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Abstract Iris recognition is a reliable biometric identification method known for its low false acceptance rates. 6 
However, capturing ideal iris images is often challenging and time-consuming, which can degrade the performance of 7 
iris recognition systems when using non-ideal images. Enhancing iris recognition performance for non-ideal images 8 
would expedite and make the process more flexible. Off-angle iris images are a common type of non-ideal iris images 9 
and converting them to their frontal version is not as simple as making geometric transformations on the off-angle iris 10 
images. Due to challenging factors such as corneal refraction and limbus occlusion, the frontal projection requires a 11 
more comprehensive approach. Pix2Pix GANs, with their pairwise image conversion capability, provide the ideal foil 12 
for such a tailored approach. This paper demonstrates how Pix2Pix GANs can effectively be used for the problem of 13 
converting off-angle iris images to frontal iris images. This paper provides a comprehensive exploration of techniques 14 
using Pix2Pix GAN to enhance off-angle to frontal iris image transformation by introducing variations in the loss 15 
functions of Pix2Pix GAN for better capturing the iris textures and the low contrast, changing the medium of input 16 
from normalized iris to iris codes, and ultimately delving deeper into studying which regions of the Gabor filters 17 
contribute the most to iris recognition performance. 18 
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1 Introduction 22 

Iris recognition has quickly emerged as one of the most promising biometric identification 23 

approaches, given its low false acceptance rates and the contact-less nature of the process.1 Iris 24 

recognition utilizes distinctive characteristics found in the iris of a person's eye to differentiate one 25 

individual from another. Most existing iris recognition systems use frontal iris images, captured 26 

when a person is directly looking at the camera. However, capturing frontal iris images is not 27 

always possible. If a person looks in a different direction when the images are captured, the quality 28 

of iris images captured is not deemed good and might warrant a recapture of the image and can 29 

lead to time wastage. This signifies the importance of constructing an unconstrained iris 30 
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recognition model capable of performing off-angle iris recognition. Additionally, frontal 31 

restriction limits iris recognition to merely using it as a stationary biometric identification. Off-32 

angle iris recognition models can help create dynamic biometric identification systems that can be 33 

used to accelerate person identification on the go and assist in capturing suspected criminals on 34 

the run. 35 

Some of the challenges faced in frontal iris recognition systems are iris occlusion due to eyelids 36 

and blurred images. In addition to these, off-angle iris recognition systems face a few more 37 

challenges, namely, corneal refraction, limbus occlusion, and the 3-Dimensional structure of the 38 

iris. Firstly, there is the distortion caused due to the presence of cornea. Since cornea contains 39 

water, majorly, the light refracts due to the difference in refractive indices of air and water. 40 

However, this refraction occurs differently for different gaze angles making this an issue. Then 41 

there is the three-dimensional nature of iris, which can create shadows on the iris plane. Also, a 42 

depth of field blur is caused because the iris plane is not parallel to the image plane in off-angle 43 

scenarios. In addition to these, there is the presence of limbus, which is a semi-transparent tissue, 44 

whose presence can be magnified at extreme angles, thereby occluding some pixels leading to loss 45 

Fig. 1. General process of iris recognition. 
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of useful information. These challenges mean that simple geometric transformations are not 46 

sufficient to convert an off-angle iris image into its frontal version. 47 

In general, as seen in Fig. 1, iris recognition involves capturing eye images using near-infrared 48 

cameras to be able to better capture the low-contrast iris patterns. Second, the inner and outer iris 49 

boundaries are segmented. Third, the iris portion of the eye is unwrapped into a rectangular strip 50 

by sampling from the original annular structure by using Daugman’s Rubber Sheet model.2 This 51 

rectangular strip is called the normalized iris image. Fourth, the normalized iris image is convolved 52 

with three different Gabor filters, resulting in six different binary strips. The combined binary 53 

image is called as iris code. Finally, the iris code is compared with all the iris codes stored in the 54 

database calculating Hamming distance scores. The Hamming distance scores for iris images 55 

belonging to the same eye, also referred to as intra-class hamming distance scores, would be lower 56 

compared to the hamming distance scores for the irises coming from different eyes, also referred 57 

to as inter-class hamming distance scores. During the hamming distance calculation, eyelid masks 58 

are applied to ensure that the comparison is only done on iris pixels and not on other eye structures. 59 

When off-angle iris images are used during inference in the above process directly, without any 60 

further processing, the gap between the intra-class Hamming distance scores and the inter-class 61 

Hamming scores becomes smaller, leading to greater misclassifications. This highlights the need 62 

to consider off-angle iris recognition as a standalone problem. This paper takes the approach of 63 

attempting to project off-angle iris images into their frontal views to improve the performance of 64 

off-angle iris recognition. To accomplish this, the paper utilizes the Pix2Pix GAN model and 65 

adapts it to the context of iris images. This paper adopts three different approaches that have been 66 

considered for the frontal transformation process. The paper is structured as follows: section 2 67 
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offers background information, section 3 describes the three different conversion approaches and 68 

the loss functions, section 4 presents the results and discussion, and section 5 concludes and 69 

showcases potential future work. 70 

2 Related Work                                                                                                                        71 

