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Abstract. We use unoriented versions of instanton and knot Floer ho-
mology to prove inequalities involving the Euler characteristic and the
number of local maxima appearing in unorientable cobordisms, which
mirror results of a recent paper by Juhasz, Miller, and Zemke concerning
orientable cobordisms. Most of the subtlety in our argument lies in the
fact that maps for non-orientable cobordisms require more complicated
decorations than their orientable counterparts. We introduce unoriented
versions of the band unknotting number and the refined cobordism dis-
tance and apply our results to give bounds on these based on the torsion
orders of the Floer homologies. Finally, we show that the difference be-
tween the unoriented refined cobordism distance of a knot K from the
unknot and the non-orientable slice genus of K can be arbitrarily large.

1. Introduction

A classical problem in low-dimensional topology is the study of embed-
ded orientable surfaces in 4-manifolds. The special case of surfaces with
boundary has been a particularly popular topic for a very long time, and it
includes for example questions pertaining to the slice genus of a knot or the
complexity of a knot or link cobordism.

On the other hand, the study of non-orientable surfaces and knot cobor-
disms in I ×S3 has received increasing attentions in the last decade [Bat14,
OSSz17a, GM18, Fan19], and there are now several bounds to the non-
orientable slice genus of a knot. However, if a knot bounds a non-orientable
surface of a given ‘genus’, it is not clear how complicated the embedding must
be. In this paper we tackle this question by proving a non-orientable ana-
logue of a recent result of Juhász–Miller–Zemke. In a recent paper [JMZ20],
they proved an inequality involving the number of local maxima and the
genus appearing in an oriented knot cobordism using a version of knot Floer
homology. In this paper, we prove similar inequalities for non-orientable
knot cobordisms using the torsion orders of unoriented versions of knot
Floer homology and instanton Floer homology.

As for knot Floer homology, we use Ozsváth–Stipsicz–Szabó’s unoriented
knot Floer homology HFK′ [OSSz17b], which is a module over F[U ]. For a
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knot K ⊂ S3 we define its unoriented knot Floer torsion order as

OrdU (K) = min {n ≥ 0 |Un · Tors = 0} ,

where Tors ⊂ HFK′(K) denotes the F[U ]-torsion subgroup.
In the instanton setting, we use Kronheimer and Mrowka’s instanton Floer

homology with local coefficients, denoted by I♯(K), which is a module over
a Noetherian domain S which has a special element P [KM21a]. We will
restrict our attention to certain domains S, for which I♯(K) is functorial for
nonorientable knot cobordisms with singular bundles represented by surfaces
ω with ∂ω on the cobordism. In this case, it can be shown that for a knot
K and for the torsion part Tors of I♯(K), there is a positive integer n such
that Pn · Tors = 0. Thus, we define

OrdI(K) = min {n ≥ 0 |Pn · Tors = 0} .

For an unorientable surface Σ with n boundary components, recall that
its non-orientable genus is

γ(Σ) = 2− χ(Σ)− n.

For example, RP2 (with an arbitrary number of punctures) has non-orientable
genus 1. Note that for unorientable knot cobordisms γ(Σ) = −χ(Σ). With
this notation in mind, we state our main theorem.

Theorem 1.1. Let K1 and K2 be knots in S3. Suppose that there is an
unorientable knot cobordism Σ in I×S3 from K1 to K2 with M local maxima.
Then

(1) OrdI(K1) ≤ max {OrdI(K2),M}+ γ(Σ)

and

(2) OrdU (K1) ≤ max {OrdU (K2),M}+ γ(Σ).

From a formal viewpoint, Theorem 1.1 is analogous to [JMZ20, Theorem
1.1]. The proof of Theorem 1.1 uses the functorial properties of HFK′ and
I♯ (see [Fan19, KM21a]), in a similar way as [JMZ20, Theorem 1.1] relies on
knot Floer homology cobordism maps [Juh16, Zem19c]. Despite being in-
spired by [JMZ20, Theorem 1.1], the proof of Theorem 1.1 must necessarily
deviate from it. Recall that in order to define a cobordism map in knot Floer
homology one needs to choose a properly embedded 1-manifold on the sur-
face, often called the set of decorations. In [JMZ20] the chosen decorations
were a pair of parallel arcs, which make the computations of the cobordism
maps more tractable. This choice does not work for non-orientable cobor-
disms in HFK′, so we are forced to choose different decorations, which make
the cobordism map more complicated. To circumvent this problem we re-
lated the resulting unorientable cobordism to an orientable one, then use a
stabilization lemma proved by Ian Zemke (cf. Lemma 5.4). In the case of
I♯, for a cobordism Σ to define a map, one needs a surface ω with boundary
∂ω ⊂ Σ. The natural choice for orientable cobordisms would be ω = ∅, in
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which case [JMZ20] applies verbatim to the case of I♯. The map can be de-
fined for the non-orientable surfaces we are interested in, but it will usually
vanish. To overcome this problem, we choose a particular ω that allows us
to control the induced map.

Remark 1.2. Note that while Theorem 1.1 is stated for unorientable cobor-
disms, both inequalities also hold for orientable cobordisms too. The proof
follows verbatim from [JMZ20], by replacing knot Floer homology with the
desired Floer theory.

We prove several applications of Theorem 1.1, which mirror those of
[JMZ20, Theorem 1.1].

1.1. Unorientable ribbon cobordism. A knot cobordism in I × S3 is
called ribbon if it has no local maxima. For example, a ribbon concordance
(i.e., a cobordism of genus 0) from the unknot to a knot K is equivalent
to a a ribbon disc for K. Theorem 1.1 has a straightforward application to
non-orientable ribbon cobordisms.

Corollary 1.3. Let K1 and K2 be knots in S3. Suppose that there is an
unorientable ribbon cobordism Σ in I × S3 from K1 to K2. Then

OrdI(K1) ≤ OrdI(K2) + γ(Σ)

and

OrdU (K1) ≤ OrdU (K2) + γ(Σ).

1.2. The unorientable refined cobordism distance. The standard cobor-
dism distance between two knots K1 and K2 is given by do(K1,K2) =
2g4(K1#K2), where g4 denotes the standard slice genus. This is not a
distance on the set of knots, because concordant knots have distance 0, but
it descends to a well defined distance on the concordance group [Baa12]. In
[JMZ20], Juhász, Miller, and Zemke define a refined cobordism distance on
the set of knots, and give lower bounds to it in terms of the torsion order in
knot Floer homology.

There are analogous unorientable notions too. For an (orientable or un-
orientable) cobordism Σ in I × S3 from K1 to K2 with m local minima and
M local maxima, let

|Σ| = max {m,M} − χ(Σ).

Definition 1.4. Given knots K1,K2,⊂ S3, we define the standard unori-
entable cobordism distance du and the refined unorientable cobordism dis-
tance dru between them as

du(K1,K2) = min {−χ(Σ)} and dru(K1,K2) = min {|Σ|} ,

where in both cases Σ varies over all unorientable connected cobordisms and
all genus-0 orientable cobordisms (i.e., concordances).
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Remark 1.5. The orientable counterparts, the standard orientable cobordism
distance do from [Baa12] and the refined orientable cobordism distance dro
from [JMZ20] are defined in the same way as in Definition 1.4, but the
surface Σ now varies over all orientable connected cobordisms. One can also
define analogous notions da and dra, which we can call all-surface cobordism
distances, where Σ varies over all (orientable or unorientable) connected
cobordisms.

It is immediate to see that do, du, and da are distances on the concordance
group and dro, d

r
u, and dra are distances on the set of knots.

Theorem 1.1 implies the following lower bounds.

Corollary 1.6. If K1 and K2 are knots in S3, then

|OrdI(K1)−OrdI(K2)| ≤ dru(K1,K2)

and

|OrdU (K1)−OrdU (K2)| ≤ dru(K1,K2).

In view of Remark 1.2, one can in fact replace dru with dra. However, for
orientable cobordisms one can also use the standard versions of instanton
and knot Floer homology, which should give better bounds.

We use Corollary 1.6 to show that the difference between dru(K1,K2) and
du(K1,K2) can be arbitrarily large.

Corollary 1.7. For all γ ≥ 1 and m ≥ 1, there exists a knot Kγ,m with
du(Kγ,m, U1) = γ4(Kγ,m) = γ, and such that dru(Kγ,m, U1) ≥ γ +m.

Thus, each unorientable surface Σ ⊂ B4 with ∂Σ = Kγ,m and γ(Σ) = γ
has at least m local minima (with respect to the radial function).

The knots Kγ,m that we consider in the proof of Corollary 1.7 are a
subfamily of torus knots, for which OrdU can be computed explicitly.

1.3. The unoriented band-unlinking number. For a knot K in S3, the
oriented band-unknotting number ub(K) is defined as the minimum number
of oriented band surgeries that turn K into the unknot. This was called
SH(2)-unknotting number in [HNT90]. Its unoriented counterpart uub (K),
called H(2)-unknotting number in [HNT90], seems to pre-date ub(K) in the
literature, since Lickorish proved that there exist knots with uub (K) > 1 in
[Lic86]. Note that in the definition of uub (K) we allow both orientable and
unorientable band surgeries.

Juhász–Miller–Zemke [JMZ20] introduced a variation, called the oriented
band-unlinking number ulb(K), is defined as the minimum number of ori-
ented band surgeries that turn K into an unlink. Of course ulb(K) ≤ ub(K),
and they proved that Ordv(K) ≤ ulb(K) for all knots K in S3. Using The-
orem 1.1 we can derive a similar result for the corresponding unoriented
notion.
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Definition 1.8. The unoriented band-unlinking number ulub (K) of a knot
K in S3 is defined as the minimum number of (orientable or unorientable)
band surgeries that turn K into an unlink.

Clearly, we have

ulub (K) ≤ uub (K)

≤ ≤

ulb(K) ≤ ub(K)

Corollary 1.9. For a knot K in S3,

OrdI(K) ≤ ulub (K) and OrdU (K) ≤ ulub (K).

