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Abstract
Breadth-�rst search (BFS) and single source shortest paths
(SSSP) are two fundamental graph problems with countless
real-world applications. It is of major interest to develop
e�cient parallel algorithms and implementations to solve
these problems on modern multicore architectures. The chal-
lenge is that these computations are often irregular, and
there is no known algorithm that guarantees polylogarith-
mic depth for all graphs. For BFS, this paper describe several
performance engineering methods to develop a practical par-
allel implementation for all classes of real-world graphs. For
SSSP, we introduce a unique contraction based preprocess-
ing method which signi�cantly speeds up queries on high
diameter graphs, like road networks. Our method is generic
and can be used with any algorithm for SSSP queries.

1 Introduction
In the BFS problem, we are given an undirected, unweighted
graph ⌧ = (+ , ⇢) with |+ | = = and |⇢ | = <. We are asked
to construct a data structure that, given any source vertex
D 2 + , produces ⇡8BC (D, E), the length of the shortest path
from D to each vertex E 2 + . The runtime is broken into
two components. The time to construct the data structure is
called preprocessing time. The time to output the distances
of every vertex from a given source is called query time. The
SSSP problem is de�ned similarly, but the graph is weighted.
In this paper we are primarily interested in the query

time of our algorithms and only require the preprocessing to
execute within a reasonably small time limit. In Section 2 we
describe the numerous performance engineering methods
we used to develop a practical parallel implementation of BFS.
In Section 3 we describe our contraction based preprocessing
method to speed up SSSP queries.

2 Performance Engineering BFS
We parallelize the standard sequential approach to BFS of it-
eratively computing frontiers of increasing depth. A frontier
is the set of all points with a given depth or distance from
the source. We �rst initialize the depth-0 frontier to contain
the source vertex. Then, the depth-8 frontier is all vertices
which are neighbors of a vertex in the depth-(8 � 1) frontier
and are not contained in any prior frontier. By computing the
frontiers in ascending order, we can guarantee that by the
time we compute the depth-8 frontier, the vertices contained
in frontiers of depth less than 8 are already known. Although
we must construct frontiers sequentially in order of depth,

we can parallelize the construction of individual frontiers.
To do this, we take any unvisited neighbors of the current
frontier and atomically mark them as visited. Any successful
candidates are added to the next frontier. This process can
be parallelized easily. We provide the pseudo-code below.

Algorithm 1 Breadth-First Search (BFS)
1: procedure BFS(⌧ , B)
2: 38BCB  [1 for E 2 + ]
3: 38BCB [B]  0, 3  0, �  {B}
4: while � is not empty do
5: 20=3B  �atten( [neighbors(E) for E 2 � ])
6: �  {E 2 20=3B if 38BCB [E] .CAS(1,3)}
7: return 38BCB

Real-world graph datasets can be largely categorized into
one of two types. The �rst, which we’ll refer to as dense or
low diameter, exhibit properties of social networks: high av-
erage degree, low diameter, and scale-freedom. The second,
which we’ll refer to as sparse or high diameter, exhibit
properties of road networks: low average degree and high
diameter. During preprocessing, we use a heuristic to predict
the type of graph. We sample a small set ' of random points,
then perform two rounds of BFS, treating ' as a depth-0 fron-
tier. We then compare the size of our sample to the size of
the depth-2 frontier. On dense graphs, the blowup in size is
on the order of hundreds to thousands. On sparse graphs, the
blowup in size is typically less than ten. Equipped with our
high level algorithmic approach and a tool to distinguish be-
tween dense and sparse graphs, we will now discuss various
optimizations we included in our BFS implementation.
Direction Optimization. Due to the high fan-out of dense
graphs, frontiers can become very large during BFS. In fact,
it is typical for the vast majority of vertices to be contained
in the middlemost one or two frontiers of the BFS. When
creating or expanding these frontiers, the standard approach
to frontier generation can be ine�cient. In particular, the
number of candidates can exceed = when individual vertices
are the neighbors of multiple di�erent frontier vertices. A
known optimization on dense graphs is to change the way
large frontiers are expanded [1]. Instead of compiling the
unvisited neighbors of the frontier, each unvisited vertex
checks if it is a neighbor of the frontier. This eliminates the
need for synchronization since each candidate is only ac-
cessed by a single thread. Moreover, by eliminating duplicate
candidates, we reduce the number of writes and the amount
of space needed to maintain the list of candidates.
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Observe that for an unvisited vertex, we may add it to
the next frontier as soon as it �ns a neighbor in the current
frontier. Thus, the earlier such a neighbor is found, the fewer
neighbors need to be checked. To increase the chances of
�nding a neighbor in the frontier, we check the neighbors in
order of descending degree as a heuristic.We sort the vertices
in each adjacency list accordingly during preprocessing.
We use a heuristic to decide whether to use standard or

