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ABSTRACT useful in fields transformed by Al and machine learning because of

We introduce the ParClusterers Benchmark Suite (PCBS)—a col-
lection of highly scalable parallel graph clustering algorithms and
benchmarking tools that streamline comparing different graph clus-
tering algorithms and implementations. The benchmark includes
clustering algorithms that target a wide range of modern clustering
use cases, including community detection, classification, and dense
subgraph mining. The benchmark toolkit makes it easy to run and
evaluate multiple instances of different clustering algorithms with
respect to both the running time and quality.

We evaluate the PCBS algorithms empirically and find that they
deliver both the state of the art quality and the running time. In
terms of the running time, they are on average over 4x faster than
the fastest library we compared to. In terms of quality, the correla-
tion clustering algorithm [Shi et al., VLDB’21] optimizing for the
LambdaCC objective, which does not have a direct counterpart
in other libraries, delivers the highest quality in the majority of
datasets that we used.
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1 INTRODUCTION

Clustering is a critical tool in almost any scientific field that in-
volves classifying and organizing data today. Examples of fields
leveraging clustering range from computational biology and phy-
logenetics to complex network analysis, machine learning, and
astrophysics [18, 44, 53, 56]. Clustering has proven particularly
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its utility in understanding and leveraging high-dimensional vector
representations (embeddings) of data [12, 26, 27, 31, 47].

In this paper, we are interested in carefully characterizing the
behavior (e.g., measuring quality, running time, and scalability) of
parallel clustering algorithms for shared-memory multi-core ma-
chines that are scalable in the size of the dataset and the number
of threads. Our specific focus is on graph clustering, which is a
versatile and scalable clustering approach that can be used with
different input types. On one hand, graph clustering is a natural ap-
proach whenever the input is a graph (e.g., friendships, interactions,
etc.). On the other hand, graph clustering can also be applied in
the other popular scenario, when the input is a collection of points
in a metric space (e.g., embeddings). In this case, one can obtain a
graph by computing a weighted similarity graph, where continuous
or complete phenomena can be cast into sparse similarity graphs,
e.g., by keeping only edges between nearby points or only the most
significant entries of a similarity matrix.

Despite substantial prior works that study the quality (e.g., pre-
cision and recall) and scalability of individual graph clustering
methods [26, 27, 29, 57, 61, 63, 66], no prior works have system-
atically compared a large collection of different graph clustering
methods (and their corresponding implementations) to understand
how different methods compare against each other under different
metrics. For example, celebrated and widely-utilized graph cluster-
ing algorithms, such as modularity clustering are well understood
to be highly effective in community detection tasks on unweighted
natural graphs, but little is known about their performance for
clustering on vector embedding clustering tasks.

This paper addresses this gap by performing a systematic com-
parison of a large and diverse set of graph clustering methods.
Our evaluation includes methods tailored to both weighted and
unweighted graphs and incorporates a diverse set of natural graphs
and similarity graphs derived from point sets. We focus on undi-
rected graphs, as converting directed graphs to undirected graphs
is a common practice in many graph tasks, such as community
detection (see, e.g., [33]). We stratify our evaluation based on four
unsupervised clustering tasks that are commonly found in the litera-
ture and in practice—(1) community detection, (2) vector embedding
clustering, (3) dense subgraph partitioning, and (4) high resolution
clustering. Due to insisting on scalability, we focus our evaluation
on the most scalable parallel graph clustering methods currently
available in the literature.
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To make our evaluation easily reusable and extensible by future
researchers, we designed a graph clustering benchmark called the
ParClusterers Benchmark Suite (PCBS). PCBS enables users to
accurately measure the scalability and accuracy of different shared-
memory parallel graph clustering algorithms. In addition to pro-
viding a simple and easy to use benchmarking platform, we have
also incorporated eleven parallel graph clustering methods into
PCBS. The algorithms include algorithms from our recent prior
work, as well as several new implementations. In addition to classic
graph clustering methods such as modularity-based clustering [57],
structural clustering [64], and label propagation methods [54], we
include recently developed hierarchical agglomerative graph clus-
tering methods [27] and connectivity-based methods such as k-
core and low-diameter decomposition [25]. Finally, unlike much
of the existing work on graph clustering, which typically focuses
on optimizing a specific graph clustering metric (e.g., modularity
or conductance) that a clustering method is usually designed to
optimize, PCBS supports evaluating any clustering algorithm using
a very broad set of metrics, which helps us understand what dif-
ferent clustering algorithms are able to optimize for on real-world
datasets, and help inform users of the best clustering algorithm for
a given metric. Besides PCBS’s clustering implementations, PCBS
also supports running many clustering implementations in other
graph clustering frameworks and systems such as NetworKit [61],
Neo4j [5], and TigerGraph [8]. PCBS can also be easily extended to
include new datasets, algorithms, and parameter search methods.

The datasets we study include both widely-used graph datasets
from the SNAP repository, as well as several new graph cluster-
ing datasets that we have generated from spatial and embedding
datasets using a simple nearest-neighbor-based graph building pro-
cess, and which we will open-source as part of this work. We also
contribute a new graph dataset for clustering, which represent simi-
larities between 1.2M short texts. As far as we know, this is the first
large-scale graph clustering dataset that provides a large number of
ground-truth clusters. Our datasets cover a wide range of scales and
clustering tasks, including community detection, vector embedding
clustering, and dense subgraph partitioning.

Key Contributions. The key contributions of our work include:

e A comprehensive library that implements eleven state-of-the-
art scalable graph clustering algorithms, providing a unified
codebase for researchers and practitioners.

e A benchmarking toolkit that facilitates the systematic evaluation
of graph clustering algorithms across diverse datasets, parameter
settings, and experimental configurations, enabling rigorous and
comprehensive comparative analyses.

e A new large graph clustering dataset containing many ground-
truth clusters.

e The first extensive evaluation of parallel graph clustering algo-
rithms, encompassing their running time, clustering quality, and
the trade-off between these two dimensions. We also compare
our library against other existing libraries and graph databases.

Key Results. Some of our key takeaways and findings of our study

of graph clustering algorithms include:

e Our clustering implementations in PCBS are very fast compared
to other clustering implementation in state-of-the-art graph li-
braries and databases. While graph databases, such as Neo4;j [5]
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and TigerGraph [8], provide a richer functionality, on different
graph clustering implementations, they are slower. For example,
on the LiveJournal graph from SNAP [41], PCBS is on average
32.5x faster than Neo4j and 303x faster than TigerGraph. Com-
pared with state-of-the-art parallel graph library NetworKit [61],
PCBS is on average 4.54x faster. We compute the average using
the geometric mean.

e Correlation clustering [57] optimizing for the LambdaCC ob-
jective obtains the highest quality on three out of four tasks.
ParHAC [27] obtains the best quality on the fourth task. We
consider this finding surprising, given that these two methods
are not included in many popular graph clustering frameworks.
The best performing method commonly found in existing graph
clustering packages is modularity clustering. However, we ob-
serve that on a vast majority of datasets, correlation clustering
obtains strictly better quality.

o Parallel affinity clustering obtains high quality on the vector em-
bedding clustering task and is consistently faster than correlation
clustering and ParHAC on large graphs.

