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Abstract
A search for resonances in top quark pair (tt) production in final states with two charged leptons
and multiple jets is presented, based on proton—proton collision data collected by the CMS
experiment at the CERN LHC at /s = 13TeV, corresponding to 138 fb—!. The analysis explores
the invariant mass of the tt system and two angular observables that provide direct access to the
correlation of top quark and antiquark spins. A significant excess of events is observed near the
kinematic tt threshold compared to the non-resonant production predicted by fixed-order
perturbative quantum chromodynamics (pQCD). The observed enhancement is consistent with

the production of a color-singlet pseudoscalar (! S([)l]) quasi-bound toponium state, as predicted

by non-relativistic quantum chromodynamics. Using a simplified model for 1S([)1

]
+1.2

toponium, the

cross section of the excess above the pQCD prediction is measured to be 8.8 ", pb.

Keywords: CMS, top, pseudoscalar, scalar, toponium

1. Introduction

The discovery of the top quark in 1995 at the Fermilab
Tevatron collider was a major milestone in particle physics [1,
2]. Uniquely among quarks, the top quark’s lifetime is shorter
than the hadronization timescale [3, 4]. This causes the spin of
the top quark to be transferred directly to its decay products,
enabling precise measurements of spin properties via angu-
lar distributions. While the individual polarizations of the top
quark and antiquark (t and t) are small when produced via
the strong interaction, their spins are correlated in the stand-
ard model (SM) [5, 6], which was experimentally confirmed
at both the Tevatron and the LHC [7-12].

Original Content from this work may be used under the

5Y terms of the Creative Commons Attribution 4.0 licence. Any
further distribution of this work must maintain attribution to the author(s) and
the title of the work, journal citation and DOI.

Although tt pairs do not form stable bound states given the
short lifetime of the top quark, calculations in non-relativistic
quantum chromodynamics (NRQCD) predict bound state
enhancements at the tt threshold [13—19]. Since this effect is
present only when the tt pairs are in the color singlet con-
figuration, the dominant contribution at the LHC is from the
gluon—gluon initial state, leading to the production of the IS([)I]
‘toponium’ quasi-bound state 1. Contributions from other
spin states are much smaller at the LHC; for instance, the 3 P([)l]
state x, is suppressed by additional powers of the top quark
velocity, which is nearly zero at the threshold. The color octet
configuration, on the other hand, is suppressed below the tt
threshold because of a repulsive interaction between the top
quarks, and has a steeply rising cross section as a function of
the tt invariant mass mg; above the threshold [18]. The pres-
ence of such an m; state would therefore manifest itself as
an enhancement in the number of events near the production
threshold with distinctive patterns in tt spin correlation observ-
ables caused by its pseudoscalar nature. However, due to the
possibility of initial- and final-state radiation (FSR), the color

© 2025 The Author(s). Published by IOP Publishing Ltd
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configurations of the tt pairs are not necessarily the same as
the partons in the initial state, making theoretical predictions
of toponium production challenging.

This Letter reports the observation of a threshold enhance-
ment in tt production consistent with pseudoscalar toponium.
The analyzed proton—proton (pp) collision data at /s =
13TeV were recorded by the CMS experiment at the CERN
LHC in 2016-2018, corresponding to an integrated lumin-
osity of 138 fb—1. The analysis, whose tabulated results are
provided in the HEPData record [20], is conducted within
the context of a search for neutral spin-0 bosons produced
through gluon—gluon fusion and decaying to tt. Here, we focus
on the threshold production of a composite CP-odd pseudo-
scalar 1 and a CP-even scalar X; as signal hypotheses, where
CP refers to the charge-parity symmetry. These represent the
simplest hypotheses that can explain the observation, since
they arise naturally within NRQCD. However, the available
experimental data does not exclude alternative explanations
like additional pseudoscalar bosons, whose existence is pre-
dicted by several theoretical models beyond the SM. This pos-
sibility is explored in [21], the companion paper to this public-
ation, where the same data is interpreted in terms of limits on
additional scalar and pseudoscalar bosons over a large mass
range.

The analysis considers final states with two charged leptons
(electrons and/or muons) and at least two jets, referred to as the
£¢ channel. A similar analysis was previously performed by the
CMS experiment using the data sample collected in 2016 and
considering the ¢j channel (i.e., final states with one charged
lepton and at least four jets) in addition to the £¢ channel [22].
In that analysis, a moderate pseudoscalar-like deviation with a
mass at the lowest investigated value of 400 GeV was found.
Compared to that superseded analysis, we consider only the /¢
channel here, but use more than three times the data, consider
resonances with masses below the tt production threshold, and
add a second angular observable that provides direct access to
tt spin correlation.