direction-optimized frontier expansion. We use direction-
optimization on frontiers where the product of its depth, its
size, and the global average vertex degree exceeds the num-
ber of vertices. Multiplying the frontier size by the average
degree estimates the number of vertices in the next frontier
in the �rst half of the BFS. We include the depth in the cal-
culation because the already-visited vertices, which grow
more numerous at higher depths, are �ltered out �rst. We ob-
serve experimentally that the cost of direction-optimization
decreases substantially at higher depth. Thus, in the latter
half of the BFS, the direction-optimized approach is more
e�cient even on medium-sized frontiers. We �nd on our
dense datasets that including the frontier depth as part of
the product seems to estimate the more e�cient approach
with good accuracy. We disable direction optimization on
sparse graphs, as the frontiers are never large enough for it
to be worth using over standard frontier expansion.
Reducing Synchronization Overhead. In sparse graphs,
the maximum frontier size remains low throughout the BFS,
so the parallel steps of the BFS have limited work. As a result,
the BFS is often unable to saturate the majority of processors
available. In fact, we �nd that on some of our data, lowering
the maximum number of worker threads to 8-16 yields a
signi�cant speedup over using all threads. This is due to
additional synchronization overheads from managing more
threads, most of which may be unproductive. Some sched-
ulers, such as ParlayLib’s, can limit the number of worker
threads available at runtime. However, other schedulers, such
as OpenCilk’s, are limited in this functionality.
To compensate for this, we implement a lightweight job

pool that works on any scheduler. We break the jobs of a
frontier into �xed-size blocks and assign single blocks to pro-
cessors, which will in run the standard frontier construction
procedure and push block-sized partial frontiers back into
the pool for the next level of BFS. We �nd that this job pool
gives us almost all the speedup that limiting the number of
threads gives us. Using both the pool and limiting threads is
better than either approach individually.
Memory Tricks. Several of the optimizations we imple-
mented are directly related to reducing cache misses, page
fetches, and unnecessary writes. First, we simply reuse the
list of distances to indicate whether vertices are visited, sav-
ing space.We initialize all distances to in�nity.We atomically
set the distance of a vertex to the depth of its frontier once
known. A vertex is visited if its distance is not in�nite.

Graph Type = <
Soc-LiveJournal Social 4.8M 42M
ENWiki-2023 Web 6.6M 150M
Hollywood-2009 Collaboration 1.1M 55M
Erdos-Renyi Random 9.9M 490M
South-America Road 22M 29M
North-America Road 86M 110M
GeoLifeNoScale-5  -nn 25M 77M
Grid-1000-10000 Synthetic 9.9M 20M

Table 1. Input graph datasets used in our experiments.

We also preprocess an ordering for the vertices and relabel
the vertices accordingly. By ordering the vertices so that two
vertices are more likely to be nearby in the ordering when
they appear in the same frontier, we can reduce the number
of cache misses when fetching adjacency lists. We tested a
number of di�erent orderings cognizant of spacial locality,
including shingling and layered label propagation [4] [3].
However, the ordering that we found had the best results
was simply sorting the vertices by degree. We have two
suspected reasons for the e�ectiveness of this ordering. The
�rst is that high degree vertices are more likely to appear
earlier in the search. The second is that high degree vertices
may appear together in “cities” where high degrees are more
characteristic of their members. Either scenario would lead
to fewer cache misses using this ordering. We also found that
using this ordering with CSR is more e�ective than using
other storage formats that may pack data in a more cache-
friendly way, such as keeping a cacheline-length pre�x of a
vertex’s adjacency list next to its CSR row pointer.

Our �nal optimization limits TLB misses by aligning data
to 2MB chunks and using Linux’s madvise system call to
use huge pages, storing the data in larger memory blocks.

2.1 BFS Experimental Results
All of the experiments presented in this paper were run on a
96-core machine (with two-way hyperthreading), with 4 ⇥
2.1 GHz Intel Xeon(R) Platinum 8160 CPUs (each with 33MiB
L3 cache) and 1.5TB of main memory. Table 1 describes the
graph datasets that we used in our experiments. All edge
weights were generated uniformly at random for SSSP.