Our code and the full version of our paper can be found at
https://github.com/ParAlg/ParClusterers.

2 PARCLUSTERERS BENCHMARK SUITE

In this section, we introduce our PCBS benchmark suite, which
includes a large number of scalable parallel graph clustering algo-
rithms, parallel implementations of clustering evaluation metrics,
efficient graph I/O routines, and a convenient benchmark interface.
An overview of the library is shown in Figure 1.

2.1 Graph Input

PCBS supports both weighted and unweighted simple undi-
rected graphs in edge list format [41] and compressed sparse row
format [25, 35]. A simple graph is a graph with no self-loops and
no parallel edges. The graph clustering algorithms in PCBS that use
edge weights assume edge weights are nonnegative similarities,
i.e., a higher weight of an edge (u,v) means that u and v are more
similar. This allows for a natural way of defining how a missing
edge affects the clustering: in most of our algorithms a missing
edge is equivalent to an edge of similarity 0.

2.2 Datasets

In this work, we benchmark on both unweighted and weighted
graphs. For unweighted graphs, the SNAP [41] collection of datasets
is a popular choice for benchmarking community detection tasks.
To the best of the authors’ knowledge, there currently exists no
real-world weighted graph dataset with ground truth for evaluating
weighted graph clustering algorithms. In this work, we present a
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suite of weighted graph clustering datasets that are the k-nearest
neighbor graphs of real-world vector datasets with ground truth
clustering labels, including a new dataset that we created that con-
tains a large number of ground truth clusters. We describe more
details of constructing these datasets in Section 3. We believe that
these datasets will allow researchers to thoroughly benchmark the
performance of weighted graph clustering algorithms.

2.3 Parallel Graph Clustering Algorithms

Our library includes eleven scalable parallel graph clustering algo-
rithms, which are described below. We focus on algorithms that are
scalable, widely used, and have high precision (i.e., most vertices
in a retrieved cluster are from the same ground truth cluster). We
discuss more about our algorithm selection in Section 2.4. We select
amix of algorithms that are popular in the literature and algorithms
that we found to have high quality in our experience. The imple-
mentations of TECTONIC, label propagation, and speaker-listener
label propagation (SLPA) are new. Other implementations are taken
from previous work and integrated into PCBS. All implementations,
except for SLPA, produce non-overlapping clusters.

We categorize the algorithms into weighted graph algorithms,
which take into account the similarities, and unweighted graph
algorithms, which only use the topology of the graph.

2.3.1 Weighted Graph Algorithms. Affinity Clustering [12, 26].
Affinity clustering is a hierarchical clustering algorithm based on
Boruvka’s minimum spanning forest algorithm. PCBS includes the
shared-memory parallel affinity clustering from Dhulipala et al. [26],
which is adapted from the original MapReduce affinity clustering
algorithm [12]. In each step of the algorithm, every vertex picks its
best edge (i.e., that of the maximum similarity) on each round, and
the connected components spanned by the selected edges define
the clusters. The algorithm can produce a clustering hierarchy by
contracting the clusters and running the algorithm recursively. The
edge weights between contracted vertices can be computed using
different linkage functions, such as single, maximum, or average
linkage. In our experiments we use average linkage.

Users can control the resolution of the clustering by picking an
edge weight threshold and only considering edges whose weight is
at least the threshold in each step. Recent work by Monath et al. [47]
showed that the quality of affinity clustering can be improved if the
threshold decays geometrically at each step. We use this technique,
also known as the SCC algorithm [47], in our experiments.
Correlation and Modularity Clustering [57]. Our library in-
cludes a shared-memory parallel framework for optimizing the
LambdaCC objective [67]. This objective generalizes both modular-
ity [48] and correlation clustering [11] and is defined as follows.

Let k;, be the vertex weight of v and A be the resolution parameter.
Let V be the set of all vertices, and wy,, be the weight (similarity) of
edge (u,0). Then, LambdaCC(x) = % (; j)evxv wlfj -Xij, where x;; is
a Boolean indicator, which is equal to 1 if and only if i and j belong
to the same cluster. Here, w],, = 0 if u = v, w},;, = Wy, — Akyky if
(u,v) € E, and w,,,, = —Akyk, otherwise. By default our framework
uses ky, = 1foranyu € V.

As shown in [57], the special case of the modularity objective can
be obtained by appropriately defining vertex weights k and setting
A. Specifically, assume we set the vertex weight k; to be equal to
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the weighted degree of v (i.e., the sum of its incident edge weight)
and set the resolution A = 1/(2m) . Then, optimizing LambdaCC
objective is equivalent to optimizing the modularity objective [34],
as the two objectives are monotone in each other. Furthermore, if we
set the resolution A = y/(2m), the LambdaCC objective becomes
monotone in the generalized modularity objective of Reichardt and
Bornholdt [55] with a fixed scaling parameter y € (0, 1).

Our framework optimizes the LambdaCC objective using a par-

allel Louvain-style algorithm [17, 57].
Approximate Parallel Hierarchical Agglomerative Clustering
(ParHAC) [27]. Given n vertices, a sequential version of the HAC
algorithm starts by forming a separate cluster for each vertex, and
proceeds in n — 1 steps. Each step merges the two most similar
clusters, i.e., replaces them by their union. The similarity of two
clusters is the total weight of edges between the clusters divided
by the product of their sizes.

The output of HAC is a binary tree called a dendrogram, which
describes the merges performed by the algorithm. A flat cluster-
ing can be obtained from the dendrogram by cutting it at a given
level. The threshold for cutting the dendrogram controls the clus-
tering resolution. Because the output of HAC is a dendrogram,
one can easily postprocess the dendrogram to obtain a flat cluster-
ing of any given resolution. The running time of this postprocess-
ing is negligible compared to the clustering time. PCBS includes a
shared-memory parallel implementation of approximate HAC called
ParHAC [27]. A HAC algorithm is called 1 + € approximate, when
each merged pair of clusters has similarity at least Winax /(1 + €),
where Winax is the largest similarity between any two clusters.
Connected Components. [25, 38] Given a threshold parameter
7, the clusters are the connected components with edge similarity
< r removed. Our implementation uses the state-of-the-art imple-
mentation of concurrent union-find capable of processing several
billions of edges per second from the Connectlt library [28, 38] to
find the connected components.

2.3.2  Unweighted Graph Algorithms. Low-Diameter Decompo-
sition (LDD) [25, 46]. LDD partitions vertices of an n-vertex,
m-edge unweighted graph into clusters, where each cluster has
O((logn)/p) diameter and there are at most fm edges connecting
distinct clusters. The choice of § controls the clustering resolution.
Our implementation is based on the parallel MPX algorithm [46].
k-core Decomposition (KCore) [24, 25]. k-core decomposition
is a graph clustering technique that recursively prunes vertices
from the graph whose degree is less than k, until all remaining
vertices have at least k neighbors. This process partitions the graph
into k-cores, where each k-core is a maximal subgraph in which
every vertex has degree at least k within that subgraph. Non-empty
k-cores for large value of k tend to represent a densely connected
core of the graph, while k-cores for small values of k represent more
peripheral regions. For a given value of k, k-core decomposition
identifies clusters by treating each maximal k-core subgraph as
a cluster and treating all other vertices as singleton clusters. The
choice of k can be used to control the clustering resolution.