The initial implementation of iris recognition was expected to capture frontal iris images.2 It used 72 

the Gabor-phase quadrant feature descriptor to convert normalized iris images into binary iris 73 

codes. These iris codes were compared with codes in a previously recorded database for 74 

identification by calculating Hamming distances. In addition to the iris codes, several other feature 75 

descriptors such as Scale-Invariant Feature Transform (SIFT) features3 were also proposed. 76 

Frontal iris feature extraction was explored using deep learning mechanisms such as ResNet-50,4 77 

and spatial attention.5  78 

Frontal iris recognition algorithms faced challenges when compared with off-angle iris images. 79 

One of the main challenges was the effect of gaze angle. To counter this, several approaches were 80 

proposed including affine transformations to project off-angle images into frontal,6 ellipse fitting 81 

to off-angle images for segmentation and normalization,7 and Support Vector Machines to extract 82 

features.8 However, these approaches did not improve the recognition for off-angle images 83 

captured at gaze angles exceeding 30° because they assumed a flat iris and ignored light refraction 84 

at the cornea, which was another major challenge for off-angle iris recognition. Santos-Villalobos 85 

et al.9 employed the ray-tracing method to compute the impact of corneal refraction on off-angle 86 

iris images and proposed a conversion technique to generate frontal versions. This method proved 87 

successful for synthetic images but failed with real images due to the presence of the limbus, which 88 

presented an additional challenge affecting off-angle iris recognition. Karakaya et al.10,11 89 
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investigated the effects of limbus occlusion and the three-dimensional structure of the iris on off-90 

angle iris recognition. They observed that the presence of the limbus increased the intra-class 91 

Hamming distance scores, bringing them closer to inter-class scores, particularly at higher gaze 92 

angles. 93 

Convolutional Neural Networks (CNN) have been used for improving off-angle iris recognition 94 

performance as well. A Transfer Learning based approach on the iris, ocular, and periocular 95 

modalities12 using different training set combinations of gaze angles, revealed that using off-angle 96 

iris images in training makes testing more robust as opposed to using frontal images alone. Another 97 

approach involved using Triplet loss functions13 in CNNs to extract features. This approach 98 

showed good performance at gaze angles greater than 30°, but the CNN seemed to utilize non-iris 99 

regions for recognition more than the actual iris portions. 100 

The advent of generative models has given rise to multiple context-based generative models. While 101 

image generation based on seed images has been explored in various domains, such as face images, 102 

extending these techniques to iris images is challenging. Zhang et al.14 used a Conditional 103 

Adversarial Autoencoder for generating face images corresponding to different ages, but this 104 

approach does not apply to iris images, as the traversal in latent space does not guarantee a traversal 105 

across different gaze angles. GANs, on the other hand, have proven effective for generating 106 

realistic images. Conditional Generative Adversarial Networks (CGANs) use label information to 107 

generate images of specific classes. Taherkhani et al.15 employed CGANs to match profile face 108 

images with their frontal versions, using a U-Net architecture for generators and a patch-based 109 

discriminator. They proposed using generative modeling to project profile and frontal face images 110 

into a latent space for face matching and frontal face generation. On a similar note, the Pix2Pix 111 
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GAN model16 demonstrated how an image in one domain space can be converted into an image in 112 

another domain space. In the current paper, we propose an open-set solution to the iris recognition 113 

problem by employing a modified Pix2Pix architecture which can be used to convert off-angle iris 114 

images to frontal iris images.  115 

3 Methodology 116 

To use the Daugman’s2 pipeline for traditional iris recognition, the possible domains for image 117 

conversion are the original captured eye images, the ocular iris images, the normalized iris version, 118 

and the iris code version, as can be seen in Fig. 2. The problem with using the original eye images 119 

is the presence of other structures like the eyelids, eyebrows, sclera, and the pupil. All other 120 

structures, which usually have a higher contrast and greater edge separations, are bound to 121 

dominate the conversion process, without attributing enough emphasis to the iris portion of the 122 

image. The ocular iris images also face a similar problem due to the presence of sclera, and the 123 

pupil portions. The normalized iris image and the iris codes are the best options for iris image 124 

conversion, as these images only concentrate on the iris portion. One problem with using images 125 

in these domains is that the output can only be a normalized or an iris code image, and not an actual 126 

eye image. However, this information is sufficient for iris recognition. 127 

Fig. 2. Different domains for iris image conversion (a) Captured original image (b) Ocular iris image (c) 

Normalized iris image (d) Iris code with six-channels. 

 

(b) (a)  (c)  (d) 
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Using normalized images and the iris codes, we propose three different models for off-angle to 128 

frontal iris image projection. The first one uses only the normalized iris images, the second one 129 

uses the iris codes, and the third one uses sub-blocks of iris codes. They are described in the 130 

following subsections. 131 

3.1 Conversion using Resized Normalized Iris Images 132 

This approach17 utilizes two separate branches. As can be seen in Fig. 3, the first branch employs 133 

the traditional method suggested by Daugman2 on the frontal iris images for generating a 134 

normalized frontal iris image dataset. This branch follows the steps of image capturing, 135 

segmentation, normalization, and then encoding into iris codes. The normalized iris images, 136 

originally sized 64x512, were resized to 256x256 using bilinear interpolation to ensure smooth 137 

scaling and to also achieve the dimensions suitable for the Pix2Pix GAN network. Consequently, 138 

