U), up to a
subsequence. Moreover, Ã> * £r is a regular relaxed equilibrium for J̃Ã

» in (3.2).

(b) Let Ãn * £ be a relaxed equilibrium for Jhn,Ã in (5.3) for all n * N. Then, for each i * S,
Ãn(i) * P(U) converges weakly to some Ã>(i) * P(U), up to a subsequence. Moreover,
Ã> * £ is a relaxed equilibrium for J̃Ã in (3.1).

The proof of Theorem 5.1 is relegated to Appendix A.7.

A Proofs

A.1 Proof of Lemma 2.1

Fix i * S and y * Rd. For an arbitrary ū * U , thanks to Assumption 2.2,

∣∣(f(0, i, u) + pui · y) 2 (f(0, i, ū) + pūi · y)
∣∣ f �(1 + |y|)|u2 ū|, "u * U. (A.1)
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This, along with (2.12), implies

�»(y, i)(ū) =
exp( 1

» [f(0, i, ū) + pūi · y])∫
U exp( 1

» [f(0, i, u) + pui · y])du
f 1∫

U exp
(
2 Θ

» [(1 + |y|)|u2 ū|]
)
du

, "u * U, (A.2)

where the inequality follows from dividing by exp( 1
» [f(0, i, ū) + pūi · y]) the numerator and the

denominator and then using the estimate (A.1).
Now let us prove (2.17) for 3 > 1. By Assumption 2.3,
∫

U
e2

Θ

λ
(1+|y|)|u2ū|du g

∫

cone(ū,»)+Bϑ(ū)
e2

Θ

λ
(1+|y|)|u2ū|du =

∫

∆ι+Bϑ(0)
e2

Θ

λ
(1+|y|)|u|du, (A.3)

where the equality follows from a translation from ū to 0 * R3 and an appropriate rotation about
0 * R3. Let us estimate the right-hand side of (A.3) in the next two cases. If Θ

» (1 + |y|)Ó f 1,
∫

∆ι+Bϑ(0)
e2

Θ

λ
(1+|y|)|u|du g e21

Leb(&» +BÓ(0)) =: K0.

If Θ
» (1 + |y|)Ó > 1, consider the two positive constants

K1 :=

∫ Ã

0
sin322(×1)d×1 · · ·

∫ Ã

0
sin(×322)d×322

∫ »

2»
d×321 and K2 :=

∫ 1

0
z321e2zdz.

By using the 3-dimensional spherical coordinates, we have
∫

∆ι+Bϑ(0)
e2

Θ

λ
(1+|y|)|u|du = K1

∫ Ó

0
r321e2

Θ

λ
(1+|y|)rdr

= K1

(
»

�(1 + |y|)

)3 ∫ Θ

λ
(1+|y|)Ó

0
z321e2zdz g K1K2

(
»

�(1 + |y|)

)3

,

where the second line follows from the change of variable z = Θ
» (1 + |y|)r. Combining the above

two cases, we conclude from (A.2) and (A.3) that

�»(y, i)(u) f max

{
1

K0
,

1

K1K2

(
�

»
(1 + |y|)

)3}
f C(1 + |y|)3, (A.4)

with C := max{ 1
K0

, 1
K1K2

(
Θ
»

)3} > 0, which depends on », Ó, �, » and 3 (Recall that K0, K1, and K2

depend on », Ó, and 3). It follows that ln(�»(y, i)(u)) f lnC+3 ln(1+|y|) for all (y, i, u) * Rd×S×U .
As �»(y, i) * D(U) by deûnition, this implies

sup
i*S

∫

U
ln(�»(y, i)(u))�»(y, i)(u)du f lnC + 3 ln(1 + |y|), "y * Rd.

On the other hand, (2.5) readily shows that supi*S

∫
U ln(�»(y, i)(u))�»(y, i)(u)du g 2 ln(Leb(U)).

Hence, in view of (2.3), we conclude that

sup
i*S

|H(�»(y, i))| = sup
i*S

∣∣∣∣
∫

U
ln(�»(y, i)(u))�»(y, i)(u)du

∣∣∣∣

f | ln(Leb(U))| + | lnC| + 3 ln(1 + |y|), "y * Rd, (A.5)

which shows (2.17) holds. For 3 = 1, by following arguments simiar to the above, with &» +BÓ(0),
K0,K1, and K2 replaced by [0, Ó], e21Ó, 1, and

∫ 1
0 e2zdz = 12 e21, respectively, we can obtain the

desired estimate in (2.17) for 3 = 1.