Similar searches have also been conducted by the ATLAS
Collaboration using data at /s = 8 [23] and 13 TeV [24]. The
results presented in [24] use the data sample collected in 2015—
2018 and combine the ¢¢ and ¢j channels, with the latter being
predominant. The analysis in the ¢/ channel differs from our
approach in that it investigates the invariant mass mphee Of
the bb/* ¢~ system rather than m,; and it utilizes an angular
variable whose sensitivity to tt spin correlation is significantly
diluted by kinematic effects. We have verified that incorpor-
ating these differences into our analysis would not result in
a significant enhancement at the threshold. Consequently, the
conclusions of [24] are not directly comparable to the ones
reported in this paper, nor do they refute or confirm the find-
ings reported herein.

Moreover, our findings are consistent with enhancements
at the threshold in previous tt differential cross section meas-
urements reported by ATLAS [11, 25] and CMS [12, 26].
Similarly, the mild tension between the observed and expec-
ted measurement of spin correlation in the tt threshold region,
which has been reported by both ATLAS [27] and CMS [28] as

part of their studies of quantum entanglement, has been repro-
duced by this analysis.

2. Method

2.1. The CMS detector and event reconstruction

The CMS apparatus [29, 30] is a multipurpose, nearly hermetic
detector, designed to trigger on [31, 32] and identify electrons,
muons, photons, and charged and neutral hadrons [33-36]. A
global reconstruction algorithm [37] combines the information
provided by the all-silicon inner tracker and by the crystal elec-
tromagnetic (ECAL) and brass-scintillator hadron calorimet-
ers, operating inside a 3.8 T superconducting solenoid, with
data from gas-ionization muon detectors interleaved with the
solenoid return yoke [36, 38, 39].

Electrons are measured in the pseudorapidity range |n| <
2.5 as energy deposits in the ECAL matched to a track,
accounting for their emitted bremsstrahlung energy [33, 40].
Well-identified electron candidates are selected using identi-
fication criteria based on boosted decision trees [33]. Muons
are measured in the range |n| < 2.4 as tracks in the inner
tracker consistent with a track in the muon system. Well-
identified muon candidates are required to pass the ‘tight’
working point of the identification criteria described in [34].
Both electrons and muons are required to be isolated from
other activity in the event.

Hadronic jets are clustered using the anti-kr algorithm [41,
42] with a distance parameter of 0.4, from particles recon-
structed with the particle-flow algorithm [37]. The charged-
hadron subtraction algorithm [37] is used to mitigate the
effect of additional pp interactions within the same or nearby
bunch crossings (pileup). Jet energy corrections are applied to
match the average measured energy of jets to that of particle-
level jets [38]. Only jets in the range |n| < 2.4 with trans-
verse momentum pr >20GeV are considered in the ana-
lysis. Additionally, jets are required to be separated by AR =
V(An)* + (A¢)? > 0.4 from any selected lepton, where An
and A¢ are the 1 and azimuthal angle differences between the
jet and the lepton. Jets originating from b quarks are identi-
fied (‘tagged’) with the DEEPJET algorithm [43—-45], using the
working point with an efficiency of 77% and a misidentifica-
tion rate of 15% for c quark jets and of 2% for light-quark and
gluon jets. The missing transverse momentum vector g is
computed as the negative vector sum of the pr of all the recon-
structed particles in an event, and its magnitude is denoted as
p {“niss [39]

2.2. Data and simulated event samples

The data used in this analysis were recorded with triggers that
require the presence of one or two isolated electrons and/or
muons, with an overall trigger efficiency with respect to the
offline selection above 96% in the dielectron channel and 98%
in the dimuon channel. To compare the collected data to theor-
etical predictions, Monte Carlo (MC) event samples are gen-
erated for all relevant production processes. Different event
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generators are used for the calculation of matrix elements
(MEs). In all cases, the next-to-next-to-leading order (NNLO)
NNPDF3.1 parton distribution functions (PDFs) [46] are used,
and the ME calculation is interfaced with PYTHIAS.240 [47]
to simulate parton showers, fragmentation, and hadronization,
using the CP5 underlying event tune [48, 49]. The top quark
mass m; is set to 172.5 GeV in all samples involving top
quarks, as well as in the computation of theoretical corrections
that are applied to them. The simulated events are processed
through the CMS detector simulation based on the GEANT4
program [50], and pileup interactions generated with PYTHIA
are overlaid to match the observed pileup distribution in data.
Separate MC samples are generated and dedicated corrections
to the simulations are applied for different data-taking eras to
take into account evolving conditions.