The algorithm outputs connected components of vertices with
core number at most k. Vertices with core number less than k are
in their own singleton clusters.



Structural Graph Clustering (SCAN) [25, 64]. This implemen-

tation of SCAN is a parallel version [64] of the index-based SCAN

algorithm introduced in Wen et al. [68]. Following [71], our im-

plementation of SCAN defines a structural similarity o between

M, where N(u)
IN(u)[{IN (o)

is a set including u and the neighbors of u.

Two vertices are structurally similar if their structural similarity
is at least ¢, an input parameter. A vertex is called a core vertex,
if it is structurally similar to at least y other vertices, where y is
another parameter. A cluster is constructed by a core expanding to
all vertices that are structurally similar to that core.

Specifically, the output of the algorithm is equivalent to the fol-
lowing algorithm. First, construct an auxiliary graph H on the core
points, in which we add an edge between any two core vertices,
which are structurally similar. Then, compute the connected compo-
nents of H. Finally, assign each non-core point which is structurally
similar to a core point to the cluster of that core point (in case
there is more than one structurally similar core point, one is chosen
arbitrarily). The remaining points are left as singleton clusters.
Triangle Connected Component Clustering (TECTONIC).
PCBS contains a parallel version of the original TECTONIC cluster-
ing algorithm [66]. The algorithm first weighs the graph edges based
on the number of triangles each edge belongs to. Specifically, if
t(u,v) is the number of triangles that edge (u, v) participates in, the

weight of an edge (u, v) is set to W
edges with weight below a threshold parameter 6, where 6 controls
the clustering resolution, and computes connected components.
Label Propagation (LP). PCBS contains a parallel version of the
original label propagation algorithm [54]. The label propagation
algorithm works by propagating vertex labels through the graph.
Initially, each vertex is assigned a unique label. Then in each itera-
tion, vertices adopt the label that the majority of their neighbors
currently have, with ties broken lexicographically. This causes label
updates to propagate across the graph, with dense regions quickly
reaching consensus on a label. All vertices start in their own single-
ton cluster. The algorithm runs until no vertex updates its label or
a maximum number of iterations has been reached. The groups of
vertices converging to the same label represent the clusters. In our
parallel implementation, on each round, all vertices asynchronously
update their labels in parallel. Specifically, on each round, a vertex
o’s neighbor’s label might be updated from [ to I’ after v has already
used the label I to update its own label.

Speaker-Listener Label Propagation (SLPA). PCBS contains a
parallel version of the original SLPA [70] algorithm. SLPA is a vari-
ant of the label propagation algorithm, where each vertex maintains
a list of labels (its memory) instead of a single label. On each round,
in parallel every vertex passes a random label to each neighbor,
chosen from its memory with probability proportional to the oc-
currence frequency of this label in the memory (the choice can be
different for each neighbor). Whenever a vertex receives a new label
from a neighbor, it immediately updates its own memory, so the
implementation is asynchronous. SLPA may produce overlapping
and nested clusters.

adjacent vertices u and v as o(u,v) =

. Then, it removes all
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2.4 Scope

Due to the long history of research on clustering algorithms, hun-
dreds of clustering algorithms have been developed over the past
century, and exhaustively comparing all existing proposals is an
impossible task. Instead, we aimed to choose a representative col-
lection of clustering algorithms that are (1) scalable and efficient
and (2) can produce high-precision results. We now explain our
rationale in more detail.

(1) Scalability and Efficiency. To keep up with the rapid growth of
real-world data, a requirement for modern clustering algorithms is
that they should be scalable to very large datasets, and scalable with
increasing computational power (e.g., cores and machines). In this
paper, we focus on the shared-memory (single-machine) multicore
setting, which has been successfully used to process graphs up to
hundreds of billions of edges [25].

Our focus on scalable and efficient clustering algorithms rules

out algorithms such as graph neural network approaches [65], exact
spectral clustering [21, 49] and other algorithms based on numer-
ical linear algebra, whose scalability is limited due to their poor
computational efficiency.
(2) High Precision. In many applications of clustering, such as
spam and abuse detection, classification, and deduplication, a usual
requirement is to produce a high precision clustering. In other words,
it is more important to ensure that all entities within a cluster are
closely related, than to ensure that each group of related entities
ends up in a single cluster. Because of this reason we do not include
balanced graph partitioning in our comparison, which primarily
optimizes recall (i.e., most vertices in each ground truth cluster
are grouped into the same output cluster). We note that balanced
partitioning algorithms are not included in many of the popular
graph libraries and databases [3-5, 8, 61].

2.5 Clustering Quality Metrics

PCBS includes parallel implementations of many popular metrics
for evaluating clustering quality, including precision, recall, F-score,
adjusted rand index (ARI), normalized mutual information (NMI),
edge density, triangle density, and more.
Precision, Recall, and F-score. PCBS computes the average preci-
sion and recall of a clustering compared to the ground truth. These
metrics work for both non-overlapping and overlapping clusters. To
compute average precision and recall, for each ground-truth com-
munity ¢, we match c to the cluster ¢’ with the largest intersection
to c. We list the formulae for computing the metrics below. This
metric matches the methodology used by Tsourakakis et al. [66] in
evaluating TECTONIC and Shi et al. [57] in evaluating correlation
clustering.

Precision = |c N ¢’|/|¢’| Recall = [c N c¢’|/|c]|
Precision X Recall
(% X Precision) + Recall

Fg=(1+f)-

Here, f is a parameter specifying the relative importance of pre-
cision and recall. When f < 1, the objective rewards optimizing
precision over recall. When f > 1, optimizing recall becomes more
important.

ARI and NML. Both Adjusted Rand Index (ARI) [19, 37] and Normal-
ized Mutual Information (NMI) [23] measure the similarity between



two clusterings of a dataset, and are widely used to evaluate the
quality of non-overlapping clusters. See Hubert and Arabie [37]
and Danon et al. [23] for a definition of these measures. Extensions
to overlapping clusters have also been proposed (e.g., [40, 45]).
Edge and Triangle Density. These two metrics are not defined
with respect to ground-truth clustering but rather measure the
structural properties and density characteristics of the identified
clusters themselves. Edge density quantifies the internal cohesive-
ness of a cluster by measuring the ratio of edges in the cluster to
the maximum possible number of edges. Similarly, triangle density
captures the proportion of triangle subgraphs within a cluster to the
maximum possible number of triangles, given the existing wedges.
We compute a weighted mean of edge density, where the density
of each cluster is weighted by its size when computing the mean.
We use the weighting because taking an unweighted average of
cluster densities can lead to counter-intuitive results. To illustrate
this, consider a clustering with 99 clusters of size 2 and density 1,
and one cluster of size 1 million and density 0.01. Then, the average
density of the 100 clusters is over 0.99, even though over 99.99% of
vertices are in a cluster of density 0.01.
Modularity and Correlation Objective. PCBS computes the mod-
ularity and correlation clustering objectives as described in Sec-
tion 2.3.
Other Cluster Statistics. PCBS also reports the distribution (mini-
mum, maximum, and mean) of cluster sizes, the diameter of clusters,
and the number of clusters.