Figure 1 compares the time taken to run BFS on our datasets
using di�erent implementations. The �rst four graphs are
“dense” and the remaining “sparse”. We compare against
the BFS implementation included in ParlayLib’s examples
and the BFS implementation from the GBBS benchmarking
suite [6]. Measurements were taken as the average of 10
queries with random starting points, after a single warmup
query. Our implementation is 4�8⇥ faster than the ParlayLib
example and 1.15 � 2⇥ faster than GBBS on dense graphs.
On sparse graphs, our implementation is 1.25 � 2⇥ faster
than the ParlayLib example and 3 � 6⇥ faster than GBBS.
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Figure 1. Throughput of BFS with various implementations.

3 Contraction-Based SSSP
SSSP Related Work. Two approaches to parallel SSSP com-
putation are stepping algorithms [2, 7, 10] and contraction
hierarchies [5, 8, 11]. Our technique combines the power of
these two approaches. Stepping algorithms are highly e�ec-
tive on low diameter and well connected graphs, yielding
highly parallel and work-e�cient algorithms. However, they
struggle on high diameter graphs such as road networks
where the depth of any shortest path tree is high. Intuitively,
this is because if the frontiers are not large enough, there
is not enough work to saturate all of the threads, but if the
frontier is too large the total work of the algorithm increases.
Parallel contraction hierarchies (PCH) solve this issue by con-
tracting the input graph with several rounds of contraction
while constructing a new auxiliary graph. E�ectively, any
shortest path tree in the auxiliary graph has reduced depth.
However, PCH is still outperformed by stepping algorithms
on low diameter graphs such as web graphs.

3.1 Our Approach For SSSP
At a high level, our approach is to perform a few rounds
of contraction on the input graph, and then use a stepping
algorithm to answer queries on the smaller and denser con-
tracted graph. Our contraction method shares similarities
to contraction hierarchies, but di�ers in a few key ways: (1)
we do not contract the graph to completion, (2) we perform
queries in the contracted graph and not the resulting auxil-
iary graph, (3) we use d-stepping for queries rather than the
typical bi-directional search in contraction hierarchies, and
(4) we use a much simpler (and easier to compute) criteria
for contracting vertices.

v

u1

u2

u3u4

u5

u1

u2

u3u4

u5

contract(v)

Figure 2. A vertex E is contracted. The red edges and E
are removed from the graph. The dashed green edges are
inserted. The solid green edge has its weight updated.

Contracting Vertices. When a vertex E is contracted, it
and all its incident edges are removed from the graph. The
length of any paths through E are preserved by adding short-
cut edges between each pair of neighbors of E . Formally, for
all 4 = (D1,D2) 2 # (E)2 the edge (D1,D2) is added to E with
weightF (4) = F (E,D1)+F (E,D2). If 4 2 E already, its weight
is set to min(F (4),F (E,D1) + F (E,D2)). Figure 2 shows an
example of a vertex being contracted. Note that any indepen-
dent set of vertices can be contracted in parallel (performing
a reduction over all the weights of parallel edges inserted).
Thus the graph can be contracted in multiple rounds where
each round a large independent set of the vertices contracts.
Contraction Criteria.When a vertex E with degree 3 con-
tracts, 4� = 3 edges are removed from the graph and up
to 4+  3 (3 � 1)/2 edges are added. Thus to minimize the
amount of extra edges added to the graph PCH algorithms
simulate contracting vertices and attempt to �nd an inde-
pendent set of vertices whose contraction minimizes 4+ � 4� .
Prior work [7] has found that this simulation of contracting
vertices is the most expensive step in the algorithm.

Instead, our algorithm works with a small �xed constant
degree threshold 2 such that only vertices with degree  2
may be contracted. This ensures that each contraction only
increases the total edges by at most 2 (2 � 1)/2 � 2 . Addition-
ally, determining if a vertex has degree  2 is trivial and
much easier to compute. Surprisingly, in our experiments
we found that the total number of edges almost always de-
creases, indicating that the shortcut edges often already exist
in the graph. We use 2 = 4 in our implementation.
Contraction Rounds. We call a vertex live if it has not
been contracted and has had degree  2 in every round. Our
algorithm repeatedly computes a large independent set of
the live vertices to contract each round, until their are no
live vertices. Thus once a vertex’s degree exceeds 2 it is no
longer considered for contraction (although its degree could
decrease again). We can compute a large independent set of
live vertices in$ (2 ·=8 ) work and$ (1) depth (where =8 is the
number of live vertices in round 8) using a single round of
Luby’s algorithm for maximal independent set [9]. The size
of each independent set is at least =8/2 in expectation, thus
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Original Graph