Remark 1.10. In private communication [Won], Wong has informed us of
a proof, using methods analogous to [AE20], that if there is a cobordism
Σ ⊂ I ×S3 from K1 and K2 (no matter whether orientable or unorientable)
with m minima, b saddles, and M maxima, then

|OrdU (K1)−OrdU (K2)| ≤ m+ b+M.

Since the unlink has vanishing torsion order, this would recover the inquality
of Corollary 1.9 involving OrdU .

Our paper is one of several recent papers related to ribbon cobordisms.
In [Zem19a], Zemke showed that knot Floer homology obstructs ribbon con-
cordance, a result that prompted a flurry of interesting results in this area,
including [LZ19], [MZ21], [DLVVW19], [Kan19], and [CGL+20]. Other pa-
pers in the area are Sarkar’s paper on the ribbon distance [Sar20] and the
already cited paper of Juhász, Miller, and Zemke [JMZ20], which is the
closest paper to ours.

Organisation. The first two sections of the paper are on instanton Floer
homology: we review the necessary background in Section 2, and we prove
the main instanton technical result (Proposition 3.3) in Section 3. In the fol-
lowing two sections we do the same for knot Floer homology: after a review
in Section 4, we prove the main knot Floer technical result (Proposition 5.5)
in Section 5. In Section 6 we prove Theorem 1.1 and the applications dis-
cussed in the introduction (Corollaries 1.3, 1.6, and 1.9). Finally, in Section
7 we compute the torsion order OrdU for a subfamily of torus knots and
prove Corollary 1.7.

Acknowledgements. We warmly thank Haofei Fan for his support and
help. Special acknowledgements go to Ciprian Manolescu, who suggested
to investigate unorientable cobordisms, and to C.-M. Michael Wong, who
shared his work with us and who gave us helpful comments on an early draft
of the paper. We are also extremely grateful and indebted to Ian Zemke,
who proved Lemma 5.4. Finally, we would like to thank the anonymous
referee for their careful reading and helpful comments. MM was partially
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2. Background on instanton homology with local systems

2.1. Instanton homology groups. Kronheimer and Mrowka introduced
singular instanton homology with local systems in [KM11b], and introduced
several more involved variants of it in [KM21a]. In this paper we will be
working with a variant from the latter. Let us now review the relevant
definitions and properties, following [KM21a] and [KM21b].

Let Y be a closed, oriented 3-manifold, let L be a link in Y and let y0 be a
basepoint in Y , and let By0 be a ball around y0 that does not intersect L. Let
θ0 ⊂ Y be a standard θ-web in By0 . Let ω be a 1-dimensional submanifold
of Y , which consists of components that are circles disjoint from L and By0

and arcs which have endpoints on L and are otherwise disjoint from L.
Then there is an associated space, B♯(Y, L)ω of SO(3) connections on Y

that are singular at L∪θ0, which lift to SU(2) away from the L∪ω∪θ0, such
that the SU(2) holonomy around ω is −1 and the SU(2) holonomies around
components of L and arcs of θ0 are conjugate to I ∈ SU(2), when we regard
SU(2) as unit quaternions and 1, I, J,K are the fundamental quaternion
units.

The local system Γ is defined using three maps hi : B♯(Y,L)ω → R/Z,
for i = 1, 2, 3, given by taking holonomy along the three arcs of the θ web,
which gives three maps to SU(2) and then composing with a character
SU(2) → U(1) = R/Z to get maps to R/Z. Let R = F2[Z3] be the group
ring, which we can also write as the ring of Laurent polynomials in three
variables,

R = F2[T
±1
1 , T±1

2 , T±1
3 ].

Then Γ is defined as the pull back via (h1, h2, h3) of a particular local system
over (R/Z)3 with fibre the free rank 1 module over R. For a commutative
ring S and a homomorphism σ : R → S, let Γσ denote the induced local
system of S modules.

The instanton homology group I♯(Y, L; Γσ)ω is defined as the Floer ho-
mology of B♯(Y,L)ω with a perturbed Chern Simons functional and with the
local system Γσ. (In [KM21a], there is an additional map h0 : B♯(Y,L)ω →
R/Z coming from taking holonomy along the link itself, and R is defined
to be F2[Z4], but for our purposes, we will only be using the local system
coming from h1, h2, and h3.)

2.2. Maps induced by cobordisms with dots. We now review the fun-
catoriality of I♯(Y,L; Γσ)ω. Keeping previous notation, let σ : R → S be a
map of commutative rings.

For i = 1, 2, let Yi denote a closed, oriented 3-manifolds, with a link Li

and a 1-manifold ωi embedded in Yi with boundary on Li and otherwise not
intersecting Li.
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For a cobordism of pairs (X,S) from (Y1, L1) to (Y2, L2), and ω a 2
manifold with corners, whose boundary pieces are ω1 and ω2 in Y1 and Y2
respectively, together with arcs and circles in S, then there is an induced
map

I♯(X,S; Γσ)ω : I♯(Y1, L1; Γσ)ω1 → I♯(Y2, L2; Γσ)ω2

of S modules.
This functoriality can be extended to morphisms given by cobordisms of

pairs with dots on the surfaces. That is, for a cobordism of pairs (X,S),
define a dot on S to be an interior point p ∈ S along with an orientation of
TpS. Then for dots p1, p2, . . . , pd on S, there is an induced map of S modules

I♯(X,S, p1, p2, . . . , pd; Γσ)ω : I♯(Y1, L1; Γσ)ω1 → I♯(Y2, L2; Γσ)ω2 .

In our computations, we will always have Y1, Y2 = S3 and X = S3× [0, 1].
Moreover we will be using the same Γσ. Thus, we will denote our cobordisms
by

I♯(S, p1, p2, . . . , pd)ω = I♯(X,S, p1, p2, . . . , pd; Γσ)ω

2.3. Properties of the induced maps. Before going over some of the
properties of the maps of S modules induced by cobordisms, let us recall two
particular elements of the rings R and S. Writing R = F2[T

±1
1 , T±1

2 , T±1
3 ],

the elements P and Q are given by

P = T1T2T3 + T1T
−1
2 T−1

3 + T−1
1 T2T

−1
3 + T−1

1 T−1
2 T3

and

Q = T 2
1 + T−2

1 + T 2
2 + T−2

2 + T 2
3 + T−2

3 .

For σ : R → S, the elements σ(P ), σ(Q) ∈ S will also be denoted P,Q
respectively.

(1) (Lemma 3.2 of [KM21b]) Let S be an oriented cobordism. Suppose
S′ is obtained from S by adding an internal 1-handle connecting
points p, q ∈ S, where p, q both have the same orientation as S.
Then

I♯(S′) = I♯(S, p) + I♯(S, q) + PI♯(S).

Here and throughout we assume that ω = ∅ when it is not denoted.
(2) (Lemma 4.2 of [KM21a]) Let (S, ω) be a cobordism between (L1, ω1)

and (L2, ω2). Let R+ and R− be the two standard embedded copies
of RP 2 in S4 with self intersection +2 and −2 respectively. Let π
be a disk whose boundary is the generator of H1(RP 2). Then

I♯(S#R+)ω+π = I♯(S)ω

and

I♯(S#R−)ω+π = PI♯(S)ω.
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(3) (Section 5.5 of [KM11a], Section 2.2 of [KM19], Section 5.3 of [KM21a],
“Kunneth formula for split links”) Let L be a split link, so that
L = L0

∐︁
L1, and L0 and L1 are contained in disjoint balls in S3.

Then

I♯(L) ≃ I♯(L0)⊗ I♯(L1),

and this is natural with respect to cobordisms with dots.
This is shown in Section 5.5 of [KM11a] using a version of excision

without local coefficients, Hopf link instead of a θ web, and without
dots. There is an argument in Section 2.2 of [KM19] for why it
does not matter whether one uses a θ web or a Hopf link, and it
is explained in Section 5.3 of [KM21a] why it still works with local
coefficients. The proof of functoriality in [KM11a] carries over with
no problems to the situation of cobordisms with dots.

(4) (Section 5.2 of [KM21a]) Let Uℓ be the ℓ component unlink. Then
I♯(U0) is a free module of rank 1 over S, which we write as I♯(U0) =
Su0, and I♯(U1) is the free module over S of rank 2, which we write
as I♯(U1) = Su+ ⊕ Su−. For D the standard disk viewed as a
cobordism from the empty link to the unknot, and q a point with
orientation compatible with the choice of orientation of the knot,

I♯(D)(u0) = u+ and I♯(D, q)(u0) = u−.

Moreover, if Do is the standard disk viewed as a cobordism from
the unknot to the empty link, and q a point with orientation com-
patible with the choice of orientation of the knot,

I♯(Do)(u−) = 1, I♯(Do)(u+) = 0, I♯(Do, q)(u+) = 1, I♯(Do, q)(u−) = P.

For Uℓ, by the previous point, we have

I♯(Uℓ) = (Su+ ⊕ Su−)⊗ℓ.

(5) (Section 5.4 of [KM21a]) Let m and ∆ denote the standard “pair of
pants” cobordisms between the two component unlink U2 and the
unknot U1, the merge,

m : U2 → U1

and the split

∆ : U1 → U2.

The map on I♯ induced by m (with no dots) is given by

u+ ⊗ u+ ↦→ u+

u± ⊗ u∓ ↦→ u−

u− ⊗ u− ↦→ Pu− +Qu+,

(3)

and the map induced by ∆ (with no dots) is given by

u+ ↦→ u+ ⊗ u− + u− ⊗ u+ + Pu+ ⊗ u+

u− ↦→ u− ⊗ u− +Qu+ ⊗ u+.
(4)
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3. A technical result for instantons

In this section we prove the main technical result for instanton Floer
homology I♯ which we will use to prove Theorem 1.1. To do so, we will use
a classical result in Morse theory, Lemma 3.2 below. We state it in the most
convenient form for us, and give a quick sketch its proof.

Definition 3.1. Given a knotK in S3 and a band B forK, i.e. an embedded
rectangle B in S3 which intersects K in two opposite sides, we say that B
is orientable with respect to K if the knot K and the result of band surgery
on K along B can be given coherent orientations (equivalently, if surgering
K along B gives a 2-component link).

