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Abstract— Mathematical optimization is now widely regarded
as an indispensable modeling and solution tool for the design of
wireless communications systems. While optimization has played
a significant role in the revolutionary progress in wireless commu-
nication and networking technologies from 1G to 5G and onto the
future 6G, the innovations in wireless technologies have also sub-
stantially transformed the nature of the underlying mathematical
optimization problems upon which the system designs are based
and have sparked significant innovations in the development of
methodologies to understand, to analyze, and to solve those prob-
lems. In this paper, we provide a comprehensive survey of recent
advances in mathematical optimization theory and algorithms for
wireless communication system design. We begin by illustrating
common features of mathematical optimization problems arising
in wireless communication system design. We discuss various sce-
narios and use cases and their associated mathematical structures
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from an optimization perspective. We then provide an overview
of recently developed optimization techniques in areas ranging
from nonconvex optimization, global optimization, and integer
programming, to distributed optimization and learning-based
optimization. The key to successful solution of mathematical
optimization problems is in carefully choosing or developing
suitable algorithms (or neural network architectures) that can
exploit the underlying problem structure. We conclude the paper
by identifying several open research challenges and outlining
future research directions.

Index Terms— Beamforming, distributed optimization, global
optimization, learning-based optimization, integer optimization,
nonconvex nonsmooth optimization, power control, resource allo-
cation, scheduling, sparse optimization, wireless communications.

I. INTRODUCTION

A. Evolution of Wireless Cellular Communication Systems:
From 1G to 6G

WIRELESS communication technology has progressed
dramatically in the last several decades. Wireless com-

munication systems have impacted our society in profound
ways and have become an integral part of our daily lives.
The development of wireless communication technology is
continuously driven by the requirements imposed by newly
emerging use cases—such as aggregate/peak data rate, latency,
cost and energy consumption, spectrum and energy effi-
ciency, connectivity density, and many others. These ever
more stringent key performance indicators (KPIs) have pro-
pelled innovations in both the physical and networking layer
technologies from 1G to current 5G [1] in the past several
decades, and will continue to do so into the era of future
6G wireless systems [2], [3], [4], [5], [6]. These innovations
include but are not limited to: advanced massive multiple-
input multiple-output (MIMO) technologies [7], [8], [9] such
as coordinated/cooperative beamforming [10], [11], hybrid
beamforming [12] and symbol-level precoding [13], new
waveforms [14] ranging from time-division multiple access,
code-division multiple access, orthogonal frequency-division
multiple access to nonorthogonal multiple access, novel access
protocols and paradigms [15], [16] such as grant-free multiple
access, new networking architectures [17], [18] such as cloud
radio access network (C-RAN) and cell-free (massive) MIMO,
as well as advanced signal processing algorithms such as
efficient compressed sensing techniques.

The 5G cellular system is currently being standard-
ized and deployed worldwide. It can provide services for
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Fig. 1. Six usage scenarios and overarching goals of IMT-2030 [6].

enhanced mobile broadband (eMBB), massive machine-type
communication (mMTC), as well as ultra-reliable and low-
latency communication (URLLC) for both the conventional
human-type and new Internet-of-Things (IoT) users. The 6G,
as the successor of 5G and to be commercialized around 2030,
is now in the research spotlight. A recent milestone in the
development of 6G is the Recommendation for IMT-2030 [6].
It is drafted by the International Telecommunication Union and
provides guidelines on the framework and overall objectives
of 6G. In particular, it defines six major usage scenarios
of 6G, as shown in Fig. 1. The additional use cases of
integrated sensing and communications (ISAC), integrated AI,
and ubiquitous connectivity, at the intersections of eMBB,
URLLC, and mMTC, are expected to be the drivers of wireless
technology developments in the coming decade.

B. Central Role of Mathematical Optimization in Wireless
Communication System Design

Mathematical optimization is at the core of all of the
above mentioned wireless communication technologies. It is
widely recognized as a powerful and indispensable model-
ing and solution tool in the systematic design of wireless
communication systems. Indeed, many problems arising from
wireless communication system design can be formulated as
mathematical optimization problems and efficiently solved by
leveraging suitable optimization algorithms and techniques.
Mathematical programming is in fact now a common language
for wireless communication researchers. Fig. 2 illustrates the
progression of major (of course, not all) optimization methods
that play central roles in and make strong impacts on different
generations of wireless communication systems. The bound-
aries between these generations are of course porous.

Convex optimization has played a vital role in 3G wireless
research and has been by far the most extensively adopted
paradigm for tackling wireless communication applications;
see [19], [20], [21], and [22] and the references therein.
In some sense, once the problem is formulated and recog-
nized as a convex optimization problem, efficient solutions
are often in sight, as convex optimization problems, even

complex ones such as second-order cone programs (SOCPs)
and semidefinite programs (SDPs), possess favorable theo-
retical and computational properties and can be tackled by
efficient and mature solvers such as SeDuMi, SDPT3, and
SDPNAL+. Indeed, many problems of practical interest in
3G wireless communication system design have been shown
to admit convex formulations/reformulations or good convex
approximations/relaxations [23].

Compared to 3G, technological advancements in previous
4G, current 5G, and future 6G wireless communication sys-
tems have substantially changed the structures and nature of
mathematical optimization problems behind the system design
and posed serious challenges in understanding, analyzing,
and solving the corresponding optimization problems. For
instance, most of the problems become “non-” problems, i.e.,
they are nonconvex, nonsmooth, non-Lipschitz, nonsepara-
ble, and nondeterministic, and the design variables of the
problems range from continuous to integer or even mixed.
These new features of mathematical optimization problems
urgently call for and indeed have driven the development
of many new and advanced optimization theory, algorithms,
and techniques such as nonconvex nonsmooth optimization,
fractional programming (FP), global and integer optimization,
distributed optimization, sparse optimization, and learning-
based optimization. These form the subject of this paper.

C. Goals of the Paper
The goals of this paper are as follows:
• Provide an overview of recent advances in mathematical

optimization theory and algorithms: The first goal of this
paper is to provide a survey of recent advances in math-
ematical optimization theory and algorithms for wireless
communication system design. In particular, this paper
surveys recent advances in nonconvex nonsmooth opti-
mization, global optimization, distributed optimization,
and learning-based optimization. The focus is on their
theoretical properties as well as successful applications
of mathematical optimization techniques in the design of
wireless communication systems.

• Guide the choice and development of suitable algorithms
for solving structured optimization problems: The second
goal of this paper is to give some guidance on how to
choose or to develop suitable algorithms for solving math-
ematical optimization problems based on their special
structures and features. To achieve this goal, the current
paper analyzes and highlights the structures and features
of the underlying optimization problems and clarify how
the associated algorithms utilize these unique problem
structures and features.

• Promote the cross-fertilization of ideas in mathematical
optimization and wireless communications: The final
goal of this paper is to promote the cross-fertilization
of research agendas in mathematical optimization and
wireless communications. On the one hand, advanced
optimization tools and techniques enable innovations in
understanding, analyzing, and solving optimization prob-
lems from wireless communications; on the other hand,
novel applications arising from wireless communications
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Fig. 2. The evolution of wireless communication systems and the development of optimization methods are closely interwoven with each other. In particular,
convex optimization techniques influenced the design of 3G communication system, whereas mathematical optimization problems arising from 4G–6G
communication system design call for and have driven the development of new and advanced optimization theory, algorithms, and techniques such as
nonconvex nonsmooth optimization, global and integer optimization, parallel and distributed optimization, and learning-based optimization.

have driven and will continue to drive the development
of new optimization theory and algorithms. As can be
seen from Fig. 2, the evolution of wireless communication
systems and the development of optimization methods
are closely interwoven. The cross-fertilization of ideas in
mathematical optimization and wireless communications
have led and will continue to lead to fruitful outcomes.

D. Structure of the Paper

The structure of this paper is as follows. We first list
some mathematical optimization problems arising from wire-
less communication system design and discuss their special
structures and challenges from the mathematical optimization
perspective in Section II. Then we review recent advances
in structured nonconvex optimization in Section III, which
covers FP, sparse optimization, proximal gradient (PG) algo-
rithms, penalty methods, and duality-based algorithms. Next,
we review recent advances in global optimization and dis-
tributed optimization in Sections IV and V, respectively;
we review learning-based optimization with and without the
channel state information (CSI) in Sections VI and VII,
respectively. In Section VIII, we give some open research
questions and future research directions. Finally, we conclude
the paper in Section IX.

This survey differs from many others in the wireless
communications literature that typically target specific tech-
nologies (e.g., ISAC [24], reconfigurable intelligent surfaces
(RIS) [25], non-orthogonal multiple-access (NOMA) [14],
massive connectivity [15], massive random access [16], etc.).
Perhaps the most relevant survey papers to this paper are [19],
[20], [21], [22], which provide the state-of-the-art in convex
optimization for communications and signal processing at the
time. However, it has been more than a decade since those
works are published, while significant innovations have taken
place in wireless technology (from 3G to 5G and beyond)
as well as in mathematical optimization theory and algo-
rithms. The topics of this paper include nonconvex nonsmooth
optimization, global optimization, distributed optimization,
and learning-based optimization, all of which have not been
covered in [19], [20], [21], and [22].

Notation. We adopt the following standard notation in this
paper. Lower and upper case letters in bold are used for vectors
and matrices, respectively. For any given matrix A, A†, AT,
and A−1 denote the conjugate transpose, the transpose, and
the inverse (if invertible) of A, respectively; A(m,n) denotes
the entry on the m-th row and the n-th column of A; and
A(m1:m2,n1:n2) denotes a submatrix of A by taking the rows

from m1 to m2 and columns from n1 to n2, respectively. For
any given complex matrix A, we use Re(A) and Im(A) to
denote its real and imaginary parts, respectively. All of the
above usages also apply to vectors and scalars. ∥x∥2 denotes
the ℓ2-norm of the vector x. In some cases, the index 2 is
omitted. A•B = tr(AB) is the trace matrix product. We use
CN (µ,Q) to denote the complex Gaussian distribution with
mean µ and covariance Q. Finally, we use I to denote the
identity matrix of an appropriate size, 0 to denote the all-zero
matrix of an appropriate size, and i to denote the imaginary
unit (which satisfies i2 = −1).

II. OPTIMIZATION PROBLEMS IN WIRELESS
COMMUNICATIONS: STRUCTURES AND CHALLENGES

In this section, we first list some of the mathematical
optimization problems arising from wireless communication
system design in various use cases in Section II-A. Some of
these problems are classic in communication system design
but unique challenges appear due to the new communica-
tion scenarios in 5G or 6G; some of these problems are
new. We then summarize the challenging features of these
problems from the optimization perspective in Sections II-B
and II-C. Recognizing the specific structures of the opti-
mization problems is the first step towards their efficient
solution.

A. Optimization Problems in Wireless Communications
Optimization problems can be classified according to the

nature of the optimization variables and the analytic properties
of the objective and constraint functions, e.g., linear vs.
nonlinear, unconstrained vs. constrained, smooth vs. nons-
mooth, convex vs. nonconvex, stochastic vs. deterministic,
integer vs. continuous, etc. Below we give important exam-
ples of optimization problems commmonly encountered in
wireless communication system design according to such
classification.

1) Optimization Problems with Continuous Variables:
Beamforming refers to a signal processing technique which
combines elements in an antenna array to shape and
focus an electromagnetic wave toward certain desired direc-
tions/locations and eliminate interferences to the others [11].
Recent advances in beamforming techniques in wireless
communications lead to many interesting structured signal
processing and optimization problems [10], [11]. Beamformer
design, which is often coupled with power control, is an
example of continuous optimization problems.
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Fig. 3. Beamforming in wireless communication systems: (a) Downlink multi-user MIMO system considered in problems (3), (4), and (16); (b) Cooperative
cellular system considered in problem (7); and (c) Cooperative cellular system with finite-capacity fronthaul links considered in problem (10).

a) Downlink beamforming: Consider the downlink
multi-user MIMO system in Fig. 3(a), where the transmitter
is equipped with M antennas,1 and sends the data to K indi-
vidual users/receivers each equipped with a single antenna.
Let K = {1, 2, . . . ,K} denote the set of the receivers. The
transmitter can direct a beam to each receiver in such a
way that its own signal is enhanced and the interference to
the other receivers is depressed. Let hk ∈ CM denote the
channel vector between the transmitter and the k-th receiver,
and let vk ∈ CM denote the beamforming vector (also called
the precoding vector) used for receiver k by the transmitter.
Assume that sk ∼ CN (0, 1) is the signal information for user
k. The transmitted signal is given by x =

∑
j∈K vjsj , and

the received signal at the k-th receiver is given by

yk = h†
kx + zk = h†

k

∑
j∈K

vjsj

+ zk, k ∈ K, (1)

where zk is the additive white Gaussian noise (AWGN) with
variance σ2

k. Then, the signal-to-interference-plus-noise-ratio
(SINR) of the k-th receiver can be written as

SINRk ({vk}) =
|h†

kvk|2∑
j ̸=k |h

†
kvj |2 + σ2

k

, k ∈ K. (2)

There are two well-studied formulations of the downlink
beamforming design problem, which arise from different per-
spectives. From the perspective of the system operator, the
downlink beamforming design problem is often formulated as
a system utility maximization problem under a total power
constraint. For example, adopting the sum rate of all users as
the system utility, the downlink beamforming design problem
can be formulated as

max
{vk}

∑
k∈K

log (1 + SINRk({vk}))

s.t.
∑
k∈K

∥vk∥2 ≤ P, (3)

where P is the transmitter’s power budget.

1The “transmitter” and “antenna” here are abstract concepts, which can
be a multi-antenna base station (BS) in the single-cell case, or a virtually
cooperative transmitter consisting of many relay-like BSs in C-RAN [17] and
cell-free MIMO [18] cases.

From a different perspective, the downlink beamforming
design problem can also be formulated as a total power min-
imization problem under the users’ quality-of-service (QoS)
constraints as follows:

min
{vk}

∑
k∈K

∥vk∥2

s.t. SINRk({vk}) ≥ γk, k ∈ K, (4)

where γk is the SINR target of user k. It is worth noting that
the optimization formulation (4) is considerably more tractable
from a computational point of view than (3), because the
former can often be converted into a convex form [21], while
no convex reformulation is known for the latter.

b) Hybrid beamforming: Massive MIMO, which deploys
hundreds or even thousands of antennas at the BS, is a
key technology for significantly improving the spectrum and
energy efficiency of wireless communication systems [1],
[26], [27]. However, scaling the numbers of radio-frequency
(RF) chains and analog-to-digital converters (ADCs)/digital-
to-analog converters (DACs) with the number of antennas
would result in high hardware complexity and high power
consumption. For this reason, instead of using the classical
fully-digital beamforming technique, massive MIMO systems
are often implemented in a hybrid analog-digital beamforming
architecture [12], [28], [29], [30] in which a large-antenna
array is driven by only a limited number of RF chains, call
it NRF. In this case, the transmit signal, instead of being the
form x =

∑
j∈K vjsj , now has the following structure:

x = VRF

∑
j∈K

vjsj , (5)

where VRF is an M × NRF analog beamforming matrix,
typically implemented using phase shifters, i.e., its entries
are complex numbers with unit magnitude, while {vj} are
digital beamformers of dimension NRF. The joint design of
analog beamformer VRF and digital beamformers {vj} poses
a unique challenge in optimization.

c) RIS beamforming: An RIS is a metasurface, consisting
of many small reconfigurable passive low-cost reflecting ele-
ments that can easily introduce a controlled individual phase
shift to the impinging electromagnetic wave [25]. These RIS
elements can jointly provide passive beamforming that can
effectively enhance the propagation condition over wireless
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channels by directing electromagnetic radiation toward the
intended direction. Structurally, the optimization of RIS phase
shifts to maximize the signal-to-noise-ratio (SNR) has a sim-
ilar form as the optimization of hybrid beamformers.

The overall downlink channel model for an RIS-assisted
communication scenario has the following form. Let hd

k ∈
CM denote the direct channel from the BS to user k, and
hr

k ∈ CNRIS denote the channel from the RIS to user k,
and G ∈ CNRIS×M denote the channel from the BS to
the RIS. Let the RIS reflection coefficients be denoted by
Ω = [eiω1 , eiω2 , . . . , eiωNRIS ]T, where ωi ∈ (−π, π] is the
phase shift of the i-th element. Then, the received signal at
user k can be represented as

yk = (hd
k + GT diag(Ω)hr

k)†
∑
j∈K

vjsj + nk. (6)

It would be of interest to jointly optimize the unit-modulus
RIS phase shifters matrix Ω and the beamformers {vj}.

d) Joint BS clustering and beamformer design: Beam-
forming can also be performed across multiple BSs. Consider
a cooperative cellular network consisting of a (large) set of
densely deployed BSs (e.g., macro/micro/pico BSs), denoted
by B = {1, 2, . . . , B}, that provide services to a set of users,
denoted by K = {1, 2, . . . ,K}, as depicted in Fig. 3(b).
Assume that each BS is equipped with M antennas and each
user is equipped with a single antenna. Let hk,b ∈ CM

be the channel between BS b and user k, and let hk =
[hT

k,1,h
T
k,2, . . . ,h

T
k,B ]T ∈ CMB be the channel between all

the BSs and user k. In addition, let vk,b ∈ CM be the
beamforming vector of BS b for user k, and let vk =
[vT

k,1,v
T
k,2, . . . ,v

T
k,B ]T ∈ CMB . If all the B BSs are allowed

to share data and fully cooperate with each other, then they
can be treated as a virtual BS with MB antennas. In this
case, the network reduces to the downlink multi-user MIMO
channel in Fig. 3(a). In practice, full cooperation among all
the BSs is impractical, as it would result in a large signaling
overhead. A popular strategy to reduce the overhead of the
above network is user-centric BS clustering [31], [32], i.e.,
each user is served by only a small number of BSs.

With the above setup, the SINR of user k can be expressed
as (2). If we wish to pursue a sparse solution in which each
user is served by a small cluster of BSs, we can consider an
optimization problem similar to (3), but with an additional
mixed ℓ2/ℓ1 regularization term to induce a group-sparse
structure in each vk. Specifically, the problem is formulated
in [33] as

max
{vk}

∑
k∈K

(
log(1 + SINRk ({vk}))− ρ

∑
b∈B

∥vk,b∥2

)
s.t.

∑
k∈K

∥vk,b∥22 ≤ Pb, b ∈ B, (7)

where Pb is the power budget of BS b and ρ is the parameter
that controls the group sparsity of the vectors {vk,b} , i.e.,
the coordination overhead between different BSs. In particular,
if vk,b = 0, then BS b does not cooperate in serving user k.
We want to point out that the regularizer

∑
b∈B ∥vk,b∥2 in

problem (7) is nonsmooth.

e) Joint downlink beamforming and fronthaul compres-
sion: Consider now a more practical cooperative cellular
network (e.g., C-RAN) consisting of one central processor
(CP) and M single-antenna relay-like BSs (called relays for
short in the rest of the paper), which cooperatively serve K
single-antenna users, as shown in Fig. 3(c). In such a network,
the users and the relays are connected by noisy wireless
channels, and the relays and the CP are connected by noiseless
fronthaul links of finite capacities. Let M = {1, 2, . . . ,M}
denote the set of relays (i.e., antennas).