Pseudoscalar 1, production is generated using a simpli-
fied model [17, 51], implemented as a generic resonance in
the MADGRAPHS_aMC@NLO 2.6.5 event generator [52] at LO,
with an effective contact interaction describing the gluon-m
coupling. Samples of resonant 1, — WbWb events are pro-
duced, thus including contributions from off-shell top quarks.
The 1¢ mass and width are set to 343 and 2.8 GeV, respect-
ively, corresponding to the expectation that the toponium mass
is twice m, minus a binding energy of about 2 GeV [17], and
its decay width is twice the width of the top quark [13]. The
branching ratio of W — /v is taken to be 11.1% [52]. The non-
relativistic Hamiltonian reweighting mentioned in [17, 19] is
not applied since its impact on the analysis is expected to be
negligible [15]. Scalar x; production is simulated in the same
way with identical mass and width values, but with relevant
CP-odd couplings replaced by CP-even ones.

The nonresonant tt production process is simulated at NLO
in perturbative quantum chromodynamics (pQCD) using the
hvq model implemented in POWHEG v2 [53-56]. The fac-
torization and renormalization scales (ur and ugr) are set to
vVm? + P%,v where pr is the pr of the top quarks in the
underlying Born-level configuration. Decays of the top quarks
are performed using the narrow-width approximation [57].
The sample is normalized to the predicted tt production cross
section of 833.9 1303 pb, as calculated with the TOP+-+2.0 pro-
gram at NNLO in pQCD, and including soft-gluon resum-
mation at next-to-next-to-leading-logarithmic (NNLL) accur-
acy [58]. To improve the theoretical description of the kin-
ematic distributions of the tt production process, the sample is
reweighted to account for higher-order corrections. The pre-
diction at NNLO in pQCD is calculated using the MATRIX pro-
gram [59], and electroweak (EW) corrections at NLO using
the HATHOR program [60—65]. Both predictions are computed
at the level of stable top quarks with a nominal scale choice
of 0.5(Vm? +p3  + Vm? +pi;), where pr is the pr of the
top antiquark, and using the same NNPDF3.1 PDF set as the
POWHEG tt sample. The POWHEG tt sample is reweighted to
the NNLO pQCD and NLO EW predictions using double-
differential weights, evaluated at the generator level as a func-
tion of m; and of the top quark scattering angle with respect
to the tt system. The tt production sample obtained in this way

is referred to as fixed-order (FO) pQCD sample in the follow-
ing. In addition, three further samples are generated with dif-
ferent generator setups: (i) the same POWHEG ME calculation
matched to HERWIG7.2.2 [66, 67], using the angular-ordered
parton shower model; (ii)) MADGRAPHS _aMc@NLO at NLO in
pQCD with up to two additional jets in the ME and matched to
PYTHIA with the FxFx merging scheme [68], using the default
scale choices for FxFx merging; and (iii) the bb41 ME gen-
erator in POWHEG VRES [69-71], which simulates the full
process pp — bblf*¢~v¥ at NLO in pQCD and thus includes
full off-shell contributions beyond the narrow-width approx-
imation, using the default scale choices [69] and matched to
PYTHIA. The same NNLO pQCD and NLO EW corrections
as before are also applied to these samples. In the case of
bb4l, the corrections are only applied to the tt part of the full
sample. For this purpose, we use ME-based resonance history
projectors [71].

The 1 and X, samples are added to the FO pQCD tt
sample [51, 72, 73]. We have tested that adding the 1, and FO
pQCD tt samples in this way gives similar results to the most
recent NRQCD prediction [18], which uses the NLO QCD
potential for Coulomb resummation and includes threshold
resummation at NLL accuracy.