Fig. 3. Approaches to frontal iris conversion – using Normalized iris images (blue) and using Iris Code images 

(orange). 
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the eventual frontal iris code dataset would also comprise (256 x 256) images. This dataset will 139 

then be used later for comparison with the probe images. 140 

The second branch, highlighted with blue color in Fig. 3, in this process attempts to generate a new 141 

iris image by converting off-angle normalized iris images to their frontal version. After iris 142 

capturing and iris segmentation,2 the gaze angle of the off-angle iris image is calculated using a 143 

gaze estimation method.18 Simultaneously, the segmented off-angle iris image is normalized.19 144 

Both the gaze angle and the off-angle normalized iris image are sent as inputs to an Off-angle to 145 

Frontal iris converter. This converter resizes the (64 x 512) off-angle normalized iris images to 146 

(256 x 256) off-angle normalized iris images and outputs a (256 x 256) generated frontal iris image. 147 

This generated frontal iris image is encoded to create a (256 x 256) generated iris code. This 148 

generated iris code acts as the probe image and is compared with the frontal iris code database. 149 

The result of the comparison is a Hamming distance score, which is expected to be low for intra-150 

class cases and high for inter-class cases. 151 

The off-angle to frontal iris converter employs a Pix2Pix GAN model with additional Generator 152 

loss functions. The generator of this model is a U-net model,16 featuring an encoder and a decoder, 153 

with skip connections. There are 8 down-sampling instances in the encoder before reaching the 154 

bottleneck, followed by 7 up-sampling instances in the decoder. Each down-sampler has a 155 

Convolution, Batch Normalization, and a ReLU layer. Similarly, each up-sampler has a 156 

Transposed Convolution, Batch Normalization, and a Dropout layer. The discriminator is a patch-157 

based discriminator,16 which works at a patch level instead of an image level. 158 
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3.2 Conversion using Resized Iris Code Images 159 

This approach is identical to the Resized Normalized Iris approach, except that the iris codes are 160 

used directly for iris conversion instead of the normalized iris images. As shown in Fig. 3, the first 161 

branch of the model is the same as the first branch in the normalized approach. In the second 162 

branch, highlighted with orange color in Fig. 3, an additional step of converting the off-angle 163 

normalized iris images to iris code is performed before sending the images to the Iris Converter. 164 

The iris code images are resized to (256 x 256), in a similar fashion to the normalized approach. 165 

One possible advantage of resizing at the iris code level instead of the normalized iris level is that 166 

the iris code images, which originally have a shape of 384 x 512 are closer to the resized shape of 167 

(256 x 256) than the normalized images, which originally have a shape of (64 x 512). This could 168 

mean that there would be fewer stretched and contracted areas in this case. 169 

3.3 Conversion using Iris Code sub-blocks 170 

The iris codes generated by the Gabor filters consist of six different strips. The first three strips are 171 

referred to as real parts, while the last three strips are referred to as imaginary parts. Therefore, the 172 

resultant iris code image has a size of (384 x 512). In approach 3.2, we resized this iris code to a 173 

(256 x 256) iris code image. However, this resizing process could lead to stretching and contracting 174 

Fig. 4. Sample images (a) Off-angle image, (b) Original iris code (384 x 512), (c) Resized iris code (256 x 256). 

 

 

(a) (b) (c) 
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of certain iris code portions, resulting in inconsistencies along the edges of patterns inside the iris 175 

code and potential performance deterioration, as seen in Fig. 4. 176 

In the iris code sub-blocks approach, the primary objective is to prevent such stretching or 177 

contractions. Instead of sampling the normalized image as (64 x 512), the sampling is performed 178 

in a way that yields (64 x 256) normalized images. Gabor filters are then applied to these 179 

normalized images, resulting in 6 * (64 x 256) iris code images. From these six different iris code 180 

strips, four strips are selected combinatorically, resulting in 4 * (64 x 256) iris code images, as can 181 

be seen in Fig. 5. Since this is an exhaustive search, a total of (6
4
) combinations are explored to 182 

avoid a potential bias and provide us insights into the portions of the iris image that are the most 183 

informative and beneficial for the iris recognition task.  184 

This approach ensures the extraction of a (256 x 256) iris code image without any stretching or 185 

contractions. Similar strips are created for both off-angle and frontal iris code images. These (256 186 

x 256) iris code images are handled in the same manner as in approach 3.2.  187 

(a) 

(b) 

Fig. 5. Choosing sub-blocks of iris code: (a) Original iris code with six channels (384 X 256) (b) Iris code sub-

block with four channels (256 X 256). 
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3.4 Loss functions 188 

Iris images have low contrast and complicated textures, which are important to be identified in the 189 

iris recognition process. So, it is important to identify loss functions that can capture these two 190 

qualities of iris images.  So, we have added two more loss functions to the generator to incorporate 191 

these qualities. In addition to the two loss functions used by the original Pix2Pix GAN in (i) Binary 192 

Cross Entropy loss function (𝐿𝐶𝐺𝐴𝑁), and (ii) L1 loss (𝐿𝐿1), we use a combination of Structural 193 