2.6 Benchmark

PCBS has a convenient and flexible framework for benchmarking
clustering algorithms. Listing 1 gives an example of the configura-
tion file for benchmarking different clustering algorithms. Users
can flexibly specify the graphs to benchmark, the number of threads
to use, the number of rounds to run, the timeout, and the set of
parameters to try for each clustering algorithm. Specifically, for
each clustering algorithm, PCBS tries a Cartesian product of all
parameter values. We chose to use a Cartesian product so make
benchmarking comprehensive, but users can easily modify PCBS
with a different method to explore the parameter space. Besides clus-
tering implementations in PCBS, PCBS also supports running many
clustering implementations in NetworKit, Neo4j, and TigerGraph.

For each graph, each clusterer, each parameter set, and each
round of the experiment, PCBS outputs a file for the resulting
clustering in Output directory. It also outputs a CSV file including
the running time of all runs specified by the configuration file to
CSV Qutput directory.

PCBS also supports specifying the ground truth communities
and computing statistics of the clustering results, such as precision
and recall. Listing 2 gives an example of the statistics configuration
file for computing the quality metrics. This configuration file is
used together with the clustering configuration file (e.g., Listing 1).
statistics_config configures which metrics to compute and the
parameters for the metrics. PCBS’s metrics library outputs:

e aJSON file with the clustering metrics for each combination of
the graph, clusterer, parameter set, and experiment round,

e a CSV file including the metrics of all runs specified by the
clustering configuration file

840

Listing 1: Example Clustering Configuration File

Input directory: /input_dir/

Output directory: /output_dir/

CSV output directory: /output_dir_csv/
Clusterers: ParHacClusterer; TigerGraphlLouvain
Graphs: 1j.gbbs.txt; amazon.gbbs.txt

GBBS format: true
Weighted: false
Number of threads:
Number of rounds: 1
Timeout: 7h

60

ParHacClusterer:
config:
weight_threshold: 1.0; 0.3
epsilon: ©0.01; ©0.1; 1

TigerGraphLouvain:
config:
maxIterations:

10; 20

Listing 2: Example Statistics Configuration File

Input communities: 1lj.cmty; amazon.cmty

statistics_config:
compute_edge_density: true
compute_precision_recall:
f_score_param: 0.5

true

2.7 Extending PCBS

Our PCBS design, as described in Section 2.6, can be extended to
include new datasets, algorithms, parameter searches, and more.

To add a new dataset, users can simply provide the graph data
in edge list or compressed sparse row format, and add it to the
configuration file.For integrating new clustering algorithms, users
need only implement a function that takes an input graph and
algorithm parameters, and returns a clustering result. This function
can then be registered with PCBS’s benchmarking framework. Users
can also extend the parameter search methods by implementing
custom search strategies, enabling more efficient exploration of
algorithm parameter spaces. New evaluation metrics can also be
added in a similar way.

Additionally, PCBS outputs benchmarking results both in a pan-
das dataframe and the CSV format, which allows for easy integra-
tion of visualization and analysis tools.

By leveraging these extension points, researchers and practi-
tioners can adapt PCBS to their unique requirements, facilitating
direct comparisons between novel methods and state-of-the-art
algorithms on both standard and domain-specific graphs.

3 EMPIRICAL EVALUATION

This section presents the results obtained by running the PCBS
benchmark. We study the performance of all algorithms described
in Section 2.3 on a variety of different graphs.

We show that using our PCBS benchmark library, we are able to
obtain new insights on comparing scalable parallel graph clustering
algorithms. In our experiments, we mainly want to answer the
following questions:

(1) For the same algorithm, how fast is the implementation in
PCBS compared to the implementations in other state-of-
the-art graph libraries and databases? (Section 3.1)




(2) How do the quality and running time of the PCBS implemen-
tations compare on different tasks and which implementa-
tion is the most suitable for the task? (Sections 3.2-3.5)

(3) How do different implementations that optimize the mod-
ularity/correlation objective compare with respect to the
ground truth? (Section 3.6)

We evaluate the clustering algorithms on four different tasks:

community detection, vector embedding clustering, dense subgraph
partitoining, and high resolution clustering. For each task, the ex-
periments use different input data and/or objectives. While we try
to group the experimental results into tasks to help organize the
results and analyze the behavior of the algorithms, we note that
the boundary between the tasks is not strict.
Results Summary. We find that PCBS is consistently much faster
than Neo4j, TigerGraph, and SNAP, and in most cases also faster
than NetworKit. However, it is worth noting that graph databases
(e.g. Neo4j and TigerGraph) offer more comprehensive database
functionality in addition to clustering.

We also observed that correlation clustering produces top qual-
ity clusters in community detection, vector embedding clustering,
and dense subgraph partitioning. While the quality of correlation
clustering has been studied on unweighted graphs (e.g., [57, 67]), to
the best of our knowledge, we are the first work to comprehensively
evaluate it on weighted graphs.

ParHAC [27] also achieves relatively high quality. While a single

run of ParHAC may be slower than other methods, it offers the
advantage of being a hierarchical approach. This means that in a
single run, it can generate clusterings at multiple levels of granular-
ity. In contrast, methods like correlation and modularity clustering
can only produce a single clustering in a one run.
Parallel Computation Environment. We use c2-standard-60 in-
stances on the Google Cloud Platform. These are 30-core machines
with two-way hyper-threading with Intel 3.1 GHz Cascade Lake
processors (with a maximum turbo clock speed of 3.8 GHz). We use
all 60 hyper-threads for our experiments, except for the experiments
specifically investigating how performance scales with the number
of threads, and for Neo4j, where we only use 4 threads, which is the
maximum number of threads supported in the community version.
Datasets. We use a variety of large real-world and synthetic datasets,
summarized in Tables 1 to 3. We also present results on five small
datasets from UCI machine learning repository [9] in the full ver-
sion of our paper. All graphs are undirected.

Table 1 presents unweighted real-world graphs from the Stanford
Network Analysis Project (SNAP) [41]. For these graphs, we used
the top 5000 communities as the ground truth, and the ground truth
clusters may be overlapping.

Table 2 describes the real-world vector embedding datasets [74]
from which we derive our weighted k-nearest neighbor graphs. The
embeddings all have 1024 dimensions, except for MNIST, whose
dimensionality is 768. The edge weights between vertices u, v are
m, where d(u,v) is the Euclidean distance between points
u, v. The ground truth clusters are non-overlapping. We present the
results for k = 50. In our full version of the paper, we also present
the results for k = 10 and k = 100.

Table 3 presents synthetic unweighted RMAT graphs [20] gen-
erated using GBBS [25] with parameters a = 0.5, b = ¢ = 0.1, and
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Table 1: Unweighted graph datasets from SNAP [41].

Dataset Num. Vertices | Num. Edges
Amazon (AM) 334,863 925,872
com-DBLP (DB) 425,957 2,099,732
YouTube-Sym (YT) 1,138,499 5,980,886
LiveJournal (LJ) 4,847,571 85,702,474
com-Orkut (OK) 3,072,627 234,370,166
Friendster (FS) 65,608,366 | 3,612,134,270

Table 2:

the number of ground truth clusters.