Reducible background (BG) contributions in the ana-
lysis originate from single top quark production (tX), Drell—
Yan production (Z/y*), diboson production (WW, WZ, and
77), tt production in association with a vector boson (ttV),
and tt production with an additional misidentified or non-
prompt lepton. The tX processes via the ¢, tW, and s chan-
nels are generated at NLO using POWHEG V2, POWHEG, and
MADGRAPHS_aMC@NLO, respectively [52, 74, 75], and nor-
malized to the NLO cross section predictions for the ¢ and s
channels [64, 76], and the approximate NNLO prediction for
the tW channel [77]. To eliminate the overlap between tW
and tt production at NLO, the diagram removal scheme [78]
is used. For the Z/y* process, samples are generated with
POWHEG [54, 55] with multi-scale-improved NNLO accuracy
in QCD [79, 80], matched with PyTHIA for initial-state radi-
ation (ISR) and pHOTOS [81, 82] for FSR. The total yield of
the Z/y* prediction is corrected using data following a mod-
ified version of the procedure described in [83]. The dibo-
son processes are generated using PYTHIA and normalized to
the respective NNLO (WW) [84] or NLO (WZ and ZZ) [85]
cross sections. We checked that replacing the WW contribu-
tion with the nonresonant WWbb production, which leads to
the same final state as tt production, does not change the res-
ults of this work. The ttV events are generated at NLO with
MADGRAPHS_amMC@NLO. The background contribution due to
tt production with an additional misidentified or nonprompt
lepton is estimated from the same FO pQCD tt MC sample as
described above, considering both the ¢/ and ¢j decay channels
of tt. Background contributions due to W-jets events with one
additional misidentified or nonprompt lepton or due to QCD
multijet events with two such leptons are found to be negli-
gible. Further details on other reducible background predic-
tions are given in [21].
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2.3. Event selection

Candidate events are required to have exactly two well-
identified leptons (electrons and/or muons) of opposite charge,
with pr > 20GeV and at least one of them with py > 25GeV.
Events with an additional well-identified electron or muon
with pr > 20GeV are rejected. The invariant mass myy of the
dilepton pair is required to be larger than 20 GeV to suppress
low-mass resonances. To suppress Z/y* background contribu-
tions, events in the ee and up channels are required to have
piiss > 40GeV and |my, — 91GeV| > 15GeV, i.e., to be out-
side of the Z boson mass window [86]. The presence of at
least two jets with pr > 30GeV and of at least one b-tagged
jet with pt > 20GeV is required, resulting in two or more jets
per selected event.

Each event is reconstructed using a kinematic reconstruc-
tion algorithm, which assumes that the final state consists of
a tt pair that decays into two leptonically decaying W bosons.
The algorithm [87] proceeds in two steps, first identifying b
and b quark candidates and then reconstructing the momenta
of the neutrinos. In the first step, we consider all b-tagged
jets in the event as b and b quark candidates. For events with
exactly one b-tagged jet, either the b or b quark candidate, but
not both, are taken from the non-b-tagged jets. The invariant
masses of the visible top quark decay products m+y, and m,_¢
are calculated for all possible bb candidate pair assignments,
and the pair maximizing the likelihood of being the correct
pair is chosen for the second step. The likelihood is construc-
ted using the expected distribution of the invariant mass of the
lepton and b-tagged jet system, which has a different shape
depending on whether the lepton and b-tagged jet originate
from the decay of the same top quark, or not. The second step
uses an analytic method [88] to solve a system of equations
in the v, and ¥, momenta formed by requiring that: (i) the
invariant masses of the £*v,b and £~¥,b systems are equal
to 172.5 GeV, (ii) the invariant masses of the /v, and {~v,
systems are equal to the W boson mass, and (iii) the v,V sys-
tem is the sole source of the measured 7M. In case of mul-
tiple real solutions, the one with the lowest reconstructed value
of myg is used, which has been found to minimize possible
biases with respect to the true mg; value [89, 90]. This step
is repeated 100 times, with random smearing applied to the
momenta of the ¢, /~, b, and b candidates, by sampling from
the distributions of the relative energy difference and angular
distance between reconstructed and truth-level particles. The
effect of the smearing is propagated to the measured ﬁ{“i“.
This smearing procedure incorporates the detector resolution
into the reconstruction and, in particular, recovers solutions in
cases where the nominal configuration would lead to a sys-
tem of equations without real solution. The final result of the
reconstruction is taken as the weighted averages of the t and t
quark four-momenta, computed over all repetitions that result
in a real solution with weight evaluated via the same likeli-
hood based on m,+}, and m,_;, used for the bb quark candidate
assignment. Events yielding no real solution in any iteration
are rejected. The resolution of the reconstructed m; is around

15% at the tt threshold and increases up to 25% for higher m
values. Similarly, the resolution of the reconstructed top quark
pr is around 50 GeV for pr < 100GeV and increases towards
100 GeV for higher momenta.