Now, for » > 0 small enough, the constant C > 0 in (A.4) simply becomes 1
K1K2

(
Θ
»

)3
(for both

the cases 3 > 1 and 3 = 1). The estimate (A.5) then directly implies (2.18).
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A.2 Proof of Theorem 2.1

First, let us establish the continuity of «» : Rd ³ Rd. Take an arbitrary sequence {yn}n*N in Rd

such that yn ³ y> for some y> * Rd. As f(0, i, u) and pui are continuous in u (Assumption 2.2),
U is compact, and S is a ûnite set, we conclude from the dominated convergence theorem that

sup
i*S

∣∣∣∣
∫

U
e

1

λ
[f(0,i,u)+pui ·y

n]du2
∫

U
e

1

λ
[f(0,i,u)+pui ·y

>]du

∣∣∣∣ ³ 0, as n ³ >. (A.6)

In view of (2.12), this particularly implies that for any i * S, �»(yn, i)(u) ³ �»(y>, i)(u) for all
u * U . Moreover, for any i * S, observe that

|H
(
�»(yn, i)

)
2H

(
�»(y>, i)

)
|

f
∫

U

∣∣ln
(
�»(yn, i)(u)

)
2 ln

(
�»(y>, i)(u)

)∣∣�»(yn, i)(u)du

+

∫

U

∣∣ln
(
�»(y>, i)(u)

)∣∣ ∣∣�»(yn, i)(u) 2 �»(y>, i)(u)
∣∣du

f 1

»

(
sup
u*U

|pui |
)
|yn 2 y>| +

∣∣∣∣ln
(∫

U
e

1

λ
[f(0,i,v)+pvi ·y

n]dv

)
2 ln

(∫

U
e

1

λ
[f(0,i,v)+pvi ·y

>]dv

)∣∣∣∣

+ sup
u*U

∣∣ln
(
�»(y>, i)(u)

)∣∣
∫

U
|�»(yn, i)(u) 2 �»(y>, i)(u)| du, (A.7)

where the ûrst inequality follows from (2.3) and the second inequality is due to (2.12). As u 7³
f(0, i, u) and u 7³ pui are continuous on the compact set U , we get the boundedness of u 7³ |pui |
and u 7³ �»(y>, i)(u). Particularly, in view of (2.12), u 7³ �»(y>, i)(u) is bounded away from
zero. This in turn implies that u 7³ ln

(
�»(y>, i)(u)

)
is bounded. Hence, as n ³ >, we can

now conclude from yn ³ y> and (A.6) that the right-hand side of (A.7) vanishes. That is,
H
(
�»(yn, i)

)
³ H

(
�»(y>, i)

)
.

For any n * N, consider the Markov chain X̄n with transition matrix pn given by pnij :=∫
U puij�»(yn, i)(u)du for all i, j * S, as well as the Markov chain X̄> with transition matrix p>

given by p>ij :=
∫
U puij�»(y>, i)(u)du for all i, j * S. For each i * S, note that the pointwise con-

vergence �»(yn, i) ³ �»(y>, i) in D(U) already implies the weak convergence of the corresponding
probability measures. This, along with u 7³ pui being continuous for all i * S, yields the convergence
of the transition matrices, i.e., pn ³ p> component by component, which in turn implies that the
law of X̄n converges weakly to that of X̄>. In view of Remark 2.1, the law of X̄n (resp. X̄>)
coincides with that of XΓλ(y

n,·) (resp. XΓλ(y
>,·)). That is, we actually have the law of XΓλ(y

n,·)

converging weakly to that of XΓλ(y
>,·). Now, we can adapt an argument in the proof of Huang and

Zhou [21, Theorem 3] to our present setting. Speciûcally, by Skorokhod9s representation theorem,
there exist S-valued processes Yn and Y , deûned on some probability space (',F , P ), such that
the law of Yn coincides with that of XΓλ(y

n,·), the law of Y coincides with that of XΓλ(y
>,·), and

Y n
k ³ Yk for all k * N0 P -a.s. As S is a ûnite set, for each k * N0, we in fact have Y n

k = Yk for
n * N large enough. It follows that for any i * S,

V
Γλ(y

n,·)
» (i) = EP

i

[ >∑

k=0

(∫

U
f(1 + k, Y n

k , u)�»(yn, Y n
k )(u)du + »·(1 + k)H

(
�»(yn, Y n

k )
)) ]