Embedding datasets from Yu et al. [74]. "Num. Clusters" is

Dataset Num. Vertices | Num. Clusters
MNIST 70,000 10
StackExchange 373,850 121
Reddit 420,464 50
ImageNet 1,281,167 1000
Table 3: Synthetic RMAT graphs.
Dataset | Num. Vertices | Num. Edges | Avg. Degree
RMAT-1 21 31,605,326 964.5
RMAT-2 24 396,360,032 189.0

d = 0.3. One of them is relatively dense (RMAT-1), while the other
is relatively sparse (RMAT-2).

We also generated a dataset by extracting 1,274,126 frequently

occurring short texts from the NGrams dataset [15], selecting those
that appear at least 120 times. These texts were embedded using
the textembedding-gecko@003 model [7], and an exact 50-nearest-
neighbor undirected graph was computed from the embeddings.
We created 96 000 labels by sampling point pairs across predefined
similarity buckets (from 0.76 to 0.99), ensuring diversity in both the
data points and their embedding similarities.! Finally, we labeled
these pairs based on their embedding similarity, designating pairs
with a similarity above 0.92 as belonging to the same cluster and
the rest as belonging to different clusters.
Evaluation. We evaluate the clustering quality by metrics that
compare with the ground truth as well as the edge density of the
clusters, which is not associated with any ground truth. We use
precision, recall, and F g score with f = 0.5 to measure the difference
between our clustering and the ground truth. We note that we use
B = 0.5 instead of the default setting of f = 1, which puts more
weight on precision than recall. This is because our focus is on
finding clusters of high precision.

We also compute the area under the precision vs. recall curve
(AUC). Again, since we focus on the high-precision regime, we
only consider results whose precision is in [0.5,1]. A larger AUC
score means the method obtains both high precision and recall. We
report the AUC times 2, so a perfect algorithm gets an AUC of 1.
We use AUC in addition to Fg score because it considers the overall
performance of an algorithm for many different parameter values,
while the Fg score measures the performance of an algorithm at a
single set of parameters.

Pareto frontier. We present the Pareto frontiers of (a) precision
vs. recall and (b) clustering quality (Fy 5 score) vs. runtime. The
Pareto frontier comprises non-dominated points. To create the
Pareto frontier, we run the clustering algorithms with different

U'This dataset is available for download at https://storage.googleapis.com/ngrams-
similarity-ds/index.html
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Figure 2: Slowdown of methods on SNAP graphs with respect to
PCBS. Neo4j cannot load orkut and friendster. TigerGraph cannot
load friendster. NetworKit failed to run on friendster. "LD" meth-
ods are Leiden-based. "LV" methods are Louvain-based. "MO" is a
Girvan-Newman implementation. The horizontal dashed line is at
slowdown=1.

parameters that allow the resulting clustering to cover the whole
precision range as much as possible. The result of each run is then
represented as a point (x, y), e.g., in the context of clustering quality
vs. runtime, x is the running time and y is the F, ' score. After that,
we keep each point (x,y), for which there does not exist another
point (x’,y’), such that x > x and ¢/ > y. In the precision vs.
recall Pareto frontier plots, the top right is better (high precision
and high recall). In the clustering quality vs. runtime Pareto frontier
plots, the top left is better (high quality and low running time).
Baseline Graph Libraries and Databases. We compare with Net-
worKit [61], Neo4j [5], TigerGraph [8], the original implementation
of TECTONIC [66], and clustering implementations provided in
SNAP [41]. All algorithms are parallel, except for the original imple-
mentation of TECTONIC and the implementations in SNAP, which
are sequential. The list of algorithms implemented in each graph
library or database can be found in Table 4.

The NetworKit algorithms are implemented in C++ with Python
bindings. Neo4j’s core components are implemented in Java. Tiger-
Graph algorithms are implemented using GSQL on top of the core
components implemented in C++.

The original TECTONIC implementation counts triangles in C,
and then writes the results to disk. Finally, C++ is used to read the
triangles from the disk and compute the clusters. It does not appear
to be optimized for running time.

Several graph libraries and databases have multiple different
modularity clustering implementations, and we describe them here.
Our parallel modularity and correlation clustering implementa-
tion is Louvain-based and optimizes the LambdaCC objective, as
described in Section 2.3.
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o NetworKit [61] has two parallel implementations for modularity
clustering: Louvain method (NetworKitPLM) [60] and Leiden
Method [62] (NetworKitParalleLeiden).

e SNAP [41] has two sequential implementations: CommunityGir-
vanNewman [34] and CommunityCNM [22].

e Neo4j [5] has three parallel implementations: Louvain method
(Neo4jLouvain), Leiden method (Neo4jLeiden), and a Girvan-
Newman method (Neo4jModularityOptimziation).

e TigerGraph [8] has a parallel Louvain clustering implementation
(TigerGraphLouvain).

We compare these modularity implementations in Section 3.1 and

Section 3.6. Other algorithms all have a single implementation in

each library/database, and we compare them in Section 3.1.

3.1 Running Time Comparison with Baselines

In Figure 2, we show the running time comparison of PCBS and
the baselines on selected clustering methods. The y-axis is the
slowdown compared to the method in PCBS. Other methods show
a similar trend, and we present the running time comparison of all
methods and their scalability the full version of our paper.

On all tested implementations, PCBS is more than an order of
magnitude faster than Neo4j, TigerGraph, and SNAP. Although
SNAP and Neo4j do not use all 60 threads, we show in the full
version of our paper that when using the same number of threads,
PCBS is still significantly faster.

We attribute the performance of PCBS to three levels of opti-
mization: (1) on the algorithm level, it uses theoretically-efficient
algorithms; (2) on the implementation level, it is carefully engi-
neered by, e.g., utilizing cache efficiently and minimizing the use of
locks to reduce contention; and (3) on the system level, it uses an ef-
ficient C++ framework for parallel graph algorithms, i.e., GBBS [25]
and ParlayLib [16]. While the Parlay and GBBS libraries contribute
to the speedup by providing essential primitives for working with
sequences and graphs, most of the overall speedup comes from
algorithm-specific optimizations. We note that primitives in Parlay
have similar speed as counterparts in other parallel runtimes like
TBB and ParallelSTL [16]. The remaining optimizations are gener-
ally algorithm-specific, and so for illustration we provide a more
comprehensive discussion of one algorithm later in the section. For
the remaining ones, we refer readers to the respective clustering
algorithm papers for further insights.

Compared to NetworKit, PCBS is significantly faster on the con-
nectivity clustering and k-core clustering tasks. On modularity
clustering, PCBS’s running time is comparable to NetworKitPLM
(NetworKitLV), but slower than NetworKitParallelLeiden (NetworK-
itLD). However, in our experiments, NetworKit failed to run on
friendster, and our implementation is the only implementation
that successfully ran on friendster. Contrary to connectivity and
k-core, these modularity clustering implementations can produce
different clusterings, we further study the running time and quality
of these different modularity clustering implementations under
different parameters in Section 3.6. Though NetworKitParallelLei-
den is faster, we will see that it obtains lower quality than PCBS’s
modularity clustering on some data sets.