The compression model from the CP to the relays plays
a central role in formulating the joint beamforming and
compression problem. The ideal beamformed signal at the CP
is
∑

k∈K vksk, where vk = [vk,1, vk,2, . . . , vk,M ]T ∈ CM is
the beamforming vector for user k. However, the transmitted
signal from the CP to the relays needs to be first compressed
(through quantization) due to the limited capacities of the
fronthaul links. Let the compression error be modeled as
e = [e1, e2, . . . , eM ]T ∼ CN (0,Q), where em denotes the
quantization noise for compressing the signal to relay m,
and Q is the covariance matrix of the quantization noise.
Then, the transmitted signal (by treating all relays as a virtual
transmitter) is

x =
∑
j∈K

vjsj + e (8)

and the received signal at user k is

yk = h†
k

∑
j∈K

vjsj

+ h†
ke + zk, k ∈ K. (9)

In this case, the SINR of user k is

SINRk ({vk} ,Q) =
|h†

kvk|2∑
j ̸=k |h

†
kvj |2 + h†

kQhk + σ2
k

, k ∈ K,

and the compression rate of relay m ∈ M can be expressed
below, if we adopt the information-theoretically optimal multi-
variate compression strategy (with the compression order from
relay M to relay 1) [34]:

Cm ({vk} ,Q) = log2

( ∑
k∈K |vk,m|2 + Q(m,m)

Q(m:M,m:M)/Q(m+1:M,m+1:M)

)
,

where Q(m:M,m:M)/Q(m+1:M,m+1:M) ≜ Q(m,m) −
Q(m,m+1:M)(Q(m+1:M,m+1:M))−1Q(m+1:M,m). The QoS-
constrained joint beamforming and compression design
problem can then be formulated as

min
{vk},Q⪰0

∑
k∈K

∥vk∥2 + tr(Q)

s.t. SINRk ({vk} ,Q) ≥ γk, k ∈ K,

Cm ({vk} ,Q) ≤ Cm, m ∈M, (10)

where Cm is the fronthaul capacity of relay m.
2) Optimization Problems with Integer Variables: When

optimization is performed at the level of constellation symbols,
which comes from a discrete set, it gives rise to a discrete
optimization problem. In the following, we describe two
optimization problems with integer/discrete variables in the
context of massive MIMO.
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a) MIMO detection: MIMO detection is an example of
a discrete optimization problem in digital communications.
Although MIMO detection has been extensively studied for
more than two decades, it has gained renewed interest in the
context of massive MIMO [35], [36]. Consider a (massive)
MIMO channel model in the uplink:

y = Hs + z, (11)

where y ∈ CM is the vector of received signals, H ∈ CM×K

is an M ×K complex channel matrix (for K inputs and M
outputs with M ≥ K), s ∈ SK is the vector of transmitted
symbols by the user terminals, and z ∈ CM is an AWGN with
zero mean. We consider the cases where S is the (4u2)-QAM
constellation

Qu = {z ∈ C | Re(z), Im(z) = ±1,±3, . . . ,±(2u− 1)}
(12)

or the L-PSK constellation SL

SL = {exp(2πi(ℓ− 1)/L) | ℓ = 1, 2, . . . , L} . (13)

The MIMO detection problem is to recover the vector of
transmitted symbols s from the vector of received signals
y based on the knowledge of the channel matrix H. The
standard mathematical formulation of the MIMO detection
problem is

min
x
∥Hx− y∥22

s.t. x ∈ SK . (14)

One of the new challenges of solving the above problem
in the massive MIMO context is the large problem size,
which prevents the use of many algorithms (e.g., semidefinite
programming relaxation (SDR)-based algorithms [37], [38])
that are computationally feasible only when the problem size
is small to medium.

b) Symbol-level precoding: In the downlink, when the
CSI is available at the transmitter, it is also possible to
formulate an optimization problem of designing the trans-
mitted signal, so that the desired received signal aligns with
the constellation point. Consider a downlink scenario and let
s ∈ CK be a set of desired constellation points (corresponding
to multiple users), the BS may try to construct the downlink
transmit signal x so that after going through the channel
H, the received signal would align with the desired s as
closely as possible. This technique is called symbol-level
precoding [13], because a different x is designed for each
symbol s—in contrast to the beamforming technique where
the same beamformer is used for the entire channel coherence
time. This formulation is appealing in the massive MIMO
context. When the BS is equipped with many antennas, it is
possible to restrict the transmit signal to be discrete, e.g.,
X = {±1 ± i}, which simplifies implementation, and still
provides excellent performance. In this case, the problem
formulation becomes [39]

min
x
∥Hx− s∥22

s.t. x ∈ XM , (15)

which is a discrete optimization problem. We mention here
that it is possible to consider also the joint optimization of
constellation range [40] in this problem formulation.

3) Optimization Problems with Mixed Variables: In power
control and beamforming design problems, when admis-
sion control, user scheduling, and/or BS-user association are
involved, the corresponding optimization problems would have
mixed variables, i.e., both continuous and integer (in particular,
binary on-and-off) variables. Let us consider two examples.

a) Joint admission control and multicast beamforming:
Consider the same downlink multi-user MIMO system in
Fig. 3(a) as in problems (3) and (4). Different from prob-
lems (3) and (4), here we assume that the intended information
from the transmitter to all of the K users is the same, i.e.,
the transmitter multicasts the common information to K users
simultaneously [41]. Let w be the multicast beamforming
vector used by the transmitter. In this case, the SNR of the
k-th user is given by

SNRk(w) =
|h†

kw|2

σ2
k

.

If user k is admitted to be served by the transmitter, then its
QoS constraint SNRk(w) ≥ γk should be satisfied, where γk

is the given SNR threshold of user k. When the transmitter
cannot simultaneously support all users (because, e.g., the
number of users is too large), admission control [42], [43]
is needed to select a subset of users to serve at their SNR
targets.

One possible problem formulation for admission control is
to maximize the number of admitted users under the power
budget constraint [44], [45], and another possible formulation
is to select a subset of users with a given cardinality to
minimize the total transmit power [46], [47]. In particular,
given 1 ≤ K̂ ≤ K, the joint admission control and multicast
beamforming (JABF) design problem of selecting a subset of
K̂ users with the minimum total transmit power is formulated
in [47] as

min
w, β

∥w∥2

s.t. |h̃†
kw|

2 ≥ βk, k ∈ K,∑
k∈K

βk ≥ K̂, βk ∈ {0, 1} , k ∈ K, (16)

where β = [β1, β2, . . . , βK ]T is a binary vector with βk

modeling whether user k is selected, w is a continuous multi-
cast beamforming vector, and h̃k is redefined as hk/(σk

√
γk)

for ease of notation. This is a mixed continuous/discrete
optimization problem.

b) Joint uplink scheduling and power control: Con-
sider the uplink of a wireless cellular network, where a
single-antenna BS is associated with several single-antenna
users in each cell, and the users are scheduled for uplink
transmission within each cell. Let B denote the set of cells/BSs
in the network, Ki denote the set of users who are associated
with BS i, κi ∈ Ki denote the user to be scheduled for
transmission at cell i, and pk denote the transmit power of
the scheduled user k. Assume that sκi

∼ CN (0, 1) is the
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transmitted signal of user κi. Then, the received signal at BS
i is

yi =
∑
j∈B

pκj
hi,κj

sκj
+ zi,

where hi,κj
is the uplink channel coefficient from user κj

to BS i and zi ∼ CN (0, σ2
i ) is the AWGN. Given a set of

weights {wk} that reflects the user priorities and adopting the
weighted sum rate as the system performance metric, the joint
uplink scheduling and power control problem is formulated
in [48] as

max
κ,p

∑
i∈B

wκi
log

(
1 +

|hi,κi
|2pκi∑

j ̸=i |hi,κj |2pκj + σ2
i

)
s.t. 0 ≤ pk ≤ Pk, k ∈ ∪i∈B Ki,

κi ∈ Ki ∪ {∅}, i ∈ B, (17)

where κi = ∅ means that no user in cell i is scheduled for
transmission. The discrete scheduling variables {κi} and the
continuous power control variables {pk} are coupled in prob-
lem (17), making it a mixed continuous/discrete optimization
problem.

4) Remarks: In the above, we have only listed a few of
wireless communication scenarios that give rise to interesting
optimization formulations. As device technology, network
architecture, deployment use cases, and new application sce-
narios for 5G and 6G continue to evolve, novel optimization
formulations will continue to emerge. For example, the
incorporation of RIS in the wireless environment not only
makes the optimization problem high-dimensional but also
poses challenges in channel modeling and estimation, which
motivate learning-based optimization without explicit channel
estimation. As another example, mMTC service with sporadic
device activities gives rise to sparse optimization problems.
For eMBB services, large-scale C-RAN or cell-free networks
give rise to novel formulations of the joint optimization
of fronthaul compression and data transmission. Moreover,
the incorporation of artificial intelligence (AI) into wireless
networks (e.g., federated learning) gives rise to interesting dis-
tributed optimization problem settings. Finally, deep learning
may provide an alternative path to the traditional optimization
paradigm. These novel problem settings and their associated
solution techniques will be the main focus of the rest of this
paper.

B. Challenges from the Optimization Perspective

The innovations in the wireless communication system
architecture (from 3G to 5G and beyond) in the last two
decades have substantially changed the structures and the
nature of optimization problems arising from system design.
This makes these problems more challenging to analyze and
to solve. We briefly summarize these challenges below.

• Large dimensionality and high nonlinearity. The dimen-
sion of optimization problems becomes much larger, and
the objective and constraint functions become highly
nonlinear. The larger dimensionality comes from the
larger number of system parameters and variables, such

as the large number of antennas deployed at the BS in the
massive MIMO system and the large number of users [7],
the large number of devices in the massive machine-type
communication network with a potentially sparsity struc-
ture [15], the large number of subcarriers, and the large
number of passive reflection elements in the RIS-aided
communication system [25], [49]. Nonlinearity may be
caused by the coupling of design variables and compli-
cated expressions of the objective function and constraints
with respect to the variables. For instance, reflective
beamforming vectors and transmit beamforming vectors
are multiplicatively coupled and further composed with
fractional and logarithmic functions in RIS-aided com-
munication systems [25], [49]; the performance metric
of target estimation (e.g., the Cramér-Rao bound of radar
sensing [50]) is usually a highly nonlinear function of the
design variables in ISAC systems [24].

• Lack of favorable properties. Many of the aforementioned
optimization problems become “non-” problems, i.e.,
they are either nonconvex, nonsmooth, non-Lipschitz,
nonseparable, or nondeterministic. There are two rea-
sons for the frequent occurrences of these new types of
optimization problems. First, some nonconvex nonsmooth
non-Lipschitz regularization terms are often needed in
optimization problems to promote certain desired struc-
tures in their solutions (e.g., sparsity, low-rankness, and
fairness) [31], [32], [33], especially in cooperative com-
munication networks (see, e.g., problem (7)). Second,
nonconvex and nonsmooth terms are helpful in trans-
forming certain structured optimization problems with
discrete variables into “easy” (globally/locally) equivalent
problems with continuous variables, which facilitates
algorithm design. The lack of favorable properties (see,
e.g., [51] for a discussion) necessitates a judicious treat-
ment of both the theoretical and algorithmic aspects of
optimization.

• Mixed-integer variables. In various system design sce-
narios, both continuous and discrete variables can appear
in the associated optimization problems. Some examples
include the admission control and user scheduling prob-
lems (16) and (17). The integer variables often make the
optimization problems significantly more difficult to solve
than their continuous counterparts. For problems with
only integer variables, the “brute force” enumeration (of
all feasible points) is guaranteed to find a global solution.
However, this approach is not feasible for solving large-
scale problems, as its complexity grows exponentially
with the number of variables. Therefore, special atten-
tion and advanced optimization theory and techniques
are needed to tackle large-scale problems with (mixed)
integer variables.

C. Structural Properties of Optimization Problems
The unique difficulties and structural features of optimiza-

tion problems arising from wireless system design have driven
the development of many new and advanced optimization
theory and algorithms. The basic features include analytic
properties of the functions in its objective and constraints
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(e.g., convexity, smoothness, and monotonicity), type of its
design variables (e.g., continuous, integer, or both), and the
degree of coupling of its design variables (e.g., the variables
are fully separable or coupled in a structured manner). More
advanced features include (but are not limited to) hidden
convexity2 (of a seemingly nonconvex problem) and zero
duality gap, computational complexity status, easy projection
property (onto its feasible set), tight global bounds (of its
objective function), and “simple” structured conditions that its
solution(s) should satisfy.

Recognizing the special structures of optimization problems
is of paramount importance, as it allows us to select suitable
tools for analyzing them and algorithms for tackling them.
In the remaining part of this subsection, we use some problems
listed in Section II-A to elucidate the above discussion.

Consider the (massive) MIMO detection problem (14).
Although it has integer (discrete) variables, different vari-
ables are fully decoupled in the constraint and thus the
feasible set enjoys an easy-projection property. Moreover, the
objective function of problem (14) is quadratic and hence
has a Lipschitz-continuous gradient. These features suggest
that problem (14) is amenable to the gradient projection
(GP) algorithm. We introduce GP and the more general PG
algorithms in Section III-C.

As another example, consider the RIS and hybrid beam-
forming problems (5) and (6). To account for the phase-only
constraint (which is quadratic), it is possible to use SDR [53],
[54], but its complexity is not scalable. Alternatively, GP can
be used. A straightforward GP optimization for the ana-
log beamformer would involve taking a gradient step and
then projecting the result onto the unit-modulus domain by
retaining only its phases. However, a better approach is to
recognize that the unit-modulus constraints form a Riemannian
manifold [55], so instead of taking a Euclidean gradient
followed by projection, a faster algorithm can be devised by
first projecting the gradient vector onto the tangent space of the
complex circle manifold. To further speed up convergence, the
conjugate gradient version of this idea may be used. This gives
the so-called Riemannian conjugate gradient method; see [55]
and a specific application of this algorithm in [56]. This is an
example of how taking advantage of the problem structure can
enable faster convergence of the algorithm.

Hidden convexity is an important feature to recognize (if
it exists). Consider the beamforming design problems (4)
and (10). While the objective functions are convex (and very
simple) and design variables are continuous, the constraints
are complicated and the number of constraints (related to the
numbers of users and relays in the considered system) is large.
By examining the constraints in problems (4) and (10) more
carefully, both of them turn out to admit convex reformulations
(assuming that the constraints are feasible), and we can show
that the duality gap between the primal and dual problems
is zero. These features suggest that duality-based algorithms
are suitable for solving problems (4) and (10). We introduce
duality-based algorithms in Section III-E.

2A nonconvex optimization problem is said to have hidden convexity if it
admits an equivalent convex reformulation [52].

Before leaving this subsection, let us comment on the
computational complexity of optimization problems that arise
in wireless communication system design. Determining the
complexity class of an optimization problem (e.g., (strongly)
NP-hard or polynomial-time solvable) provides valuable infor-
mation about what lines of approaches are more promising.
Once a problem is shown to be “hard”, the search for an
efficient exact algorithm should often be accorded lower
priority. Instead, less ambitious goals, such as looking for
algorithms that can solve various special cases of the gen-
eral problem efficiently; looking for algorithms that, though
not guaranteed to have a polynomial-time complexity, run
quickly most of the time; or relaxing the problem and look-
ing for an algorithm that can find an approximate solution
efficiently, should be considered. Compared with convexity
and nonconvexity, which can provide useful intuition on the
easiness/hardness of an optimization problem, computational
complexity theory is a more robust and reliable tool for
characterizing the tractability/intractability of an optimization
problem. Back to the optimization problems discussed in this
section, although problems (4) and (10) and some special
cases of other problems admit simple closed-form solutions or
are polynomial-time solvable [42], [43], [57], [58], [59], [60],
[61], [62], [63], [64], [65], a small variant of these problems
(e.g., (3)) can be (strongly) NP-hard [41], [66], [67], [68],
[69], [70], [71], [72], [73], [74], [75], which means that there
does not exist a (pseudo-) polynomial-time algorithm that can
solve the corresponding problem to global optimality unless
P = NP . Understanding this complexity analysis is essential
for algorithm design.

III. STRUCTURED NONCONVEX OPTIMIZATION

Although the optimization problems presented in the pre-
vious section are nonconvex in general, in this section,
we discuss how their special structures can be exploited to
design tailored algorithms that can find high-quality locally
optimal or suboptimal solutions of those problems in an
efficient manner. We should point out that these algorithms do
not involve global optimization techniques and are generally
not guaranteed to find a globally optimal solution. We survey
advanced global optimization algorithms and techniques in
Section IV.

This section is organized as follows. We first review two
useful transformations for tackling FPs in Section III-A. These
transformations can then be used to efficiently solve the
sum-rate maximization problem (3) and the corresponding
scheduling problem (17). Second, we review sparse opti-
mization theory and techniques in Section III-B. Sparse
optimization is useful for solving and analyzing optimization
problems whose solutions admit a sparse structure, e.g., sparse
channel estimation and sparse device activity detection prob-
lems. Third, we review the PG algorithm in Section III-C,
which is suitable for solving (not necessarily convex) opti-
mization problems with a “simple” nonsmooth term in their
objectives or a “simple” constraint. These include the MIMO
detection problem (14) and the BS clustering and beamforming
design problem (7). Fourth, we review the penalty method in
Section III-D. Such a method is generally suitable for tackling
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optimization problems in which the constraint can be decom-
posed into a simple convex constraint plus a simple penalty
function. We demonstrate how the penalty method can be used
to tackle the MIMO detection problem (14). Finally, we review
the (Lagrangian) duality-based algorithm in Section III-E,
which can be used to solve (hidden) convex problems with
many complicated constraints, such as the QoS-constrained
joint beamforming and compression problem (10).

A. Fractional Programming

FP refers to a specific class of optimization problems that
involve ratio terms. It plays a vital role in the design and
optimization of wireless communication systems due to the
ubiquitous fractional structure of various performance metrics
related to communication links. Notably, the SINR (e.g.,
in (2)), which is naturally defined by a fractional function, is an
essential quantity for the performance evaluation of wireless
communication systems. In addition, energy efficiency (EE),
defined as the ratio between the amount of transmitted data
and consumed energy, is an important performance metric in
the design of wireless communication systems [76], [77].

Early works on FP mainly focus on single-ratio problems,
particularly concave-convex single-ratio maximization prob-
lems, where the objective function contains a single ratio
term with a nonnegative concave numerator and a positive
convex denominator. To deal with single-ratio FP problems,
two classic techniques are the Charnes-Copper transform
and the Dinkelbach’s transform. Both methods ensure the
convergence to the global optimum of concave-convex single-
ratio FP problems and have been extensively applied to
solve EE maximization problems for wireless communication
systems [76]. Though working well for single-ratio FP, the
aforementioned techniques cannot be easily generalized to
multiple-ratio cases, which are more prevalent in system-level
communication network design (as the overall system perfor-
mance typically involves multiple ratio terms). A prominent
recent advance in FP is [48], [78], where new transforms
for solving multiple-ratio FP problems are developed. In this
subsection, we review the transforms and methods proposed
in [48] and [78] and their applications in solving two important
problems arising from wireless communication system design.

1) Two FP Transforms: We now review the two FP trans-
forms proposed in [48] and [78].

a) Quadratic transform: The first transform is designed
for the sum-of-ratio FP problem

max
x∈X

I∑
i=1

Ai(x)
Bi(x)

, (18)

where Ai(·) ≥ 0 and Bi(·) > 0 on X for all i ∈ {1, 2, . . . , I}.
The quadratic transform [78] of the multi-ratio FP
problem (18) is defined as

max
x∈X ,y∈R

I∑
i=1

(
2yi

√
Ai(x)− y2

i Bi(x)
)

. (19)

It has been shown in [78] that the problem (19) is equivalent
to the sum-of-ratio FP problem (18), which can be easily seen

by substituting the optimal solution

y∗
i =

√
Ai(x)

Bi(x)
, i = 1, 2, . . . , I (20)

into the objective function of problem (19). The quadratic
transform decouples the numerator and the denominator of
each ratio term and is of particular interest when the trans-
formed problem (19) is convex in x for a given y (e.g., each
Ai(·) is concave and so is

√
Ai(·), each Bi(·) is convex, and

X is convex), in which case alternating optimization (AO)
over x and y can be efficiently performed and is guaranteed
to converge to a stationary point of problems (18) and (19).
It is worth noting that the quadratic transform can be extended
to tackle more general sum-of-functions-of-ratio problems
(where the functions are required to be nondecreasing) [78,
Corollary 2] and to the matrix case [79, Theorem 1].

b) Lagrangian dual transform: This second transform is
tailored for the sum-rate maximization problem. Specifically,
consider the general sum-of-logarithm maximization problem

max
x∈X

I∑
i=1

log
(

1 +
Ai(x)
Bi(x)

)
, (21)

where Ai(·) ≥ 0, Bi(·) > 0 on X , and Ai(·)/Bi(·) can
be physically interpreted as an SINR term (which includes
the SINRs in problems (3) and (17) as special cases). The
Lagrangian dual transform of problem (21) is defined as [48]

max
x∈X ,γ

I∑
i=1

(log (1 + γi)− γi) +
I∑

i=1

(1 + γi)Ai(x)
Ai(x) + Bi(x)

, (22)

where γ = [γ1, γ2, . . . , γI ]T ∈ RI . The Lagrangian dual
transform in (22) is equivalent to problem (21), which can
be seen by substituting the optimal solution

γ∗
i =

Ai(x)
Bi(x)

, i = 1, 2, . . . , I (23)

into the objective function of problem (22). Compared with
problem (21), its Lagrangian dual transform (22) has the
advantage of moving the SINRs outside of the logarithmic
functions, which allows for a subsequent quadratic transform.