Two angular observables cpe and cpay are defined to probe
the spin correlation of the tt system as follows. We define l?r
and Z;_ as the unit vectors of the momenta of the two leptons
in the rest frames of their parent t and t, respectively [21]. The
variable cpe [91, 92] is then defined as the scalar product of Zf“
and Z*, and cpqy [93] similarly but with a sign flip in the com-
ponent parallel to the t direction (i.e., the ¥ direction in [92]) of
either @' or Zt_. The slopes of both distributions are related to
the degree of alignment between the t and t spins. The produc-
tion of 1 results in a tt system in the 15([)1] state with anticor-
related t and t spins, resulting in a normalized cye distribution
with a maximal slope of +1, steeper than the one of the FO
pQCD prediction. In contrast, x; production of a tt system in
the 3P([)1] state results in a che slope of —1/3. Concerning cpyp,
the normalized distribution predicted by FO pQCD is almost
flat, whereas 1, and x, production result in slopes of +1/3 and
—1, respectively [21].

2.4. Statistical analysis

A binned profile maximum likelihood fit [94-97], implemen-
ted in COMBINE [98], is performed to evaluate the compatibility
of the observed data with the predictions and to obtain a best fit
estimate of the cross section of the 1, and/or ¥ contributions.
A three-dimensional (3D) template built from m;, chel, and chan
is used as the fitted distribution. Various sources of uncertainty
affect the 3D template and are implemented as nuisance para-
meters in the fit, capable of changing both the rate and the
shape of the templates. Experimental uncertainties related to
trigger, electron identification [33], muon identification [34],
and b tagging (separately for b/c and u/d/s/g jets) [43] efficien-
cies, as well as to pileup reweighting, are evaluated by varying
the corresponding corrections to the simulation by their uncer-
tainties. Uncertainties in the jet pr scale and resolution [38],
as well as an additional uncertainty in the p™** contribution
from detector deposits not clustered into jets [39], are evalu-
ated by varying the jet pr and p™* directly. Additional nuis-
ance parameters are assigned for an inefficiency caused by the
gradual shift in the timing of the ECAL trigger inputs [32],
and for the uncertainty of 1.6% in the integrated luminos-
ity measurement [99-101] that affects the normalization of
all simulated processes. Besides experimental effects, several
theoretical uncertainties related to the modeling of the sig-
nal and background processes are considered, as described
below.

First, we consider theoretical uncertainties in the FO pQCD
prediction of tt production. The NLO EW correction depends
on the value of the top quark Yukawa coupling y,. The leading
y¢ dependence is quadratic, originating from the interference
of diagrams containing a virtual Higgs boson with LO pQCD
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diagrams. A shape uncertainty of +11/—12% in y, around
the nominal value of the SM prediction is evaluated, conser-
vatively using the uncertainty from the measurement reported
in [102]. Following [65], the difference between the multiplic-
ative and additive application schemes when combining the
NLO EW corrections with the NNLO pQCD corrections of
about 1%-2% is taken as an additional uncertainty. We treat
the multiplicative application scheme as the nominal EW cor-
rection and the additive application scheme as the +10 shift
of this uncertainty. Relative to the nominal template, the —1o
shift has the same magnitude and opposite sign as the +1o
shift. All other uncertainties encoding the difference between
nominal and alternative modeling choices are implemented
similarly. The uncertainty in m; is considered by shifting its
value in simulation by +1 GeV [103]. We have checked that
the exact range of the m; uncertainty does not influence the
conclusions of this work. The values of ug and pr in the ME
calculation are varied independently up and down by a factor
of 2. The effects of the my, ur, and pp variations on the shape
of the 3D template are considered at NLO accuracy, whereas
the effects on the overall normalization are taken from the
NNLO+NNLL calculation [58, 104]. The scales used to eval-
uate the strong coupling constant ag in the PS simulation of
ISR and FSR are varied independently by a factor of 2 in each
direction. Uncertainties in the underlying event tune are estim-
ated by varying the CP5 parameters [49]. Two uncertainties are
considered for the color reconnection model, with one based
on the ‘QCD-inspired’ model [105], and the other by switch-
ing on the early resonance decay option in PYTHIA [106].
The uncertainty in the ME-PS matching scale is evaluated
by varying the POWHEG parameter Agamp, Which controls the
radiation of additional high-pt jets. The nominal value of
hgamp and the considered variations are 1.58 tg;‘;g my [107]. The
uncertainty from the PDF choice is evaluated by reweighting
the simulated tt events using 100 replicas of the NNPDF3.1
PDF set, and taking the base variation with the largest eigen-
value as obtained from a principal component analysis in the
space of the final 3D templates. The uncertainty in the value
of ag in the PDF set is used as a second independent PDF
uncertainty.