³ EP
i

[ >∑

k=0

(∫

U
f(1 + k, Y >

k , u)�»(y>, Y >
k )(u)du + »·(1 + k)H

(
�»(y>, Y >

k )
))]

= V
Γλ(y

>,·)
» (i),
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where the convergence follows from the dominated convergence theorem, Y n
k = Y >

k for n * N

large enough, and �»(yn, i) ³ �»(y>, i) and H
(
�»(yn, i)

)
³ H

(
�»(y>, i)

)
for all i * S. Let us

stress that the dominated convergence theorem is applicable here thanks to Assumptions 2.1 and
Lemma 2.1. We therefore conclude that «» : Rd ³ Rd is continuous.

Now, we are ready to show that a ûxed point of «» exists. For any y * Rd,

|«»(y)| =
∣∣∣V Γλ(y,·)

» (i)
∣∣∣ f Ei

[ >∑

t=0

(∣∣∣fΓλ(y,Xt))(t, i)
∣∣∣ + »·(t)|H(�»(y,Xt))|

) ]

f M + »
>∑

t=0

·(t)Ç(|y|) f
(
1 + »Ç(|y|)

)
M,

(A.8)

where the ûrst inequality stems from (2.9), M > 0 is the constant in Assumption 2.1, and the
second inequality follows from (2.17) in Lemma 2.1. Note from (2.17) that Ç : R+ ³ R+ grows
sublinearly (i.e., Ç(³)/³ ³ 0 as ³ ³ >). Hence, ³ 7³ (1 + »Ç(³))M also grows sublinearly, such
that

³7 := sup{³ g 0 : ³ f (1 + »Ç(³))M} < >.

If |y| > ³7, by (A.8) and the deûnition of ³7, |«»(y)| f (1+»Ç(|y|))M < |y|. If |y| f ³7, by (A.8), Ç
being increasing, and the deûnition of ³7, we obtain |«»(y)| f M(1+»Ç(|y|) f M(1+»Ç(³7)) f ³7.
We then conclude |«»(y)| f max{|y|, ³7} for all y * Rd. Hence, for any r g ³7, «»(Br(0)) ¦ Br(0).
As «» : Rd ³ Rd is continuous, this implies that «» has a ûxed point y * Br(0), thanks to Brouwer9s
ûxed-point theorem. By Corollary 2.1, �»(y, ·) * £r is a regular relaxed equilibrium for (2.4).

A.3 Proof of Lemma 2.2

Note that the existence of the sequence {yn}n*N is guaranteed by Theorem 2.1. By using (2.18) in
Lemma 2.1 in the calculation (A.8), we get |«»(y)| f

(
1 + »×(», y)

)
M for all y * Rd, where × is

speciûed in (2.18) and M > 0 is the constant in Assumption 2.1. In view of (2.18),

»×(», y) = »1» + »2|» ln»| + 3» ln(1 + |y|),

where »1, »2 > 0 are constants independent of ». Since |» ln»| ³ 0 as » ³ 0, the above equation
implies that for all » * (0, 1], »×(», y) f ·(|y|), with ·(z) := K(1 + ln(1 + z)) for some K > 0
independent of » * (0, 1]. We therefore obtain

|«»(y)| f
(
1 + ·(|y|)

)
M, "y * Rd and » * (0, 1]. (A.9)

As · : R+ ³ R+ grows sublinearly (i.e., ·(³)/³ ³ 0 as ³ ³ >), ³ 7³ (1 + ·(³))M also grows
sublinearly, such that ³7 := sup{³ g 0 : ³ f (1+·(³))M} < >. By using (A.9) and the deûnition
of ³7, we may repeat the argument in the last paragraph of the proof of Theorem 2.1 and obtain

|«»(y)|
{
< |y|, if |y| > ³7,

f ³7, if |y| f ³7,
"» * (0, 1].