2) Application Examples: Now, let us apply the quadratic
transform and the Lagrangian dual transform to solve two
important problems in wireless communications.

a) Downlink beamforming for sum-rate maximization:
Consider first the sum-rate downlink beamforming design
problem (3). An efficient FP-based approach for solving the
sum-rate maximization problem (3) is to first reformulate
the sum-of-logarithm form into a sum-of-ratio form using
the Lagrangian dual transform and then apply the quadratic
transform to the latter. More specifically, by applying the
Lagrangian dual transform to problem (3), we obtain

max
{vk},γ

∑
k∈K

(log(1 + γk)− γk) +
∑
k∈K

(1 + γk)|h†
kvk|2∑

j∈K |h
†
kvj |2 + σ2

k

s.t.
∑
k∈K

∥vk∥2 ≤ P. (24)

When {vk} is fixed, the optimal γ of problem (24) has a
closed-form solution, which takes the form in (23). To update
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{vk} for a fixed γ, the quadratic transform can be applied to
the sum-of-ratio term in (24). In particular, by treating (1 +
γk)|h†

kvk|2 as the numerator and
∑

j∈K |h
†
kvj |2 + σ2

k as the
denominator and applying the quadratic transform, we obtain
the problem

max
{vk},y

∑
k∈K

(
2
√

1 + γkRe(y†
kh

†
kvk)

− |yk|2
(∑

j∈K
|h†

kvj |2 + σ2
k

))
s.t.

∑
k∈K

∥vk∥2 ≤ P, (25)

where a constant term depending on γ is omitted. With {vk}
fixed, the above problem has a closed-form solution in y,
which takes the form in (20) with Ak = (1 + γk)|h†

kvk|2 and
Bk =

∑
j∈K |h

†
kvj |2+σ2

k. When y is fixed, the above problem
has the following solution in {vk}:

vk = yk

√
1 + γk

∑
j∈K
|yj |2hjh

†
j + λI

−1

hk, k ∈ K,

where λ ≥ 0 is the optimal Lagrange multiplier associated
with the total power constraint that can be efficiently deter-
mined by a bisection search. By updating γ, y, and {vk}
in an alternating fashion as described above, we obtain an
efficient FP algorithm, which is guaranteed to converge to a
stationary point of the sum-rate maximization problem (24)
[48, Appendix A]. We wish to remark here that, in addition
to the downlink MIMO channel, the above FP techniques can
be applied to solve sum-rate maximization problems in much
more general channels (e.g., the MIMO interfering broadcast
channel).

It is interesting to note that the above FP algorithm
is equivalent to the well-known weighted minimum-mean-
square-error (WMMSE) algorithm [80], [81]. In fact, the
WMMSE algorithm, which is originally derived based on
a signal minimum mean-square-error analysis, can also be
derived by applying the quadratic and Lagrangian dual trans-
forms in a similar way as the above FP algorithm. The only
difference is that, when applying the quadratic transform to
problem (24), the WMMSE algorithm treats |h†

kvk|2 as the
numerator and (1 + γk) as a scaling factor in front of the
fractional term, which leads to a problem different from (25)
and hence different update rules for y and vk; see the details in
[48, Section VI]. While the two algorithms are fundamentally
equivalent for the sum-rate maximization problem (3), their
different treatments of the term (1 + γk)|h†

kvk|2 lead to dif-
ferent algorithms for solving sum-rate maximization problems
in more complicated scenarios. The above FP algorithm may
be preferable from a practical perspective, because it often
yields a problem amenable to distributed optimization.

b) Joint uplink scheduling and power control for sum-
rate maximization: We now briefly review the application of
FP techniques to solve the joint uplink scheduling and power
control problem (17). The main idea is to reformulate the
problem appropriately with the aid of the two FP transforms,
so that the resulting problem is amenable to AO and is in a

distributed form that allows for per-cell scheduling and power
update. To be specific, by first applying the Lagrangian dual
transform to problem (17), we get

max
κ,p,γ

∑
i∈B

wκi
(log(1 + γi)− γi)

+
∑
i∈B

wκi
(1 + γi)|hi,κi

|2pκi∑
j∈B |hi,κj

|2pκj
+ σ2

i

s.t. 0 ≤ pk ≤ P, k ∈ ∪i∈B Ki,

κi ∈ Ki ∪ {∅}, i ∈ B. (26)

When (κ,p) are fixed, the optimal γ of problem (26) has a
closed-form solution that takes the form in (23). To optimize
(κ,p) in (26) with a fixed γ, we further apply the quadratic
transform to the sum-of-ratio term in (26), which, after some
simple manipulations, yields the following equivalent problem:

max
κ,p,y

∑
i∈B

(
wκi

(log(1 + γi)− γi)

+ 2yi

√
wκi

(1 + γi)|hi,κi
|2pκi

− y2
i σ2

i −
∑
j∈B

y2
j |hj,κi |2pκi

)
s.t. 0 ≤ pk ≤ P, k ∈ ∪i∈B Ki,

κi ∈ Ki ∪ {∅}, i ∈ B. (27)

A favorable structure of problem (27) is that the scheduling
and power variables of each cell, i.e., (κi, pκi

), are decoupled
when y is fixed, thus allowing the scheduling and power
optimization to be performed independently within each cell.
More details on the solution of the scheduling and power
control subproblem (27) and the AO algorithm for solving
the joint uplink scheduling and power control problem (17)
can be found in [48].

3) Remarks: We conclude this subsection with further
remarks on the quadratic and Lagrangian dual transforms
from both optimization and application perspectives. From
the optimization perspective, the principle behind the two
transforms is to lift complicated low-dimensional problems to
high-dimensional spaces where optimization is easier to do by
appropriately introducing some auxiliary variables. The key is
to ensure that the lifted high-dimensional problem is easy to
solve with respect to each variable block (e.g., being convex
or admitting closed-form solutions) so that AO techniques
such as the block coordinate descent (BCD) algorithm can be
applied. AO algorithms can efficiently find a stationary point
of the lifted problem, which is also a stationary point of the
original problem. It is also interesting to note that the BCD
algorithm for solving the quadratic problem (19) lies in the
minorization-maximization (MM) framework for solving the
original problem (18) [79].

From the application perspective, the quadratic and
Lagrangian dual transforms are crucial tools for solving
problems with fractional structures that arise from wireless
communication system design. For instance, the Lagrangian
dual transform significantly simplifies the structure of the
sum-rate maximization problem by moving the SINRs out-
side the nonlinear logarithmic functions. This is particularly
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advantageous when complicated variables are involved in the
SINR expressions, such as the discrete scheduling variables
in (17), the multiplicatively coupled variables in RIS-aided
systems [82], and hybrid beamforming [83]. Moreover, when
appropriately utilized and implemented, the two transforms
can enable the problem to be reformulated into a form that
allows for distributed optimization (e.g., within each cell),
which is favorable for the design and optimization of wireless
cellular networks.

B. Sparse Optimization

Sparse optimization refers to a class of problems whose
solution exhibits an inherent sparse structure. Here, spar-
sity means that only a small fraction of the entries in the
solution vector is nonzero. Driven by the emergence and
success of compressed sensing (CS) [84]—a signal acqui-
sition paradigm designed to recover a sparse signal from a
small set of incomplete measurements—sparse optimization
has received significant attention over the past few decades.
In this subsection, we first briefly review the theory and
models associated with CS and sparse optimization. Then,
we introduce two successful applications of CS and sparse
optimization to wireless communication system design, which
are localized statistical channel modeling [85] and device
activity detection in mMTC [86].

1) Compressed Sensing and Recovery Conditions: In var-
ious real-world applications, signals are (approximately)
sparse or have a sparse representation under a certain
basis. By exploiting the inherent sparsity of the true signal,
CS enables the reconstruction of the original signal from only
a small number of observations (e.g., from an underdetermined
linear system), thereby significantly reducing the burden of
sample acquisition, data storage, and computation. Mathemat-
ically, the reconstruction process of the sparse signal can be
formulated as the following optimization problem:

min
x
∥x∥0

s.t. Ax = y. (28)

Here, x ∈ Rn is the sparse signal to be recovered,
∥x∥0 denotes the ℓ0-norm that counts the numbers of nonzero
entries in x, y = Ax is an underdetermined system with the
observation y ∈ Rm, A ∈ Rm×n is the sensing matrix, and
m ≪ n. It is generally NP-hard to solve problem (28) [87].
An alternative model that enables the design of computation-
ally efficient recovery algorithms is given by

min
x
∥x∥1

s.t. Ax = y, (29)

where the nonconvex term ∥ · ∥0 in (28) is replaced by the
convex term ∥ · ∥1 in (29). In practice, the measurements may
include some noise, i.e., y = Ax + z with ∥z∥2 ≤ ϵ. In this
case, the reconstruction problem can be formulated as

min
x
∥x∥1

s.t. ∥Ax− y∥2 ≤ ϵ. (30)

The above constrained problem can be further recast into the
unconstrained problem

min
x
∥Ax− y∥22 + λ∥x∥1, (31)

where λ > 0 is a parameter that trades off the data
fidelity term ∥Ax − y∥22 and the sparsity term ∥x∥1. Prob-
lems (30) and (31) are connected in that for any ϵ, there
exists a λ such that the two problems have the same
solutions [88].

Two fundamental questions for the above reconstruction
problems are (i) under what conditions can the formula-
tions (28) and (29) precisely recover any k-sparse signal x
(i.e., ∥x∥0 ≤ k) and (ii) how large is the recovery error when
there is some noise in the measurements. These questions
have been extensively studied, yielding numerous remarkable
and insightful results. One of the most well-known recovery
conditions is the restricted isometry property (RIP) [89] of the
sensing matrix A. Specifically, a matrix A is said to satisfy
the RIP of order k if there exists a constant δk ∈ (0, 1) such
that

(1− δk)∥x∥22 ≤ ∥Ax∥22 ≤ (1 + δk)∥x∥22

holds for all k-sparse vector x. Intuitively, RIP can be viewed
as a characteristic that preserves the geometry (i.e., the dis-
tance) between sparse vectors. A smaller δk implies better
preservation capability, making A a more effective sensing
matrix. An intriguing recovery result characterized by RIP is
that when A satisfies RIP of order 2k with δ2k < 1, any
k-sparse signal can be exactly recovered by the ℓ0 minimiza-
tion problem (28). Furthermore, if δ2k <

√
2 − 1, then the

solution of the ℓ1 minimization problem (29) is the same as
that of (28), i.e., the k-sparse signal can also be recovered
from (29). When the measurements are corrupted with noise,
the recovery error is in the order of O(ϵ) for problem (30)
[90]. The upper bound on the above RIP constant can be
further improved; see, e.g., [91]. It is worth mentioning that
the RIP can be satisfied with high probability for a wide class
of random matrices, including the i.i.d. Gaussian/Bernoulli
matrices [92] and the partial Fourier matrix [93], when the
number of measurements satisfies

m > O(k log(n/k)).

Finally, we remark that there are also many other important
conditions based on which recovery results are estab-
lished. Interested readers are referred to a comprehensive
review of these conditions as well as efficient sparse sig-
nal recovery algorithms for solving the previous models
in [88].

2) Application Examples: Sparse optimization and CS have
found broad applications in wireless communication sys-
tems [94]. In this subsection, we showcase the important
role of sparse optimization and CS approaches in formulating
and analyzing two optimization problems—localized statisti-
cal channel modeling [85] and device activity detection in
mMTC [86].
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a) Localized statistical channel modeling: In network
optimization [95], it is desirable to have a channel model
that captures the specific multi-path topography and statistical
properties of the targeted communication environment. The
so-called localized statistical channel modeling (LSCM) [85]
aims to leverage the beam-wise reference signal received
power (RSRP) measurements to estimate the angular power
spectrum (APS) of the channel between the BS and the user.

Consider a scenario in which the BS is equipped with a
uniform rectangular array of NT = N1×N2 antennas, and the
user has only a single antenna. The downlink channel between
the (x, y)-th antenna and the user is denoted as hx,y(t), where
x = 0, 1, . . . , N1−1 and y = 0, 1, . . . , N2−1. In 5G networks,
synchronization signals and CSI reference beam signals are
regularly transmitted to the user. The measured RSRP of the
m-th beam at the t-th time slot is given by [85]

rsrpm(t) = P

∣∣∣∣∣
N1−1∑
x=0

N2−1∑
y=0

hx,y(t)W (m)
x,y

∣∣∣∣∣
2

, (32)

where W
(m)
x,y = ejϕ(m)

x,y is the (x, y)-th entry of the precoding
matrix W (m) ∈ CNx×Ny for the m-th beam, ϕ

(m)
x,y is the

weight of DFT matrix, and P represents the transmit power.
Suppose that there are M directional beams in total. The
expected beam-wise RSRP measurements rsrp ∈ RM×1 is

rsrp = [RSRP1, RSRP2, . . . , RSRPm, . . . , RSRPM ]T ,

where RSRPm ≜ E [rsrpm(t)]. As demonstrated in [85], the
beam-wise average RSRP measurements and the channel APS
have the linear relationship

rsrp = Ax, (33)

where A ∈ RM×N is a sensing matrix depending on the beam
waveform and antenna gains, and x ∈ RN is the channel
APS to be estimated. Here, the free space is discretized by
N equally spaced directions, and N is usually a large number
(N ≫M ) for a high angular resolution. Due to the presence of
a limited number of scatters around the BS, there is a small
angular spread in the angular domain, resulting in a sparse
channel APS x. To construct the localized statistical channel
model, we can formulate the sparse recovery problem as

min
x
∥Ax− rsrp∥22

s.t. ∥x∥0 ≤ K, x ≥ 0, (34)

where K is the maximum number of nonzero entries, rep-
resenting the maximum number of channel paths; and the
constraint x ≥ 0 is because the expectation of channel
gain with respect to different angles is nonnegative. Efficient
algorithms for solving problem (34) are proposed in [85].

The localized statistical channel model exhibits statistical
indistinguishability from the true propagation environment,
generating channels that are similar to real-world scenar-
ios. The construction of the localized statistical channel
model enables precise evaluation of the network performance
and effectively facilitates the simulation for offline network
optimization [95], [96], [97].

b) Device activity detection in mMTC: Consider an
uplink single-cell massive random access scenario [16] with
K ≫ 1 single-antenna devices potentially accessing a BS
equipped with M antennas, which corresponds to the uplink
counterpart of the wireless system in Fig. 3(a). A key feature
of mMTC is that at any given time, only a small subset of
users are active. To reduce the communication latency, grant-
free random access schemes have been proposed in [15] and
[98], where the active devices directly transmit the data signals
after transmitting their preassigned nonorthogonal signature
sequences without first obtaining permissions from the BS.
The BS identifies the active devices based on the received sig-
nature sequences. We now introduce two formulations of the
device activity detection problem and their related detection
theory.

We begin with the system model. For the purpose of device
identification, each device k is preassigned a unique signature
sequence sk = [s1k, s2k, . . . , sLk]T ∈ CL, where L is the
sequence length. Let ak ∈ {0, 1} denote the activity of device
k, i.e., ak = 1 if the device is active and ak = 0 otherwise, and
let hk ∈ CM denote the (unknown) channel vector between
device k and the BS. Then, the received signals Y ∈ CL×M

at the BS (in the pilot phase) can be expressed as

Y =
K∑

k=1

akskhT
k + Z, (35)

where Z ∈ CL×M is the normalized effective i.i.d. Gaussian
noise with variance σ2

zI.
Define S = [s1, s2, . . . , sK ] ∈ CL×K and X =

[a1h1, a2h2, . . . , aKhK ]T ∈ CK×M . The received signals
in (35) can then be rewritten as Y = SX+Z. Since the user
traffic is sporadic, i.e., only Ka ≪ K devices are active during
each coherence interval, most rows of X will be zero. Based
on this observation, the device activity detection problem can
be formulated and analyzed using sparse optimization and
CS approaches [99], [100]. For instance, the device activity
detection problem can be formulated as

min
X
∥SX−Y∥2F + λ∥X∥2,1, (36)

where ∥X∥2,1 =
∑K

k=1

√∑M
m=1 X2

k,m is the ℓ2,1-norm,
which is effective in promoting the group sparsity of X. The
works [99], [100] propose to use the (vector) approximate
message passing (AMP) algorithm to solve the device activity
detection problem and analyze the detection performance by
utilizing the state evolution analysis. It has been shown in [99]
that as the number of antennas M goes to infinity, the missed
detection and false alarm probabilities can always be made
to go to zero by the AMP approach that exploits the sparsity
in the user activity pattern. Problem (36) can also be solved
by the PG algorithm (see Section III-C), which comes with
strong convergence guarantees [101], [102]. Recent progress
on using sparse optimization and CS approaches to solve the
device activity problem has been made in [103], [104], [105],
[106], and [107].

Note that the sparse optimization approach described above
recovers not only the user activities, but also an estimate of
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their channels. If we are only interested in the user activities
and not the channels, then an alternative approach is to
formulate the device activity detection problem as a maximum
likelihood estimation (MLE) problem of the user activities
only [108]. Instead of treating hk as a deterministic unknown
variable as in the above CS approach, the MLE approach
exploits the distribution information in hk, i.e., hk =

√
gkh̃k,

where gk ≥ 0 is the large-scale fading component, and h̃k ∈
CM is the Rayleigh fading component following CN (0, I).
In this case, the received signals in (35) can be rewritten as
Y = SΓ1/2H̃+Z, where Γ = diag(γ1, γ2, . . . , γK) ∈ RK×K

with γk = akgk being a diagonal matrix indicating both the
device activity ak and the large-scale fading component gk,
and H̃ = [h̃1, h̃2, . . . , h̃K ]T ∈ CK×M is the normalized
channel matrix. Note that the columns of Y, denoted by
ym ∈ CL, 1 ≤ m ≤M , are independent and each column ym

follows the complex Gaussian distribution ym ∼ CN (0,Σ)
with covariance matrix

Σ = E
[
ymy†

m

]
= SΓS† + σ2

zI.

Therefore, the problem of maximizing the likelihood p(Y |Γ)
can be equivalently formulated as

min
Γ

log det (Σ) + tr
(
Σ−1Σ̂

)
s. t. Γ ≥ 0, (37)

where Σ̂ = YY†/M is the sample covariance matrix of the
received signals averaged over different antennas. The formu-
lation (37) leads to the so-called covariance-based approach
in the literature because it depends on Y only through its
covariance Σ̂. It has been shown in [109] and [110] that when
{sk} is uniformly drawn from the sphere of radius

√
L in an

i.i.d. fashion and the number of active devices satisfies

Ka ≤ c1L
2/ log2(eK/L2),

then the MLE formulation in (37) is able to successfully detect
the active devices with probability at least 1 − exp(−c2L),
where c1 and c2 are two constants whose values do not depend
on Ka, K, and L. This result shows that if the number of
antennas M at the BS goes to infinity, then the number of
active devices that can be detected by the covariance-based
approach scales quadratically with the length of the devices’
signature sequence L. Covariance-based approaches and anal-
yses have also been extended to the joint activity and data
detection case [109], the multi-cell scenario [111], the more
practical ways of generating signature sequences [112], the
asynchronous scenario [113], [114], the case where the BS is
equipped with low-resolution ADCs [115], and the unsourced
random access scenario [110].

3) Remarks: We conclude this subsection with a sum-
mary highlighting the crucial role that sparse optimization
and CS play in wireless communication system design and
analysis. First, sparse optimization is helpful in formulating
optimization problems in wireless communications to promote
desirable sparse structures in the solution, e.g., sparsity in the
localized statistical channel model problem (34) and group
sparsity in the joint BS clustering and beamformer design

problem (7) and device activity detection problem (36). Com-
pared to traditional formulations without exploiting sparsity (in
the appropriate domain), sparse optimization formulations can
significantly reduce signaling and training overhead associated
with channel estimation [85], [94], [116], [117], [118]. Second,
analytical tools derived from CS, including recovery condi-
tions and the AMP-based high-dimensional analysis, are useful
for understanding and analyzing the theoretical performance
of certain optimization models/algorithms in wireless commu-
nications. As an example, these tools are employed in the
device activity detection problem to theoretically characterize
the detection performance of both CS and covariance-based
approaches [99], [100], [109], [110].

C. Proximal Gradient Algorithms

In this subsection, we first motivate the development of the
PG algorithm. Then, we demonstrate how two optimization
problems from wireless communication system design can be
tackled by the PG algorithm.