The choice of ME event generator for the tt FO pQCD
prediction is validated through a comparison of the nominal
tt FO pQCD + tW prediction with the alternative prediction
obtained with bb41, which includes off-shell contributions to
the bb/ T/~ v¥ final state. The difference between the two pre-
dictions is assigned as an additional uncertainty. Similarly,
the comparison of the nominal tt FO pQCD prediction with
the alternative generator setup using HERWIG is used to assign
an additional uncertainty for the choice of the parton shower
program.

The uncertainties due to pup, ISR, and FSR scales in the
¢ and X, simulations are evaluated by independently vary-
ing them up and down by a factor of 2. Since the employed
model uses effective 1, and x; production via a contact inter-
action with no dependence on ag, variations of pgr have no
effect. The uncertainty in m is considered by varying its value

in simulation by £1 GeV, and is treated as fully correlated
with the m; variation in the FO pQCD tt prediction. Other the-
oretical uncertainties in the 1, and x, simulations, such as the
PDF variations, are found to be small compared to the already
considered effects and are thus neglected.

The pgr, pr, ISR, and FSR scale uncertainties are also
independently considered for the Z/y* and tX processes.
Normalization uncertainties for the non-tt background pro-
cesses are assigned based on the precision of relevant
cross section measurements [108—113], resulting in larger
uncertainties than those of the corresponding theoretical
computations.

3. Results

We observe an excess of events in the data with respect to
the FO pQCD prediction. This excess occurs mainly at low
myg, and its strength depends on cpe and chan. We analyze
the my; distribution in 3 x3 equal-sized cpe; and cpyy bins, and
show three of these bins in figure 1: the bin (—1 < cpe <
—1/3, =1 < chan < —1/3) where the 1, contribution is expec-
ted to be small (left), the intermediate bin (—1/3 < chel <
1/3, —1/3 < ¢han < 1/3) (middle), and the bin (1/3 < che <
1, 1/3 < chan < 1) where the 1, contribution is expected to be
enhanced (right). In figure 2(left), the ¢y distribution is shown
for mz < 360GeV and integrated over cp,,. The data show a
steeper slope than the FO pQCD prediction, as expected from
an additional pseudoscalar contribution. As can be seen in both
figures, the 1, model can accommodate the excess.

We measure an 1, production cross section of

o (1) = 8.840.5 (stat) 713 (syst) pb = 8.8 12 pb.
Here, the statistical component of the uncertainty is estimated
by fixing all nuisance parameters to their postfit values, while
the systematic component is obtained as the quadratic differ-
ence between the total and the statistical uncertainty. Our res-
ult is comparable to the magnitude of the theory estimate of
6.4 pb, which is obtained by fitting the results of an NRQCD
calculation from [15] and subtracting the NLO+NLL pQCD
prediction [17], within the range of 338 < m; < 350GeV.
This is compatible with the recent NRQCD calculation in [18].
At the time of writing this paper, neither of these theoret-
ical predictions has uncertainty estimates attached. The cross
section measured in this work is without any explicit restric-
tions on the m;; range. The significance of the excess over the
hypothesis with no 1 production exceeds five standard devi-
ations (SDs).

To explore the spin and CP structure of the resonant excess,
we perform an alternative fit that simultaneously includes con-
tributions from pseudoscalar 1, and scalar ¥, production. The
results are shown in figure 3. While the data is compatible with
zero contribution from the X, state within one SD, zero contri-
bution from the 1 state is excluded with a significance exceed-
ing five SDs. This establishes the presence of a pseudoscalar
excess.
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Figure 1. Observed (points with statistical error bars) and predicted (stacked colored histograms) my; distribution in three out of nine (chel,
Chan) bins. In the upper panels, the tt histogram shows the FO pQCD prediction after the fit to the data that includes the 1, signal model
(whose contribution is not drawn), and the shown event rates are divided by the bin width. The lower panels display the ratio of the data to
the FO pQCD + background prediction, with 1¢ signal overlaid at its best fit 1), cross section (red line). The gray band indicates the postfit
uncertainty. The first and last m; bins include all events with reconstructed m; below 360 and above 1300 GeV, respectively, and the drawn
bin width is used for the normalization in these bins.
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Figure 2. Observed (points with statistical error bars) and predicted (stacked colored histograms) distributions. Left: cher for m; < 360 GeV
and integrated over chan, from the nominal fit using m;. Right: mppee integrated over chel and cpan, from the alternative fit using mppe, instead
of my, which is discussed in section 4.1. In the upper panels, the tt histogram shows the FO pQCD prediction after the fit to the data that
includes the 1; signal model (whose contribution is not drawn). On the right, the shown event rates are divided by the bin width. The lower
panels display the ratio of the data to the FO pQCD + background prediction, with 1 signal overlaid at its best fit 1; cross section (red line).
The gray band indicates the postfit uncertainty. The first and last mppee bins include all events with reconstructed mppe, below 100 and above
750 GeV, respectively, and the drawn bin width is used for the normalization in these bins.