Now, for each n * N, as yn = «»n(yn), the above inequality entails |yn| f ³7. This readily implies
supn*N |yn| f ³7 < >.
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A.4 Proof of Theorem 2.2

Take any sequence {»n}n*N in (0, 1] with »n ³ 0. By Theorem 2.1, for each n * N, there exists
yn * Rd such that «»n(yn) = yn and Ãn := �»n(yn, ·) * £r is a regular relaxed equilibrium for
(2.4) (with » = »n therein). As the sequence {yn}n*N is bounded in Rd (Lemma 2.2), it has a
subsequence (without relabeling) that converges to some y> * Rd. On the other hand, as U is
compact, P(U) is compact under the topology of weak convergence of probability measures. Hence,
for each i * S, {Ãn(i)}n*N in P(U) has a subsequence (without relabeling) that converges weakly
to some Ã7(i) * P(U). This gives rise to Ã7 * £ (which is not necessarily regular).

Now, we claim that Ã7 * �(y>). In view of (2.21), we need to show that Ã7(i) * P(U) is
supported by the closed set E(y>, i) ¦ U in (2.20) for all i * S. As this holds trivially when
E(y>, i) = U , we assume E(y>, i) ( U in the following. Our goal is to prove that for any i * S,
(Ã7(i))

(
Br(u0)

)
= 0 for all u0 * U and r > 0 such that

Br(u0) + E(y>, i) = ' and Br(u0) ¦ U.

Note that this readily implies supp(Ã7(i)) ¦ E(y>, i) for all i * S, as desired. To this end, take a
continuous and bounded function h : U ³ [0, 1] such that

h(u) c 1 for u * Br(u0) and h(u) c 0 for u /* Br+d/2(u0), (A.10)

where d := dist
(
Br(u0), E(v>, i)

)
is strictly positive, as Br(u0) and E(v>, i) are disjoint closed

sets. Consider A := maxu*U {f(0, i, u) + pui · y>} < >. Note that d > 0 implies

· := A2 sup
{
f(0, i, u) + pui · y> : u * Br(u0)

}
> 0.

Also, by the continuity of u 7³ f(0, i, u) + pui · y>,

L := Leb({u * U : f(0, i, u) + pui · y> > A2 ·/2}) > 0.

As yn ³ y>, for all n * N large enough, we have

A2sup
{
f(0, i, u) + pui · yn : u * Br(u0)

}
>

·

2
, Leb

({
u * U : f(0, i, u)+pui ·yn > A2 ·

2

})
g L

2
.

This, along with the deûnition of �»n(yn, i) in (2.12), yields

lim sup
n³>

∫

U
h(u)�»n(yn, i)(u)du f lim sup

n³>

∫

Br+d/2(u0)

e
1

λn
(f(0,i,u)+pui ·y

n)

∫
U e

1

λn
(f(0,i,u)+pui ·y

n)du
du

= lim sup
n³>

∫

Br+d/2(u0)

e
1

λn
(f(0,i,u)+pui ·y

n2(A2·/2))

∫
U e

1

λn
(f(0,i,u)+pui ·y

n2(A2·/2))du
du

f lim sup
n³>

∫

Br+d/2(u0)

e2
ε/2
λn∫

{u*U :f(0,i,u)+pui ·y
ngA2 1

2
·} 1du

du

f lim sup
n³>

2

L
e2

ε/2
λn Leb

(
Br+d/2(u0)

)
= 0. (A.11)

Now, as h is continuous, bounded, and satisûes (A.10),

(Ã7(i))
(
Br(u0)

)
f

∫

U
h(u)(Ã7(i))(du) = lim

n³>

∫

U
h(u)(Ãn(i))(du)

= lim
n³>

∫

U
h(u)�»n(yn, i)(u)du = 0,
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where the ûrst equality follows from Ãn(i) ³ Ã7(i) weakly in P(U) and the last equality is due to
(A.11). The claim <Ã7 * �(y>)= is then established.