Num. Vertices 4.8M 6.6M 1.1M 9.9M 22M 86M 25M 9.9M
Num. Edges 42M 150M 55M 490M 29M 110M 77M 20M
SSSP Depth 50 26 35 37 17,995 12,447 11,798 7,248
d-Stepping Time 0.25 0.26 0.048 0.54 0.81 8.3 0.42 0.51

Contracted Graph

Num. Vertices 2.8M 5.9M 1.0M 9.9M 5.7M 13M 24M 6.3M
Num. Edges 40M 150M 55M 490M 16M 40M 77M 22M
SSSP Depth 50 26 35 37 5,875 3,630 11,558 4,633
d-Stepping Time 0.093 0.23 0.045 0.54 0.20 1.3 0.38 0.29

Query Times Uncontraction Time 0.071 0.060 0.0092 0.027 0.092 0.56 0.084 0.023
Total Query Time 0.16 0.29 0.055 0.57 0.29 1.9 0.46 0.32

Table 2. Statistics for the contracted graphs and the running times for d-stepping and total query time.

this process takes $ (log=0) depth w.h.p. The work in each
round decreases geometrically resulting in a total expected
work of $ (=0). In our implementation we stop contraction
once the number of live vertices is < 106.
SSSP Queries. To answer an SSSP query from source B , we
must �rst undo some contractions to ensure that B is present
in the graph and that its shortest distances to other vertices
are still correct. We call this process exposing vertex B . Dur-
ing preprocessing, we store the vertices that contracted in
each round along with the edges that were deleted. We call
the vertices that these edges connect to, the dependencies
of the contracted vertex. To expose a vertex E , �rst its de-
pendencies are exposed recursively. The base case of this
recursion is a vertex that is already present in the graph.
After exposing all of E ’s dependencies, E and all of the edges
that contracted with E are reinserted into the graph. Thus
the state of the graph is as if E (and a small local subgraph
of its recursive dependencies) were never contracted.
After exposing B , the algorithm performs d-stepping [7]

to compute the shortest path distance from B to every ver-
tex present in the contracted graph. For road networks, the
contracted graph has much fewer vertices, fewer edges, and
is low diameter, so d-stepping is extremely practical. For
already low-diameter graphs the contraction process may
have had little e�ect, but d-stepping is known to be e�ec-
tive on these graphs already. Notably our algorithm can use
any other highly optimized SSSP algorithm for low-diameter
graphs as a subroutine. Our implementation uses d = 220.

Finally, the algorithm must uncontract the graph to com-
pute the distances to vertices not present in the contracted
graph. The rounds of vertex contractions are “undone” in re-
verse order, computing the distance from the source to each
vertex in the given round. This order ensures that in any
given round, we have already computed the distance of the
dependencies of every vertex in this round. Then the short-
est path distance ⇡8BC [E] of E is simply minD2# (E) ⇡8BC [D] +
F (D, E) where # (E) is the dependencies of E . This can be

computed in parallel for the vertices in a single round, and
it can be done without modifying the graph. Uncontraction
takes $ (=0) expected work and $ (log=0) depth w.h.p.

3.2 SSSP Experimental Results
Table 2 shows statistics about the contraction process and
running times for SSSP queries with and without our method.
We conclude that our technique can signi�cantly speed
up SSSP queries on high diameter graphs, while adding
negligible overhead for low diameter graphs.We note
that it is possible to completely eliminate the overhead on
low diameter graphs using the heuristic we described for
BFS to determine the type of graph during preprocessing.
On most high diameter inputs (South-America, North-

America, and Grid-1000-10000) the contraction process no-
tably decreases the depth of the shortest-path trees. For these
graphs and one low diameter graph (Soc-LiveJournal), the
number of vertices decreases signi�cantly from contraction,
as well as the number of edges in some cases. The number
of vertices decreases by 59% on average and the number of
edges decreases by 26% on average for these graphs. The
lower depth and smaller size of the graph allows for excellent
speedups for d-stepping, 3.7⇥ on average. The uncontraction
is highly parallel and fast, adding little overhead. The total
query time using our algorithm is on average 2.6⇥ faster
than d-stepping. The exceptional high diameter graph is the
 -nn graph (GeoLifeNoScale-5), on which our contraction
has no impact since each vertex has degree at least 5.
On low diameter inputs (ENWiki-2023, Hollywood-2009,

and Erdos-Renyi) the contraction process has little impact.
Thus the running time for d-stepping stays around the same.
Since little contraction occurred, the overheads of uncon-
tracting vertices during query time are very low, and the
total query time is only slightly worse than d-stepping. Our
results indicate that our algorithm retains the excellent query
performance of d-stepping on low diameter graphs while
yielding signi�cant speedups on high diameter graphs.
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