Similarity Index (SSIM) and Matrix Multiplication loss functions. 194 

On one hand, the Binary Cross Entropy loss function forces the generator to make realistic images, 195 

and on the other hand, the loss function forces the discriminator to better distinguish the real 196 

images from the images generated by the generator. L1 loss is used only on the generator side to 197 

minimize the gap between the generated and the original images, by reducing the mean absolute 198 

difference between the pixels of the two images. 199 

These two loss functions can be expressed as follows: 200 

𝐿𝐶𝐺𝐴𝑁 = 𝐸𝑦[𝑙𝑜𝑔𝐷(𝑦)] + 𝐸𝑥,𝑧 [𝑙𝑜𝑔 ((1) − 𝐷(𝑥, 𝐺(𝑥, 𝑧)))] 201 

𝐿𝐿1 = 𝐸𝑥,𝑦,𝑧[|| 𝑦 − 𝐺(𝑥, 𝑧)||] 202 

where D is the discriminator, G is the generator, x is the input off-angle normalized iris image, y 203 

is the original real frontal normalized iris image, and z is random noise. 204 

The first of the two new loss functions introduced in this modified version of Pix2PixGAN is the 205 

Matrix Multiplication loss function. This loss function is calculated using the mean dot product of 206 

the generated and the original image pixel values. The pixel-wise interactions between the 207 

generated and the original images would penalize textural and structural changes between the 208 

(1) 

(2) 
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original and the generated image, thereby ensuring that the generated images are as close to the 209 

original images as possible.  210 

The Matrix Multiplication loss can be expressed as: 211 

𝐿𝑀𝑀 = 𝐸𝑥,𝑦,𝑧[𝑦 ∗ 𝐺(𝑥, 𝑧)] 212 

 where G is the generator, x is the input off-angle iris image, y is the original real frontal normalized 213 

iris image, z is random noise, and 𝐿𝑀𝑀 is the Matrix multiplication loss function. 214 

Structural Similarity Index (SSIM) loss function20 is the second loss function that we have added. 215 

SSIM loss function captures three aspects of the image such as luminance, contrast, and structure. 216 

Luminance captures the overall intensity of the image. Contrast identifies the changes in intensities 217 

amongst the different regions of the image. The unique spatial arrangement of different features in 218 

the iris image can be identified using Structure. The expressions for luminance, contrast, and 219 

structure are as follows: 220 

𝜇𝑥 =
1

𝑁
∑ 𝑥𝑖

𝑁

𝑖=1

 221 

𝜎𝑥 = (
1

𝑁 − 1
∑(𝑥𝑖 − μ𝑥)2

𝑁

𝑖=1

)

1
2

 222 

𝑠𝑥 =
(𝑥 − μ𝑥)

σ𝑥
 223 

where 𝜇𝑥 (luminance) is the mean value of all pixels, 𝜎𝑥 (contrast) is the standard deviation, and 224 

𝑠𝑥(structure) is the normalized version of intensity. 225 

(3) 

(4) 

(5) 

(6) 
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The formulae for the comparison of luminance, contrast, and structure for two different images are 226 

as follows: 227 

𝑙(𝑥, 𝑦) =
2μ𝑥μ𝑦 + 𝐶1

μ𝑥
2 + μ𝑦

2 + 𝐶1
 228 

𝑐(𝑥, 𝑦)  =  
2μ𝑥μ𝑦 + 𝐶2

μ𝑥
2 + μ𝑦

2 + 𝐶2
  229 

𝑠(𝑥, 𝑦) =
σ𝑥𝑦 + 𝐶3

σ𝑥σ𝑦 + 𝐶3
 230 

where 𝑙(𝑥, 𝑦), 𝑐(𝑥, 𝑦), and 𝑠(𝑥, 𝑦) are the comparative measures for luminance, contrast, and 231 

structure for the off-angle input iris image x and the expected real frontal iris image y. 𝐶1, 𝐶2, 𝐶3 232 

are the constants. 233 

The final expression for SSIM is given as follows: 234 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) = [𝑙(𝑥, 𝑦)]α. [𝑐(𝑥, 𝑦)]β. [𝑠(𝑥, 𝑦)]γ 235 

𝐿𝑆𝑆𝐼𝑀 =
(2μ𝑥μ𝑦 + 𝐶1)(2σ𝑥𝑦 + 𝐶2)

(μ𝑥
2 + μ𝑦

2 + 𝐶1)(σ𝑥
2 + σ𝑦

2 + 𝐶2)
 236 

where LSSIM is the SSIM loss function. 237 

Using (1), (2), (3), and (11), the final generator loss function for the conversion of off-angle iris 238 

images to their frontal versions is given as follows: 239 

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿𝐶𝐺𝐴𝑁 + λ. 𝐿𝐿1 + 𝐿𝑀𝑀 + 𝐿𝑆𝑆𝐼𝑀 240 

where λ is the regularization parameter and is set at 100, which yielded images with higher visual 241 

quality. The authors in the original Pix2Pix GAN paper have also stated that 100 as a regularization 242 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 
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parameter provides a good balance between reconstruction fidelity and avoid overfitting, resulting 243 

in minimal blurring and visual artifacts.16 244 

4 Experiments and Results 245 

For our experiments, two IDS-UI-3240ML-NIR cameras have been used to capture off-angle and 246 

frontal iris images at the same time as shown in Fig. 6. The frontal iris images are captured using 247 

a fixed camera, in front of the subject. The off-angle iris images are captured using a moving 248 

camera, which moves horizontally from -50° to +50° around the subject. The frontal camera is 82 249 

cm away from the eye and the off-angle camera is rotated at 48 cm away. Navigator Zoom 7000 250 

lenses have been used for both cameras, with the focal length of the stationary camera set at 108 251 

mm, while that of the moving camera is set at 40 mm. A 780 nm M780L3-C1 Collimated high-252 

power LED light source is used as the illuminator, and a 720 nm high-pass infrared filter is used 253 

to improve the image quality. Navigator Zoom 7000 lens is a manual lens that can be fixed to the 254 

focal length at 18-108mm range. Moving camera makes horizontal movement from 50o in angle 255 

to -50o in angle. The base of the moving camera is mounted on a rotary table controlled by a step 256 