Now, we set out to prove V
Γλn(y

n,·)
»n

³ V Ã7

. Consider the Markov chain X̄n with transition
matrix pn given by pnij :=

∫
U puij�»n(yn, i)(u)du for all i, j * S, as well as the Markov chain X̄7 with

transition matrix p7 given by p7ij :=
∫
U puij(Ã

7(i))(du) for all i, j * S. Similarly to the discussion
in the last paragraph of the proof of Theorem 2.1, pn ³ p7 component by component (thanks to
�»n(yn, i) ³ Ã7(i) weakly for all i * S), whence the law of X̄n converges weakly to that of X̄7,
which in turn implies that the law of XΓλn (y

n,·) converges weakly to that of XÃ7

(by Remark 2.1).
By Skorokhod9s representation theorem, there exist S-valued processes Yn and Y , deûned on some
probability space (',F , P ), such that the law of Yn coincides with that of XΓλn (y

n,·), the law of Y
coincides with that of XÃ7

, and Y n
k ³ Yk for all k * N0 P -a.s. As S is a ûnite set, for each k * N0,

we in fact have Y n
k = Yk for n * N large enough. It follows that for any i * S,

V
Γλn (y

n,·)
»n

(i) 2 EP
i

[ >∑

k=0

·(1 + k)»nH (�»(yn, Y n
k ))

]

= EP
i

[ >∑

k=0

(∫

U
f(1 + k, Y n

k , u)�»(yn, Y n
k )(u)du

)]

³ EP
i

[ >∑

k=0

(∫

U
f(1 + k, Yk, u)Ã7(Yk)(u)du

)]
= V Ã7

(i), (A.12)

where the convergence follows from Y n
k = Yk for n * N large enough, �»(yn, i) ³ Ã7(i) weakly for

all i * S, and u 7³ f(t, i, u) being continuous on the compact set U . Moreover, by (2.18) in Lemma
2.1, the boundedness of {yn}n*N, and

∑>
k=0 ·(1 + k) < > (Assumption 2.1), there exist constants

C1, C2 > 0 independent of {»n}n*N such that

>∑

k=0

·(1 + k)»n sup
i*S

|H(�»n(yn, i))| =
(
C1»n + C2»n| ln»n|

) >∑

k=0

·(1 + k) ³ 0 as n ³ >,

which implies that EP
i

[∑>
k=0 ·(1 + k)»nH (�»(yn, Y n

k ))
]
³ 0. We then conclude from (A.12) that

V
Γλn (y

n,·)
»n

(i) ³ V Ã7

(i) for all i * S.

Finally, recall that «»n(yn) = yn means yn = V
Γλn(y

n,·)
»n

. As a result,

y> = lim
n³>

yn = lim
n³>

V
Γλn(y

n,·)
»n

= V Ã7 * «(y>), (A.13)

where the inclusion follows from Ã7 * �(y>). In view of (2.22) and (2.23), the above relation
implies Ã7 * §(Ã7). Hence, by Proposition 2.2, Ã7 is a relaxed equilibrium for (2.1).

A.5 Proof of Proposition 3.1

Fix Ã * £r. By taking Ã2 = Ã in (3.6) and noting J̃Ã·εÃ
» (i) = J̃Ã

» (i) = Ṽ Ã
» (0, i), we get

Ṽ Ã
» (·, i) 2 Ṽ Ã

» (0, i) = 2
(
fÃ(i)(0, i) + »H(Ã(i)) + Q

Ã(i)
i · Ṽ Ã

» (·)
)
·, "i * S. (A.14)

This implies that t 7³ Ṽ Ã
» (t, i) is continuous. Moreover, when we divide both sides by · > 0 and

take · ³ 0, since t 7³ Ṽ Ã
» (t, i) is continuous for all i * S, we get

"tṼ
Ã
» (0, i) + fÃ(i)(0, i) + »H(Ã(i)) + Q

Ã(i)
i · Ṽ Ã

» (0) = 0, "i * S. (A.15)
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Now, for any Ã2 * £r, thanks to (3.6) and (A.14),

Ṽ Ã2·εÃ
» (0, i) 2 Ṽ Ã

» (0, i) =
(

[fÃ2(i)(0, i) + »H(Ã2(i)) + Q
Ã2(i)
i · Ṽ Ã

» (·)]

2 [fÃ(i)(0, i) + »H(Ã(i)) + Q
Ã(i)
i · Ṽ Ã

» (·)]
)
· + o(·).