4. Discussion

4.1 Robustness of the experimental analysis methods

To ensure that the on-shell assumption used in the kinematic
reconstruction algorithm does not sculpt the m; distribution to

be signal-like through an unaccounted systematic effect, we
repeat the analysis with a similar strategy but changing the

fit distribution from my;

to mppge. This observable is defined

without any assumption on the value of my, and is shown in

figure 2(right). To minimize dependence on modeling assump-
tions, nuisance parameters encoding the difference between
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Figure 3. Best fit value (cross) and allowed regions at one (solid
line), three (dashed line), and five (dotted-dashed line) SDs for the
cross section of 1, and X, production, as observed in data (black).
The FO pQCD + background expectation of zero 1 and X
contributions is denoted by a pink star. Negative cross section values
refer to a reduction of the tt production cross sections with respect
to the FO pQCD + background prediction around the threshold.

the generators were not included in this check. A cross section
of o(n,) =7.5+1.8pb is obtained in the mype, fit. This is
compatible with the nominal strategy, but with less sensitiv-
ity, which is expected. We conclude that the kinematic recon-
struction algorithm does not introduce spurious effects in our
analysis.

As an additional check of the experimental reconstruction,
we investigate the impact of possible jet pr scale mismodel-
ing on my by fitting pseudodata obtained from the FO pQCD
prediction with the jet pr scale shifted up or down by its prefit
uncertainty. We find the resulting shift in the 1, cross section
to be less than one SD of the nominal result.

4.2. Comparison between fits with and without v,
contribution

The my and cye distributions obtained with a ‘background-
only’ fit, i.e., considering only the FO pQCD prediction plus
background contributions without the 1 signal (labeled FO
pQCD + background) and including all nuisance parameters,
are shown in figure 4. The fit is able to absorb parts of the
low-my; excess of data over prediction. Nevertheless, a cpel
distribution with a higher slope than the FO pQCD expect-
ation remains visible, as expected for an m, contribution, cf
figure 2(left).

The quality of both the FO pQCD + background + 1
and FO pQCD -+ background fits is compared in figure 5
through the postfit deviations of nuisance parameters from

their prefit values (‘pulls’) as well as their postfit reduc-
tion in uncertainty (‘constraints’) in both cases. In the FO
pQCD + background + n fit (black filled circles), no nuisance
parameter is pulled from its prefit value by more than one SD.
In contrast, in the FO pQCD + background fit (gray empty
circles), the two nuisance parameters associated with the EW
corrections (the top quark Yukawa coupling and the correction
scheme) are pulled strongly away from their expected values.
Since the EW contribution from diagrams containing a Higgs
boson is expected to cause enhancements at the tt threshold
similar to 1¢ [65], this can compensate for the observed excess
of events and slope in cye. This, together with the fact that
there is still a residual positive slope near the tt threshold in
figure 4, corroborates the conclusion of the statistical analysis
that a nonzero m; contribution is the more physically sensible
interpretation of the data.

Other significant nuisance parameters are constrained
in both the FO pQCD + background+1; and the FO
pQCD + background fit. These include the top quark mass, to
which my; is naturally sensitive, and the differences between
PYTHIA and HERWIG as well as between hvq and bb41, which
are discussed in the next section. We investigate whether the
observed pulls and constraints could be attributed to imperfect
modeling in specific regions of phase space by splitting each
relevant nuisance parameter in two different ways: by binning
separately in cpej and chap, Or by dividing into three m; regions
mg <400GeV, 400 < m; < 600GeV, and m; > 600GeV. In
all cases, the resulting constraints are comparable with those
obtained in the nominal fit. Furthermore, we verify that the
prefit uncertainty ranges of these nuisance parameters do not
significantly impact the final result by performing alternative
fits in which the modeling-related nuisance parameters are left
unconstrained. The resulting 1, cross sections remain compat-
ible with those from the nominal fit, even when the nuisance
parameters are split as described above.