1) PG Algorithm, Interpretation, and Convergence Prop-
erty: Consider the problem

min
x∈Rn

f(x) + g(x), (38)

where f(·) is a smooth function with Lipschitz continuous
gradient and g(·) is a nonsmooth function. In (38), none of the
functions f(·), g(·), and f(·) + g(·) is required to be convex.
For r ≥ 1, the r-th iteration of the PG algorithm reads

xr+1 ∈ proxαrg (xr − αr∇f(xr)) , (39)

where αr is the step size at the r-iteration and proxαrg(·) is
the so-called proximal operator defined as

proxαrg(v) ∈ arg min
y∈Rn

{
g(y) +

1
2αr
∥y − v∥22

}
. (40)

By definition of the proximal operator in (40), we can
rewrite (39) into the following equivalent form:

xr+1 ∈arg min
x∈Rn

{
f(xr) +∇f(xr)T(x− xr)

+
1

2αr
∥x− xr∥22 + g(x)

}
. (41)

Then, it is clear that the update in (39) can be interpreted as
minimizing an approximation of the original objective function
at each iteration. In particular, the right-hand side of (41)
approximates the smooth term f(·) by its first-order Taylor’s
expansion at point xr plus a quadratic term and keeps the non-
smooth term g(·) unchanged. In addition, when αr ∈ (0, 1/L],
where L is the Lipschitz constant of ∇f , the minimized
function on the right-hand side of (41) is an upper bound
of the objective function in (38). As such, the PG algorithm
falls under the MM framework [119, Section 4.2]. Obviously,
the efficiency of the PG algorithm highly depends on that
of computing the proximal operator in (40). Fortunately, for
many nonsmooth functions of practical interest, their proximal
operators either admit a closed-form solution (e.g., ∥ · ∥0.5,
∥ · ∥1, ∥ · ∥2, ∥ · ∥∞) or can be efficiently computed; see [120,
Page 177] for a summary of such examples.
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The PG algorithm enjoys nice theoretical convergence prop-
erties. In the case where both f and g are closed proper
convex functions, the PG algorithm with a fixed step size
αr = α ∈ (0, 2/L] is guaranteed to converge to the optimal
solution of problem (38) [121]. For the nonconvex case,
it is shown in [122] that the iterates generated by the PG
algorithm converge to a critical point of problem (38) with
0 < α < αr < ᾱ < 1/L, as long as f + g is proper,
closed, and satisfies the Kurdyka-Łojasiewicz property. These
conditions are quite mild and are satisfied by a rich class of
functions (e.g., semi-algebraic functions) [123]. Furthermore,
there have been efforts in establishing the convergence of the
inexact PG algorithm [122]. These results allow for an error in
the calculation of the proximal operator at each iteration, thus
offering flexibility in cases where the proximal operator lacks
a closed-form solution and needs to be computed numerically.

It is worth noting an interesting special case where the
nonsmooth term g(·) in problem (38) is the indicator function
of a closed set C ⊆ Rn. In this case, problem (38) reduces to
the constrained problem

min
x∈C

f(x),

the proximal operator in (40) reduces to the familiar projection
operator

projC(v) = arg min
y∈C

{
1
2
∥y − v∥22

}
,

and the PG algorithm reduces to the GP algorithm where (39)
is replaced by

xr+1 ∈ projC (xr − αr∇f(xr)) .

Due to its simple implementation, computational efficiency,
and appealing theoretical properties, the PG algorithm is
widely adopted for solving optimization problems that involve
simple (nonconvex) nonsmooth terms (e.g., smooth problems
with simple constraints).

2) Application Examples: In this subsection, we apply the
PG and GP algorithms to solve two fundamental problems
in wireless communications, namely, massive MIMO detec-
tion (14) and joint BS clustering and beamformer design (7).

a) Massive MIMO detection: We first review the appli-
cation of the GP algorithm for solving the MIMO detection
problem in (14). As discussed in Section II-A, a new chal-
lenge for MIMO detection is the significant increase in
the problem size driven by the massive MIMO technology.
In the context of massive MIMO, classic MIMO detection
algorithms/techniques that work well for small-to-median
scale systems (e.g., SDR-based algorithms [37], [38]) become
impractical, as their computational complexities grow quickly
with the problem size.

Motivated by the above, the following low-complexity GP
algorithm

xr+1 = projSK

(
xr − 2αrH†(Hxr − y)

)
is proposed in [35] to solve the massive MIMO detection
problem, where αr > 0 is the step size, ProjSK (·) denotes
the projection operator onto the set SK , and S is either

the PSK constellation set in (13) or the QAM constellation
set in (12). The dominant computational cost at each iter-
ation of the above GP algorithm lies in two matrix-vector
multiplications and one projection onto SK . Since the set
SK is fully decoupled among different components, the
projection onto SK reduces to K projections onto S. More-
over, the discrete set S is symmetric and highly structured.
Hence, the projection ProjS(·) and consequently the projection
ProjSK (·) are easily computable. This makes the above GP
algorithm extremely efficient and particularly suitable for
solving large-scale MIMO detection problems arising from
massive MIMO systems.

In addition to its low per-iteration computational com-
plexity, the above GP algorithm enjoys strong theoretical
guarantees. It has been shown in [35] that under mild con-
ditions (roughly speaking, when the noise variance is small
and the ratio M/K is large), the iterates generated by the GP
algorithm will converge to the true symbol vector s within a
finite number of iterations. This result is somewhat surprising
and is much stronger than the general convergence result for
GP algorithms. First, the GP algorithm for solving nonconvex
problems is generally not guaranteed to converge to an optimal
solution but only to a critical point. Second, there is generally
no theoretical guarantee that the maximum likelihood (ML)
estimator (i.e., the optimal solution of problem (14)) is the
true symbol vector s. This strong convergence result in [35] is
obtained by carefully exploiting the structure of problem (14),
particularly the special structure of the discrete set S and the
statistical property of the channel matrix H; see the detailed
proof in [35, Theorem 1].

b) Joint BS clustering and beamformer design: The PG
algorithm plays an important role in solving the joint BS
clustering and beamformer design problem (7). Observe that
problem (7) is challenging to solve, as the variables {vk,b}
are coupled in both the objective function and the constraint,
and the objective function has a nonsmooth term and is highly
nonlinear. To tackle problem (7), it is useful to reformulate it
into the following equivalent form using the technique similar
to that in the FP and WMMSE approaches [78], [80], [81]:

min
{uk},{wk},{vk}

∑
k∈K

(
wkek − log wk + ρ

∑
b∈B

∥vk,b∥2

)
s.t.

∑
k∈K

∥vk,b∥22 ≤ Pb, b ∈ B, (42)

where ek is the mean squared error (MSE) for user k given
by

ek =
∣∣∣ukh

†
kvk − 1

∣∣∣2 +
∑
j ̸=k

∣∣∣ukh
†
kvj

∣∣∣2 + σ2|uk|2.

A desirable property of the above reformulation (42) is that the
problem is convex with respect to each of the variable blocks
v = {vk}, u = {uk}, and w = {wk} (with the other two
blocks being fixed), making it amenable to the BCD algorithm.
In particular, when u and v are fixed, the problem in terms of
w admits the closed-form solution wk = e−1

k for all k ∈ K;
when w and v are fixed, the problem in terms of u also has
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a closed-form solution. Below we consider the solution of the
problem in terms of v with fixed u and w.

Since the constraint in (42) is separable in the beamforming
vectors of different BSs, we can apply the BCD algorithm
again to solve the v-subproblem by treating {vk,b}k∈K as one
block of variables. Specifically, the b-th subproblem takes the
form

min
{vk,b}k∈K

∑
k∈K

(
v†

k,bQk,bvk,b − 2Re
(
d†

k,bvk,b

)
+ ρ∥vk,b∥2

)
s.t.

∑
k∈K

∥vk,b∥22 ≤ Pb, (43)

where Qk,b ∈ CM×M and dk,b ∈ CM are constants depend-
ing on the other blocks of the variables; see their explicit
expressions in [33]. The objective function in (43) is separable
among different k ∈ K and each of them is a simple quadratic
function plus a convex nonsmooth ℓ2-norm. However, the
presence of the quadratic constraint complicates the solution
of the problem and makes the PG algorithm not efficient.3 To
overcome this difficulty, we consider the dual of problem (43)
as follows:

max
λb≥0

min
{vk,b}

∑
k∈K

(
v†

k,bQk,bvk,b − 2Re
(
d†

k,bvk,b

)
+ ρ∥vk,b∥2

)
+λb

(∑
k∈K

∥vk,b∥22 − Pb

)
.

The above dual reformulation leads to an efficient algorithm
for solving the subproblem in (43). First, for a given λb ≥
0, the inner minimization problem over {vk,b} is separable
among different k ∈ K, unconstrained, and convex. Hence,
it can be efficiently solved to global optimality using the PG
algorithm (as the proximal operator of the ℓ2-norm admits a
closed-form solution). Second, the outer maximization prob-
lem over λb ≥ 0 is a one-dimensional convex problem, whose
solution can be quickly found via a simple bisection search.
We remark here that even without the nonsmooth term in (43),
the solution of the corresponding v-subproblem (as in the FP
and WMMSE approaches) also requires a bisection search;
see the discussion below problem (25) and [78], [80], [81] for
more details.

3) Remarks: We conclude this subsection with some
remarks and conclusions drawn from the above two exam-
ples. First, in addition to the general theoretical convergence
properties of the PG and GP algorithms [121], [122], it is
often possible to derive tailored results by carefully exploit-
ing the special structure of the underlying problem. This is
illustrated by the MIMO detection problem discussed earlier.
Second, many problems arising from wireless communication
system design, though nonconvex and/or nonsmooth, have
structured objective functions and/or constraints. Even though
the PG and GP algorithms may not be directly applicable to
tackling these problems, they can still play a vital role in

3It might be possible to directly apply the PG algorithm to solve prob-
lem (43) by treating the sum of ρ

∑
k∈K ∥vk,b∥2 and the indicator function

of the feasible set of problem (43) as the nonsmooth term g in (38). However,
the proximal operator of this nonsmooth function is not easily computable,
which makes the corresponding PG algorithm less efficient.

solving these problems. By employing some approximations,
equivalent reformulations, splitting techniques, or optimization
frameworks like BCD or MM, these complicated problems
often boil down to simple forms/subproblems that can be
efficiently solved via the PG/GP algorithm; see more examples
in [33], [124], and [125].

D. Penalty Methods

Penalty methods are an important class of methods for solv-
ing constrained optimization problems. The penalty methods
look for the solution of a (complicated) constrained optimiza-
tion problem by replacing it with a sequence of (relatively
easy) unconstrained penalty subproblems. The objective func-
tion in the penalty subproblem is called the penalty function,
which is formed by adding a penalty term to the objective
function of the original constrained problem. The penalty term
usually is a measure of the violation of the constraints of
the original problem multiplied by a penalty parameter. Some
important algorithms in this class include the quadratic penalty
method and the augmented Lagrangian method.

Due to its simplicity, the penalty method has been widely
studied and used to solve constrained optimization problems
from various applications. A crucial concept associated with
the penalty method is the exactness of the penalty function.
A penalty function is said to be exact if the unconstrained
penalty problem with a sufficiently large penalty parameter
would eventually share the same solution with the original
constrained problem. The exactness of the penalty function
plays a vital role in reducing and avoiding the ill-conditioning
in the corresponding penalty method. Therefore, the choice
of the penalty function in the corresponding penalty method
is of fundamental importance to its numerical performance,
and different choices of penalty terms would generally lead
to different penalty methods. In this subsection, instead of
reviewing the classic quadratic penalty methods, we review
the recent penalty method developed in [126] for solving
problems with integer/discrete variables arising from wireless
communication system design.

1) Penalty Methods for a Class of Optimization Problems
With Structured Constraints: Let us first take the MIMO
detection problem (14) as an example to illustrate how the
penalty method can be applied to solve the optimization
problem with binary variables. Consider the case in which
the constellation is L-PSK given in (13). For notational
simplicity, let s = [s1, s2, . . . , sL]T ∈ CL be the vector of
all constellation symbols, where sℓ = exp(2πi(ℓ− 1)/L). We
introduce the auxiliary variable t = [tT

1 , tT
2 , . . . , tT

n]T ∈ RLn,

where ti = [ti,1, ti,2, . . . , ti,L]T ∈ RL. Then, for each x∗
i

of x∗, we have x∗
i = tT

i s for some ti ∈ RL that has one
entry equal to one and all other entries equal to zero. Then,
problem (14) with S = SL can be equivalently rewritten
as [127]

min
t

tTQt + 2cTt

s.t. eTti = 1, ti ∈ {0, 1}L , i = 1, 2, . . . , n, (44)

where Q ∈ RLn×Ln and c ∈ RLn are constants depending on
the problem inputs H, r, and s. The constraints in (44) with
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respect to ti (for i = 1, 2, . . . , n) enforce an assignment, where
each agent (corresponding to each of the n users in (44)) can
only choose one and only one item from a given set of items
(corresponding to the constellation set SL). Using the same
trick, problem (14) with S = Qu has a reformulation similar
to (44).

We can apply the popular negative square penalty [126],
[128] to the objective function of problem (44) and obtain the
penalty problem

min
t

tTQt + 2cTt− λ
n∑

i=1

∥ti∥22

s.t. eTti = 1, 0 ≤ ti ≤ 1, i = 1, 2, . . . , n, (45)

where λ ≥ 0 is the penalty parameter. The penalty problem
in (45) can be understood via the following relaxation-
tightening procedure. First, problem (44) is relaxed to obtain
problem (45) without the negative square penalty term (and
the feasible set of (45) is the convex hull of the feasi-
ble set of (44)). Then, the negative square penalty term
−λ
∑n

i=1 ∥ti∥22 is added to the objective function of the
relaxed problem in order to minimize/penalize the relaxation
gap and tighten the relaxation. Note that any ti that is feasible
for problem (44) is a solution of the problem of minimizing
−∥ti∥22 over the simplex constraint, which is the intuition why
the tighten procedure works.

The classic penalty methods usually eliminate a constraint
by penalizing it in the objective function. However, the goal of
penalty methods here is to transform (or relax) the hard con-
strained problems into easier constrained subproblems (whose
feasible sets are usually convex relaxations of the original
ones) and, at the same time, appropriately minimize/penalize
the relaxation gap. It can be seen that if the penalty parameter
λ is greater than the largest eigenvalue of Q in (45), then the
objective function in (45) is strictly concave in its variable.
Consequently, the solution of problem (45) is achieved on
the boundary of the feasible set, which is also the feasible
set of problem (44). This shows the equivalence of the two
problems and the exactness of the penalty function in (45).
It has been shown in [129] that in the case where S = SL,
problem (45) with the diagonal entries of Q being set to zero
always has a binary solution (even though λ = 0). In this
way, the ill-conditioning in the penalty method has been fully
eliminated by judiciously exploiting the special structure of the
PSK constellation. Compared to the GP algorithm in [35] for
solving the MIMO detection problem (14) with S = SL, the
algorithm in [129] is more robust to the choice of the initial
point and can generally achieve a better detection performance
at the cost of a higher computational time (as it is based on
the higher-dimensional problem reformulation (44)).

From the above example and discussion, we can conclude
that the penalty method is suitable for solving an optimization
problem whose constraint can be decomposed into a simple
convex constraint and a simple penalty function, i.e., the
solution set of minimizing the penalty function over the simple
convex constraint is equal to the feasible set of the original
problem. Therefore, in addition to the above MIMO detection
problem whose feasible set can be equivalently characterized

by the assignment constraint, the penalty method and related
ideas can be used to solve problems in much more general
setups [126], [128], [130]. First, the constraint in the problem
can be more general; e.g., each agent i can choose at most
k ≥ 1 items from a given set (i.e., eTti ≤ k, ti ∈ {0, 1}L),
or different ti and tj need to satisfy some linear constraints
like in the permutation matrix case [130]. Second, the objective
function in the problem needs not be quadratic but can be
any smooth function (with a bounded Hessian in the bounded
feasible set) [126], [128]. Finally, in addition to the negative
square penalty, there are other kinds of penalty functions such
as the ℓq penalty [130] ∥ti∥qq ≜

∑L
ℓ=1 tqi,ℓ with q ∈ (0, 1).

2) Remarks: We conclude this subsection with some
remarks on the advantages of applying the penalty methods to
solve optimization problems with integer variables. The exact-
ness result of the penalty function in the corresponding penalty
method serves as a necessary theoretical guarantee that one
can focus on the smooth/continuous model (e.g., problem (45))
of the original discrete problem (e.g., problem (44)) for the
purpose of algorithm design. This is important and benefi-
cial for the following reasons. First, it gives more freedom
to design algorithms, since smooth/continuous problems are
generally easier to handle than discrete problems. Second and
more importantly, solving the smooth/continuous problem is
more likely to find a high-quality suboptimal solution of the
original problem with integer variables because the former has
a larger search space in which the homotopy (sometimes called
warm-start) technique [130], [131] can help bypass bad local
solutions. For instance, problem (45) can be efficiently solved
by the GP algorithm.

The recent work [73] proposes a negative ℓ1 penalty method
for solving the one-bit precoding problem formulated in [132],
which is a special case of symbol-level precoding [13]. The
optimization problem has a nonsmooth objective function and
discrete variables. The resulting penalty problem in [73] can be
efficiently solved by the single-loop AO algorithm [73], [133],
[134], where a projection subproblem onto the simplex needs
to be solved at each iteration. The above negative ℓ1 penalty
method can also be extended to solve problems with more
general discrete constraints such as the quantized constant
envelope (QCE) precoding problem [135]. Recent progress
on the analysis of diversity order and (asymptotic) symbol
error probability on one-bit and QCE precoding can be found
in [136] and [137], respectively.

E. Duality-Based Algorithms
Lagrangian duality, a principle that (convex) optimization

problems can be viewed from either the primal or dual
perspective, is a powerful tool for revealing the intrinsic
structures of optimization problems arising from wireless com-
munications. The celebrated uplink-downlink duality [138],
[139], [140] in the power control and beamforming design for
wireless communications can be interpreted via Lagrangian
duality [141], [142]. The uplink-downlink duality refers to
the fact that the minimum total power required to achieve
a set of SINR targets in the downlink channel is equal to
that to achieve the same set of SINR targets in a virtual dual
uplink channel, when the uplink and downlink channels are the
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conjugate transpose of each other. Usually, uplink problems,
e.g., the transmit power minimization problems subject to QoS
constraints, can be solved efficiently and globally (via the
fixed-point iteration algorithm). The uplink-downlink duality
thus allows downlink problems to be efficiently solved by
solving the relatively easy uplink counterparts.

The line of algorithms based on Lagrangian duality and
uplink-downlink duality generally enjoys two key features.
One is its high computational efficiency as the algorithm often
only involves simple fixed-point iterations, and the other is
its global optimality. Therefore, duality-based algorithms have
been widely studied for solving power control and beamform-
ing design problems in various communication networks; see
[62], [63], [64], and [65] and the references therein. In this
section, we demonstrate how uplink-downlink duality [143]
leads to a duality-based fixed-point iteration algorithm [61]
for solving the QoS-constrained joint beamforming and com-
pression problem (10) in a cooperative cellular network, where
the information is encoded and decoded in a central processor
connected to the BSs by finite-capacity fronthaul links, and
the BSs essentially serve as relays.

1) Uplink-Downlink Duality: The main results in [143]
are several duality relationships between the achievable rate
regions of the multiple-access relay channel and the broad-
cast relay channel, as shown in [143, Fig. 2], under the
same sum-power constraint and individual fronthaul capacity
constraints. A complete summary of the obtained duality
relationships can be found in [143, Table I]. Below we state
one of the main results in [143]. Under the same sum-power
constraint and individual fronthaul capacity constraints, the
achievable rate region of the multiple-access relay channel
implementing Wyner-Ziv compression across the relays and
linear decoding at the CP and that of the broadcast relay
channel implementing multivariate compression across the
relays and linear encoding at the CP are identical. The duality
result is proved by showing that given the same fixed beam-
formers {ūk} and under the same set of rate targets {Rk}, the
optimal values of the downlink problem (10) and its uplink
counterpart (46) (as shown at the bottom of the next page) are
the same, where

Γ =
∑
k∈K

pul
k hkh

†
k + σ2I + diag(qul

1 , qul
2 , . . . , qul

M ),

pul
k denotes the transmit power of user k, and qul

m denotes the
variance of the compression noise at relay m.