It follows that

lim
·³0

1

·

(
Ṽ Ã2·εÃ
» (0, i) 2 Ṽ Ã

» (0, i)
)

=
(
fÃ2(i)(0, i) + »H(Ã2(i)) + Q

Ã2(i)
i · Ṽ Ã

» (·)
)
2

(
fÃ(i)(0, i) + »H(Ã(i)) + Q

Ã(i)
i · Ṽ Ã

» (·)
)

= fÃ2(i)(0, i) + »H(Ã2(i)) + Q
Ã2(i)
i · Ṽ Ã

» (0) + "tṼ
Ã
» (0, i), "i * S, (A.16)

where the last line follows from the continuity of t 7³ Ṽ Ã
» (t, i) for all i * S and (A.15). Hence, Ã is

a regular relaxed equilibrium for (3.2) if and only if

"tṼ
Ã
» (0, i) + sup

Ã*D(U)

(
fÃ(0, i) + »H(Ã) + QÃ

i · Ṽ Ã
» (0)

)
f 0, "i * S.

In view of (A.15), this holds if and only if

Ã(i) * arg max
Ã*D(U)

(
fÃ(0, i) + »H(Ã) + QÃ

i · Ṽ Ã
» (0)

)

= arg max
Ã*D(U)

∫

U

(
f(0, i, u) 2 » ln Ã(u) + qui · Ṽ Ã

» (0)
)
Ã(u)du, "i * S. (A.17)

As the set on the right-hand side above is a singleton that contains the density

Ã7(u) =
e

1

λ(f(0,i,u)+qui ·Ṽ
π
λ (0))

∫
U e

1

λ(f(0,i,v)+qvi ·Ṽ
π
λ (0))dv

= �̃»(Ṽ Ã
» (0), i)(u) = �̃»(J̃Ã

» , i)(u), u * U,

the relation (A.17) amounts to Ã(i) = �̃»(J̃Ã
» , i) for all i * S, which is equivalent to Ã = §̃»(Ã).

A.6 Proof of Lemma 5.1

(a) For notational convenience, we will write Xhn for the discrete-time Markov chain whose tran-
sition matrix is Pn = {Pn(i)}i*S with its ith-row given by

Pn(i) :=

∫

U
(phn)ui (Ãn(i))(du) =

∫

U
(hnq

u
i + ei) (Ãn(i))(du) = Q

Ãn(i)
i hn + ei,

where the second equality follows from (5.1). We will also write Xn and X> for the continuous-

time Markov chains with generators {QÃn(i)
i }i*S and {QÃ>(i)

i }i*S , respectively. For each n * N,

note that the transition matrix of the discrete-time Markov chain
{
Xn

khn

}
k*N

is P̃n = {P̃n(i)}i*S
with its ith-row given by

P̃n(i) := ei + Q
Ãn(i)
i hn + o(hn) = Pn(i) + o(hn). (A.18)

24



In the following, we will adapt the arguments in the proof of Huang and Zhou [21, Lemma 3] to
the present setting. For any i * S, observe that

∣∣∣V hn,Ãn
(i) 2 Ṽ Ã>

(0, i)
∣∣∣

f hn

∣∣∣∣∣Ei

[
>∑

k=0

∫

U
f
(

(k + 1)hn,X
hn
k , u

)(
Ãn(Xhn

k )
)

(du)

]

2 Ei

[
>∑

k=0

∫

U
f
(
(k + 1)hn,X

n
khn

, u
)

(Ãn(Xn
khn

))(du)

] ∣∣∣∣∣

+

∣∣∣∣∣hnEi

[
>∑

k=0

∫

U
f
(
(k + 1)hn,X

n
khn

, u
)

(Ãn(Xn
khn

))(du)

]

2 Ei

[∫ >

0

∫

U
f(t,Xn

t , u)(Ãn(Xn
t ))(du)dt

] ∣∣∣∣∣

+

∣∣∣∣Ei

[∫ >

0

∫

U
f(t,Xn

t , u)(Ãn(Xn
t ))(du)dt

]
2 Ei

[∫ >

0

∫

U
f(t,X>

t , u)(Ã>(X>
t ))(du)dt

]∣∣∣∣ .