(a) (b) 

Fig. 6. (a) Experimental setup of off-angle image capturing (b) Illustration of the movement of the camera. 
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motor. Before starting the data capture, the off-angle camera is moved to +50o in angle position 257 

and frontal camera is always at 0o in angle position. After the subject put his head into the chin 258 

rest, the chin rest is moved into left-right and front-back to make sure the left eye is at the center 259 

of the rotation. Therefore, both cameras are focused on the eye and their depth of focus is sufficient 260 

to maintain well focused images while moving the off-angle camera from 50o in angle to -50o in 261 

angle. The captured images are shown on a monitor to ensure image sharpness during the data 262 

capture. The iris images from the left eye are captured first and the process is repeated for the right 263 

eye. The moving camera captures 10 images at 10° increments, which would account for a total of 264 

110 off-angle iris images for the 11 different angles ranging from -50° to +50°. The head is 265 

stabilized using a chin rest, to ensure that the axes of the subject and the eye align. The dataset 266 

consists of 24360 iris images from 100 subjects, out of which 64 are male and the rest are female 267 

where the average age is 26.  268 

In our experiment, we only included the iris images from the left eye captured at gaze angles 269 

greater than 30 degrees from the moving camera to study the effects of frontal projection at extreme 270 

angles. This accounted for 6391 images, with 913 images for each of +30°, +40°, +50°, 0°, -30°, -271 

40°, and -50° gaze angles. We created five different cross-folds on the subject level using a split 272 

of 80%-20% train-test split on the dataset. Therefore, we guarantee that training and testing images 273 

come from different subjects, and every image in the dataset is tested once. We present the results 274 

for only left eye due to the availability of the ground-truth segmentation. The models were 275 

evaluated on a MacBook Air equipped with 8GB of RAM, and an Apple M1 chip processor. The 276 

average processing time for converting an off-angle image to its frontal counterpart was recorded 277 

at 0.0945 seconds. 278 
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Hamming distance scores are used for comparison between the iris codes as a performance metric. 279 

For iris images belonging to the same subject, the hamming distance scores are expected to be 280 

lower than the hamming distance scores of iris images belonging to two different subjects. We 281 

have set the baseline as the hamming distance scores between original off-angle and frontal iris 282 

images. Each conversion approach generates different sets of converted frontal iris images, whose 283 

hamming distance scores are then compared with the baseline model. The corresponding Receiver 284 

Operating Curves (ROC) and the Area Under Curves (AUC) are compared as well to determine 285 

the efficiency of the approach. The formula for Hamming distances is as follows: 286 

𝐻𝐷 =
||(𝑐𝐴 ⊕ 𝑐𝐵) ∩ (𝑚𝐴 ∩ 𝑚𝐵)||

||𝑚𝐴 ∩ 𝑚𝐵||
 287 

ROC curves were drawn with a minimum threshold of 0.35 and a maximum threshold of 0.6. We 288 

arrived at these values after evaluating the range of Hamming Distance scores obtained for both 289 

the off-angle iris images. An increment of 0.00001 was used at each point in the ROC curve to 290 

toggle the threshold value. This is used to evaluate the number of true positives and false positives. 291 

Any Hamming Distance comparison value falling below the threshold at each point for the same 292 

subject is considered as a True Positive and any point falling below the threshold for different 293 

subjects is considered as a False Positive. Similarly, any point falling above the threshold for the 294 

same subjects is considered as False Negative, and any point falling above the threshold for 295 

different subjects is considered as True Negative. True Positive Rate (TPR) and False Positive 296 

Rate (FPR) are computed using the following formulae: 297 

            True Positive Rate = True Positives / (True Positives + False Negatives) 298 

            False Positive Rate = False Positives / (False Positives + True Negatives) 299 

(13) 

(14) 

(15) 
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ROC is then constructed by changing the Hamming Distance threshold values and calculating the 300 

corresponding TPR and FPR. The AUC values are then computed using the trapezoidal rule,23 301 

which is a numerical integration tool used to approximate the area under a curve. The baseline 302 

ROCs for the positive and negative gaze angles for the left iris images are presented in Fig. 7. As 303 

can be observed, the performance of both the positive and negative extreme gaze angles such as 304 

40° and 50° deteriorate when compared to the lower angles. Another thing to take notice of is the 305 

much lower performance of the positive gaze angles when compared to the negative gaze angles. 306 

This performance deterioration has to do with the difference in the visual and geometric axes of 307 

the eye. There is an 8° angle between the camera and the eye. As a result, the +50° gaze angle 308 

becomes more like a +58° gaze angle image, making this the most severe of all the gaze angles. 309 