On the largest two graphs, orkut and friendster, some bars
are missing because Neo4j cannot load orkut and friendster, and



Table 4: Undirected graph clustering algorithms implemented in PCBS and popular graph libraries and databases. The starred (*) imple-
mentations are sequential. The rows are sorted by the number of ticks. We exclude clustering algorithms that do not consider graph edges
(e.g., k-means clustering). Modularity Clustering includes both Louvain and Leiden implementations. Hop Preference & Node Preference
(HANP) [42] and Conductance Minimization [59] are variants of the Label Propagation algorithm. Neo4j implements a parallel version of the
sequential maximum k-cut algorithm [32]. Memgraph, NebulaGraph, and Oracle Graph are graph databases described in Section 4.

Graph Libraries Graph Databases
Ours | NetworKit | SNAP | Neo4j | NebulaGraph | Oracle Graph | TigerGraph | Memgraph
Modularity Clustering v v v v v v v v
Connectivity v v Ve v v v v v
KCore v v v v v v v
Label Propagation v v v v v v
SLPA v v v
Infomap v v v
SCAN v
TECTONIC v
Unweighted LDD v
HAC v
Affinity Clustering v
Correlation Clustering v
Approximate Maximum k-cut v
Conductance Minimization v
HANP v
faster than PCBS and NetworKitParallelLeiden (NetworKitLD), but
NeodjLeiden for more than 8 threads, NetworKitParallelLeiden (NetworKitLD)
e NeodjLouvain is the fastest. Though NetworKitLD is the fastest, its clustering
é’ x:ﬁxf‘f;mw quality Ais on average worse than PCBS’s correlation clustering as
= NetworKitLeiden shown in Section 3.6.
10! PCBS _ Our correlation clustering implementation employs several key
TigerGraphlowain optimizations. It uses an asynchronous, lock-free approach for local
search, addressing symmetry breaking challenges in parallel execu-
148 16 Th3r<(=.)a ds 30h tion. We implement a heuristic to skip unnecessary re-evaluations

Figure 3: Scalability of modularity clustering implementations on
1j with a resolution parameter of 1 and a maximum iteration count
of 10. ‘30h’ means using all 30-cores with two-way hyperthreading.

TigerGraph cannot load friendster due to memory constraints.
The SNAP modularity clustering implementation timed out on all
graphs with a time limit of 7 hours. We suspect that slower perfor-
mance of Neo4j and Tigergraph compared to PCBS and NetworKit
comes from the fact that they support a more general graph data-
base functionality, which incurs additional overheads.

We also compared our parallel TECTONIC implementation with
the original TECTONIC [66] implementation, which is sequential.
On the youtube data set with threshold 0.06, our implementation
is 37x faster than the original TECTONIC when run on a single
thread, and 387x faster when run on 60 threads.

For KCore, connectivity, TECTONIC, Label Propagation, and
SLPA, we use our implementation in the rest of the experiments
because PCBS’s implementations are the fastest. For KCore, connec-
tivity, and TECTONIC, PCBS’s implementations compute the same
clustering as baseline implementation. In the case of Label propa-
gation and SLPA, while the algorithms are essentially the same, the
resulting clusterings can be different because of non-determinism
in thread scheduling and randomization.

In Figure 3, we show the running time of different modularity
clustering implementations using various numbers of threads. We
see that PCBS is faster than Neo4j and TigerGraph on all thread
counts. On lower thread counts, NetworKitPLM (NetworKitLV) is
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of vertex movements, improving efficiency. Additionally, our imple-
mentation parallelizes the graph contraction step, which is often
executed sequentially in other implementations. These optimiza-
tions collectively contribute to the superior performance of our
correlation clustering algorithm.

While graph databases, such as Neo4j [5] and TigerGraph [8],
provide a richer functionality, on different graph clustering imple-
mentations, they are slower. For example, on the LiveJournal graph
from SNAP [41], PCBS is on average 32.5x faster than Neo4j and
303x faster than TigerGraph. Compared with state-of-the-art paral-
lel graph library NetworKit [61], PCBS is on average 4.54x faster.
We compute the average using the geometric mean. For Neo4j, we
use the execution time with 4 threads for both Neo4j and PBCS
when computing the average speedup. We considered the following
algorithms: connectivity, KCore, Neo4jLeiden, Label Propagation,
and SLPA. For TigerGraph and NetworKit, we use the execution
time with 60 threads for TigerGraph, NetworKit, and PBCS. We
considered the following algorithms: connectivity, KCore, Tiger-
GraphLouvain/NetworKitParallelLeiden, and Label Propagation.

3.2 Community Detection

In this section, we compare the algorithms on a community de-
tection task. Here the input is an unweighted graph, whose edges
describe real-world relations between individuals. The goal is to
recover ground truth communities in the graph with high precision,
by clustering the graph vertices.
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and runtime graph for the unweighted SNAP graphs. "ParHAC_¢"
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parameter €.

Table 5: Area under precision-recall curve (AUC) for precision > 0.5
on SNAP graphs.

Clusterer Ly AM DB YT OK FS Mean
Correlation 0.75 0.94 0.71 0.41 0.32 0.43 0.59
TECTONIC 0.67 0.94 0.67 0.42 0.21 0.29 0.53
Modularity 0.66 0.92 0.63 0.46 0.18 0.27 0.52
ParHAC-0.1 0.67 0.93 0.66 0.31 0.15 0.22 0.49
ParHAC-0.01 0.66 0.93 0.66 0.30 0.15 0.21 0.49
ParHAC-1 0.63 0.92 0.61 0.27 0.10 0.12 0.44
SLPA 0.65 0.86 0.57 0.00 0.00 0.00 0.35
SCAN 0.61 0.87 0.51 0.00 0.00 0.00 0.33
Affinity 0.49 0.81 0.47 0.00 0.00 0.00 0.30
LDD 0.42 0.60 0.38 0.25 0.00 0.09 0.29
KCore 0.20 0.55 0.23 0.39 0.03 0.12 0.25
LP 0.00 0.84 0.44 0.00 0.00 0.00 0.21

In Figure 4, we show the Pareto frontier plots on four unweighted
SNAP graphs. The results for all six graphs can be found in the full
version of our paper (the two other graphs show a similar trend).
We also present the area under the precision-recall curve (AUC) in
Table 5. We exclude connectivity because for unweighted graphs,
all vertices are in a single connected component.

Overall, correlation clustering usually achieves the best qual-
ity (for both Fy 5 score and AUC score), but it is relatively slow
compared to other clustering implementations. TECTONIC usu-
ally achieves lower quality than correlation clustering, but it is
much faster. LDD is the fastest method but has even lower quality
than TECTONIC. TECTONIC often has higher quality than other
methods such as LDD, KCore, LP, SCAN, and Affinity.
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On the largest two graphs, orkut and friendster, correlation
clustering gets a significantly higher Fy 5 score than the other meth-
ods. Modularity clustering obtains a lower score than correlation
clustering on friendster, because for large threshold parameters
which correspond to the highest Fy 5 scores, modularity clustering
runs out of memory. In comparison, correlation clustering can run
for parameter values spanning the entire precision-recall value
range. ParHAC and affinity overall perform worse than correlation
clustering, which is likely due to the fact that they heavily rely on
edge weights (which in this task are all set to 1). On friendster,
ParHAC with € = 1 also runs out of memory for some threshold
values due to the high memory cost of performing a large set of
changes to the contracted graph in the implementation when using
large values of e.