(A.19)

Let In1 , In2 , and In3 denote the second, third, and fourth lines, respectively, in the above inequality.
Let us ûrst deal with In1 . By Assumption 3.1, for any · > 0, we can take T > 0 such that

∫ >

T
sup
i,u

|f(t, i, u)|dt < ·. (A.20)

It follows that

In1 f hn

∣∣∣∣
T/hn∑

k=0

Ei

[ ∫

U
f
(

(k + 1)hn,X
hn
k , u

)(
Ãn(Xhn

k )
)

(du)

2
∫

U
f
(
(k + 1)hn,X

n
khn

, u
) (

Ãn(Xn
khn

)
)

(du)

]∣∣∣∣ + 2·

(A.21)

In addition, (A.18) implies (P̃n)k(i) = (Pn)k(i)+ko(hn)(1+o(hn))k, where (P̃n)k(i) (resp. (Pn)k(i))

denotes the ith-column of the matrix (P̃n)k (resp. (Pn)k). By writing
∫
U f(khn, ·, u)(Ãn(·))(du) for

the vector
(∫

U f(khn, 1, u)(Ãn(1))(du), ...,
∫
U f(khn, d, u)(Ãn(d))(du)

)
* Rd, we observe that

Ei

[∫

U
f
(

(k + 1)hn,X
hn
k , u

)
Ãn

(
Xhn

k

)
(du)

]
= (Pn)k(i) ·

(∫

U
f ((k + 1)hn, ·, u) (Ãn(·))(du)

)

Ei

[∫

U
f
(
(k + 1)hn,X

n
khn

, u
)
Ãn

(
Xn

khn

)
(du)

]
= (P̃n)k(i) ·

(∫

U
f((k + 1)hn, ·, u)(Ãn(·))(du)

)
.

(A.22)
It then follows from that

In1 f hnM̃

T/hn∑

k=0

ko(hn)(1 + o(hn))k + 2· f hnM̃

T/hn∑

k=0

T

hn
o(hn)(1 + hn)T/hn + 2·

=

T/hn∑

k=0

o(hn) =

(
T

hn
+ 1

)
o(hn) + 2· = o(1) + 2·.
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We then obtain limn³> In1 f 2·. As · > 0 is arbitrary, we conclude limn³> In1 = 0.
We now deal with In2 . For any · > 0, consider T > 0 as in (A.20). Then, observe that

In2 f ∑T/hn

k=0 Ei[·k] + 2·, with

·k :=

∣∣∣∣∣hn
∫

U
f
(
(k + 1)hn,X

n
khn

, u
)

(Ãn(Xn
khn

))(du) 2
∫ (k+1)hn

khn

∫

U
f(t,Xn

t , u)(Ãn(Xn
t ))(du)dt

∣∣∣∣∣ .

Set Ak := {there is no jump for Xn in the time interval (khn, (k + 1)hn]}. As f(·, i, ·) is continu-
ous, it is uniformly continuous on the compact set [0, T ] × U . Hence, there exists a modulus of
continuity L, independent of i and u, such that |f(t, i, u)2 f(s, i, u)| f L(|t2 s|) for all t, s * [0, T ].
It follows that

Ei[·k] f Ei[·k | Ak]P(Ak) + Ei[·k | Ac
k]P(Ac

k) f L(hn)hn(1 2 o(1)) + O(hn)o(1) = o(hn).

Hence, In2 f ∑T/hn

k=0 o(hn) + 2· = o(1) + 2·, which implies limn³> In2 f 2·. As · > 0 is arbitrary,
we conclude limn³> In2 = 0.

Finally, we deal with In3 . For any i * S, as u 7³ qiu is continuous and U is compact, the fact

<Ãn(i) ³ Ã>(i) weakly= readily implies Q
Ãn(i)
i ³ Q

Ã>(i)
i . That is, the rate matrix of Xn converges

to that of X> (component by component). Then, we may follow the argument in the proof of
Huang and Zhou [21, Theorem 3] (particularly, from the third last line of p. 448 to the fourth line
on p. 449) to obtain limn³> In3 = 0. As In1 , In2 , and In3 all converge to zero, we conclude from

(A.19) that V hn,Ãn
(i) ³ Ṽ Ã>

(0, i).
(b) For any i * S and u * U , thanks to (2.12), (5.2), and (5.1),

�hn»(yn, i)(u) =
exp[ 1

hn»
(fhn(0, i, u) + (ph)ui · yn)]

∫
U exp[ 1

hn»
(fhn(0, i, u) + (ph)ui · yn)]du

=
exp[ 1»(f(0, i, u) + qui · yn)]∫

U exp[ 1»(f(0, i, u) + qui · yn)]du

³ exp
[
1
»(f(0, i, u) + qui · y>)