Angle Kappa which is the difference between the pupillary and visual axis of an eye is estimated 310 

to be about 8° in angle, which does make the -40° gaze angle images closer to -32° gaze angle 311 

images and the -50° images closer to the -42° gaze angle images.24 This also means that the positive 312 

angles of +40° degree and +50° degree gaze become closer to +48° degree and +58° degrees.  313 

(a) (b) 
Fig. 7. Baseline ROC curves for all the subjects in (a) Negative gaze angles (b) Positive gaze angles. 
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4.1 Experiments for Conversion using Resized Normalized Iris Images 314 

The first approach utilizes resized normalized iris images for frontal iris projection. To 315 

demonstrate this approach, we use the frontal and off-angle left eye images in Fig. 8 (a, b). After 316 

segmentation of the iris region, we used elliptical unwrapping to normalize these images. The 317 

images are then resized to (256 x 256) since the Pix2Pix GAN model requires an input size of (256 318 

x 256). The corresponding normalized images for off-angle, frontal, and generated frontal iris 319 

using the modified Pix2ix GAN are displayed in Fig. 8 (c, d, e). The darker structures in each 320 

image are the eyelids. Even to the naked eye, the texture, and the structural formations of the 321 

normalized iris images in Fig. 8 (c) and Fig. 8 (d) are much different from one another as opposed 322 

to the texture and the structural formations of the normalized iris images in Fig. 8 (c) and Fig. 8 323 

(e). This shows the effect of using the normalized approach visually. When we compare the test 324 

subject with 19 other subjects for inter-class evaluations, we noticed in Fig. 9 (a, b) that the overlap 325 

between intra-class and inter-class hamming distance plots decreases using the proposed approach, 326 

when compared to the overlap between intra-class and inter-class hamming distance plots in the 327 

original off-angle iris images. Also, their corresponding ROC curves (see Fig. 9 (c)) indicate the 328 

improved performance of the proposed model. 329 

(a) (b) (c) (d) (e) 
Fig. 8. A test subject’s (-40° gaze angle) (a) Frontal iris image (b) Off-angle iris images (c) Resized frontal 

normalized iris images (d) Resized off-angle normalized iris image (e) Generated normalized iris image. 
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To evaluate how well the proposed model with its loss functions works as opposed to models with 330 

other loss functions, several combinations of Wasserstein loss,21 SSIM loss,20 L1 loss, and Matrix 331 

Multiplication loss functions are used. For this experiment, the off-angle iris images at -50° gaze 332 

angles are used, where 85% of the images are used for training, and the rest are used for testing. 333 

The first combination of loss functions included L1 loss, SSIM loss, and Wasserstein loss function 334 

applied at the pixel level. The second loss function included L1 loss, SSIM loss, and Wasserstein 335 

loss function without the mean. The third loss function only had the L1 loss. The fourth loss 336 

function included L1 loss, SSIM loss, and Matrix Multiplication loss function. Fig. 10 illustrates 337 

(a) (b) 

(c) 

Fig. 9. Distributions of hamming distance scores for: (a) the frontal vs. off-angle iris images (-50° in angle) (b) 

the frontal vs. generated frontal images for the test subject (c) Performance analysis using ROC plots images at 

-50° in angle vs. generated frontal images for the test subjects. 
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that the fourth loss function, employing the Matrix Multiplication loss, demonstrated superior 338 

performance compared to the other loss functions, suggesting it is the most effective among them. 339 

However, the improvement in iris recognition performance using the proposed approach is not 340 

consistent. As can be seen in Fig. 11, this model improved performance at only the negative angles, 341 

-40° and -50°, while not being able to manage the same at positive angles +40° and +50°. The 342 

Area Under Curve (AUC) has improved from 0.989 to 0.994 for -40° gaze angle images, while the 343 

AUC improved from 0.907 to 0.959 for -50° gaze angle images. The Equal Error Rate for -40° 344 

gaze angle images remained at 0.002, while it improved from 0.014 to 0.008 for -50° gaze angle 345 

images. The images at -30° and +30° gaze angles already had perfect ROC curves, leaving little 346 

room for improvement. This reiterates the need for more investigation of gaze angles beyond 30°. 347 

More specifically, out of the 100 subjects, for -50° gaze angle images, the performance deteriorated 348 

for two subjects due to the excessive presence of limbus, and occlusion of the iris view, because 349 

of the extremity of the angle. The performance improved for three other subjects. For -40° gaze 350 

angle images, the performance improved for two subjects which had high contrast iris structures 351 

and deteriorated for one subject with low contrast iris structure. For +40° gaze angle images, 11 352 

Fig. 10. Performance analysis using ROC plots for off-angle images at -50° in angle for different loss 

functions. 

 



21 

out of the 100 subjects yielded better performance, whereas another 11 subjects showed a lower 353 

performance than the baseline. These images suffered from low contrast iris structures, 3D 354 

structure of the iris, and an uneven limbus. In addition to the corneal refraction, limbus occlusion, 355 

eyelids, and low contrast images, some subjects’ noses occluded the iris images at +50° gaze angle. 356 

A total of 14 subjects has some portion of their iris occluded by their nose at +50° gaze angle. 357 

These results indicate that a more complicated approach than simply using the normalized is 358 

required in this case.  359 

(a) 

Fig. 11. Performance analysis of all subjects using ROC plots for off-angle images at (a) -40° (b) -50° (c) +40° 

(d) +50° in angle using resized normalized iris images.  