Lemma 3.2. Let Σ ⊂ I × S3 be a non-orientable cobordism between knots
K and K ′ with m local minima, b saddles, and M local maxima. Then,
after an isotopy rel boundary, we can break it into a sequence of cobordisms
as follows.

(1) m births (from K1 = K to L1);
(2) m band surgeries that join the various components of the link (from

L1 to K ′
1);

(3) b − (m +M + 1) band surgeries orientable with respect to K ′
1 (this

cobordism ends with a knot or a 2-component link L′);
(4) 1 band surgery unorientable with respect to K ′

1 (this cobordism goes
from L′ to a knot K ′

2);
(5) M band surgeries that split the knot K ′

2 into M + 1 components;
(6) M deaths.

Moreover, in this decomposition, the attaching arcs of the b bands on K ′
1

can be assumed to be all disjoint, and we can assume that both attaching
arcs of the unorientable band are already contained in K1.

Sketch of the proof. We can arrange all births to appear first and all deaths
to appear last (steps (1) and (6)). We can also find bands that connect the
various components (steps (2) and (5)). Thus, we can restrict to the part
of the cobordism between K ′

1 and K ′
2, which consists of saddles (i.e., band

surgeries). Note that both K ′
1 and K ′

2 are knots.
If all bands are orientable with respect to K ′

1, then all Σ would be ori-
entable, so there is at least one band unorientable with respect to K ′

1.
Arrange for all bands from K ′

1 to K ′
2 to appear all at the same time.

If there is more than one band unorientable with respect to K ′
1, pick one

of them (call it B) and slide it following the surgery of K ′
1 along all the

other bands. When B slides over an orientable band, it stays unorientable.
When B slides over an unorientable band, it becomes orientable. Note that
eventually it must slide over an unorientable band because K ′

2 is connected,
so K ′

2 \B consists of just two arcs.
Repeat until you have only one unorientable band left.
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If B is the unique unorientable band, then you can slide its endpoints
along L′ so that they are disjoint from all the other (oriented) bands, so we
can think of it as in K1. □

The main technical result of this section, needed to prove Theorem 1.1,
is the following Proposition.

Proposition 3.3. Let S be a cobordism from K to K ′ with m local minima,
b saddles, and M local maxima. Then there is a surface ω that meets S
cleanly and only at ∂ω ⊂ S, whose boundary is a circle in S such that for ω
its mirror, we have

(5) PMI♯(S ◦ S)ω∪ω = P b−mId.

Towards this goal, let us start by doing some computations of maps in-
duced by cobordisms with ω.

First let us understand the dependence of I♯(Σ)ω on ω, when ω is a surface
with boundary on Σ, which intersects Σ cleanly and only at ∂ω ⊂ S. Note
that for a link L in S3, up to isomorphism, I♯(S3, L)ω depends only on
the homology of [∂ω] ∈ H0(L;Z/2), because it counts flat connections and
instantons on spaces determined by the homology class.

Similarly, I♯(Σ)ω depends only on the homology class [∂ω] ∈ H1(Σ,Z/2).
This is because the map counts instantons on a moduli space built from Σ,
[∂ω] ∈ H1(Σ,Z/2) and [ω, ∂ω] ∈ H2(X,Σ,Z/2), and H1(Σ) ≃ H2(X,Σ), for
X = S3 × R.

From here, we can see that for a cylinder Σ and ω given by either a
small disk or a small tube with boundary on Σ, as in Figure 1, I♯(Σ)ω
induces the identity: here ∂ω is trivial in H1(Σ), and [ω, ∂ω] is also trivial
in H2(X,Σ,Z/2).

Figure 1. Cylinders with the magenta surfaces depicting ω.

When the cobordism in Figure 2 is composed with its inverse, the map
induced is the identity. Moreover, up to isomorphism I♯(U, ω) depends only
on [∂ω] ∈ H0(U ;Z/2), so the two ends of the cobordism have the same
instanton Floer homology. Thus, the cobordism in Figure 2 induces an
isomorphism.

We will call the two generators of the instanton Floer homology of the
unknot with an arc ω on the right, which is depicted in Figure 3, x+ and
x−, so that in the u± and x± bases, the cobordism depicted in Figure 2 is
the identity matrix.
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Figure 2

Figure 3

The cobordism from the two component unlink to itself induced by two
standard cylinders with ω as a tube between them, as depicted in Figure
4, induces the identity map, because in this situation, (ω, ∂ω) is trivial in
homology in (S3 × I,Σ).

Figure 4

The same is true for the map depicted in Figure 5 precomposed with its
mirror. Thus, the map induced by the cobordism depicted in Figure 5 is an
isomorphism whose inverse is its mirror image. Here, we are identifying the
link with ω on the right end of Figure 5 with the unlink with empty ω via
the isomorphism induced by Figure 2, and the link with ω on the left has
isomorphic instanton Floer homology.

For the link on the left in Figure 5, its homology is then a free module
of rank 4 over S. Let x++, x+−, x−+, x−− be a basis of this homology so
that if we choose the x+ ⊗ x+, x+ ⊗ x−, x− ⊗ x+, x− ⊗ x− basis for the
two component unlink on the right, the matrix the cobodism induces is the
identity. (Recall that x± are the basis elements of the instanton homology
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Figure 5

of the unknot with an arc, so that the cobordism of Figure 2 induces the
identity matrix.

A central step in our proof will be dealing with a cobordism that flips
an unknot, but does not change ω. To describe this, consider a link L with
decoration ω, which has an unknot component U that is split from the rest
of L; we may isotope U so that it is a geometric circle. Suppose that ω has
two endpoints on U , p and q, which we may isotope to be the endpoints of
a diameter of U . Then the flip cobordism is a cobordism in I × S3 that is
traced by the isotopy obtained by rotating U by π about the diameter pq.
So this is an isotopy that does not change ω and reverses the orientation of
one of the two components.

Claim 1. The map on the instanton homology of U2 with ω consisting of
two arcs, each going between the two components that results from flipping
one of the unknots (as described above) in a way that does not change ω is
the identity map.

Figure 6

Proof. By composing with the isomorphisms induced by the cobordism de-
picted in Figure 5, if Φ is the matrix associated to the flip in the x++, x+−, x−+, x−−
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basis, then

Φ =

⎡⎢⎢⎣
a 0 b 0
0 a 0 b
c 0 d 0
0 c 0 d

⎤⎥⎥⎦
where Φ1 =

[︃
a b
c d

]︃
is the flip on the unknot with an arc in the x+, x−

basis, depicted in Figure 7. This is because Φ is the matrix for Φ1 ⊗ Id, for
Id the identity map, in the x+ ⊗ x+, x+ ⊗ x−, x− ⊗ x+, x− ⊗ x− basis, and
we are using the basis of the instanton homology of Figure 6 corresponding
to this basis.

Figure 7

Now let us compute some of the entries of Φ1. Note that if we pre-
compose or post-compose Φ1 with caps like those in Figure 8, we get back

the cap itself. These caps induce the maps

[︃
1
0

]︃
and [0, 1], so from these

compositions, we can see that a = d = 1 and c = 0.

Figure 8

Note that if we did not have ω, then we could do the same argument
with a cap with a dot, and using the fact that doing a flip and then a cap
with a dot is the same as doing a negative dot, we would be able to get the
remaining entry, b, and recover Proposition 5.8 of [KM21a], in which the flip
map does not induce the identity. However, because we have ω here, this
does not work: the flip changes which side of ∂ω the dot is on.

Going back to our computation, we now have that

Φ =

⎡⎢⎢⎣
1 0 b 0
0 1 0 b
0 0 1 0
0 0 0 1

⎤⎥⎥⎦.
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We would now like to show that b is 0. Consider the pair of pants cobor-
dism with ω as two half-disks from the unlink with two arcs going between
components to the unknot, as depicted in Figure 9. Because we can pre-
compose with isomorphisms to make a regular merge with a null-homotopic
disk on top, as in Figure 10, we see that Figure 9 induces the same as the
merge map, if we use the x++, x+−, x−+, x−− basis. Here we are using that
the reverse of the map in Figure 5 is also the identity matrix with our choice
of basis.

Figure 9

Figure 10

Thus, in this basis, it induces the map

m =

[︃
1 0 0 Q
0 1 1 P

]︃
.

Similarly, the reverse of this cobordism induces the same map as ∆, so it
induces

∆ =

⎡⎢⎢⎣
P Q
1 0
1 0
0 1

⎤⎥⎥⎦.
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Thus, composing m ◦ Φ ◦∆, we get the map

m ◦ Φ ◦∆ =

[︃
b+ P 0
0 b+ P

]︃
.

However, if we compose these cobordisms, we get a Klein bottle, which is
a connected sum of RP 2

+ and RP 2
−, with ω given by two disks, one on each

RP 2, such that the boundary circle of the disk is the generator of H1(RP 2).
It is shown in [KM21a] that this Klein bottle with these ω induces the map
P · Id, so b = 0, as desired. □

Claim 2. Let S ⊂ S3 × [0, 2] be a cobordism from K1 to K2 such that in
S3 × [0, 1] it is the cylinder on K1 and in S3 × [1, 2] it consists of adding a
single non-orientable band. More precisely, we may consider a band B ⊂ S3

with vertices A1A2A3A4 ⊂ S3 with A1A2 and A3A4 on K1, as in Figure 11.
In S3 × [1, 2], S then looks like (K1\(A1A2 ∪A3A4))× [1, 2] away from the
band B× [1, 2], and within the band it goes from A1A2 ∪A3A4 at time 1 to
A2A3 ∪A4A1 at time 2.

The cobordism is depicted in frames in Figure 12.

A2

A3

A1

A4

B

Figure 11. The cobordism S is cylindrical on the dotted part.