Compared to other methods, LDD and KCore do not have high
quality. SLPA, LP, and SCAN can achieve good quality on the small-
est amazon dataset, but have poor quality on the larger graphs, and
have a hard time achieving high precision. These methods do not
have a threshold parameter that controls the clustering resolution
and so their Pareto frontier cannot span the entire precision range.

Overall, based on our findings, we make the following recom-
mendations for community detection:

For generating high-quality clusters, correlation clustering is
recommended.

If one wants to sacrifice some quality for faster running time,
TECTONIC is a good option.

If speed is the top priority, LDD can be used. However, this comes
at a cost of a significant drop in quality.

3.3 Vector Embedding Clustering

In this task, the goal is to classify data points represented by vector
embeddings. We solve this task by building a weighted k-nearest
neighbor graph on the input vectors, i.e., a graph in which each
vertex represents a single vector, and each vector is connected to
its k nearest vectors. We use the embeddings described in Table 2
as input. Clustering the resulting k-nearest neighbor graph is an
unsupervised method for classifying the vectors. While clustering
by itself would not produce a label for each cluster, it is a powerful
method when the number of classes is not known upfront.

We show Pareto frontier plots in Figure 5 and the area under
the precision-recall curve (AUC) in Table 6. We exclude the k-core
algorithm because in the k-nearest neighbor graphs, all vertices are
in the k-core.

Here we can see that clustering algorithms that leverage edge
weights (affinity, correlation, modularity, and ParHAC) do better
than clustering algorithms that do not (LDD, SCAN, LP, SLPA, and
TECTONIC). One exception is that the simple connectivity algo-
rithm, which leverages edge weights by thresholding on them, is
not always better than the algorithms that do not use edge weights.
For example, on ImageNet, connectivity is noticeably better than
LDD and TECTONIC, but it is worse than TECTONIC on MNIST.

Among the top-performing methods (affinity, correlation, mod-
ularity, and ParHAC), correlation clustering and modularity clus-
tering are the fastest and achieve the highest Fy 5 scores and AUC



Table 6: Area under curve for precision > 0.5 on weighted k-nearest
neighbor graphs with k = 50.

Clusterer MNIST ImageNet Reddit StackExchange Mean
Correlation 0.88 0.77 0.33 0.20 0.54
Modularity 0.87 0.73 0.32 0.19 0.53
ParHAC-0.01 | 0.87 0.73 0.28 0.18 0.51
ParHAC-0.1 0.83 0.73 0.28 0.17 0.50
ParHAC-1 0.73 0.70 0.21 0.11 0.44
Affinity 0.79 0.66 0.16 0.08 0.42
LP 0.64 0.57 0.06 0.16 0.36
SLPA 0.25 0.50 0.08 0.17 0.25
TECTONIC 0.34 0.27 0.08 0.06 0.18
Connectivity | 0.16 0.42 0.07 0.04 0.17
LDD 0.11 0.25 0.04 0.02 0.11
SCAN 0.00 0.00 0.05 0.00 0.01

scores. The quality of affinity clustering and ParHAC are compara-

ble and are slightly lower than correlation clustering and modularity

clustering on Reddit and StackExchange.

The propagation-based methods LP and SLPA can sometimes
perform well (e.g., on ImageNet), but their performance is not stable
and they have very low scores on Reddit. While LP is faster than
the top-performing methods, SLPA is not significantly faster and
does not show a clear advantage over other methods.

Overall, based on our findings, we make the following observa-
tions for the vector embedding clustering task:

e For generating high-quality clusters at only a few granulari-
ties, correlation clustering and modularity clustering are recom-
mended.

e For generating high-quality clusters at many different granularity
levels, ParHAC and affinity clustering are recommended because
of their hierarchical nature. Though affinity clustering is slower
than ParHAC and correlation clustering on these four data sets,
we note that it is faster on larger data sets, as shown in Section 3.2.

o For fast clustering without the need to tune parameters, LP is
recommended, although the clustering quality can be unstable.

e LDD and connectivity are orders of magnitude faster than corre-
lation clustering. While their quality is significantly lower, the
fact that non-trivial clustering can be achieved extremely quickly
raises a question whether a fast high-quality method exists.

e TECTONIC provides a middle ground in the runtime-quality
trade-off. It is faster than correlation clustering, and has higher
quality than LDD and connectivity. However, its quality is lower
than that of correlation clustering in most cases.

3.4 Dense Subgraph Partitioning

In this section, we evaluate the algorithms on a dense subgraph
partitioning task. Here, the goal is to group vertices into dense
clusters. Note that this is different from the dense subgraph discov-
ery setting, where we only want to find a single dense subgraph.
The main difference from the community detection task is that our
goal is to directly optimize cluster density, rather than optimizing
quality with respect to ground truth labels. In Figure 6, we show the
weighted edge density mean of the clusters on artificially generated
unweighted RMAT graphs. We refer the readers to Section 2.5 for
the definition of weighted edge density.
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Figure 5: (Top) The Pareto frontier of precision and recall for the
weighted k-nearest neighbor graphs (k = 50), using PCBS methods.
(Bottom) The Pareto frontier of F) 5 score and clustering time on
k-nearest neighbor graphs (k = 50). The plot for all 4 graphs are in
the full version of our paper.

Modularity and correlation clustering obtain the densest clus-
ters. When the number of clusters is relatively small, modularity
clustering produce clusters denser than correlation clustering on
average, but when the number of clusters is very large, correlation
clustering produces denser clusters. ParHAC also produces dense
clusters, but overall less dense than modularity and correlation
clustering. LDD and TECTONIC produce less dense clusters. SCAN
can produce dense clusters when the number of clusters is very
small, but cannot produce dense clusters with larger number of
clusters. Label propagation and affinity clustering can only produce
small number of clusters, and the density on these two datasets are
similar to SCAN.

Overall, we recommend using modularity clustering when the
number of clusters is relatively small, and correlation clustering
otherwise.

3.5 High Resolution Clustering

This task mimics near-duplicate detection, where we want to find
data points that are highly similar to each other. This is a natural
task to solve on very large corpora to identify semantically simi-
lar entities. In this task, the ground truth clusters are very small
and there are many more ground truth clusters than in the previ-
ous tasks. Thus, we call this a high-resolution clustering task. We
provide the new NGrams dataset since there are very few large
near-duplicate detection datasets with ground truth labels. Figure 7
shows the Pareto frontier plots for precision vs. recall and Fy 5 score
vs. runtime on the NGram graph. We also present the AUC values
in Table 7.
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Table 7: Area under curve for precision > 0.5 on the NGram graph
with k = 50.

ParHAC-0.01 0.83
Affinity 0.82
Correlation 0.77
Connectivity ~ 0.77
ParHAC-0.1 0.74
TECTONIC 0.64
Modularity 0.63
SLPA 0.58
LP 0.57
SCAN 0.56
ParHAC-1 0.46
LDD 0.38

Overall, ParHAC with small € values (0.01) and affinity clustering
achieve the highest quality, obtaining the best AUC and Fj 5 scores.
We observe that ParHAC’s performance decreases rapidly as € in-
creases, with the e = 1 variant performing significantly worse than
the variants with smaller € values. This highlights the importance
of using small approximation factors for ParHAC on this type of
data, which is expected because we need high accuracy to detect
near duplicates. Correlation clustering and connectivity clustering,
while not the top performers, still show good results and are among
the better-performing methods.