2) Duality-Based Algorithms: Now, we review the duality-
based algorithm in [61] for solving the joint beamforming and
compression problem (10). There are two key steps in the
algorithm proposed in [61]. In the first step, the seemingly
nonconvex problem (10) is shown to be equivalent to the
convex SDP [61], [143]

min
{Vk},Q

∑
k∈K

tr(Vk) + tr(Q)

s.t. ak({Vk} ,Q) ≥ 0, k ∈ K,

Bm({Vk} ,Q) ⪰ 0, m ∈M,

Vk ⪰ 0, k ∈ K, (47)

where

ak({Vk} ,Q) = −

∑
j ̸=k

tr(VkHk) + tr(QHk) + σ2
k


+

1
γk

tr(VkHk),

Bm({Vk} ,Q) = ηm

[
0 0
0 Q(m:M,m:M)

]
− E†

m

(∑
k∈K

vkv
†
k + Q

)
Em,

Hk = hkh
†
k, k ∈ K, and ηm = 2Cm , m ∈M.

In the above, Em denotes the all-zero matrix except the
m-th diagonal entry being one. Combining the classic Karush-
Kuhn-Tucker (KKT) conditions with the specific structure of
problem (47), we obtain a set of enhanced KKT conditions;
see [61, Eqs. (7)–(16)] for details. The second step is to
separate the enhanced KKT conditions into two sets. We first
solve equations involving the dual variables. Then, we solve
equations involving the primal variables. It is interesting and
somewhat surprising that each set can be solved elegantly via
a fixed-point iteration algorithm [61].

3) Remarks: In order for the above (Lagrangian) duality-
based algorithms to globally and efficiently solve the underly-
ing problems, there are generally two technical challenges.
The first is to reformulate the problem of interest into an
equivalent convex form. This step is essential to ensure the
global optimality of the algorithm but can be highly nontrivial.
The SDR [23] turns out to be a rather useful tool here.
The second is to judiciously explore the problem’s solution
structure and carefully exploit it in algorithm design. Making
use of the solution structure is of paramount importance to the
computational efficiency of the algorithm.

Duality is just one way that the KKT conditions can reveal
structural insight of an optimization problem. For solving
power allocation and beamforming problems in multi-user
communication scenarios, it is always worthwhile to carefully
examine the KKT conditions. This holds true not only for
convex but also for nonconvex optimization problems. In some
cases, the problem structure reflected in the optimality con-
ditions allows us to reformulate the problem into a convex
form and to develop an efficient algorithm to find the global
optimum. In the domain of power control for multi-user net-
works, this approach has successfully led to optimal algorithms
like the iterative water-filling algorithms for both the multiple-
access channel [144] and the interference channel [145], [146].

On the subject of power control for the interference channel,
while the sum-rate maximization problem for the interfer-
ence channel is already known to be NP-hard [66], [74],
modern multiple-access technologies, such as NOMA, lead
to additional challenges [147] that include discrete vari-
ables to determine the optimal decoding orders. In a typical
multi-carrier downlink setup, NOMA can specialize to dif-
ferent variants, including single-carrier NOMA (SC-NOMA),
FDMA-NOMA, and hybrid-NOMA [148]. In the single-cell
setup, the optimum decoding order for each subchannel can
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be determined easily, and the optimal power control problem
turns out to be a convex optimization problem. However,
one would expect, in the multi-cell setup [149], that the
optimization of the decoding order and power allocation will
be an NP-hard mixed-integer nonlinear optimization problem
[149, Corollary 1]. Nevertheless, in specific cases, for fixed
decoding orders, by exploiting the KKT conditions, the opti-
mal power allocation can be computed in closed form [149,
Proposition 1]. Then, the optimal decoding order only depends
on the total power consumption at the BSs and the search
space is significantly reduced, which can potentially lead to
centralized or distributed algorithms for solving the joint rate
and power allocation problem for multi-cell NOMA-assisted
downlink networks.

IV. PROBLEM-SPECIFIC GLOBAL OPTIMIZATION

Global optimization algorithms and techniques aim to find
global solutions of (hard) optimization problems. Global
optimization distinguishes itself from local or heuristic opti-
mization by its focus on finding a global solution, as opposed
to finding a local or suboptimal solution. Global optimization
usually is much more difficult and requires more careful
algorithmic design than local optimization.

In this section, we survey recent advances in problem-
specific global optimization techniques that are closely related
to wireless communication system design. We do not sur-
vey general-purpose global optimization techniques. Before
delving into the detailed survey, we first list the reasons
why there is a strong interest in computing the global solu-
tion of problems, even though the complexity may be high.
First, the computed global solution is helpful in assessing
the fundamental limits of the performance of the considered
wireless communication system. Second, global optimization
algorithms provide important benchmarks for performance
evaluation of existing local and suboptimal algorithms for the
same problem. The above two would be impossible without
the global optimality guarantee. Third, fast global optimization
algorithms can generate high-quality samples for end-to-end
supervised learning, which is covered in Section VI.

This section is organized as follows. We first introduce
two most commonly used global optimization frameworks—
namely, branch-and-bound (B&B) [150] and branch-and-cut
(B&C) [151]—in Section IV-A. These frameworks underlie
all the problem-specific global techniques surveyed in this
section. Then, we review two vital components, bounds and
cuts, within the above two frameworks. Specifically, we use

a class of complex quadratic problems (CQPs) as an example
to illustrate how to derive tight bounds in the B&B frame-
work by employing the SDR technique in Section IV-B, use
mixed monotonic programming (MMP) as an example to
illustrate how to get efficient bounds in the B&B framework
by exploiting the problem structure in Section IV-C, and
use a class of mixed-integer problems as an example to
illustrate how to generate valid cuts in the B&C framework in
Section IV-D.

A. Introduction to B&B and B&C Frameworks

In this section, we briefly introduce the B&B and B&C
frameworks, which are the two most popular frameworks
for designing global optimization algorithms. All of the
problem-specific global optimization algorithms and tech-
niques to be surveyed in Sections IV-B to IV-D lie within
the above two frameworks.

1) B&B Algorithmic Framework: The B&B algorithmic
framework is an implicit enumeration procedure that employs
a tree search strategy. During the enumeration procedure, the
feasible region of unexplored nodes stored in a tree is parti-
tioned into smaller subregions, and children subproblems over
the partitioned subregions are explored recursively. Pruning
rules are used to eliminate regions of the search space that
cannot lead to a better solution. Once all nodes in the tree
have been explored, the global solution is found and returned.

Let us use the following example to illustrate how the B&B
algorithmic framework works. Consider an optimization prob-
lem of minimizing the objective function f over the feasible
set Z. The goal of B&B is to find the global solution of

z∗ ∈ arg min
z∈Z

f(z). (48)

To do so, B&B builds a search tree of subproblems (i.e.,
the problem list P) defined over subsets of the search space
in an iterative fashion. More specifically, at each iteration,
the algorithm selects a new subproblem defined over the set
Z ′ ⊂ Z to explore from the unexplored problem list P :

• If a solution z′ ∈ Z ′ can be found (e.g., by some local
optimization/heuristic algorithm) with a better objec-
tive value than the best known feasible solution, called
the incumbent solution, then the incumbent solution is
updated to be z′.

• Otherwise,
– if no solution better than the incumbent solution

exists in Z ′, then the corresponding subproblem is
pruned;

min
{pul

k },{qul
m}

∑
k∈K

pul
k

s.t. σ2 +
∑
j ̸=k

pul
j |ū

†
khj |2 +

∑
m∈M

qul
m|ūk,m|2 −

pul
k |ū

†
khk|2

2Rk − 1
≤ 0, k ∈ K,

2Cmqul
m ≥ Γ(m,m) − Γ(m,1:m−1)

(
Γ(1:m−1,1:m−1)

)−1

Γ(1:m−1,m), m ∈M,

pul
k ≥ 0, k ∈ K,

qul
m ≥ 0, m ∈M. (46)
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– else, children subproblems are generated by par-
titioning Z ′ into a set of subproblems defined
over {Z ′

t}
T
t=1 and the newly obtained subproblems

are added to the problem list P.

The above procedure terminates until the problem list P
becomes empty, and the incumbent solution is returned as the
global solution.

The steps of a vanilla B&B algorithm for solving prob-
lem (48) with a continuous variable z are summarized as
follows:

(i) Initialize an outer boxM0 ⊇ Z and a tolerance ϵ > 0,
set the incumbent solution z̄0 and value γ0 = f(z̄0).

(ii) Select boxMr that has the smallest bound β(Mr) (of
the objective value of problem (48)) for branching, i.e.,
r = arg minj β(Mj).

(iii) Bisect Mr.
(iv) Reduce new boxes (optional).
(v) Compute bound β(M) ≤ minz∈M∩Z f(z) for all new

boxes M.
(vi) Update the incumbent solution z̄r and value γr =

f(z̄r).
(vii) Delete infeasible (M∩ Z = ∅) and suboptimal (i.e.,

β(M) ≥ γr + ϵ) new boxes.
(viii) Terminate if no box is left or minM β(M) ≥ γr. Then,

z̄r is a global ϵ-optimal solution.

Due to their modularity, B&B algorithms are very flexible.
The design choices comprise the subdivision procedure, the
selection step, the bounding step, the reduction procedure, the
feasibility check, and the finding of a feasible point. They need
to be adapted to the properties and context of the considered
global optimization problem. For a detailed overview of B&B
algorithms, please refer to the survey paper [150] and the
textbook [152].

Several remarks on the above B&B algorithmic framework
are in order. First of all, it is simple to see that the algorithm
actually implicitly enumerates all the feasible solutions via
a tree search strategy and hence the global optimality of
the returned solution is guaranteed. However, the worst-case
complexity of the B&B algorithmic framework is generally
exponential. In particular, the worst-case complexity of any
B&B algorithm in the above framework is O

(
CT d

)
[150],

where T is the maximum number of generated children at any
node, d is the length of the longest path from the root of the
tree to a leaf, and C is the upper bound on the complexity of
exploring/solving each subproblem. The length d here usually
depends on the given error tolerance 1/ϵ.

Second, there are usually two phases of any B&B algorithm.
The first is the search phase, where the algorithm seeks the
(nearly) global solution. The second is the verification phase,
in which the algorithm verifies that the found incumbent
solution (in the first phase) is indeed (nearly globally) optimal.
Note that an incumbent solution cannot be proven to be glob-
ally optimal if the unexplored problem list is nonempty. The
verification of the global optimality of the incumbent solution
is the price that needs to be paid in global optimization, which
is unnecessary in local optimization.

Last but not least, the pruning rule employed in the B&B
algorithm plays an essential role in its computational effi-

ciency. In particular, if there is no solution better than the
incumbent solution, then the corresponding subproblem can
be safely pruned from the problem list and all of its children
problems do not need to be explored. Therefore, an efficient
pruning rule is helpful in reducing the total number of explored
subproblems and accelerating the verification process. The
most common way to prune is to compute a lower bound
on the objective function value of each subproblem and use it
to prune those subproblems whose lower bound is worse than
the objective value at the incumbent solution.

2) B&C Algorithmic Framework: B&C is another widely
used global optimization algorithmic framework for solving
linear integer programs.4 A key concept in B&C is the cutting
plane, also called valid cut or valid inequality. The cutting
plane is defined as “a linear constraint that can be added to an
integer program to tighten the feasible region without remov-
ing any integer solutions” [150] (including the optimal solution
of the original problem). The B&C algorithmic framework
often consists of two steps: using cutting planes to tighten the
LP relaxations and running B&B. More specifically, the B&C
algorithm first iteratively generates and adds cutting planes to
the LP relaxation of the integer program and starts the B&B
process at some point (e.g., when the number of generated
cuts is too large to be added or when it is computationally
expensive to generate new cuts). Note that cutting planes
are generated and added gradually based on the solution of
the current LP relaxation problem. If the solution is already
integer, then it must be optimal to the original problem;
otherwise, new cutting planes are generated to exclude the
current fractional solution to tighten the LP relaxation. It is
evident that the efficiency of the B&C algorithm considerably
relies on the efficiency and quality of the generated cutting
planes.

In view of their central roles in global optimization algo-
rithms, we survey some recent advances in problem-specific
pruning rules and cutting planes for wireless communication
system design. In particular, we review recent advances in
deriving high-quality lower bounds for a class of CQPs by
employing the SDR technique in Section IV-B, efficiently
computing lower bounds for the MMP problems by using
the problem’s monotonicity structure in Section IV-C, and
generating valid cutting planes for a class of mixed-integer
problems in Section IV-D.

B. SDRs for a Class of CQPs

As discussed in Section IV-A, an efficient pruning rule in
the B&B algorithm is of great importance to the algorithm’s
computational efficiency, and the most common way to prune
is to estimate a lower bound on the (optimal) objective value of
each subproblem. Since convex optimization problems possess
favorable theoretical and computational properties and efficient
and mature solvers, the lower bound on the objective value
of each subproblem is often computed by solving a convex
relaxation of the corresponding subproblem. The quality of the
lower bound depends on the tightness of the convex relaxation.
Designing convex relaxations that provide valid lower bounds

4For simplicity of presentation, we use the linear integer program as an
example here. The B&C algorithmic framework can be used to solve problems
that involve mixed-integer variables and are not necessarily linear programs.
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with satisfactory tightness is an important research topic in
global optimization. In this subsection, we review several
SDRs for a class of nonconvex CQPs developed in [153].

We consider the following general CQP as in [153]:

min
x

x†Qx

s.t. ℓi ≤ |xi| ≤ ui, i = 1, 2, . . . , n,

arg(xi) ∈ Ai, i = 1, 2, . . . , n, (49)

where x = [x1, x2, . . . , xn]T ∈ Cn is the n-dimensional com-
plex (unknown) variable; ℓi and ui (i = 1, 2, . . . , n) satisfying
ui ≥ ℓi ≥ 0 are 2n real numbers; Ai (i = 1, 2, . . . , n) is either
an interval of the form [θi, θ̄i] ⊆ [0, 2π) or a set of discrete
points of the form {θ1

i , θ2
i , . . . , θM

i } ⊆ [0, 2π); and arg(·)
denotes the argument of a complex number. Many problems
arising from wireless communications and signal processing
can be formulated as problem (49) with special choices of
ℓi, ui, and Ai (i = 1, 2, . . . , n); see [153, Section II] and the
references therein. For example, the argument constraints are
useful for specifying the phases of the symbols to be detected
in the MIMO detection problem, or for specifying regions for
branching in B&B.

The difficulty of developing an SDR for CQP (49) that can
provide a good lower bound lies in its last argument constraint.
Indeed, an SDR for CQP (49) with the argument constraint
dropped is also an SDR for the problem itself. However, the
bound provided by the above naive SDR is generally not
tight enough. The idea of developing an enhanced SDR for
CQP (49) in [153] is to represent the complex variable in
polar coordinates and derive valid inequalities by exploiting
the special structure of the argument constraint under the
polar-coordinate representation. More specifically, we intro-
duce the polar-coordinate representation of each variable xi =
ri exp(iθi) and a lifted matrix X = xx† ∈ Cn×n. Then, for
each i = 1, 2, . . . , n, we get

Xii = r2
i and θi ∈ Ai. (50)

We now relax the two types of nonconvex constraints in (50)
in order to obtain a convex relaxation of CQP (49).

First, for each i = 1, 2, . . . , n, consider the nonconvex set

Si :=
{
(Xii, ri) | Xii = r2

i , ri ∈ [ℓi, ui]
}

.

It has been shown in [154] that the convex hull5 of Si can be
represented as

Conv(Si) =
{
(Xii, ri)

∣∣∣∣Xii ≥ r2
i ,

Xii−(ℓi + ui)ri + ℓiui ≤ 0

}
.

(51)

Second, consider the nonconvex set

Ti :=
{
(xi, ri) |xi = rie

iθi , θi ∈ Ai, ri ≥ 0
}
. (52)

We have the following results on the convex hull of Ti [153]. In
particular, for the continuous case where Ai = [θi, θ̄i] ⊆
[0, 2π), we have

Conv(Ti) =

{
(xi, ri)

∣∣∣∣∣ aiRe (xi) + biIm (Xi) ≥ ciri,

|xi| ≤ ri

}
, (53)

5The convex hull of a set is the smallest convex set that contains the given
set.

where

ai = cos
(

θi + θ̄i

2

)
, bi = sin

(
θi + θ̄i

2

)
,

ci = cos
(

θ̄i − θi

2

)
;

for the discrete case where Ai = {θ1
i , θ2

i , . . . , θM
i } with 0 ≤

θ1
i < θ2

i < · · · < θM
i < 2π, we have

Conv(Ti) =

{
(xi, ri)

∣∣∣∣∣ am
i Re (xi) + bm

i Im (xi)
≤ cm

i ri, m = 1, 2, . . . ,M

}
, (54)

where θM+1
i = θ1

i + 2π and

am
i = cos

(
θm

i + θm+1
i

2

)
, bm

i = sin
(

θm
i + θm+1

i

2

)
,

cm
i = cos

(
θm+1

i − θm
i

2

)
.

The valid cuts shown in (53) and (54) have been named
argument cuts in [155] and [156] because they exploit the
structure of the argument constraint. An illustration of the
argument cuts in (53) and (54) can be found in [153, Fig. 1].
Putting all of the above together, we obtain the enhanced SDR
for CQP (49) as follows [153]:

min
X, r,x

tr(QX)

s.t. ℓi ≤ ri ≤ ui, i = 1, 2, . . . , n,

(Xii, ri) ∈ Conv(Si), i = 1, 2, . . . , n,

(xi, ri) ∈ Conv(Ti), i = 1, 2, . . . , n,

X ⪰ xx†. (55)

The SDR in (55) is closely related to other types of SDRs
in the literature, e.g., [154], [157], and [158]. An SDR for
an even more general CQP than (49) is provied in [158,
Section 3]. As an extreme case where CQP (49) reduces
to the MIMO detection problem (14) with S = SL, the
corresponding SDR in (55) then reduces to (CSDP2) in [157].
Thanks to the argument cuts in (54), (CSDP2) is shown
to be tight6 for the general case where L ≥ 3 if the
condition λmin(H†H) sin(π/L) ≥ ∥H†z∥1 holds true. The
above sufficient condition for (CSDP2) in [157] to be tight is
intuitive. It basically says that if the channel matrix H is well
conditioned and if the constellation level L and the level of
the noise z are not too large, then solving the corresponding
SDR can find the global solution of problem (14), which is
also the true vector of transmitted signals s in (11).

As a final remark on the use of the argument cuts in (53)
and (54) and the SDR in (55) to deal with nonconvex CQPs,
we note that significant efforts have been made in the literature
to design efficient global optimization algorithms for this class
of problems. Among them, [153] and [155] are most closely
related to wireless communication applications. In particular,
the argument cuts (53) have been embedded in the B&B
framework in [155] to globally solve the NP-hard single-group

6The tightness of the SDR here means that the gap between problem (14)
and its SDR is zero, and the SDR recovers the true vector of transmitted
signals.
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multicast problem; efficient B&B algorithms based on the
argument cuts (53) and (54) have been developed in [153]
to solve a class of nonconvex CQPs with signal processing
and wireless communication applications. When applied to
solve the MIMO detection problem (14) with S = SL, the
proposed global optimization algorithm in [153] significantly
outperforms the state-of-the-art tailored global optimization
algorithm in the hard cases (where the number of inputs and
outputs is equal or the SNR is low).

C. Mixed Monotonic Programming

In this subsection, we continue with the discussion on
computing a valid lower bound on the optimal objective value
of each subproblem in order to do efficient pruning in the B&B
algorithmic framework. In Section IV-B, lower bounds are
derived by developing convex relaxations of the corresponding
subproblems that are as tight as possible. However, the com-
putational cost of solving the convex relaxation problems (e.g.,
the SDP in (55)) might be high. Different from the previous
subsection, the goal of this subsection is to derive the lower
bound on the optimal objective value of each subproblem
with a low computational cost to achieve high computational
efficiency in computing the lower bound. This is possible
when the problem at hand has certain special structure, e.g.,
monotonicity and mixed monotonicity. In particular, we use
the MMP problem [159] as an example to illustrate how
to exploit the monotonicity structure in MMP problems to
obtain an easily computable lower bound. The results in this
subsection are mainly from [159].