4.3. Comparison between different baseline FO pQCD
predictions

Here, we present and discuss the comparison between different
setups to generate the FO pQCD + background predictions. Fit
results obtained with the nominal FO pQCD tt prediction and
the three alternative generator setups introduced in section 2.2
are compared in table 1. The setup ‘POWHEG v2 hvq + PYTHIA’
refers to the sample used in the nominal result. The fit res-
ults shown here do not include the two systematic uncertain-
ties for the choice of the ME event generator and the par-
ton shower program, which are evaluated from comparisons
between the different generator setups. The setup ‘POWHEG
VRES bb4l + PYTHIA’ does not use the nominal tW predic-
tion and has dedicated samples to derive systematic uncer-
tainty templates, whereas the other three setups use the same
nominal tW prediction and share the samples used to derive
systematic uncertainty templates with the nominal result. The
largest difference in o (1) with respect to the nominal result
is found for POWHEG VRES bb41 + PYTHIA, which is lower by
~1.5 SDs.
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Table 1. Results for o (1) obtained with different simulated event samples for the tt FO pQCD (+tW) prediction. Nuisance parameters
encoding the difference between different generators are not included in these results. The nominal result, i.e., POWHEG V2 hvq 4 PYTHIA

including these nuisance parameters, is shown for comparison.

FO pQCD generator setup (1) (pb)
POWHEG V2 hvq + PYTHIA 8.7+1.1
POWHEG V2 hvq + HERWIG 8.6t1.1
MADGRAPHS5_aMC@NLO FxFx + PYTHIA 9.8+1.3
POWHEG VRES bb41l + PYTHIA 6.6+14
Nominal result 8.8 f}:i
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Figure 6. Ratios of the predictions for POWHEG v2 hvq + HERWIG (gray), POWHEG VRES bb41 4 PYTHIA (orange), and
MADGRAPHS5_aMC @NLO FxFx + PYTHIA (blue) to POWHEG v2 hvq + PYTHIA (black) for mg (left), cpe at the tt threshold (m; < 360GeV,
center), and che in the tt continuum (600 < mi < 800GeV, right), both integrated over chan. The effect of adding 1 to POWHEG v2

hvq + PYTHIA is shown in red for comparison. The shaded bands denote the statistical uncertainties from the MC simulation.

To illustrate the differences between the generator setups,
the ratios to the nominal POWHEG v2 hvq + PYTHIA prediction
are shown in figure 6 for the my; distribution, as well as the cpe
distribution at the tt threshold and in the tt continuum. It can
be seen that HERWIG, compared to PYTHIA, predicts a lower
tt acceptance, an increase of events at low my; (similar to 1),
and a reduced slope in cpe for low my; (opposite to 7). Since
these effects are contradicting the prediction from 1, produc-
tion, the observed o(n,) value remains basically unchanged.
In contrast, the bb41l sample predicts a stronger slope in cpe
for low mg, which is similar to 1 and thus explains the smal-
ler observed o (n,) value when this setup is used as the back-
ground prediction. Figure 6(right) shows, however, that above
the threshold the considered generators predict the same slope
in Chel -

These findings, as presented in table 1, are consist-
ent with the constraints and impacts of the two nuis-
ance parameters associated with the differences between
PYTHIA and HERWIG as well as between hvq and bb4l,
shown in figure 5. In particular, the strong impact of bb4l
on the extracted value of o(m,) is apparent. Notably, in
figure 5, the nuisance parameter associated with bb4l is
constrained around zero, indicating that the nominal hvq
prediction provides a better description of the data. A
detailed explanation of this observation is left for future
investigations.

Furthermore, MADGRAPHS_aMC@NLO predicts a signific-
ant slope in m; compared to POWHEG, while the spin correla-
tions are unchanged. This is consistent with an increase in the
extracted value of o(1)y), as given in table 1.

5. Summary

We report the observation of resonant top quark-antiquark (tt)
production near the kinematic production threshold, with spin
properties consistent with contributions from a pseudoscalar
state, using pp collision data recorded by the CMS experiment
at /s = 13TeV in 2016-2018 and corresponding to an integ-
rated luminosity of 138 fb~!. The data is compared to the SM
prediction including only nonresonant tt production obtained
with FO calculations in pQCDs. An excess is observed with
respect to this model, with a statistical significance exceeding
five SDs. We emphasize, however, that the modeling of the tt
threshold region is challenging and requires further theoret-
ical investigation. It is worth noting that alternative explana-
tions of the excess are also plausible, given the current experi-
mental resolution of the tt invariant mass; we explore this dir-
ection further in [21]. The result is compatible with the form-
ation of a IS([)” toponium quasi-bound state 1¢ with a meas-
ured cross section of (1)) = 8.8 7|3 pb, based on a simplified
model inspired by nonrelativistic quantum chromodynamics.
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