 

(d) (c) 

   

(b) 
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4.2 Experiments for Conversion using Resized Iris Codes 360 

The second approach for frontal iris projection utilizes the resized iris code images. In this 361 

approach, the (384 x 512) iris code images are resized into (256 x 256) to fit the Pix2Pix GAN 362 

network. To demonstrate the effect of this model, we use a test subject as shown in Fig. 12 (a, b). 363 

Here, Fig. 12 (c) shows the iris code for the frontal iris image, Fig. 12 (d) shows the iris code for 364 

the off-angle iris image, Fig. 12 (e) shows the frontal iris code generated by the Pix2Pix GAN  365 

(a) (b) 

(c) (d) (e) 

(f) (g) 

Fig. 12. A test subject’s: (a) Frontal eye image (b) Off-angle iris image, Iris codes of (c) frontal, (d) off-angle, 

(e) generated images. XOR comparison of (f) frontal and off-angle iris codes and (g) frontal and generated iris 

codes. Note that, red pixels are for different bits (misses), white for same bits (hits), and gray for the mask. 
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model. Masks are applied in each iris image to discount the pixels covered by the eyelids. Fig. 12 366 

(f) depicts the XOR result of Fig. 12 (c) and Fig. 12 (d), with the white pixels representing hits and 367 

red pixels representing misses. Fig. 12 (g) depicts the XOR result of Fig. 12 (c) and Fig. 12 (e) in 368 

a similar manner as above. The image in Fig. 12 (g) has more white pixels than the image in Fig. 369 

12 (f). Also, there are a total of 41762 hits in the case of Fig. 12 (f), as opposed to a total of 46042 370 

hits in the case of Fig. 12 (g), which shows the improved performance of the proposed model over 371 

the baseline, which compares the off-angle iris images with their frontal versions (40-degree).  372 

Unlike the previous model, this model exceeded baseline performance at positive gaze angles, as 373 

can be seen in Fig. 13. More specifically, the AUC increases from 0.999 to 0.9993 for +30° gaze 374 

angle images, from 0.9989 to 0.9995 for +40° gaze angle images, and from 0.9822 to 0.9898 for 375 

+50° gaze angle images. Similarly, the (Equal Error Rate) EER, which is the point where the FPR 376 

and False Negative Rate (FNR) are the same, also improves from 0.0075 to 0.0059 for +30° gaze 377 

angle images, from 0.0115 to 0.0055 for +40° gaze angle images, and from 0.0539 to 0.0432 for 378 

+50° gaze angle images. FNR can be defined as 1 – TPR. However, this method was only able to 379 

retain the performance at all the negative angles. For -30° and -50° gaze angle images, the AUC 380 

Fig. 13. (a) Performance of all subjects using ROC plots for off-angle images at +40° in angle. (b) Performance 

of all subjects using ROC plots for off-angle images at +50° in angle using Resized Iris code images. 

(b) (a) 
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slightly decreased from 1 to 0.9997, and 0.9975 to 0.9972 respectively, but the model showcased 381 

improved AUC for -40° gaze angle images from 0.9998 to 0.9999. The results demonstrated that 382 

using iris codes for conversion would turn out to be a more reliable option than using normalized 383 

iris images for conversion. 384 

4.3 Experiments for Conversion using Iris Code sub-blocks 385 

Instead of resizing the iris codes to (256 x 256) images, this approach uses four of the six iris code 386 

strips. In this process, the normalized iris images obtained are sampled as (64 x 256) images, 387 

instead of (64 x 512) images. Using the six Gabor filters, six iris codes are then extracted. Using 388 

four of those six iris codes would result in (256 x 256) iris code images. Three of the six Gabor 389 

filters are labeled as real filters and the remaining three are labeled as imaginary filters. Each iris 390 

code strip obtained is labeled based on their order and the real/imaginary filter used to extract it, 391 

as shown in Fig. 14. The 1R, 2R, and 3R represent the three real iris code strips, and 1I, 2I, and 3I 392 

represent the three imaginary iris code strips.  393 

To demonstrate the effect of this model, we use the test subject in Fig. 15 (a, b) and Fig. 16 (a, b). 394 

Fig. 15 has the test subject at +50° gaze angle and Fig. 16 has the same test subject at +40° gaze 395 

1R 

2R 

3R 

1I 

2I 

3I 

Fig. 14. An iris code with the different iris code strips description. 
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angle. Four iris strips corresponding to one real (1R) and three imaginary (1I, 2I, 3I) iris strips 396 

have been used for this part. Fig. 15 (c, d, e) and Fig. 16 (c, d, e) show the four-strip iris codes 397 

corresponding to the frontal image, off-angle image, and the generated frontal image. Fig. 15 (f) 398 

and Fig. 16 (f) shows the result of the comparison of frontal and off-angle iris images in Fig. 15 399 

(c, d) and Fig. 16 (c, d), and Fig. 15 (g), Fig. 16 (g) show the result of the comparison of frontal 400 

(a) (b) 

(c) (d) (e) 

(f) (g) 