We use problem (48) as our example again, where the
objective function f : Rn → R is assumed to be continuous
and the feasible set Z is assumed to be compact (i.e., closed
and bounded). A given function F : Rn × Rn → R is called
a mixed monotonic function if it satisfies

F (z,w) ≤ F (z′,w), ∀ z ≤ z′,

F (z,w) ≥ F (z,w′), ∀ w ≤ w′. (56)

Moreover, problem (48) is said to be an MMP problem if
its objective function f satisfies f(z) = F (z, z) for all z,
where F (·, ·) is some mixed monotonic function defined in
(a set containing) its feasible region. For the MMP problem,
the lower bound can be easily obtained over rectangular sets.
To be specific, let B = [ℓ,u]. Then

min
z∈B∩Z

f(z) ≥ min
z∈B

F (z, z) ≥ min
z,w∈B

F (z,w) ≥ F (ℓ,u)

gives a lower bound on the optimal objective value of the
subproblem defined over B ∩ Z, i.e., minz∈B∩Z f(z).

Below we apply the MMP framework to globally solve
the sum-rate maximization problem in the K-user interference
channel. In fact, all we need to do is to find an MMP represen-
tation of the objective function of the interested problem and
all the others are standard B&B components.7 The sum-rate

7There are two implementations of MMP including the complete
B&B algorithm available. The first is a C++ implementation available
at https://github.com/bmatthiesen/mixed-monotonic. The second provides a
Python framework for disciplined programming with MMP and B&B, which
can be easily applied and extended https://github.com/Ciaoc/mmp_framework.

maximization problem takes a similar form as problem (17)
but with all scheduling variables {κi} being given and fixed.
For ease of presentation, we explicitly write down the rate
expression of user k as follows:

rk(p) = log2

(
1 +

αkpk

σ2
k +

∑
j∈K βkjpj

)
, (57)

where pk is the transmit power of user k, αk ≥ 0 is the gain of
the intended channel, and βkj ≥ 0 is the gain of the unintended
channel for j ̸= k. In the above, βkk ≥ 0 is included for
modeling the self-interference or hardware impairment. It is
simple to verify that

Rk(p,q) = log2

(
1 +

αkpk

σ2
k + βkkpk +

∑
j ̸=k βkjqj

)
(58)

is an MMP representation of rk(p) in (57). With the lower
bounds provided by the above representation, the sum-rate
maximization problem can now be globally solved by utilizing
the MMP framework [159, Algorithm 1].

It is worth mentioning the other existing global optimiza-
tion algorithms for solving the same sum-rate maximization
problem and comparing them with the MMP framework. One
global algorithm is MAPEL [160], which approximates the
original problem from outside by means of the polyblock
algorithm (PA) [161]. Another one is to use the monotonic
optimization framework [161], which first rewrites rk(p)
in (57) into difference-of-monotonic (DM) functions

rDM
k (p) = log2

αkpk + σ2
k +

∑
j∈K

βkjpj


− log2

σ2
k +

∑
j∈K

βkjpj

 (59)

and applies the B&B algorithm to solve the reformulated
DM problem. It is interesting and somewhat surprising that
the MMP bound is always better than the DM bound when
they are applied to solve the sum-rate maximization problem.
Again, the convergence speed of the B&B algorithm depends
strongly on the quality of the bounds, and tighter bounds
generally lead to faster global optimization. This explains why
the MMP algorithm [159] outperforms the B&B algorithm
equipped with the DM bound [161] for solving the sum-rate
maximization problem.

We conclude this subsection with further remarks on the
MMP framework and representation. First, the MMP frame-
work covers many existing problem formulations and frame-
works as special cases, among which the most well-known
one is the so-called DM programs, i.e., problem (48) where
the objective function f can be written as f = f+ − f−

with both of f+ and f− being nondecreasing functions.
An MMP representation of the objective function in DM
programs is F (z,w) = f+(z) − f−(w). Second, the MMP
representation is not unique. In particular, if F (z,w) is an
MMP representation of f(z), then

F̃ (z,w) = F (z,w) +
∑

i

(zi − wi)
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is also an MMP representation of f(z). However, different
MMP representations will lead to different bounds. A subtlety
here is how to choose the MMP representation that leads to
the tightest bound. Finally, we refer the reader to [159] for
more detailed discussions on the MMP framework, including
the functional operations that preserve the mixed monotonic
properties and more application examples in wireless commu-
nication system design.

D. Valid Cuts for Mixed-Integer Problems

Generating valid inequalities to strengthen the relaxation
of a mixed-integer problem (MIP) is generally nontrivial,
as it requires a judicious exploitation of the problem’s special
structure in order to tighten the corresponding relaxation yet
without excluding the true solution. For mixed linear integer
programs (MILPs), many different types of valid inequalities
have been investigated in the literature. In particular, Gomory
cuts [162] have been extensively studied and included in
all modern MIP solvers (e.g., Gurobi, CPLEX, and SCIP)
due to its capability of significantly improving the solvers’
practical numerical performance. Surveys on valid inequalities
for general MIPs can be found in [163] and [164]. In this
subsection, we use MIPs coming from wireless communication
system design as examples to illustrate how to exploit struc-
tural information in the corresponding problems to generate
valid inequalities. The results in this subsection are mainly
from [47].

Consider the JABF problem (16). Compared to relaxing both
the binary variables and the nonconvex quadratic constraints
in (16) as in [46], an arguably better way is to keep the binary
variables unchanged and apply the SDR to the nonconvex
quadratic constraints, which leads to the following mixed-
integer SDR:

min
W̃, β

tr(W̃)

s.t. tr(H̃kW̃) ≥ βk, k ∈ K,∑
k∈K

βk ≥ K̂, βk ∈ {0, 1} , k ∈ K,

W̃ ⪰ 0, (60)

where W̃ =
[
W w
w† 1

]
∈ SM+1

+ and H̃k =
[
hkh

†
k 0

0 1

]
∈

SM+1
+ for all k ∈ K. In the following, we focus on designing

a B&C algorithm for globally solving problem (60). Then,
based on the solution we can apply the Gaussian random-
ization procedure to obtain a feasible solution to the JABF
problem (16) with a provable guarantee [47, Theorem 2].

The first step in the design of a B&C algorithm for solving
mixed-integer SDR (60) is to find a relaxation of the problem.
This can be easily achieved due to the following fact: For any
T ⊂ SM

+ , the constraint

tr(TW)−w†Tw ≥ 0, T ∈ T (61)

is an outer approximation of the last constraint W̃ ⪰ 0 in (60).
As such, for any given T ⊂ SM

+ , the problem

min
W̃, β

tr(W̃)

s.t. tr(H̃kW̃) ≥ βk, k ∈ K,∑
k∈K

βk ≥ K̂, βk ∈ {0, 1} , k ∈ K,

tr(TW)−w†Tw ≥ 0, T ∈ T (62)

is a relaxation of problem (60). Moreover, with the decom-
position T = UU† at hand, each constraint in (61) can be
expressed as the SOC constraint∥∥∥∥[1− tr(TW)

2U†w

]∥∥∥∥ ≤ 1 + tr(TW).

If the chosen set T in (62) is a finite set of SM
+ , then the

problem is a mixed-integer SOCP, which can be efficiently
solved (e.g., by Gurobi).

The second step in the design of a B&C algorithm for
globally solving mixed-integer SDR (60) is to iteratively
generate valid inequalities and add them in (62) to tighten
the relaxation. More specifically, after obtaining an optimal
solution (W̃T , βT ) of problem (62), we solve problem (60)
with β = βT , i.e.,

min
W̃

tr(W̃)

s.t. tr(H̃kW̃) ≥ [βT ]k, k ∈ K,

W̃ ⪰ 0, (63)

which is an inner approximation of problem (60). The
SDP (63) plays a central role in the design of the B&C
algorithm, as solving the SDP either verifies the global opti-
mality of the incumbent solution βT or generates a valid
inequality to eliminate βT and tighten the relaxation if βT
is not optimal. In particular, we check the integrality gap (i.e.,
the difference between the optimal values) of problems (63)
and (62). If the gap is zero, then (W̃T , βT ) is the optimal
solution of problem (60); otherwise a valid inequality T is
generated based on the dual information of the SDP (63) and
added to T to strengthen the relaxation problem (62) [47,
Proposition 1]. Specifically, if the SDP (63) is feasible, then let

T̃ =
[
T t
t† t

]
∈ SM+1

+

be the optimal Lagrange multiplier corresponding to
the constraint W̃ ⪰ 0; if not, then there exists a
λ∗ = [λ∗

1, λ
∗
2, . . . , λ

∗
K ]T such that T̃ =

∑
k λ∗

kH̃k and
(λ∗)TβT < 0.

Since the total number of feasible binary solutions of
problem (60) is finite and one binary solution is eliminated at
each iteration, the above B&C algorithm will return an optimal
solution of problem (60) in a finite number of iterations. In the
above algorithm, problems (63) and (62) are two important
subproblems, which need to be solved at each iteration and
are closely related. In particular, solving problem (62) can
return a subset of users to serve based on which problem (63)
is defined; solving problem (63) is to find the multicast
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beamforming vector to support the selected subset of users and
solving it either verifies the optimality of the selected subset
of users or returns a valid inequality for problem (62) that
cuts off the current suboptimal or infeasible solution. In the
above algorithm, problem (62) acts like a leader while prob-
lem (63) acts like a follower. Therefore, these two problems
are named the leader and follower problems in the literature.
The above technique and idea can be extended to solve
many other problems involving mixed-integer variables. For
instance, an efficient global algorithm has been proposed for
solving large-scale mixed-integer network slicing (NS) prob-
lems [165]. The algorithm proceeds by decomposing the orig-
inal NS problem into the relatively easy function placement
and traffic routing subproblems and iteratively solving these
subproblems using the information obtained from each other.

V. DISTRIBUTED OPTIMIZATION AND
FEDERATED LEARNING

In the past decade, distributed optimization methods
have garnered significant attention in wireless communica-
tions [166], [167]. These methods provide the potential for
scalability and efficiency by allowing multiple entities to
solve global optimization problems using localized compu-
tations collectively. For example, in multi-cell coordinated
systems or cell-free MIMO systems, the BSs collaborate to
mitigate inter-cell interference, so as to improve the QoS
of cell-edge users. In contrast to centralized optimization
methods, which require all users’ CSI to be pooled at a
central node, distributed optimization methods can provide
certain advantages such as reducing the backhaul information
exchange [168], [169] and providing robustness against time-
varying environments [170]. Since distributed optimization
methods can usually be implemented in parallel, they are also
low-complexity alternatives (in terms of computational time)
for solving some large-scale wireless communication system
design problems. Below, in Section V-A, we present two
distributed optimization methods—namely, the dual decom-
position method [171] and the alternating direction of method
of multipliers (ADMM) [172]—and also their variants [173],
[174], [175], [176], which are often adopted in distributed
wireless designs. We then demonstrate their applications in
multi-cell coordinated beamforming.

Distributed optimization methods will play an important
role in future wireless networks. For example, edge intelli-
gence, which leverages the capabilities of AI at the network’s
edge, is considered as a pivotal element of next-generation
wireless networks [177]. In intelligent edge networks, AI ser-
vices are not limited to centralized data centers but extend to
edge nodes, enabling real-time decision-making and latency
reduction. This is a vital technology for emerging applica-
tions like autonomous vehicles and augmented reality, which
demand ultra-low latency and high reliability. Federated learn-
ing (FL) is a key enabler of edge intelligence. FL is a
distributed optimization methodology employed in wireless
networks for collaborative AI model training across distributed
edge devices. Compared to the cloud-based centralized learn-
ing paradigm, FL does not require users’ data to be collected at
the cloud center and therefore provides enhanced data privacy
and security at the network’s edge [178]. However, efficient

implementation of FL is challenging because the learning
process would involve iterative communications between the
edge server and a massive number of user clients. Besides, the
local data owned by the clients may have different statistical
distributions, which can greatly degrade the learning perfor-
mance [179]. In Section V-B, from the distributed optimization
perspective, we review the seminal FL algorithm FedAvg [180]
and present its variants [181], [182] that aim to improve the
learning performance in heterogeneous edge networks.

A. Decomposition Methods

1) Dual Decomposition, ADMM, and Their Variants: Dual
decomposition [171], [172] is a simple method to obtain a
decentralized algorithm for convex optimization problems with
separable structures. Specifically, consider the problem

min
x

n∑
i=1

fi(xi)

s.t. xi ∈ Xi, i = 1, 2, . . . , n,

Ax = b, (64)

where {fi} are convex functions, {Xi} are given convex
sets, A = [A1,A2, . . . ,An] are given matrices, and x =
[xT

1 ,xT
2 , . . . ,xT

n]T is the design variable. Both the objec-
tive function x 7→

∑n
i=1 fi(xi) and the constraint Ax =∑n

i=1 Aixi = b are separable with respect to {xi}. The
dual decomposition method aims to exploit the separable
structure of problem (64) via its Lagrangian dual. Specifically,
the Lagrangian dual of problem (64) decouples the problem
into n individual subproblems, each involving only a single
variable xi and its associated function fi and constraint matrix
Ai. This enables parallel or distributed processing of each
subproblem, followed by a coordination step to ensure that
the global constraint is satisfied. The obtained algorithm can
be summarized as follows:
(i) Initialization: Set λ0 = 0 (initial Lagrange multiplier).

(ii) Repeat until convergence:
– For each i = 1, 2, . . . , n, solve the local problem

xr+1
i = arg min

xi∈Xi

{
fi(xi) + (λr)TAixi

}
.

– Update the Lagrange multiplier via

λr+1 = λr + αr(Axr+1 − b), (65)

where αr is a step size.
(iii) Output: xr+1

1 , xr+1
2 , . . . ,xr+1

n .
In general (e.g., when problem (64) is not strictly convex),
the update (65) can lead to slow convergence. Besides, the
output {xr+1

1 ,xr+1
2 , . . . ,xr+1

n } is not guaranteed to be feasible
(i.e., satisfying Ax = b) [172]. Though being simple, due
to these issues, the dual decomposition method may become
unfavorable in practice.

The ADMM is an improved decomposition method that
relaxes the strict convexity assumption and has a faster con-
vergence rate. The vanilla version of ADMM considers an
optimization problem of the following form

min
x∈X ,z∈Z

f(x) + g(z)

s.t. Ax + Bz = c,
Authorized licensed use limited to: University of Minnesota. Downloaded on September 16,2025 at 20:07:16 UTC from IEEE Xplore.  Restrictions apply. 



LIU et al.: SURVEY OF RECENT ADVANCES IN OPTIMIZATION METHODS FOR WIRELESS COMMUNICATIONS 3015

where f and g are convex functions, and A and B are
given matrices. The ADMM is an iterative method that splits
this problem into simpler subproblems, which can then be
solved in a decoupled or even parallel fashion. Unlike the dual
decomposition method, the ADMM considers the augmented
Lagrangian

L(x, z, λ) = f(x) + g(z) + λT(Ax + Bz− c)

+
ρ

2
∥Ax + Bz− c∥2,

where ρ > 0 is the penalty parameter. By updating the vari-
ables {x, z} in an alternating manner and applying the method
of multipliers to the constraints, the ADMM converges to a
solution of the original problem under mild assumptions [172].
The ADMM algorithm is given below.
(i) Initialization: Choose initial points x0 and z0, and set

λ0 = 0.
(ii) Repeat until convergence:

– Update x:

xr+1 = arg min
x∈X
L(x, zr, λr). (66)

– Update z:

zr+1 = arg min
z∈Z
L(xr+1, z, λr).

– Update the Lagrange multiplier:

λr+1 = λr + αr(Axr+1 + Bzr+1 − c). (67)

(iii) Output: xr+1 and zr+1.
Thanks to the augmented Lagrangian, the update in (67) is an
inexact gradient ascent step, enabling the ADMM to have a
faster convergence rate than the dual decomposition method.

When the objective function and the constraint have separa-
ble structures, e.g., f(x) =

∑n
i=1 fi(xi), Ax =

∑n
i=1 Aixi,

and X = X1 ×X2 × · · · ×Xn, the update of x in (66) can be
decomposed into n Gauss-Seidel steps, which are given by

xr+1
i = arg min

xi∈Xi

L(xr+1
<i ,xi,xr

>i, z
r, λr)

for i = 1, 2, . . . , n. Here, x<i contains all xj with j < i
and x>i contains all xj with j > i. A disadvantage of the
Gauss-Seidel update is that the variables {xi} are updated
one after another, which is not amenable for parallelization.
To have a parallel algorithm, one can consider Jacobian-type
updates. However, a direct Jacobian ADMM is not guaranteed
to converge in general. To fix this, the proximal ADMM
method is proposed [173], [174], [183]. Specifically, one can
replace (66) by

xr+1 = arg min
x∈X

{
L(x, zr, λr) +

1
2
∥x− xr∥2P

}
, (68)

where

∥xi − xr
i ∥2P = (xi − xr

i )
TP(xi − xr

i )

and P is a positive definite matrix. In particular, if one chooses
P to satisfy P = cI− ρATA ≻ 0 for some parameter c > 0,
then the update in (68) can be decomposed into n parallel
subproblems.

2) Application Example: Next, we present one application
of the ADMM and its variants in distributed wireless system
design, which is multi-cell coordinated beamforming.

Consider the same cellular system as in Fig. 3(b). The
difference here is that data sharing is not allowed among
different BSs, so as to reduce the signaling overhead. Assume
that each user k is assigned to a specific BS b = bk and let
Kb denote the subset of users allocated to BS b. In this case,
for each k ∈ K, we have vk,b = 0 for all b ̸= bk. To simplify
the notation in problem (7), we use vk to denote vk,bk

. Then,
the SINR of user k is given by

SINRk

=

∣∣∣h†
k,bk

vk

∣∣∣2∑
j∈Kbk

\k

∣∣∣h†
k,bk

vj

∣∣∣2 +
∑

b̸=bk

∑
i∈Kb

∣∣∣h†
k,bvi

∣∣∣2 + σ2
k

.

(69)

Let us introduce the inequality

τk,b ≥
∑

i∈Kb

∣∣∣h†
k,bvi

∣∣∣2 ,

where the right-hand side denotes the inter-cell interference
term from BS b to user k for k /∈ Kb. Then, the SINR formula
in (69) is modified as

SINRk =

∣∣∣h†
k,bk

vk

∣∣∣2∑
j∈Kbk

\k

∣∣∣h†
k,bk

vj

∣∣∣2 +
∑

b̸=bk
τk,b + σ2

k

.

Therefore, the minimum power beamforming design problem
under the per-user SINR constraint can be reformulated as
[170] and [184]

min
{vk,τk,b}

∑
b∈B

∑
k∈Kb

∥vk∥22 (70a)

s.t. SINRk ≥ γk, k ∈ K, (70b)∑
i∈Kb

∣∣∣h†
k,bvi

∣∣∣2 ≤ τk,b, k /∈ Kb, b ∈ B, (70c)

where constraint (70c) guarantees that the inter-cell inter-
ference generated from a given BS b cannot exceed the
user specific thresholds τk,b for all k /∈ Kb. The above
reformulation can be handled by the ADMM, which will yield
a distributed algorithm.

Observe that the BSs are coupled in the SINR con-
straints (70b) by the interference terms {τk,b}. By introducing
local auxiliary variables and additional equality constraints,
the coupling in the SINR constraints is transferred to the
coupling in the equality constraints, which is easy to decouple
by the dual decomposition or ADMM. Specifically, note
that each inter-cell interference term τk,b couples exactly
two BSs, i.e., the serving BS bk and the interfering BS
b. Therefore, it is enough to introduce local copies of τk,b

for the two BSs, i.e., t
(b)
k,b and t

(bk)
k,b , and enforce the two

local copies to be equal via t
(b)
k,b = τk,b and t

(bk)
k,b = τk,b

[170], [185]. More compactly, define τ ∈ RK(B−1) as an
aggregate vector that contain all interference terms {τk,b},
and let t =

[
(t(1))

T
, (t(2))

T
, . . . , (t(B))

T
]T
∈ R2K(B−1),
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where t(b) contains {t(b)k,b}k/∈Kb
and {t(b)k,b′}k∈Kb,b′ ̸=b. Then,

the consistency between t and τ can be compactly expressed
using the equality Eτ = t, where E ∈ R2K(B−1)×K(B−1) is a
matrix whose elements are {0, 1} that maps the elements of τ
in the positions corresponding to the copies in t. Consequently,
problem (70) can be reformulated as

min
{vk},t,τ

∑
b∈B

∑
k∈Kb

∥vk∥2

s.t. SINR(b)
k ≥ γk, k ∈ Kb, b ∈ B,∑

i∈Kb

∣∣∣h†
k,bvi

∣∣∣2 ≤ t
(b)
k,b, k /∈ Kb, b ∈ B,

Eτ = t, (71)

where the variables {t(b)b,k}k/∈Kb
and the terms

SINR(b)
k =

∣∣∣h†
k,bvk

∣∣∣2∑
j∈Kb\k

∣∣∣h†
k,bvj

∣∣∣2 +
∑

b′ ̸=b t
(b)
k,b′ + σ2

k

are local for each BS b.
Notice that the objective and the constraints in (71) are now

separable with respect to {vi}i∈Kb
and t(b) across the BSs.