Based on our findings, we make the following observations:

o ParHAC with small e values or affinity clustering are best suited
for this task.

e Connectivity gives close to the best clusters with much faster
running time.

3.6 Comparing Different Modularity Clustering
Implementations

Correlation and modularity clustering methods have shown a strong
performance overall compared with other clustering algorithms in
our benchmark. While parallel modularity clustering algorithms
usually follow the same overall framework of local search and
graph coarsening [17], the available implementations differ in a
number of ways (e.g., in terms of synchronization, symmetry break-
ing, heuristic optimizations, or the use of refinement [57]) that
result in differences in the running time and clustering quality. In
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Table 8: The modularity scores with y = 1 for LJ, using different
modularity methods.

Clusterer Modularity Objective
PCBS Modularity 0.755035
Neo4j Louvain 0.754733
NetworKit PLM 0.753670
Neo4j Leiden 0.743583
NetworKit Leiden 0.662478
Neo4j Modularity 0.654594
TigerGraph Louvain 0.022660

this section, we perform a comparison between PCBS’s correla-
tion and modularity clustering and the different baseline clustering
algorithms that optimize the modularity objective.

In Figure 8, we show the precision and recall comparison of
different modularity implementations on a subset of datasets. The
results on all datasets can be found in the full version of our paper.
They show a similar trend. SnapCNM is only able to finish on MNIST
so it is only shown on a single subplot.

We see that PCBS’s correlation clustering and modularity clus-
tering implementations are competitive with NetworKit’s PLM
and NetworKit’s ParallelLeiden implementations. Other modular-
ity objective-based methods are much slower and do not achieve
higher quality. Methods that do not have a resolution parameter
have unstable clustering quality (Neo4jModularityOptimization,
Neo4jLouvain, and TigerGraphLouvain).

Compared to NetworKitPLM, PCBS (ParallelCorrelation and Par-
alleIModularity) is slightly slower on the weighted graphs, but
is faster and has higher quality on the unweighted graphs. Com-
pared to NetworKitParallelLeiden, PCBS has higher quality on most
datasets, and has similar running time.

Finally, we compare the modularity objective obtained by differ-
ent modularity methods. In Table 8, we show the modularity scores
with y = 1 for LJ, using different modularity methods. In the full
version of our paper, we show the scores for all unweighted graphs.
We observe that PCBS’s modularity clustering, Neo4jLouvain, Net-
worKitPLM, and Neo4jLeiden get similar scores, and are the highest
ones. Neo4jModularity, and NetworKitLeiden get similar scores,
and are slightly lower than the methods above. TigerGraphLouvain
gets the lowest score.
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Figure 8: The Pareto frontiers for the unweighted SNAP graphs, using
different modularity implementations.

4 RELATED WORK

Clustering using Graph Processing Libraries. Libraries for
graphs, such as NetworkX [36], SNAP [41], GBBS [25], GraphMine-
Suite [14], and NetworKit [61], are software packages that provide
data structures and (parallel) algorithms for representing and op-
erating on graphs. These libraries primarily focus on in-memory
computation and analysis of graph data, offering flexibility to build
custom graph processing applications and algorithms. PCBS is a
clustering library built on top of GBBS, an existing graph process-
ing library; our results show that in general PCBS implementations
are competitive or faster than the fastest existing library implemen-
tations of many graph clustering algorithms (see Section 3).
Clustering using Graph Databases. Graph databases are special-
ized database management systems designed explicitly for storing
and querying highly interconnected data represented as nodes,
edges, and properties. Graph databases support declarative graph
query languages like Cypher, Gremlin, and SPARQL, and are opti-
mized for persisting and retrieving graph data. Examples of popular
graph databases include Neo4;j [5, 30], TigerGraph [8], Amazon
Neptune [1], Memgraph [3], OrientDB [6], ArangoDB [2], and Neb-
ulaGraph [4]. Besta et al. [13] provide a comprehensive survey
of graph databases. Compared with clustering implementations
in graph databases, PCBS implementations are significantly faster,
likely due to a combination of using efficient parallel data structures
and algorithms, and not paying for any storage and data structural
overheads incurred by existing graph database formats.

Prior Studies on Graph Clustering. Due to the importance of
the clustering problem and the abundance of different algorithms,
there are many comparative studies on clustering algorithms. Yang
and Leskovec [72] compare clustering algorithms on social, collab-
oration, and information networks. Unlike our work, their work
focuses primarily on community scoring functions and does not
compare the running times of the algorithms. Fortunato [33] survey

847

clustering methods in graphs and compared many algorithms; un-
like the present work, they do not present experiments for parallel
methods. There are also many works that evaluate algorithms on
artificial networks [43, 50-52, 58, 73]. Lastly, there are also several
graph clustering benchmarks for overlapping clusters and hetero-
geneous graphs [39, 40, 69].

The aforementioned works usually only compare the quality or
running time of the algorithms, but not both simultaneously unlike
this work. For the works that compare both, they do not experiment
with parallel algorithms or study scalability with increasing core (or
machine) count. Bader et al. [10]’s graph clustering challenge has
an objective function, where both quality and speed contributed
to the final scores, but their quality measures do not compare with
ground truth clusters. Moreover, they only released graph datasets
but did not provide comprehensive experimental results. As far as
we know, our work is the first to study parallel graph clustering
algorithms both in terms of quality and running time.

5 CONCLUSION

The ParClusterers Benchmark Suite (PCBS) provides a compre-
hensive platform for evaluating scalable parallel graph clustering
algorithms. Our experiments yielded three key insights: (1) many
of PCBS’s clustering implementations are significantly faster than
those of existing graph libraries and databases, while obtaining
very good, and in many cases the best, clustering quality; (2) in
the 4 tasks we studied, the best overall quality (AUC) is obtained
by either correlation clustering or ParHAC. We note that these
methods are not included in many popular graph algorithms pack-
ages (see Table 4), and we hope that our positive results encourage
more research on their quality and practical applicability. (3) PCBS’s
modularity-based methods are competitive or superior in quality
and speed compared to other implementations. These findings high-
light PCBS’s value in enabling thorough, standardized comparisons
of clustering algorithms.

PCBS’s modular design allows users to easily extend it with
new algorithms, datasets, or metrics, fostering innovation in graph
clustering research. Researchers and practitioners can integrate
their own custom clustering algorithms and datasets into PCBS,
enabling direct comparisons with state-of-the-art methods on both
standard and domain-specific graphs.

Besides the clustering applications explored in this work, there
are also many other interesting future directions. One idea is to
study how weighted graph clustering algorithms perform when
derived weights are added to the unweighted graph (for example,
weights derived from node degrees as in [29]). Moreover, we observe
a big gap between the clustering time of the slower algorithms (e.g.,
correlation clustering and ParHAC) and the fastest (e.g., LDD and
connectivity). It would be interesting to study if we can close the gap
by developing much faster clustering algorithms with close-to-best
clustering quality that obtain the best of both worlds.
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