Figure 12

Then there is a surface ω with boundary in the interior of S, such that ω
meets S only at the boundary, where they meet cleanly, such that for S the
reverse of S, with corresponding ω,

I♯(S)ω ◦ I♯(S)ω = P · Id : I♯(K1) → I♯(K1).
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Proof. Observe that A1 and A3 split K1 into two parts, which we call a and
b (these are coloured magenta and blue respectively in Figure 13. Let c be
the diagonal on the band that goes from A1 to A3.

A2

A3

A1

A4

B

c

b a

Figure 13. The cobordism S is cylindrical on the dotted part.

Consider a∪ c as a knot in S3 and let F0 be a Seifert surface of it. Then,
F0 is a surface with corners, with boundary a∪ c, and which meets b at the
ends, A1 and A3. We may isotope a, b, c so that F0 meets b cleanly at the
ends and transversely in the interior, as in Figure 14

A1 A3

a

b

c

Figure 14. Here F0 is depicted as a disk though it could have higher genus.

If we choose an orientation of F0 and b, then the intersection points may
have positive or negative sign. We can increase the number of positive
or negative intersections points without changing the isotopy type of the
embedding of K1 ∪ c into S3 by twisting b around A1 or A3, as in Figure
15. Let us do this, adding either positive or negative intersections as needed
until there are the same number of positive as negative interior intersection
points between b and F0.

Now say that the intersection points are A1, p1, p2, . . . p2k, A3, in order
along b. Then if pi and pi+1 are intersection points with opposite sign, we
may remove a small disk around each of pi and pi+1 and replace it with a
small tube around the part of b that goes from pi to pi+1, thus reducing the
number of intersection points. We may continue in this manner, removing
adjacent, opposite-sign intersection points until none remain.
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a
a

bb

c c

Figure 15

We now have a surface, which we call F1 with boundary a ∪ c, which
intersects b only at A1 and A3, where the intersection is clean.

We now consider a surface F2 ⊂ S3 × [0, 2] with boundary on S which is
given by the union of F1 ⊂ S3 × {1} with a disk sitting between c × 1 ⊂
S3 × [1, 2] and S, as in Figure 16.

Figure 16

Then this F2 can have its corners smoothed out to a surface with boundary
ω.

Let us now show that for this ω, we have

I♯(S)ω ◦ I♯(S)ω = P · Id : I♯(K1) → I♯(K1).

Let Σ denote the composition of S with S, and let ωΣ = ω ∪ ω be the
decoration on this cobordism. See Figure 17 for an illustration.

Let γ denote the circle composed of the co-core of the band and its mirror,
depicted in blue in Figure 17. A regular neighbourhood of γ in Σ is a tube,
represented in Figure 18. If we cut the surface along γ, we get the twice
punctured cylinder as a cobordism from K1 to itself.

Figure 17. This is S with ω composed with the reverses S with ω.

Figure 18 shows ∂ωΣ as well. The mod 2 homology class [∂ωΣ] on the
surface Σ is the same as [γ]. One way to see it is to perform surgery on
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∂ωΣ along the green arc in Figure 18: this operation does not change the
homology class and it yields a curve which is easily checked to be isotopic
to γ in Σ.

Figure 18

Let Σ′ be the cobordism obtained from Σ by inserting a flip in the tube
in the centre of Figure 18, with the same decoration ωΣ. Using Claim 1,
we will see below that I♯(Σ)ωΣ = I♯(Σ′)ωΣ . However, the curve ∂ωΣ is
homologically trivial in Σ′. One can check it again by doing surgery on the
green arc, but this time the extra flip ensured that the obtained curve is not
γ, but a homotopically trivial one. Thus, I♯(Σ′)ωΣ = I♯(Σ′)∅, since the map
depends only on [∂ωΣ]. If ω = ∅ one can apply the neck cutting relation
(Property (1) in Section 2.3) to obtain that

I♯(Σ′) = P · I♯(I ×K1) = P · IdI♯(K1).

We still have to show that I♯(Σ)ωΣ = I♯(Σ′)ωΣ . To see this, isotope the
tube in the middle as shown in Figure 19.

Let’s restrict our attention to the piece contained in the cylinder in green,
which is the identity cobordism on a 2-component unlink. By Claim 1 the
map induced by this cobordism is the same that we get if we introduce
a flip on one of the two components. Since instanton Floer maps respect
composition of cobordisms and disjoint unions, the map induced by the
whole cobordism is not affected by the insertion of the flip, i.e. I♯(Σ)ωΣ =
I♯(Σ′)ωΣ . □

Claim 3. Let S be a cobordism from a knot K1 to a knot K2 such that
S consists of only b bands. That is, there are no births nor deaths. Then
there is a surface ω with boundary on S such that

I♯(S)ω ◦ I♯(S)ω = P b · Id.
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Figure 19

Proof. We proceed by induction on b. The base case b = 0, is obvious.
For the inductive step, we divide into two cases. If S is orientable, then

the statement holds for ω empty, because the cobordism S ◦ S is the same
as the cylinder on K1 with b orientable tubes, and the result follows from
the tube cutting formula.

In the case that S is not orientable, at least one of the bands of S must
be non-orientable with respect to K. In this case, let us write S = Sr ◦ Su,
where Su is a cobordism consisting of the non-orientable band, and Sr is the
rest of the cobordism, which may or may not be orientable.

Then by the induction hypothesis there is some ωr such that

I♯(Sr)ωr ◦ I♯(Sr)ωr = P b−1 · Id

Applying Claim 2, there is a surface ωu with boundary on Su such that

I♯(Su)ωu ◦ I♯(Su)ωu = P · Id.

The statement

I♯(S)ω ◦ I♯(S)ω = P b · Id
now follows.

□

Now, we can proceed with the proof of Proposition 3.3.

Proof of Proposition 3.3. Applying Lemma 3.2, we may break S into pieces
of the form.

(1) m births (from K1 to L1);
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(2) m band surgeries that joint the various components of the link (from
L1 to K ′

1);
(3) b − (m + M) band surgeries which may or may not be orientable,

ending in a knot K ′
2.

(4) M band surgeries that split the knot K ′
2 into M + 1 components;

(5) M deaths.

Let us call the cobordisms corresponding to the five steps S1, S2, . . . S5.
We may isotope the cobordism in S3 ×R so that Si is in the S3 × [i, i+ 1].

We will choose ω to be in S3 × [2, 3], so that its boundary is in S3 as in
Claim 3 so that

I♯(S3)ω ◦ I♯(S3)ω = P b−m−M · Id.
The proof now proceeds the same way as the proof of Proposition 4.1 of

[JMZ20]. The main argument is by considering a cobordims Σ that comes
from adding M tubes connecting points on the death-caps to their mirrors.

By Lemma 3.2 of [KM21b], for a connected, oriented cobordism Σ if Σ′

is obtained from Σ by adding a tube between points p and q, then

I♯(Σ′) = I♯(Σ, p) + I♯(Σ, q) + PI♯(Σ) = PI♯(Σ),(6)

where the second equality is because Σ is connected, so I♯(Σ, p) and I♯(Σ, q)
induce the same map, and since we are working over characteristic two, they
cancel.

Let Σ1 denote the cobordism coming from taking S ◦ S and adding M
tubes, one for each death connecting a point in the death to its reverse, so
that Σ1 = S1S2S3S4S4S3S2S1. Applying Equation (6) for each death, to
the part of the cobordism from K3 to itself coming from doing S4, S5 and
their reverses, we see that

I♯(Σ1) = PMI♯(S ◦ S).
Here, we are allowed to use the above result because S4S5S5S4 and S4S4 are
both orientable and connected.

In Σ1 = (S1S2S3S4)(S1S2S3S4), M splitting bands of S4 and their re-
verses, cap off the ends, and call the resulting cobordism Σ2. Then for the
same reason as the above, we have

I♯(Σ1) = PMI♯(Σ2),

because again, S3S4S4S3 and S3S3 are both orientable and connected.
Now we have Σ2 = (S1S2S3)(S1S2S3).
Because of our construction of ω, S3S3 with ω ∪ ω falls under the setting

of Claim 3, so the map it induces is P b−m−M · IdI♯(K2). Thus, if we let

Σ3 = (S1S2)(S1S2), then

I♯(Σ2) = P b−m−MI♯(Σ3).

Now Σ3 is given by a cylinder on K1 and m S2s, with m tubes, with the
tubes connecting the S2s and the cylinder in a tree-like fashion. Applying the
tube-cutting formula, Lemma 3.2 of [KM21b], and observing that a sphere
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without any dots induces the 0 map and the sphere with one dot induces
the identity, we see that I♯(Σ3) induces the same map as the cylinder, which
is to say, the identity.

Putting all of this together, we get

PMI♯(S ◦ S) = I♯(Σ1) = P b−m · Id,

as desired. □

4. Background on unoriented knot Floer homology

Unoriented knot Floer homology was introduced by Oszváth–Stipsicz–
Szabó [OSSz17a, OSSz17b]. Fan [Fan19] showed that an unorientable cobor-
dism (with some extra data) induces maps on the unoriented knot Floer ho-
mology. We now review the relevant definitions, following mostly [Zem19c]
and [Fan19].

4.1. Zemke’s oriented TQFT. Cobordism maps in link Floer homology
were first defined by [Juh16]. In this paper we use Zemke’s setup [Zem19c],
specified to unoriented link Floer homology in the case Y = S3.

Definition 4.1. An oriented multi-based link in S3 is a triple L = (L,w, z)
consisting of an oriented, embedded link L ⊂ S3, with two disjoint collec-
tions of basepoints w and z on L, such that each component of L has at
least two basepoints and the basepoints alternate between those in w and
those in z as one traverses a component of L.

To an oriented multi-based link L, Zemke’s most general construction
gives a curved F[Uw, Vz]-complex CFL−(L) up to F[Uw, Vz]-equivariant chain
homotopy. Here F[Uw, Vz] denotes the polynomial ring generated by a U
variable for each w basepoint and a V variable for each z basepoint. The
curved complex is also endowed with gradings and a filtration.