Thus, problem (71) can be solved distributedly at each BS b
using the ADMM:

min
t(b),{vk}k∈Kb

∑
k∈Kb

∥vk∥2 + (νb)
T
(
t(b) −Ebτ

)
+

ρ

2

∥∥∥t(b) −Ebτ
∥∥∥2

s.t. SINR(b)
k ≥ γk, k ∈ Kb,∑

i∈Kb

∣∣∣h†
k,bvi

∣∣∣2 ≤ t
(b)
k,b, k /∈ Kb.

Here, ν = [νT
1 , νT

2 , . . . , νT
B ]T ∈ R2K(B−1) is the Lagrange

multiplier associated with the equality constraint Eτ = t
in (71). Once each BS b obtains {vi}i∈Kb

and t(b), they

will share the relevant elements within t(b) with other BSs,
which are further used to compute τ = E+t, where E+

denotes the pseudo-inverse of E. Then, we perform the update
νb ← νb + µ

(
t(b) −Ebτ

)
until convergence, where µ > 0 is

the step size to update the multiplier.
While problem (70) can also be handled by the dual

decomposition method as shown in [184], it is demonstrated
in [170] that the ADMM can track the solution variation in a
dynamic environment with time-varying CSI. The ADMM can
also be applied, together with the SDR technique, to handle
the multi-cell coordinated robust beamforming problem under
imperfect CSI; see [185] for details. It is noteworthy that dis-
tributed optimization methods can also be employed to develop
algorithms that leverage parallel computing resources to tackle
large-scale optimization problems, such as the multi-UAV
power and trajectory control problem discussed in [186].

B. Federated Learning in Wireless Edge Networks

Consider a wireless edge network, as illustrated in Fig. 4,
where an edge server orchestrates N edge clients to collabo-
ratively address a distributed learning problem via FL. The

Fig. 4. An illustration of an FL wireless edge network, where an edge server
orchestrates multiple edge clients to solve a distributed learning problem
collaboratively via FL.

problem of interest is given by

min
w∈Rm

F (w) =
N∑

i=1

piFi(w). (72)

Here, pi represents the weight assigned to the i-th client,
which satisfies pi ≥ 0 and

∑N
i=1 pi = 1. The parameter w ∈

Rm signifies the m-dimensional model parameter targeted
for learning. The local cost function Fi(·) = EDi

[L(·;Di)]
is the expectation of a (possibly nonconvex) loss function
L and operates on the local dataset Di. The global cost
function F (·) = ED[L(·;D)] considers the global dataset D ≜⋃N

i=1Di. When utilizing mini-batch samples ξi with size b, the
local loss function is defined as Fi(·; ξi) = 1

b

∑b
j=1 L(·; ξij),

where ξij represents the j-th randomly selected sample from
the dataset of client i, and L(·; ξij) is the model loss function
with respect to ξij .

In this subsection, we first present the seminal FL algorithm
FEDAVG [180] for solving problem (72) and then analyze
the factors that influence its convergence performance. Finally,
we present several improved FL algorithms.

1) FEDAVG Algorithm: FEDAVG is an extension of the
consensus-based distributed stochastic gradient descent (SGD)
method [187] to the star network as depicted in Fig. 4.
It involves three essential steps in each communication round:

(i) Broadcasting: In the r-th communication round, the
server randomly chooses K clients, represented by the
set Kr, where |Kr| = K. It then broadcasts the global
model w̄r−1 from the previous iteration to each client
in Kr.

(ii) Local model updating: Each client i ∈ Kr updates
its local model using local SGD. This involves the E
consecutive SGD updates

wr,0
i = w̄r−1,

wr,t
i = wr,t−1

i − α∇Fi(w
r,t−1
i ; ξr,t

i ), t = 1, 2, . . . , E,

where α > 0 represents the learning rate.
(iii) Aggregation: The selected clients upload their locally

updated model wr,E
i to the server, which then aggregates

these models to produce a new global model based on
a specific aggregation principle.

Notably, FEDAVG employs two aggregation schemes,
depending on whether all clients participate or not:
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• Full participation: All clients actively participate in the
aggregation process, i.e., Kr = N ≜ {1, 2, . . . , N} for
all r. The global model is updated by

w̄r =
N∑

i=1

piw
r,E
i . (73)

However, this scheme may pose feasibility challenges
due to a limited communication bandwidth for uplink
channels, given the large number of participants.

• Partial participation: With |Kr| ≪ N , the global model
is updated by

w̄r =
1
K

∑
i∈Kr

wr,E
i . (74)

Here, all K clients in Kr are selected with replacement
based on the probability distribution {pi}Ni=1. It is impor-
tant to note that the averaging scheme in (74) provides
an unbiased estimate of w̄r in (73) [188].

2) Performance Analysis: Several factors influence the per-
formance of FEDAVG, including the number of clients K,
the number of local updating steps E, and data hetero-
geneity [188]. Moreover, there are interactive relationships
between data heterogeneity and other training factors. For
instance, a larger E exacerbates the negative impact of data
heterogeneity, while a smaller E increases the communica-
tion cost of transmitting model parameters. To conduct a
thorough analysis of the influence of data heterogeneity on
FL’s convergence, we can utilize the difference between local
and global function gradients, i.e., E[∥∇Fi(w)−∇F (w)∥2],
as a metric to quantify data heterogeneity [179]. Up to now,
extensive research has been conducted on FL’s convergence;
see, e.g., [179], [189], [190], [191], [192], [193], and [194].
Here, we present a key result that unveils the fundamental
properties of FL, whose validity has been examined in [179].

To begin, let us state the assumptions:
• Each local function Fi is lower bounded by F and

the local gradient ∇Fi is Lipschitz continuous with a
constant L.

• The local SGD is unbiased, i.e., E[∇Fi(w, ξij)] =
∇Fi(w), and has a bounded variance, i.e.,
E[∥∇Fi(w, ξij)−∇Fi(w)∥2] ≤ σ2.

• The data heterogeneity metric is upper bounded, i.e.,
E[∥∇Fi(w)−∇F (w)∥2] ≤ D2

i for all i ∈ N .
Let R denote the number of iterations and T = RE denote
the total number of SGD updates per client. Suppose that
α = K

1
2 /(8LT

1
2 ) and E ≤ T

1
4 /K

3
4 . Then, the inequality (75)

(as shown at the bottom of the next page) holds [179]. The
terms (a) and (b) in (75) reveal that the influence of mini-batch
SGD variance σ2/b and data heterogeneity {Di} can be
alleviated by increasing the number of selected clients K. This
allows FEDAVG to achieve a linear speed-up with respect to
K. Furthermore, due to the presence of the partial participation
term (c) in (75), the convergence rate is O(1/T

1
4 ). In the

scenario where full participation (i.e., (73)) is adopted, the
term (c) would disappear, leading to an improved convergence
rate of O(1/T

1
2 ).

3) Improved FL Algorithms: In recent research, wireless
resource allocation in non-ideal wireless environments has
garnered attention within the context of FL, where diverse
perspectives have been explored. For instance, the work [189]
delves into the impact of packet error rates on the convergence
of FEDAVG and proposes a novel approach that integrates
joint resource allocation and client selection to enhance the
convergence speed of FEDAVG. On another front, research
efforts have been directed toward exploring compressed trans-
mission through quantization and evaluating its influence on
FL’s performance. For instance, the work [192] proposes
FEDPAQ, a communication-efficient FL method that transmits
the quantized global model in the downlink, with a subsequent
analysis of the quantization error’s effect on FL’s convergence.
The work [193] explores layered quantized transmissions for
communication-efficient FL, where distinct quantization levels
are assigned to various layers of the trained neural network.
Different from these, the work [179] considers both transmis-
sion outage and quantization error concurrently, undertaking
joint allocation of wireless resources and quantization bits to
achieve robust FL performance. In the quest to enhance FL’s
performance within heterogeneous data networks, researchers
have explored more advanced algorithms that aim to surpass
the capabilities of the conventional FEDAVG. See [181], [195],
and [196] and the references therein for improved FL algo-
rithms which can better tackle data and system heterogeneity
in problem (72).

VI. OPTIMIZATION VIA LEARNING

In the last few years, new machine learning (ML) and
AI techniques have powered nothing short of a technological
revolution in a number of application areas including speech
recognition [197], image classification [198], and natural
language processing [199]. In particular, well-trained deep
neural networks (DNNs) are capable of utilizing limited
knowledge about the underlying model to effectively trans-
form a large amount of data to latent informative feature
spaces. Remarkably, deep learning-based AI has exceeded
human-level performance in many nontrivial tasks.

Unlike classic communication modeling and computational
tools that are mainly model-driven, ML-based methods such
as DNNs and deep reinforcement learning (DRL) are largely
data-driven [197], [198]. A natural question then arises:
Can data-driven ML/AI-based methods significantly enhance
the capacity and performance of communication networks?
Recent surge of research suggests that these methods can
achieve significant gains for tasks such as encoding/decoding,
equalization, power control, and beamforming.

One of the most important tasks in wireless networking
is to determine, in each time period, which subset of links
to activate and what subcarriers and transmit powers those
links should use. Evidently, deactivating a link or a sub-
carrier is equivalent to setting its transmit power to zero.
While there are closed-form solutions under a few special
settings, optimal spectrum and power allocations are NP-hard
to compute in general interference-limited networks [66].
Most of the best-known power allocation algorithms such as
WMMSE [81], SCALE [200], FlashLinQ [201], ITLinQ [202],
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majorization-minimization [79], and those that have been sur-
veyed in this work in the previous sections, require complete
model knowledge and are computationally very challenging.
If the model parameters are only partially known, e.g., when
the channel coefficients are time-varying, a principled, efficient
design is yet to be found in the literature [75], [203], [204].
Today’s cellular networks dynamically allocate subcarriers to
each link and step up/down the transmit power primarily based
on this link’s own receiver feedback, which is far from being
globally optimal.

To address both computational complexity and model uncer-
tainty issues, data-driven approaches such as DNN can provide
a much-needed solution for next-generation wireless networks.
To be concrete, consider the multi-user multi-carrier interfer-
ence network with K transmitters, and each using power pℓ

k to
transmit to its associated receiver on the ℓ-th subcarrier. Let
hℓ

kj ∈ C denote the channel between transmitter j and receiver
k on subcarrier ℓ. Then, the weighted-sum-rate maximization
problem is given by

max
{pℓ

k}
WSR(p, h) ≜

∑
k

wk

∑
ℓ

log
(
1 + SINRℓ

k

)
s.t.

∑
ℓ

pℓ
k ≥ 0, 0 ≤ pℓ

k ≤ Pk, k ∈ K, (76)

where

SINRℓ
k =

|hℓ
kk|2pℓ

k∑
j ̸=k |hℓ

kj |2pℓ
j + σ2

k

(77)

is the SINR of receiver k over subcarrier ℓ, and wk and Pk

are the weight and power budget of user k, respectively. This
problem and its various generalizations such as the beam-
forming problem (3) are NP-hard [66], [68], [75]. A closer
look at the popular and computationally more affordable
WMMSE algorithm [81] reveals a number of relatively expen-
sive operations including taking the magnitude, thresholding,
re-weighting, and matrix inversion. More importantly, imple-
menting the WMMSE algorithm requires precise knowledge
of the parameters (e.g., channel coefficients) and may use an
unknown number of iterations—which varies from instance to
instance. A question that many researchers have started asking
around 2017 is: Can neural networks help, and if so, to what
extent? Since then, extensive literature has been developed to
address both the computational and model uncertainty issues.

In the rest of this section, we focus on learning-based power
control and beamforming methods that leverage the instanta-
neous CSI to enhance the performance of wireless systems.

In Section VII, we switch to more recent developments in
learning methods that do not require the CSI.

A. Black-Box Based Approaches

The first line of work started with the learning to optimize
approach proposed in [205]. In this approach, an (potentially
computationally expensive) optimization algorithm is treated
as a nonlinear mapping—which takes problem specification as
the input, and outputs the (hopefully optimal) decision vari-
ables. Formally, let T (h) = p∗ denote a nonlinear relationship
of the input (i.e., the channel coefficients) and output (i.e.,
the optimized powers) for an algorithm solving (76). Due
to DNNs’ superior ability to learn compact representation of
nonlinear relations [206], in principle it is possible to use it as
a “black-box” to learn the relation T (·) using a DNN without
going into iterations to mimic the “lower level operations”.
If we could use a very simple network, say a few layers and
neurons to well-approximate a power control algorithm which
normally runs for more than 100 iterations, then substantial
saving in real-time computation can be achieved. In [205],
a DNN-based approach is developed to approximate WMMSE
in the special case of a single carrier. Specifically, a supervised
learning approach is used, where the training pairs are gen-
erated using simulated channel and the WMMSE algorithm
(where the i-th snapshot of the simulated channel is denoted
as h(i), and the resulting WMMSE solution is denoted as p(i)),
and then they are used to train a DNN that mimics the behavior
of WMMSE. Let τ(·, θ) denote the DNN, where θ collects all
the parameters of the DNN. Then, the training problem can
be expressed as

min
θ

I∑
i=1

∥τ(h(i), θ)− p(i)∥2

s.t. τ(h(i), θ) ∈ P , (78)

where P denotes the feasible set of the transmit power vectors
and I is the total number of training samples.

The approach is tested on a variety of scenarios in [205],
including real-data experiments, and the results are very
encouraging. The key findings are as follows: (i) It is indeed
possible to closely approximate a highly complex iterative
power control algorithm by using a relatively simple DNN (in
this case, a network with only three hidden layers). (ii) The
DNN-based implementation is typically 25 to 250 times faster
than the best C language implementation of the WMMSE.

Subsequently, a number of works have been developed to
improve the learning to optimize techniques discussed above.

1
R

R∑
r=1

∥∥∇wF (w̄r−1)
∥∥2 ≤

496L
(
F (w̄0)− F

)
11 (TK)

1
2

+

(
39

88 (TK)
1
2

+
1

88 (TK)
3
4

)
σ2

b︸ ︷︷ ︸
(a) (caused by mini-batch SGD)

+

(
4

11 (TK)
1
2

+
1

22 (TK)
3
4

)
N∑

i=1

piD
2
i︸ ︷︷ ︸

(b) (caused by data heterogeneity)

+
31

22T
1
4 K

5
4

N∑
i=1

piD
2
i︸ ︷︷ ︸

(c) (caused by partial participation)

. (75)
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For example, in [207] an unsupervised learning approach
is developed, which directly optimizes some system utilities
such as the WSR over the training set. More specifically, the
training problem is given by

min
θ
−

I∑
i=1

WSR(τ(h(i), θ), h(i))

s.t. τ(h(i), θ) ∈ P , (79)

where WSR(·) is defined in (76). It has been shown that by
using the negative WSR as the loss function, it is possible
to find power allocation strategies whose performance goes
beyond that of WMMSE. It is worth highlighting that the
above unsupervised approach has been designed specifically
for the interference management problem because the task
of wireless system utility optimization (which includes the
WSR maximization as a special case) offers a natural training
objective to work with. Since it does not require any existing
algorithms to help generate high-quality labels, it is much
preferred when training samples are difficult to generate. On
the other hand, the associated training objective appears to
be difficult to optimize, since the WSR is a highly nonlinear
function with respect to the transmit power or the beamformer,
which in turn is a highly nonlinear function of the DNN
parameters. Therefore, in the future, it is worth understanding
the tradeoffs between the two formulations (78) and (79).

In [208], the fully connected neural networks used in
the previous works are replaced by certain random edge
graph neural network (REGNN), which performs convolu-
tions on random graphs created by the network’s fading
interference patterns. REGNN-based policies maintain an
important permutation equivariance property, facilitating their
transference to different networks. The key benefit of the
proposed architecture is that only a small neural network
is needed, and the dimensionality of the network does not
scale with the network size. It is worth mentioning that
there are other recent works that apply graph neural networks
to learn algorithms that are capable of learning globally
optimal beamformers; see, e.g., [209] and [210]. In [211],
the supervised deep learning approach is extended from the
power control problem to a multi-user beamforming prob-
lem by utilizing convolutional neural networks and expert
knowledge such as uplink-downlink duality (which has been
reviewed in Section III-E). In particular, three beamforming
neural networks are developed for optimizing the SINR,
power minimization, and sum rate. Similarly as in (78), the
beamforming neural networks employ supervised learning for
SINR and power minimization and a hybrid approach for
sum-rate maximization. In [212], in view of the fact that the
previous learning-based algorithms have only been developed
in the static environment, where parameters like the CSI are
assumed to be constant, a methodology for continuous learning
and optimization in certain “episodically dynamic” settings
is introduced, where the environment changes in “episodes”,
and in each episode the environment is stationary. The work
proposes to incorporate the technique of continual learning
into the model to enable incremental adaptation to new
episodes without forgetting previous knowledge. By further

utilizing certain specific structures of the optimal beamforming
solution (e.g., the low-dimensional structure and/or the invari-
ance property under the permutation of users’ indices) and
embedding these structures into the network, the constructed
neural network can have better scalability to different numbers
of transmit antennas and BSs and can tackle more difficult
QoS constraints. Some recent progress in this direction has
been made in [213] and [214].

B. Unfolding-Based Approaches

Different from the above black-box DNN approach, where
DNN is used as a black box to approximate the input-output
relationship of certain algorithms or systems, another line of
work leverages the deep unfolding technique, which builds
DNNs based on finer-grained approximation of a known
iterative algorithm with a finite number of iterations. Specif-
ically, the neural network to be built will have multiple
stages, where each stage consists of function blocks that
imitate a given step of the target optimization algorithm.
For example, the work [215] unfolds the GP algorithm to
build learning networks for the MIMO detection problem
in (14). For a single-cell multi-user beamforming problem,
the work [216] proposes a learning network by unfolding
the WMMSE algorithm. To overcome the difficulty of matrix
inversion involved in the WMMSE algorithm, they approxi-
mate the matrix inversion by its first-order Taylor’s expansion.
Another recent work [217] proposes to unfold the WMMSE
algorithm to solve the coordinated beamforming problem in
MISO interference channels. In [218], certain GP algorithm
is unfolded for the multi-user beamforming problem. Again,
by utilizing certain low-dimensional structure of the optimal
beamforming solution, the constructed neural network can
be made independent of the numbers of transmit antennas
and BSs.

Overall, the advantage of these deep unfolding methods is
that they can leverage existing algorithms to guide the design
of neural networks. In this way, the number of parameters to be
learned can be much smaller as compared to black-box-based
DNN methods.

VII. LEARNING-BASED OPTIMIZATION WITHOUT
EXPLICIT CHANNEL ESTIMATION

While the focus of the previous section is on using the neu-
ral network to mimic a sophisticated optimization solver, the
true benefit of the ML approach for optimizing communication
system design goes much further. In this section, we point
out that the practical advantage of the ML-based solver lies
not necessarily in that a data-driven approach may provide a
more efficient way to solve complex optimization problems,
but more importantly, a learning-based approach allows com-
munication channels to be modeled and to be parameterized
differently (and potentially more effectively), so that relevant
channel characteristics that are otherwise difficult to build
into an analytic model can now be taken into account in the
optimization process. In fact, the learning-based approach can
allow the optimization of wireless communication systems to
be performed without explicit channel estimation. This ability
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to bypass the CSI estimation process is where the true promise
of ML lies.

In many optimization problems for wireless communication
system design, the estimation of CSI is a highly nontriv-
ial process for the following reasons. As modern systems
move toward massive MIMO with many antenna elements,
while also incorporating novel devices such as RIS with
many tunable reflectors, the number of parameters in the
overall channel has exploded. Yet, as next-generation wireless
services increasingly demand agility to support ultra-reliable
low-latency communications and cater toward high-mobility
applications where the channel coherence time is severely
limited, the amount of time available for CSI acquisition has
effectively been shortened, making the estimation task ever
more challenging. Furthermore, modern wireless communica-
tion networks often involve a large number of independent
transmitter-receiver links. To facilitate interference manage-
ment, the CSI between each transmit and each receive device
would need to be estimated and collected at a centralized
controller. The coordination required for channel estimation
and feedback will become increasingly complex as the network
size grows.