]
∫
U exp[ 1»(f(0, i, u) + qui · y>)]du

= �̃»(y>, i)(u), as n ³ >, (A.23)

where the convergence follows from yn ³ y>. In view of (3.8), the above implies �hn»(yn, i)(u) =
�̃»(yn, i)(u) ³ �̃»(y>, i)(u). Hence, H(�hn»(yn, i)) = H(�̃»(yn, i)) ³ H(�̃»(y>, i)), where the
convergence follows from an argument similar to (A.7). By taking Ãn := �hn»(yn, ·), the desired
result follows from the arguments in part (a) and H(�hn»(yn, i)) ³ H(�̃»(y>, i)) for all i * S.

A.7 Proof of Theorem 5.1

(a) For any n * N, set yn := V hn,Ãn

» * Rd. As Ãn * £r is a regular relaxed equilibrium for
(5.4), Proposition 2.1 implies Ãn = §hn»(Ãn), i.e., Ãn(i) = �hn»(yn, i). In addition, Corollary 2.1
implies «hn»(yn) = yn. Hence, by Lemma 2.2, {yn}n*N is bounded in Rd. For any subsequence of
{yn}n*N (without relabeling) that converges to some y> * Rd, Lemma 5.1 (b) asserts �hn»(yn, i) ³
�»(y>, i). Thus, Ã>(i) := limn³> Ãn(i) = �̃»(y>, i) is well-deûned for all i * S. Now, note that

y> = lim
n³>

yn = lim
n³>

V hn,Ãn

» = lim
n³>

V
hn,Γhnλ(y

n,·)
» = J̃

Γ̃λ(y
>,·)

» ,

where the last equality follows from Lemma 5.1 (b). That is, we have y> = «̃»(y>). By Corol-
lary 3.1, this implies Ã> = �̃»(y>, ·) is a regular relaxed equilibrium for (3.2).
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(b) As U is compact, P(U) is compact under the topology of weak convergence of probability
measures. Hence, for each i * S, {Ãn(i)}n*N in P(U) has a subsequence (without relabeling) that
converges weakly to some Ã7(i) * P(U). By Proposition 2.2, for each n * N,

supp(Ãn(i)) ¦ arg max
u*U

{
fh(0, i, u) + (ph)ui · V hn,Ãn

}

= arg max
u*U

{
f(0, i, u) + qui · V hn,Ãn

}
= Ẽ

(
V hn,Ãn

, i
)
, "i * S, (A.24)

where the ûrst equality follows from (5.2) and (5.1) and the last equality holds in view of (3.9). By
Proposition 3.2, to show that Ã> is a relaxed equilibrium, it suûces to prove Ã> * §̃(Ã>), i.e.,
supp(Ã>(i)) ¦ Ẽ(J̃Ã>

, i) for all i * S. By contradiction, suppose that for some i * S, there exist
u0 * U and r > 0 such that

dist
(
Br(u0), Ẽ(J̃Ã>

, i)
)
> 0 and (Ã>(i))(Br(u0)) > 0 (A.25)

By the weak convergence of Ãn(i) to Ã>(i), lim infn³>(Ãn(i))(Br(u0)) g (Ã>(i))(Br(u0)) > 0.
This, along with (A.24), implies Br(u0) + Ẽ(V hn,Ãn

, i) 6= ' for n * N large enough. Take un *
Br(u0)+ Ẽ(V hn,Ãn

, i) * U for n * N large enough. As {un}n*N is a bounded sequence, it converges
up to a subsequence to some u7 * Br(u0) + U . Now, by Lemma 5.1 (a),

f(0, i, u7) + qu
7

i · J̃Ã>

= lim
n³>

{
f(0, i, un) + qun

i · V hn,Ãn
}

= lim
n³>

max
u*U

{
f(0, i, u) + qui · V hn,Ãn

}
g max

u*U

{
f(0, i, u) + qui · J̃Ã>

}
,

where the second equality follows from un * Ẽ(V hn,Ãn
, i) and the inequality holds by exchanging

the limit and maximization. As u7 * U , the above inequality is in fact an equality, which implies
u7 * Ẽ(J̃Ã>

, i). The fact u7 * Br(u0) + Ẽ(J̃Ã>

, i) readily contradicts the ûrst condition in (A.25).
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