In our case, we only need a simpler version of Zemke’s complex, namely
unoriented link Floer homology. This is defined as

CFL′(L) := CFL−(L)⊗F[Uw,Vz] F[U ],

where all variables act on F[U ] as the multiplication by U . For the reader
familiar with Heegaard Floer homology, this is the free F[U ]-module gen-
erated by the intersection points Tα ∩ Tβ in the symmetric product, with
differential given by

(7) ∂x =
∑︂

y∈Tα∩Tβ

∑︂
ϕ∈π2(x,y)
µ(ϕ)=1

#M(ϕ) · Uno(ϕ) · y,

where no(ϕ) =
∑︁

w∈w nw(ϕ) +
∑︁

z∈z nz(ϕ).

Definition 4.2. For a doubly-based knot K = (K,w, z) we also use the
notations CFK′(K) and HFK′(K) for CFL′(K) and HFL′(K), respectively.
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If K1 = (K,w1, z1) and K2 = (K,w2, z2) are two doubly-based knot
with the same underlying knot K, then HFK′(K1) and HFK(K2) are non-
canonically isomorphic as F[U ]-modules. Thus, the following number is well-
defined.

Definition 4.3. If K is a knot, we define its unoriented torsion order as

OrdU (K) = min {n ≥ 0 |Un · Tors = 0} ,
where Tors is the torsion submodule of HFK′(K), considered as a module
over F[U ]. Here K is any doubly-based knot with underlying knot K.

Remark 4.4. CFL′ enjoys the following properties:

(1) CFL′(L) is a genuine chain complex (i.e., its curvature vanishes), so
one can compute its homology HFL′(L), known as the unoriented
link Floer homology of L. This is still an F[U ]-module.

(2) For a doubly-based knot K = (K,w, z), HFK′(K) ∼= F[U ] ⊕ Tors,
where Tors is the torsion as an F[U ]-module.

(3) For a doubly-based unknot U1 = (U1, w, z), HFK
′(U1) ∼= F[U ].

(4) Given doubly based knots K1 and K2,

CFK′(K1#K2) = CFK′(K1)⊗F[U ] CFK
′(K2).

As a consequence, for knots K1 and K2 in S3,

OrdU (K1#K2) = max {OrdU (K1),OrdU (K2)} .
(5) If L is the mirror of L (with same basepoints), then by [OSSz17b,

Proposition 2.17]

CFL′(L) = homF[U ](CFL
′(L),F[U ]).

As a consequence, for a knot K in S3,

OrdU (K) = OrdU (K).

Definition 4.5. If L1 = (L1,w1, z1) and L2 = (L2,w2, z2) are two oriented
multi-based links, an (oriented) decorated link cobordism from L1 to L2 is a
pair S = (Σ,A) such that

(1) Σ ⊂ I × S3 is a properly embedded, compact, oriented surface with
Σ ∩ {0} × S3 = {0} × (−L1) and Σ ∩ {1} × S3 = {1} × L2;

(2) A ⊂ Σ is a properly embedded 1-manifold, which we we refer to as
the decorations;

(3) the components of Σ \ A are partitioned into two sub-surfaces, Σw

and Σz, which meet along A;
(4) each component of Li \ A contains exactly one basepoint of wi ⊔ zi;
(5) w1 ⊔w2 ⊂ Σw and z1 ⊔ z2 ⊂ Σz.

Definition 4.6. The identity (decorated link) cobordism idL from L =
(L,w, z) to itself is given by the surface Σ = I × L with decorations A =
I ×Q, where Q ⊂ L \ (w ∪ z) is a finite set such that the inclusion induces
an isomorphism in π0.
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By the work of Zemke [Zem19c], an oriented decorated link cobordism S
from L1 to L2 induces an F[U ]-equivariant map

FZ
S : HFL′(L1) → HFL′(L2).

Remark 4.7. The map FZ enjoys the following properties:

(1) FZ
S is invariant under isotopy of Σ in I×S3 while fixing the boundary,

and under isotopy of A in Σ while keeping

∂A ⊂ (L1 \ (w1 ∪ z1)) ∪ (L2 \ (w2 ∪ z2)).

(2) If idL is the identity cobordism from L to itself, then

FZ
idL

= idHFL′(L) .

(3) If S1 and S2 are oriented decorated link cobordisms from L1 to L2

and from L2 to L3 respectively, then one can stack S2 on top of S1
(after isotoping the decorations so that they match on the L2 level),
and obtain a new oriented decorated link cobordism S2 ◦ S1 from L1

to L3. In such a case,

FZ
S2◦S1 = FZ

S2 ◦ F
Z
S1 .

(4) If S′ = (Σ′,A′) is obtained from S = (Σ,A) by attaching a tube with
both feet in Σz (or both feet in Σw), then FZ

S′ = U · FZ
S .

4.2. Fan’s unoriented TQFT. By the work of Fan [Fan19], the link Floer
TQFT can be extended to the non-orientable case. We review the relevant
definitions.

Definition 4.8. A disoriented link in S3 is a tuple L = (L,p,q) consisting
of an unoriented, embedded link L ⊂ S3, with two disjoint collections of
points p and q on L, called the dividing set, such that each component of L
has at least two points in the dividing set and the points in the dividing set
alternate between those in p and those in q as one traverses a component
of L.

Each component of L \ (p ∪ q) is given a canonical orientation from q
to p. We denote the oriented manifold L \ (p ∪ q) by l. Note that these
orientations do not glue to an orientation of L.

As it is customary, we consider isotopic disoriented knots as different
disoriented knots. It is well known that isotopies can induce non-trivial maps
in knot Floer homology, such as the moving basepoint maps [Sar15, Zem17].

Definition 4.8 looks exactly the same as Definition 4.1, except that the
link is now unoriented. However, we emphasise that the basepoints w ∪ z
from 4.1 are ontologically different from the dividing set from 4.8. From a
Morse theoretical viewpoint, the former arise as the intersection between L
and the middle level surface of a Morse function, whereas the latter are the
index-0 and index-3 critical points of the function.

However, we can define a notion of compatibility between oriented deco-
rated links and disoriented links.
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Definition 4.9. We say that an oriented decorated link L = (L,w, z) and
a disoriented link L = (L,p,q) are compatible if:

• the underlying unoriented link L is the same (but note that in L it
also comes with an orientation);

• p ∪ q is disjoint from w ∪ z;
• each component of L\(p∪q) contains exactly one basepoint in w∪z;
• the components of L \ (w ∪ z) containing the p point are oriented
from z to w (with orientation induced from L).

Remark 4.10. Every disoriented link admits a (non-canonical) compatible
oriented decorated link. Likewise, every oriented decorated link admits a
(non-canonical) compatible disoriented link.

If two oriented decorated links L1 and L2 are compatible with the dis-
oriented link L, then HFL′(L1) and HFL′(L2) are canonically isomorphic.
Thus, we can define HFL′(L) as HFL′(L), for any L compatible with L.
(More precisely, HFL′(L) is the transitive system over all compatible ori-
ented decorated links.)

Note that HFL′(L) does not depend on the orientation chosen on L. If
(L,w, z) is a compatible oriented decorated link, then the orientation rever-
sal Lr is also part of a compatible oriented decorated link, namely (Lr, z,w).
The swap of the w and z basepoints does not affect the homology, since the
differential was defined to be symmetric in w and z (cf. Equation (7)). This
justifies the name unoriented knot Floer homology used in [OSSz17b].

Remark 4.11. Fan [Fan19] defines other categories of unoriented links, which
he calls bipartite links and bipartite disoriented links. These are essential to
define a TQFT framework for disoriented links, but we do not recall them
here.

We now revise the cobordism maps defined by Fan [Fan19].

Definition 4.12. A disoriented link cobordism from L1 = (L1,p1,q1) to
L2 = (L2,p2,q2) is a pair S = (Σ,M) such that

(1) Σ ⊂ I ×S3 is a properly embedded, compact surface with Σ∩{0}×
S3 = {0} × (−L1) and Σ ∩ {1} × S3 = {1} × L2;

(2) M ⊂ Σ is a properly embedded, compact, oriented 1-manifold, which
we we refer to as the motion of the critical points;

(3) the components of Σ \M are compact, oriented surfaces with orien-
tation induced by M;

(4) ∂M = q1 − p1 + p2 − q2.

Note that, with the orientation given in point (3), ∂(Σ\M) = l2− l1+2M.
The surface Σ does not need to be oriented.

There is a natural notion of identity cobordism, in the same spirit as
Definition 4.6. We do not write such a definition explicitly.
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By the work of Fan [Fan19], an disoriented link cobordism S from L1 to
L2 induces an F[U ]-equivariant map

FF
S : HFL′(L1) → HFL′(L2).

Remark 4.13. The map FF enjoys the following properties:

(1) FF
S is invariant under isotopy of Σ in I×S3 while fixing the boundary,

and under isotopy of M in Σ while fixing the boundary.
(2) If idL is the identity cobordism from L to itself, then

FF
idL

= idHFL′(L) .

(3) If S1 and S2 are oriented disoriented link cobordisms from L1 to L2

and from L2 to L3 respectively, then one can stack S2 on top of S1,
and obtain a new oriented disoriented link cobordism S2 ◦ S1 from
L1 to L3. In such a case,

FF
S2◦S1

= FF
S2

◦ FF
S1
.

4.3. Relation between Zemke’s TQFT and Fan’s TQFT.

Definition 4.14. For i = 1, 2, suppose that Li = (Li,wi, zi) and Li are
compatible. We say that a decorated link cobordism S = (Σ,A) from L1

to L2 and a disoriented link cobordism S = (Σ,M) from L1 to L2 are
compatible if

• the underlying unoriented surface Σ is the same (but note that in S
it also comes with an orientation);

• after isotoping A without crossing w1 ⊔ z1 ⊔w2 ⊔ z2, A = M.

Remark 4.15. For i = 1, 2, suppose that Li and Li are compatible. Moreover,
suppose that S is a decorated link cobordism from L1 to L2 and S is a
compatible disoriented link cobordism from L1 to L2. Then

FZ
S = FF

S .