Therefore, the bottlenecks in the optimization of wireless
communication networks are often not only the efficiency
of the optimization algorithms for achieving either global
or local optimal solutions of a particular system-level opti-
mization problem—they could well also be the availability
of an accurate CSI across the entire network. In this section,
we first discuss the issue of channel modeling, then highlight
several approaches of using learning-based methods for the
optimization of wireless communication networks that are
model-free.

A. Channel Modeling and CSI Estimation

Communication engineers have invested heavily in the
study of channel models. Cellular and WiFi standards include
sophisticated electromagnetic propagation models under which
the transceiver designs must perform well. At a system level,
radio propagation maps for outdoor and indoor environments
have been carefully developed and used for deployment plan-
ning purposes. However, these established channel models are
typically statistical in nature. At a link level, when optimizing
the transceivers for a specific channel realization, we must rely
on pilots to estimate the channel within the coherence time.

One of the key questions for channel estimation is how
to parameterize a wireless channel. For a MIMO channel
with M antennas at the transmitter and M antennas at the
receiver, the conventional method is to capture the complex
channel coefficients from each transmit antenna to each receive
antenna. Thus, an M × M channel has O(M2) complex
parameters. While such a parameterization may be suitable
for a rich-scattering environment when antenna spacing is
at least half wavelength apart so that the channels across
the antennas are uncorrelated, at higher frequencies such as
the mmWave band, the propagation environment becomes
increasingly sparse. This means that the channels across the
antennas would exhibit strong correlations, and the overall
MIMO channel can be parameterized by a much smaller

number of parameters. Toward this end, sparse channel models
and sparse optimization techniques have proved to be useful
for CSI estimation in such channels.

A convenient approach to the modeling of sparse channels is
to use a ray-tracing model, in which the wireless propagation
environment is characterized by a limited number of rays from
the transmitter to the receiver via the reflective paths. However,
these model assumptions are susceptible to variations in the
deployment scenario, e.g., it is difficult to determine the
number of paths in advance. Also, as the Bayesian parameter
estimation process would require a prior distribution on the
model parameters, it is not obvious how these prior distribu-
tions should be chosen.

In general, choosing the most suitable channel model is an
art rather than science. There is a delicate balance between
choosing a model with many parameters, which may be more
accurate but also makes channel estimation harder, versus
choosing a model with fewer parameters, which may be less
accurate but makes parameter estimation easier. Moreover, as a
mobile transceiver can easily move from a limited scattering
location to a rich-scattering location, identifying the suitable
channel model for each specific situation is a highly nontrivial
task.

B. Model-Free Optimization

A learning-based approach can potentially circumvent the
difficulty posed by model-based optimization. Instead of
optimizing the transceiver parameters such as power and
beamforming based on the CSI acquired in the channel
estimation phase, modern neural networks can be efficiently
trained to allow the possibilities of taking a variety of relevant
information about the channel as the input, while producing
an optimized solution based on these inputs.

This new data-driven paradigm is illustrated in Fig. 5
[219]. While traditional optimization methods must rely on
a specific parameterization of the channel, the data-driven
approach can take any representation of the problem instance
as the input, then map the problem instance to an optimization
solution. This opens up the possibility of using not only the
CSI but also relevant information such as the locations of
mobile devices, visual images of the surrounding environment,
or sensing data from radar/lidar in autonomous vehicles, to aid
the specification of the propagation channel.

This ability for the neural network to merge the multi-
tude of different kinds of information is a key advantage of
the proposed data-driven paradigm. In effect, once properly
trained over many problem instances, the first layers of the
neural network can act as feature-extraction layers to find
the most prominent features of the optimization problem,
while the later layers would act as optimization layers to
find an optimized solution. Such an approach allows the
potential of reducing the reliance or completely eliminating the
need for explicit channel estimation. This is where ML-based
optimization would have the potential to have the largest
impact.

In the remainder of this section, we survey several examples
of how a variety of different information can be taken as the
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Fig. 5. Traditional wireless system design follows the paradigm of model-then-optimize. The ML-based approach is capable of directly learning the optimal
solution based on a representation of the problem instance. The neural network is trained over many problem instances, by adjusting its weights according to
the overall system objective as a function of the representation of the problem instances [219].

problem specification to allow for an effective solution of the
optimization problem.

1) Scheduling and Power Control Using Geographic Infor-
mation: As already discussed in detail in the previous section,
power control for the interference channel is one of the
long-standing optimization problems in the wireless domain.
In fact, when formulated as an integer programming problem
of deciding whether a device should be on or off, it can
be readily seen that the sum-rate maximization problem (and
many of its variations) is NP-hard [66], [74].

However, the difficulty of the power control problem goes
beyond algorithmic complexity. In an interfering environment
with K transmitter-receiver pairs, the acquisition of the CSI
would require transmitting pilots from each of the K transmit-
ters to each of the K receivers, in order to estimate the O(K2)
channel parameters. Not only would such a channel acquisi-
tion phase consume valuable coherence time, it also requires
careful coordination, which is often costly in itself. Further,
these estimated channel parameters need to be collected at
one central location so that a centralized optimization problem
may be formulated and solved. Finally, the solution needs to
be communicated back to the devices. These tasks are often
cost-prohibitive in a distributed networking environment.

The core of the power control problem is scheduling, i.e.,
to decide which set of transmitter-receiver pairs should be
active at any given time, so as to balance the need for
throughput provisioning and interference mitigation. To this
end, the work [220] makes a crucial observation that the trans-
mission decision of each transmitter-receiver pair is essentially
a function of the locations of nearby transmitters relative to
the receiver and the locations of nearby receivers relative to
the transmitter. Such geographic location information already
tells us a great deal about the interference level each receiver
would experience, and likewise the interference pattern these
transmitters would emit depending on which ones are turned
on. Thus, instead of using exact CSI to formulate an optimiza-
tion problem of maximizing the network utility, it ought to be
possible to provide the location information as the input to a
neural network, and to train the neural network to arrive at
an approximately optimal solution. This is an example where
precise channel information, which is difficult to obtain, may

be replaced by geographic spatial maps of the potentially
interfering transmitters and the potentially interfered receivers
as a representation of the optimization problem. These maps
already contain sufficient amount of information to derive a
reasonable schedule, as shown in [220]. The benefit of not
having to estimate CSI would outweigh the cost in terms of
loss in optimality.

The idea of modeling the spatial relationship between
transceiver pairs as a graph in order to aid a network-wide
optimization has found relevance in many related works, e.g.,
in using graph embedding based on the distances between
nodes as features to perform link scheduling [221], and in
using GNNs to account for the interference landscape in
a network [208], [222]. Neural networks have also been
found useful for estimating the radio map of a complex
environment [223].

2) Beamforming and RIS Reconfiguration with Implicit
Channel Estimation: The traditional optimization paradigm
always assumes a channel estimation phase based on the pilots,
followed by an optimization phase based on the estimated
channel. The CSI serves as the intermediary interface between
the two phases. However, as already mentioned, choosing the
most appropriate channel model and the channel estimation
method involve many tradeoffs, so they are not trivial tasks.

The capability of neural networks for taking diverse types
of information as the inputs to the optimization process gives
rise to a new possibility. Instead of explicitly estimating the
channel based on the received pilots and then performing
optimization, a better idea is to feed the received pilots directly
into the neural network and to train the neural network to
produce an optimized solution based on the information about
the channel implicitly contained in the received pilots. Such
a model-free optimization paradigm would bypass explicit
channel estimation and let the neural network perform both
feature extraction (i.e., finding the most relevant information
about the channel) and optimization together at the same time.

The optimization of RIS is an example in which this new
approach can be much more effective than the traditional
channel estimation-based approach. The deployment of RIS
in a communication setting allows real-time re-focusing of
electromagnetic beam from a transmitter through the reflecting
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surface to an intended receiver, thereby enhancing the overall
SINR. In a traditional optimization paradigm, the channel
between the transmitter and the receiver would need to be
parameterized by all the reflective paths. To explicitly estimate
these channel parameters would have cost a large number of
pilots [224]. If instead, the received pilots are used as a rep-
resentation of the channel as the input to the neural network,
then it would result in a much more efficient optimization
process.

Experimentally, this approach has been shown in [225]
to be able to produce optimized configurations for the RIS
using a much smaller number of pilots than traditional chan-
nel estimation-based approaches. The model-free approach
produces a higher overall rate than sophisticated manifold opti-
mization and block coordinate descent techniques [226], [227]
for optimizing RIS—when the channel estimation error is
taken into account. Interestingly, the neural network produces
highly interpretable results; it can effectively track the users
and further cancel the interference between the users. It is also
possible to use this framework to include scheduling [228],
which is a difficult discrete optimization problem. Moreover,
the locations of the users can be used as an additional input
to the neural network to further reduce the length of pilots.

3) Sensing, Localization, and Beam Alignment with Massive
MIMO: Model-free deep learning-based optimization has an
important role to play not only for wireless communication
applications but also for sensing and localization tasks, which
are crucial application areas for future wireless networks. The
framework discussed earlier in this section applies naturally
to sensing applications, because model-free deep learning is
capable of implicitly estimating the channel, and channel
estimation is an example of sensing. In sensing applications,
typically a known signal is transmitted, then possibly reflected
off a target object, and finally received and processed. The
goal is to identify or to characterize some properties of the
transmitter, or the reflecting object, or the environment, based
on the received signal. Traditional optimization techniques
can be used if a model of the target or the environment
is available, and if the sensing objective can be stated in
a mathematical form (e.g., in terms of the MSE). However,
because the validity of these models is subject to assumptions,
it would have been much more preferable to train a neural
network to accomplish the same task. The premise here is of
course that the training data for realistic sensing scenarios are
available or can be easily generated. Historically, image/speech
recognition is among the first successful applications of deep
learning [197], [198]—broadly speaking, these are all sensing
tasks.

Sensing applications for which deep learning has been
shown to provide substantial benefit, as compared to hand-
crafted model-based optimization, include localization and
mmWave massive MIMO initial beam alignment [229], [230],
which is a problem of designing a beamformer to align with
the incoming ray during the pilot stage.

A further consideration in many sensing tasks is that sensing
operations are often sequential in nature. The sensing strategies
can be adaptively designed depending on the observations
made so far. The sequential optimization of sensing strategies,

if formulated as an analytic optimization problem, would
have been a high-dimensional problem that is impossible to
solve analytically. Given the right neural network architecture,
however, they can be readily tackled using deep learning
methods. For example, the work [231] demonstrates that in
a massive MIMO channel where both the transmitter and
receiver are equipped only with a single radio-frequency chain
(so they can only perform analog beamforming), it is possible
to design a sequence of analog sensing beamformers so that
the transmitter and receiver can jointly discover the strongest
direction in a high-dimensional channel. In effect, deep learn-
ing is capable of performing singular value decomposition over
the air—without explicitly estimating the channel matrix.

The dynamic nature of the sensing task is especially impor-
tant in applications involving object tracking. In this realm,
the work [232] demonstrates that a deep learning approach
can incorporate visual imaging data for beam tracking and
beam alignment. This speaks to the utility of learning-based
optimization—the ability to incorporate imaging data for RF
beamforming would have been very difficult to achieve using
traditional model-based approaches.

C. Neural Network Architecture Considerations
A crucial consideration in the design of deep learning

methods for solving optimization problems is the choice of the
neural network architecture. The general principle is that the
neural network architecture should match the structure of
the optimization task at hand. As already being alluded to,
the GNN [208], [222] that captures the spatial relationship
between the interfering links is a well-suited architecture
for scheduling and power control in device-to-device ad-hoc
networks and for beamforming pattern design in RIS-assisted
communication scenarios. By tying the weights of different
branches of the GNN together, it would facilitate faster training
and a more generalizable solution. For sequential optimization
in sensing applications, neural network architectures such as
long short-term memory [233] have shown to be effective
for capturing the correlation over time [229], [230], [231],
[234]. Modern attention-based neural network architectures
can potentially offer even further improvements.

The field of modern ML is evolving rapidly. Unques-
tionably, future wireless communication system design will
incorporate elements of learning-based approaches soon and
will likely go beyond the present model-based methodology.

VIII. OPEN PROBLEMS AND RESEARCH DIRECTIONS

In this section, we present some open problems and future
research directions for mathematical optimization theory and
algorithms for wireless communication system design.

A. Open Problems
While many advanced mathematical optimization theory

and various algorithms have been developed in the past
decades, there are still many open problems.

• With the help of quadratic and Lagrangian dual trans-
forms reviewed in Section III-A, we can transform
a complicated low-dimensional (e.g., sum-rate maxi-
mization) problem into an equivalent, relatively easy
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high-dimensional problem and further apply the AO
algorithm to efficiently solve the latter. It is pointed
out in [78] that, when applied to solve a univariate toy
example, the AO algorithm (based on the two FP trans-
forms) converges sublinearly and thus slower than the
conventional Dinkelbach’s algorithm. A rigorous proof of
the convergence rate of the AO algorithm when applied to
more general (sum-rate maximization) problems remains
open. Another question is how to accelerate the AO
algorithm to achieve a faster convergence rate.

• As mentioned at the end of Section III-E, reformulating
the problem under consideration into a convex form
(if necessary) and exploring its solution structure in
algorithm design are two major technical obstacles for
duality-based algorithms to work [143]. However, the
constantly evolving structures and nature of optimization
problems due to architecture and networking innovations
in wireless communication systems lead to significant
challenges in the application of duality-based algorithms.
More efforts are still needed to push the boundary of
uplink-downlink duality towards more general scenar-
ios (e.g., ISAC and RIS-assisted systems) and develop
duality-based algorithms for solving (possibly noncon-
vex) optimization problems in these scenarios.

• While we have explored various distributed optimization
methods for wireless communication system design in
Section V-A, it is worth noting that only a few of
them have found practical implementation. This limited
deployment can be attributed to the challenges posed by
the interconnection between BSs in multi-cell systems,
where backhaul bandwidth constraints often lead to sig-
nificant communication delays. In real-world scenarios,
BSs cannot engage in frequent message exchanges due to
these constraints, so iterative algorithms in Section V-A
are not favored. Consequently, a critical question arises:
How can we effectively optimize the transmission strate-
gies of multiple BSs with minimal or even no message
exchanges [235]? Similar challenges also arise in the
context of user scheduling within multi-cell systems,
particularly for cell-edge users who require coordinated
optimization across multiple BSs to be simultaneously
allocated to the same resource block. These issues
underscore the complexity of achieving efficient wireless
system design and user scheduling in practical resource-
constrained environments.

• Most evidence on the effectiveness of neural networks
is empirical. There are still many open questions, such
as whether there can be any theoretical guarantee in
the performance of learning-based approaches, how to
choose the best neural network architecture that would
require the fewest training samples, how to account
for constraints in a data-driven approach [236], how
to combine data-driven and model-driven methodologies
(an example of which is by unfolding existing algorith-
mic structures [217], [237]; see Section VI-B for more
details), the possible role of reinforcement learning in
solving optimization problems, etc.

B. Research Directions
In this subsection, we point out some potential directions

for future work on next-generation wireless communication
system design.

1) Distributed Signal Processing and Optimization for
Extremely Large-Scale Antenna Array (ELAA) Systems: To
support multiple services with diverse and customized QoS
requirements in next-generation wireless communication sys-
tems, there is a growing trend in increasing the number of
antennas at BSs, which has led to the emergence of ELAA
systems. However, as mentioned in Section V, as the number
of antennas increases, traditional centralized baseband process-
ing (CBP) architectures encounter bottlenecks in terms of high
fronthaul costs and computational complexities. To address
these challenges, decentralized baseband processing (DBP)
architectures have emerged as a promising approach [238],
[239], [240], [241], [242], [243]. In the DBP architecture, the
antennas at the BS are divided into several antenna clusters,
each equipped with an independent and more affordable base-
band processing unit (BBU) and connected with other BBUs
as a star network or as a daisy-chain network.

Compared to the CBP architecture, the DBP approach has
several advantages. First, the DBP architecture only requires
distributed units (DUs) to exchange some locally processed
(low-dimensional) intermediate results, thereby reducing the
interconnection cost. Second, since each DU only needs to
process a low-dimensional received signal, the computational
complexity in each DU can be significantly reduced. Last but
not least, the DBP architecture improves the scalability and
robustness of ELAA systems, as adding or removing antenna
elements simply amounts to adding or removing computing
units.

Despite the promising initial advancements in ELAA sys-
tems with DBP architectures, interconnection costs, which
increases rapidly with the expansion of the array size, is a
key issue. More specifically, most of developed distributed
algorithms are based on iterative implementations that suffer
from frequent message exchanges and high computational
complexities [238], [239], [240], [241], [242], [243], [244],
although some attempts have been made recently to overcome
these bottlenecks [245], [246]. In addition, tight synchroniza-
tion is required among distributed nodes and corresponding
synchronization signals must be implemented across the DUs.
For example, to perform coherent beamforming, high-accuracy
time synchronization and phase calibration are crucial [247],
[248]. Furthermore, when additional components such as
network-controlled repeaters, RISs, and backscatter communi-
cation are introduced to distributed MIMO systems [249], the
integration of these techniques with the distributed architecture
will present new challenges. All of these are fresh opportuni-
ties for optimization algorithm development.

The ELAA system is used in the above as an example to
illustrate that new wireless communication applications and
scenarios will lead to new mathematical optimization problems
and drive the development of distributed signal processing
and optimization theory and algorithms. Indeed, there are
many interesting applications as well as signal processing and
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optimization problems in all of the six major usage scenarios
of 6G (see Fig. 1), which call for new and novel signal
processing and optimization theory and algorithms. As Alan V.
Oppenheim reminds us [250], “There will always be signals,
they will always need processing, and there will always be
new applications, new mathematics, and new implementation
technologies.”

2) Quantum Optimization and ML [251], [252], [253],
[254]: ML and AI techniques have significantly changed and
will continue to change the way that mathematical optimiza-
tion problems are formulated and solved. As reviewed in
Sections VI and VII, data-driven approaches have provided
an efficient way of solving complex optimization problems
from wireless communication system design that cannot be
accurately modeled and/or efficiently solved by traditional
optimization approaches. There are new ideas on the horizon
that can change the research landscape for mathematical opti-
mization. An example of this is quantum computing. A grand
research challenge, as well as opportunity, is the co-design
of quantum computer architectures and quantum optimization
and ML algorithms such that optimization problems can be
efficiently solved by quantum optimization and ML algorithms
on quantum computers.

Emerging paradigms of ML, quantum computing, and
quantum ML, and their synergies with wireless communi-
cation systems might become enablers for future networks.
This speculative vision of a quantum internet is outlined
in [255]. On one hand, quantum information theory will
give rise to new optimization problem formulations [256].
For the optimization community, it often leads to novel
and exciting mathematical optimization problems involving
matrix-valued functions (e.g., functions involving input den-
sity matrices or operators). Quantum-assisted optimization for
wireless communications and networking has already been
investigated in [251] and [252]. On the other hand, quantum-
assisted (e.g., annealing-based) computational models can lead
to more efficient solutions to problems in wireless com-
munications and networking. Typical optimization problems
include quantum-assisted multi-user detection, quantum-aided
multi-user transmission in combination with multiple-access
technologies including channel estimation, quantum-assisted
indoor localization for mmWave and visible light communica-
tions, and quantum-assisted joint routing, load balancing, and
scheduling [252].

Finally, quantum ML [253] defines complex artificial neural
network structures to perform quantum supervised, unsu-
pervised, reinforcement, federated, and deep learning. The
work [254] presents a perspective on quantum ML method-
ologies and their applications for wireless communications.

IX. CONCLUSION

Mathematical optimization is a powerful modeling and solu-
tion tool for the design of wireless communication systems.
Mathematical optimization theory, algorithms, and techniques
play central roles in formulating the right optimization prob-
lems behind wireless communication system design, obtaining
structural insights into their solutions, developing efficient,
provable, yet interpretable algorithms for solving them, as well

as understanding analytic properties of optimization problems
and convergence behaviors of optimization algorithms. This
paper provides a survey of recent advances in mathematical
optimization theory and algorithms for wireless communi-
cation system design. More specifically, we review recent
advances in nonconvex nonsmooth optimization (includ-
ing fractional programming, sparse optimization, proximal
gradient algorithms, penalty methods, and duality-based algo-
rithms), global optimization (including branch-and-bound
and branch-and-cut algorithms), distributed optimization (and
federated learning), learning-based optimization (with and
without CSI), and their successful application examples in
wireless communication system design. More importantly,
a goal of this paper is to give guidance on how to choose and/or
develop suitable algorithms (and neural network architectures)
for solving structured optimization problems from wireless
communications and to promote the cross-fertilization of ideas
in mathematical optimization and wireless communications.
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