5. A technical result for HFK′

5.1. The flip cobordism in HFK′.

Definition 5.1. The standard disoriented unknot is U1 = (U1, p, q), where
U1 =

{︁
x2 + y2 = 1

}︁
∩ {z = 0}, p = (1, 0, 0) and q = (−1, 0, 0).

Definition 5.2. The flip cobordism F = (ΣF ,MF ) from the standard dis-
oriented unknot U1 = (U1, p, q) to itself is the disoriented cobordism traced
by the isotopy obtained by rotating U1 by π along the x-axis. The points p
and q stay fixed throughout the isotopy, so we can set MF = I × {p, q}.

Note that the surface underlying a flip cobordism is orientable, although
no orientation of the surface restricts to the same orientation on the two
standard disoriented unknots on the boundary.

Lemma 5.3. The map FF
F induced by the flip cobordism is the identity map

on HFK′(U1) ∼= F[U ].
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p q
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p q

p q

p q

p q

Figure 20. The figure on the left is our notation for the flip cobor-
dism. On the right we sketched a few sections of the cobordism. We
used different colours for the two components of U1 \ {p, q} to help the
visualisation.

Proof. The fourth iteration F4 is the disoriented cobordism traced by a 4π
rotation about the x-axis. Since π1(SO(3)) = Z/2Z, the rotation by 4π is
isotopic to the identity. Thus, F4 is isotopic to the identity cobordism, and

(8)
(︁
FF
F
)︁4

= FF
F4 = idF[U ] .

The map

FF
F : F[U ] → F[U ]

is U -equivariant, so it is completely determined by the image of 1. If we set
p(U) := FF

F (1) ∈ F[U ], Equation (8) implies that (p(U))4 = 1. Since every
invertible element of F[U ] must be in F, we deduce p(U) = 1. □

5.2. A stabilisation lemma. In this subsection only, we will need to work
in a more general setting than the one outlined in Section 4.

First, we will consider decorated links L in a 3-manifold Y , and decorated
link cobordisms (Σ,A) in a 4-manifold W . In Section 4, we have stated the
definitions of decorated link and decorated link cobordism only when Y = S3

and W = I×S3. The general definitions are only needed in this subsection,
and they can be found in [Zem19c, Definitions 2.1 and 2.4]. Again in this
subsection only, we will consider the full chain complex CFL−(Y,K) asso-
ciated to a decorated knot, which is a complex over F[U, V ], up to chain
homotopy equivalence.

We will also use the homological action on link Floer homology. (See
[OS04, Section 4.2.5] for the original definition of Heegaard Floer homology,
[OS06, Theorem 3.1] for the cobordism action, and [Zem19b, Section 12.2]
for its extension to link Floer homology.) Given a decorated link L in a
3-manifold Y there is a homological action

A : Λ∗(H1(Y ;Z)/Tors)⊗ CFL−(Y,L) → CFL−(Y,L),

and given a decorated link cobordism (Σ,A) in a 4-manifold W there is a
version of the cobordism map incorporating the homological action

FH
W,Σ,A : Λ∗(H1(W ;Z)/Tors)⊗ CFL−(Y1,L1) → CFL−(Y2,L2).
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A′

δ

A′′ A′′′

Figure 21. The three figures show the three decorations A′, A′′, and
A′′′ on the surface Σ′ appearing in the bypass relation arising from the
arc δ.

(We use the notations FH to distinguish it from the cobordism map FZ

which does not incorporate the homological action.) If the 4-manifold W is
obtained by adding 1-handles to B4, then the map FH can be recovered from
FZ by post-composing with the homological action on Y1. The following
lemma, which is needed to establish Proposition 5.5, was proved by Ian
Zemke. A related argument appeared in [JZ20, Section 5] (see in particular
[JZ20, Lemma 5.3]).

Lemma 5.4. Let Σ = I×K ⊂ I×S3 be the identity cobordism from the knot
K to itself, and let Σ′ denote a surface obtained by adding a compressible
1-handle to Σ. If γ ⊂ Σ denotes an embedded arc joining the feet of the
1-handle, define decorations A′ on Σ′ as two parallel embedded arcs from
{0} ×K to {1} ×K such that:

• A′ does not intersect γ;
• each arc of A′ crosses the co-core of the 1-handle exactly once;
• the arcs of A′ join the points (0, p) and (0, q) to the points (1, p) and
(1, q) in I ×K respectively;

• the decorations A, obtained by restricting A′ to Σ and by reconnect-
ing each pair of arcs with an arc parallel to γ, is isotopic rel boundary
to a product decoration I × {p, q}.

Then, if K = (K,w, z) for some points w, z alternated to p, q, the cobordism
map

FZ
Σ′,A′ : HFK′(K) → HFK′(K)

coincides with the map U · idHFK′(K).

Proof. If a1 and a2 denote the two components of A′, let δ be an arc on Σ′

which starts from a1 near a foot of the 1-handle, then traverses a2, follows
γ to the other foot of the 1-handle, and ends on a2. See Figure 21 on the
left for an illustration.

We apply Zemke’s bypass relation on a disc ∆ ⊂ Σ′ obtained as a regular
neighbourhood of the arc δ in Σ′. If A′′ and A′′′ denote the other decorations
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Figure 22. The figure on the left shows the decorated surface (˜︂Σ1, ˜︃A1).

The punctured torus ˜︂Σ1 sits in S1 ×D3 in such a way that its longitude
generates H1(S

1×D3), while its meridian is null-homotopic. The figure

on the right shows the decorated surface (Σ1,A1).

appearing in the bypass relation as in Figure 21, we have that

FZ
Σ′,A′ = FZ

Σ′,A′′ + FZ
Σ′,A′′′ .

The decorationsA′′ can be isotoped away from the co-core of the 1-handle.
After compressing the 1-handle the surface becomes isotopic to Σ and the
decorations become isotopic to the product decorations A. Thus, by Remark
4.7.(4),

FZ
Σ′,A′′ = U · FZ

Σ,A = U · idHFK′(K) .

Thus, we only need to show that FZ
Σ′,A′′′ = 0. From this point until the

end of the proof we will work on the chain level CFL−(K), considered as
an F[U, V ]-complex, up to chain homotopy equivalence. (The variable U is
associated to the basepoint w.)

We split the cobordism (I ×S3,Σ′,A′′′) as the composition of two cobor-
disms. The first one, which we call W1 = (W1,Σ1,A1), is obtained by
taking as W1 the (disjoint) union of a regular neighbourhood of {0} × S3

and a neighbourhood of γ ∪ c (where c denotes the core of the 1-handle)
containing the 1-handle entirely. Note that the latter component of W1 is
diffeomorphic to S1 × D3. The decorated surface (Σ1,A1) is obtained by
intersecting W1 with (Σ′,A′′′). The second cobordism W2 is obtained by
taking the closure of the complement of W1 in I × S3. Thus, we have

FZ
Σ,A′′′ = FH

(I×S3,Σ′,A′′′) = FH
W2

◦ FH
W1

.

(In the first equality we used the fact that H1(I × S3) = 0.)
We focus on the map FH

W1
. Since W1 has two connected components (one

of which is an identity cobordism over K), the map splits as a tensor product

(9) FH
W1

= idCFL−(K)⊗FH˜︃W1
,

where ˜︂W1 = (S1 × D3,˜︂Σ1, ˜︂A1) is a cobordism from the empty link in the
empty 3-manifold to a doubly pointed unknot U in S1 × S2, illustrated in
Figure 22 on the left.

The knot Floer complex CFL−(S1 × S2,U) is generated over F[U, V ] by
two homogeneous elements x+ and x−. Their grw and grz gradings (as
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defined in [Zem19b]) are given by the formulas

(grw,grz)(x±) =

(︃
±1

2
,±1

2

)︃
.

By grading reasons [Zem19b], we have that

(10) FH˜︃W1
(1) = k · x−

for some k ∈ Z/2Z. An explicit computation of the action of H1(S
1×S2) =

Z⟨ζ⟩ shows that A(ζ ⊗ x+) = x−. From this fact, a direct computation
shows that

(11) FH
W1

(ζ ⊗ 1) = x−,

where W1 = (S1 × S2,Σ1,A1) is the cobordism shown in Figure 22 on the
right.

Recall that the cobordism W1 is the disjoint union of an identity cobor-

dism over K and the cobordism ˜︂W1. If ˆ︂W1 denotes the cobordism obtained
by replacing the ˜︂W1 component with W1, then by combining Equations (9),
(10), and (11) we have

(12) FH
W1

(x) = x⊗ FH˜︃W1
(1) = k · x⊗ FH

W1
(ζ ⊗ 1) = k · FHˆ︃W1

(ζ ⊗ x).

Finally, let ˆ︂W denote the composition of ˆ︂W1 and W2. Note that the 4-

manifold underlying ˆ︂W is still I ×S3 (same as W), since the replacement of

W1 with ˆ︂W1 did not affect the underlying 4-manifold. Then, by Equation
(12),

FZ
Σ,A′′′(x) = FH

W2
◦ FH

W1
(x)

= k · FH
W2

◦ FHˆ︃W1
(ζ ⊗ x)

= k · FHˆ︂W(ι∗(ζ)⊗ x) = 0.

The last term vanishes because the map ι∗ : H1(S
1×D3) → H1(I ×S3) = 0

induced by the inclusion of ˆ︂W1 into ˆ︂W must map ζ to 0. □

5.3. The main theorem in HFK′.

Proposition 5.5. Suppose that Σ is a connected unorientable knot cobor-
dism from K1 to K2 in I × S3 with m local minima, b saddles, and M local
maxima, and let Σ denote the mirrored upside down cobordism from K2 to
K1.

Then there are choices of motions of the critical points such that the
disoriented knot cobordisms S = (Σ,M1) and S = (Σ,M2) can be composed
to S ◦ S, and

(13) UM · FF
S ◦ FF

S = U b−m · idHFK′(K1) .
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L′

δ

γ

pa
qa

pb
qb

L′

K ′
2

Figure 23. The circle on the left hand side represents L′ after step (3),
in case it is a knot. The figure on the right hand side shows step (4)
of the cobordism Σ, from L′ to K′

2, together with the motion chosen to
define S.

K ′
2

L′

qa

pa

pb
qb

L′

Figure 24. The figure shows step (4) of S in case L′ is a 2-component
link, represented above by the two inner circles.

Proof. Using Lemma 3.2, we can break the cobordism Σ into the composition
of cobordisms labelled (1)-(6). Let K ′

1 and K ′
2 be the knots after steps (2)

and (4) respectively, as in the statement of Lemma 3.2, and let L′ be the
link after step (3). Note that L′ differs from K ′

2 by a single band surgery.
By removing the two attaching arcs of the unorientable band B from L′,

we are left with two arcs γ and δ. If L′ is a knot, let pa, qa, pb, qb be points
on γ, appearing in this order, such that pa and qa are close to one end of γ
and pb and qb are close to the other end of γ, so that all the intersections of
L′ ∩ γ with the oriented bands are between pb and qa. See the left hand side
of Figure 23. If instead L′ is a 2-component link, let pa and qa be on γ and
pb and qb be on δ, such that they are near opposite corners of the band, and
pa (resp. qb) is closer to the band than qa (resp. pb). See Figure 24.

Let S be the disoriented cobordism from (K1, pa, qa) to (K2, pb, qa) ob-
tained by endowing Σ with the following motion of basepoints:
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• on steps (1)-(3), the motion consists of straight arcs I × {pa, qa};
• on step (4), the motion consists of a straight arc I × {qa} and of an
arc that starts from pa, goes through the unorientable saddle, and
ends at pb (see Figure 23 for an illustration);

• on steps (5)-(6), the motion consists of straight arcs I × {pb, qa}.

A crucial condition in Definition 4.12 is that each component of Σ \ M1

must be orientable. In fact, we show that Σ \ M1 consists of a single and
orientable component. If L′ is a knot, one can check from Figure 23 that
Σ \ M1 restricted to step (4) has a single component; in steps (1)-(3) the
surface Σ is orientable and the motion is given by two parallel arcs, so there
are two components of Σ\M1, which are then glued to the unique component
in step (4); steps (5)-(6) define a concordance of disoriented knots, which
does not change the abstract topology of the disoriented cobordism. The
compatibility of the orientation of Σ \ M1 with the orientation of M1 is
dealt with in an analogous way.

If instead L′ is a 2-component link, then one should consider Figure 24
instead. Let ζ be the closed component of L′ containing pb and qb (which
appears on the right in Figure 24), and let ε be the component containing
pa and qa, minus the short arc connecting pa and qa (which appears on the
left in Figure 24). From Figure 24 it is immediate to check that Σ \M1 has
2 components in step (4), which deformation retract on ζ and on ε.Since
K1 is a knot, Σ \M1 in steps (1)-(3) also has two components: a “small”
rectangular one (S), spanned by the short arc connecting pa and qa, and
a large one (L) the complement of it, which contains all the genus. When
you glue steps (1)-(3) to step (4), the rectangular component S is glued
to the component containing ζ, without affecting the topology, whereas the
component L glues to both component of step (4). Thus, we see that there is
only one component of Σ \M1. Its orientability and the compatibility with
the orientation of M1 is left to the reader (it basically follows from the fact
that cutting along M1 effectively cuts the unorientable saddle, leaving an
orientable cobordism). As before, we do not worry about steps (5)-(6), since
they define a concordance, which does not change the abstract topology.

We next introduce a disoriented cobordism S from (K2, pb, qa) to (K1, pa, qa)
with underlying surface Σ. To define it, we play the steps of the cobordism
S in reverse order, but we use a different motion of basepoints:

• on the reversed steps (6)-(5), the motion consists of straight arcs
I × {pb, qa};

• on the reversed step (4), the motion consists of a straight arc I ×
{pb} and of an arc that starts from qa, goes through the (dual)
unorientable saddle, and ends at qb;

• on the reversed steps (3)-(1), the motion consists of straight arcs
I × {pb, qb};

• finally, in a collar of the K1 boundary component, the motion of the
basepoints brings pb and qb back to pa and qa.
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pa
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qa
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qa paqa

Figure 25. The figure on the left represents the disoriented cobordism
T u. The figure on the right represents the disoriented cobordism T o.

Note that S is not S turned upside down as disoriented cobordisms (even if
the disoriented knots at the boundary are not the same).

We also define a disoriented cobordism T u from (K1, pa, qa) to (K1, pa, qa),
obtained in three steps:

• the first step is the same disoriented cobordism as in Figure 23, ex-
cept that the knot L′ is replaced withK1; more explicitly, the surface
Σ in the first step consists of the cylinder I × K1, with the unori-
entable band B attached on the upper end (recall that by Lemma
3.2 all bands have disjoint attaching arcs, so we can attach B to K1),
and the motion of the basepoints consists of I × {qa} and of an arc
that starts from pa, goes through the band, and ends at pb;

• the surface in the second step is simply the surface from the first
step turned upside down, and the motion consists of a straight arc
I × {pb} and of an arc that starts from qa, goes through the (dual)
band, and ends at qb;

• finally, in a collar of the end boundary component, the motion of the
basepoints brings pb and qb back to pa and qa.

Note that the surface Σ of the disoriented cobordism T u is a genus-1 surface,
consisting of a cylinder I×K1 with a flipped tube attached to it. The flipped
tube is made up of the two unorientable bands. See the left hand side of
Figure 25.

Lastly, we define a variant of T u: the disoriented cobordism T o from
(K1, pa, qa) to (K1, pa, qa) is obtained by replacing the flipped tube in T u

with an orientable tube, so that the underlying surface Σ is orientable (in
other words, the unorientable bands are replaced with orientable bands);
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the motion of the basepoints divides Σ into a disc and a punctured torus;
see the right hand side of Figure 25. Note that Lemma 5.3 implies that
FF
T u = FF

T o , since it is possible to isolate a flip cobordism.
In order to prove Proposition 5.5 we argue in a similar way as in [JMZ20,

Proposition 4.1]: we define a cobordism Gu, and we compute the map FF
Gu

in two different ways, which will be the two sides of equation (13).
The disoriented cobordism Gu, from (K1, pa, qa) to itself, is obtained by

playing all the steps of S except (6) followed by all the reversed steps of S
except (6). (In S we also play the basepoint moving step in a collar of K1.

Since the attaching arc of the unoriented band can be isotoped in K1,
we can move step (4) of S and the corresponding reversed step of S up
past all the other steps of S and S. These two steps together make up the
cobordism T u, which we can replace with the orientable cobordism T o. The
replacement yields a new disoriented cobordism Go from Gu, with FF

Go = FF
Gu .

The advantage of Go over Gu is that the underlying surface of the former is
orientable, so FF

Go = FZ
G for a compatible decorated link cobordism G, and

we can use the properties of Zemke’s TQFT on FZ
G , in particular the one

about compressing discs.
Note that in the definition of Gu (or Go) we do not play the M deaths

of S (step (6)) and the M births of S, obtained by mirroring the deaths of
S. Thus, S ◦ S is obtained from Gu by compressing M discs with boundary
in the complement of the motion of the basepoints. By transiting through
their orientable replacements, and by Remark 4.7.(4), we get

(14) FF
Gu = UM · ◦FF

S ◦ FF
S .

On the other hand, we saw earlier that the cobordism Go can be re-
arranged so that we have T o at the top. The first part consists of a cylin-
drical cobordism from (K1, pa, qa) to itself with b − 1 −m tubes added, as
in [JMZ20]. (The −1 here comes from the fact that we have moved the
unorientable band to the top of the cobordism.) Thus, we can compress the
cobordism Go b− 1−m times to get T o, so

FF
Go = U b−1−m · FF

T o .

But the cobordism T o is of the form studied in Lemma 5.4, so the map that
it induces is the multiplication by U . Thus:

(15) FF
Gu = FF

Go = U b−m · idHFL′(K1) .

By combining Equations (14) and (15) we finish the proof. □

Remark 5.6. The careful reader will note that the motion of the basepoints
play an important role in the proof of Proposition 5.5. This is by contrast
with [JMZ20, Proposition 4.1], where the decorations of the cobordism were
the simplest possible, i.e. two parallel arcs from the bottom to the top. In
the unoriented setting it is impossible to choose two parallel arcs as the
motion of basepoints, otherwise the cobordism would not fall in the correct
category.
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6. Applications

In this section we prove Theorem 1.1, which we restate below, together
with its corollaries.

Theorem 1.1. Let K1 and K2 be knots in S3. Suppose that there is an
unorientable knot cobordism Σ in I×S3 from K1 to K2 with M local maxima.
Then

(1) OrdI(K1) ≤ max {OrdI(K2),M}+ γ(Σ)

and

(2) OrdU (K1) ≤ max {OrdU (K2),M}+ γ(Σ).

Proof. The proof closely follows that of [JMZ20, Theorem 1.1].
Add decorations on Σ and Σ (in the instanton or unoriented knot Floer

sense) to obtain cobordisms with decorations S and S that satisfy the rela-
tion in Proposition 3.3 or 5.5

(16) vM · FS ◦ FS = vb−m · idH(K1) .

Here m is the number of local minima and b is the number of saddles on
Σ, H denotes either I♯ or HFK′, F denotes the corresponding map induced
by an unoriented cobordisms with decorations, and v denotes the relevant
variable P or U .

Suppose that x ∈ H(K1) is a torsion element. Since FS(x) must be torsion
in H(K2), v

ℓ ·FS ◦FS(x) = FS(v
ℓ ·FS(x)) = 0 whenever ℓ ≥ Ord(K2). Thus,

in view of Equation (16), vℓ+b−m−M ·x = 0 whenever ℓ ≥ max{Ord(K2),M}.
Since this holds for every torsion element x ∈ H(K1), we obtain

Ord(K1) ≤ max{Ord(K2),M}+ b−m−M,

and we conclude by noticing that γ(Σ) = −χ(Σ) = b−m−M . □

We now focus on the proofs of the Corollaries from the introduction.
Corollary 1.3 follows immediately from Theorem 1.1 by setting M = 0, so
we move directly to the following corollary, about the refined unoriented
cobordism distance.

Recall that for a cobordism Σ in I × S3 from K1 to K2, we define

|Σ| = max {m,M} − χ(Σ),

and that the refined unorientable cobordism distance between two knots K1

and K2 is given by

dru(K1,K2) = min {|Σ|} ,
where Σ varies over all connected unorientable cobordisms and oriented
concordances from K1 to K2.
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Corollary 1.6. If K1 and K2 are knots in S3, then

|OrdI(K1)−OrdI(K2)| ≤ dru(K1,K2)

and

|OrdU (K1)−OrdU (K2)| ≤ dru(K1,K2).

Proof. The proof follows closely that of [JMZ20, Corollary 1.5]. Given a
cobordism Σ from K1 to K2 with M maxima and m minima of the kind
considered in the definition of dru, by Theorem 1.1 (if Σ is unorientable) and
Remark 1.2 (if Σ is an orientable concordance) we have

Ord(K1) ≤ max{Ord(K2),M} − χ(Σ) ≤ Ord(K2) +M − χ(Σ),

where Ord is either OrdI or OrdU . From here we get

Ord(K1)−Ord(K2) ≤ M − χ(Σ) ≤ max{m,M} − χ(Σ),

and we conclude by exchanging the roles of K1 and K2, and taking the
minimum on the right hand side. □

Recall that the unoriented band-unlinking number ulub (K) of a knot K in
S3 is defined as the minimum number of (orientable or unorientable) band
surgeries that turn K into an unlink.

Corollary 1.9. For a knot K in S3,

OrdI(K) ≤ ulub (K) and OrdU (K) ≤ ulub (K).

Proof. The proof is similar to the one of [JMZ20, Corollary 1.6]. If b =
ulub (K), one can build a cobordism Σ from K to the unknot U with b sad-
dles and M local maxima, by attaching b bands to K to get an (M + 1)-
component unlink and then capping off M components of the latter. By
applying Theorem 1.1, and Remark 1.2 if necessary (i.e., if Σ is orientable),
we get (for I♯ or HFK′)

Ord(K) ≤ max{Ord(U),M} − χ(Σ) = M − χ(Σ),

since the unknot has vanishing torsion order in both I♯ and HFK′. We
conclude by noticing that χ(Σ) = M − b. □

7. Examples

Lemma 7.1. For the torus knot Tn,n+1, OrdU (Tn,n+1) = ⌊n/2⌋.

Proof. Any torus knot is an L-space knot, so its Alexander polynomial de-
termines the full knot Floer complex CFK∞ up to chain homotopy equiva-
lence, and in turn the unoriented knot Floer homology. See [OS05, OSSz17a,
JMZ20].

If K is an L-space knot, its Alexander polynomial takes the form

(17) ∆K(t) =

2l∑︂
k=0

(−1)ktαk
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for a decreasing sequence of integers α0, . . . , α2l. Let d1, . . . , d2l denote the
gaps, i.e., dk = αk − αk−1. Then the full knot Floer complex is (up to
chain homotopy equivalence) a staircase F[U,U−1]-module, generated by
x0, . . . ,x2l, with

∂x2k = 0, ∂x2k+1 = x2k + x2k+2.

Moreover, the filtration over Z ⊕ Z is determined up to an overall shift by
the following properties:

• the element x2k+1 has the same j-filtration as x2k, but the i-filtration
differs by d2k+1;

• the element x2k+1 has the same i-filtration as x2k+2, but the j-
filtration differs by d2k+2.

Then, the unoriented knot Floer complex CFK′(K) (up to chain homotopy
equivalence) is generated over F[U ] by y0, . . . ,y2l, with differential

∂y2k = 0, ∂y2k+1 = Ud2k+1 · y2k + Ud2k+2 · y2k+2.

In the language of [DM19], this is a standard complex associated to a graded
root. Graded roots were introduced by Némethi [Ném05] to study HF+ of
plumbed 3-manifolds. We instead consider the ‘upside-down’ graded roots
as in [DM19], which are used to describe HF−. Note that the generators that
we call y0, . . . ,y2l+1 were called v1, α1, v2, α2, . . . , αn−1, vn in [DM19]. The
numbers di determine the graded root up to an overall shift: the (relative)
grading is given by

χ(y2k)− χ(y2k+1) = d2k+1, χ(y2k+2)− χ(y2k+1) = d2k+2.

We now determine the numbers di in the case of the torus knot Tn,n+1.
Recall that the Alexander polynomial of Tp,q is

∆p,q(t) =
(tpq − 1) · (t− 1)

(tp − 1) · (tq − 1)
.

The coefficients of ∆p,q(t) have been computed in the general case (see for
example [Len78, (1.6) and (2.16)] or [LL96]). In our case p = n and q = n+1,
and ∆p,q is simple enough to be computed explicitly. After simplifying

∆n,n+1 =
(xn)n + (xn)n−1 + · · ·xn + 1

xn + xn−1 + · · ·+ x+ 1
,

one can carry out the long division explicitly and find that ∆n,n+1 is in the
form of Equation (17), with

(d1, d2, d3, d4, . . . , d2l−1, d2l) = (1, n− 1, 2, n− 2, . . . , n− 1, 1).

From this one can check that the graded root has a picture with n
branches, of lengths 1, 2, . . . , 2, 1. See Figure 26. The longest branch
is in the middle, of length ⌈n/2⌉. This is also the top graded branch, so it
generates the infinite tower. Thus, the order of HFK′ is given by the next
longest branch, which has length ⌊n/2⌋. Thus, OrdU (Tn,n+1) = ⌊n/2⌋. □

We now restrict the attention to the torus knots of the form T2r−1,2r.
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...
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Figure 26. The figure shows the graded roots homotopy equivalent to
CFK′(T7,8) and CFK′(T8,9) respectively. Each dot in the figure denotes
a generator of the complex over F, and the edges encode the U -action:
for a dot x, U · x is the dot where you get by following the edge exiting
from the bottom of the dot x. The height of the dot denotes its (relative)
Maslov grading, and the U action decreases the Maslov grading by 2.
Note that when n is odd (e.g. T7,8) there is one branch of length ⌈n/2⌉
and two branches of length ⌊n/2⌋, whereas when n is even (e.g. T8,9)
there are two branches of length n/2.

Remark 7.2. Batson [Bat14] first proved that γ4(T2r−1,2r) = r − 1. This
can be proved with any of the bounds from [Bat14, OSSz17b, GM18] (for
T2r−1,2r or T2r−1,2r), which all give the same sharp obstruction. We choose
to use υ from [OSSz17b] because it is an additive quantity, like the knot
signature. In [OSSz17b, Theorem 1.2], Ozsváth–Stipsicz–Szabó proved that
for a knot K in S3

(18) γ4(K) ≥ υ(K)− σ(K)

2
.

Batson [Bat14] computed that σ(T2r−1,2r) = −2r2 + 2, and by [OSSz17b,
Theorem 1.3] one can compute υ(T2r−1,2r) = −r2 + r. Thus,

(19) υ(T2r−1,2r)−
σ(T2r−1,2r)

2
= r − 1.

We now restate and prove Corollary 1.7 from the introduction.

Corollary 1.7. For all γ ≥ 1 and m ≥ 1, there exists a knot Kγ,m with
du(Kγ,m, U1) = γ4(Kγ,m) = γ, and such that dru(Kγ,m, U1) ≥ γ +m.
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Thus, each unorientable surface Σ ⊂ B4 with ∂Σ = Kγ,m and γ(Σ) = γ
has at least m local minima (with respect to the radial function).

Proof. LetKγ,m = T2r−1,2r#T2s−1,2s, for r = γ+m and s = m. By Equation
(18), the additivity of σ and υ, and Equation (19), we have that

γ4(Kγ,m) ≥
(︃
υ(T2r−1,2r)−

σ(T2r−1,2r)

2

)︃
−
(︃
υ(T2s−1,2s)−

σ(T2s−1,2s)

2

)︃
= (r − 1)− (s− 1) = r − s = γ.

On the other hand, Batson showed that there is a sequence r− s unoriented
band surgeries from T2r−1,2r to T2s−1,2s [Bat14, Figure 7]. Thus, we get a

sequence of r− s unoriented band surgeries from Kγ,m to T2s−1,2s#T2s−1,2s,
which is slice, so γ4(Kγ,m) = r − s.

Now let Σ be a (possibly non-orientable) surface Σ ⊂ B4 with ∂Σ = Kγ,m

and b1(Σ) = γ. Theorem 1.1 gives a lower bound on the number of local
minima. More precisely, if Σ has n local minima, by removing a small ball
from B4 we get a cobordism from Kγ,m to the unknot U1 with M = n − 1
maxima (note that the cobordism is upside down, so the minima are turned
into maxima, and one of them disappears when we remove the ball). Thus,
Theorem 1.1 implies that

OrdU (Kγ,m) ≤ (n− 1) + (r − s) = n− s+ r − 1.

We also know that

OrdU (Kγ,m) = max {OrdU (T2r−1,2r),OrdU (T2s−1,2s)} = r − 1

by Remark 4.4 (points (4) and (5)) and Lemma 7.1, so we get

n ≥ s = m.

The statement about du and dru follows from the computation of γ4(Kγ,m)
above and from Corollary 1.6. □

Remark 7.3. We do not know if the bound on dru(Kγ,m, U1) and on the
number of minima of Σ in Corollary 1.7 is sharp on the knots used in the
proof of the corollary. Recall that we set

Kγ,m := T2r−1,2r#T2s−1,2s

for r = γ + m and s = m. Batson showed that with γ bands we can get
to K0,m = T2s−1,2s#T2s−1,2s, and Juhász–Miller–Zemke showed that K0,m

bounds a ribbon disc with 2m− 1 local minima. Thus,

dru(Kγ,m, U1) ≤ γ + 2m− 2.

We conjecture that this inequality is actually an equality.
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