Fig. 15. Sample (a) frontal eye image (b) +50° off-angle iris image, Four Strip Iris codes of (c) frontal, (d) off-

angle, (e) generated images. XOR comparison of (f) frontal and off-angle iris codes and (g) frontal and generated 

iris codes. Note that, red pixels are for different bits (misses), white for same bits (hits), and gray for the mask. 
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and generated frontal iris images in Fig. 15 (c, e) and Fig. 16 (c, e).  The black portions in Fig. 15 401 

(f, g) and Fig. 16 (f, g) are the masked portions due to the presence of eyelids. Even to the naked 402 

eye, Fig. 15 (g) and Fig. 16 (g) show better results than Fig. 15 (f) and Fig. 16 (f) as it has more of 403 

the whiter portion(hits) than the red portion(misses). Numerically, Fig. 15 (f) has 39667 hits, as 404 

opposed to 45249 hits for Fig. 15 (g), and Fig. 16 (f) has 41762 hits, as opposed to 46042 for Fig.  405 

(a) (b) 

(c) (d) (e) 

(f) 

Fig. 16. Sample (a) frontal eye image (b) +40° off-angle iris image, Four Strip Iris codes of (c) frontal, (d) off-

angle, (e) generated images. XOR comparison of (f) frontal and off-angle iris codes and (g) frontal and generated 

iris codes. Note that, red pixels are for different bits (misses), white for same bits (hits), and gray for the mask.  

(g) 
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Table 1: Area Under Curve for different gaze angles and four strip iris codes. (Yellow highlights indicate the 406 
improvement compared to baseline, and the red text indicates sequences with at least four cases of improvements.) 407 

16 (g). These numbers indicate that the generated iris images are much closer to the original frontal 408 

iris image than the off-angle iris images. Picking four out of six iris codes would result in a total 409 

of (6
4
) combinations, which would result in 15 different models for each of the six angles (+50°, 410 

+40°, +30°, -50°, -40°, and -30°). 411 

Out of the total (15 x 6) = 110 combinations, a few combinations have exceeded the baseline 412 

performance. The baseline in this experiment refers to the iris recognition performance using the 413 

original (384 x 256) iris code strips, which have six iris code strips generated by the six Gabor 414 

filters.2 The original off-angle performance for +50°, +40°, +30°, -50°, -40°, and -30° is 0.995799, 415 

0.999649, 0.999599, 0.999482, 0.999939 and 0.999981 respectively. 416 

Their corresponding EERs are 0.026293, 0.004094, 0.003566, 0.009639, 0.002509, and 0.001455, 417 

respectively. When compared to these baseline values, several four-strip combinations as 418 

highlighted in yellow in Table 1 showed better performance. Most cases of improvement are found 419 

 

Sequence 

-30° 

AUC 

-40° 

AUC 

-50° 

AUC 

+30° 

AUC 

+40° 

AUC 

+50° 

AUC 

1R2R1I2I 0.999969 0.999924 0.999557 0.999419 0.999839 0.994588 

1R2R1I3I 0.999996 0.999976 0.999528 0.999655 0.999928 0.994138 

1R2R2I3I 0.999955 0.999956 0.999266 0.999226 0.999809 0.992606 

1R2R3R1I 0.999999 0.999998 0.999749 0.999849 0.999933 0.998619 

1R2R3R2I 0.999990 0.999982 0.999728 0.999557 0.999941 0.997626 

1R2R3R3I 0.999991 0.999992 0.999779 0.999566 0.999947 0.997361 

1R3R1I2I 0.999972 0.999763 0.999503 0.999483 0.999941 0.996783 

1R3R1I3I 0.999978 0.999956 0.999647 0.999803 0.999919 0.994523 

1R3R2I3I 0.999834 0.999819 0.999219 0.999386 0.999714 0.997460 

2R1I2I3I 0.999840 0.999584 0.998907 0.999391 0.999799 0.997250 

2R3R1I2I 0.999983 0.999974 0.999761 0.999687 0.999968 0.997692 

2R3R1I3I 0.999961 0.999862 0.999676 0.999603 0.813719 0.830316 

2R3R2I3I 0.843166 0.887403 0.884059 0.908284 0.85933 0.902404 

3R1I2I3I 0.794915 0.821343 0.818947 0.869981 0.815817 0.793587 
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in the angle +40°, and the least cases of improvement are found in the angle -30°. The combinations 420 

highlighted in red have shown improvement in at least four out of the six gaze angles considered. 421 

The combination 1R2R3R1I, which is the set of the first four consecutive iris strips have shown 422 

improvement across all the gaze angles. When the three real iris strips are used in any combination, 423 

Fig. 17. Performance of all subjects for different 4-strip iris code combinations for angles: (a) -30°, (b) -40°, (c)        

-50°, (d) +30°, (e) +40°, (f) +50°. 

 

(a) (b)

(c) (d) 

(e) (f) 
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they have shown an improvement in five out of the six gaze angles. Of the six iris strip 424 

combinations that are highlighted in red, four of them have at least three consecutive iris strips. 425 

This is an indication that using the real part of the iris code strips, and using three or more 426 

consecutive iris strips can lead to better overall improvement. Conversely, similar improvements 427 

are not observed with combinations involving the imaginary components of the iris strips. 428 

Fig. 17 shows how the baseline performance varies with the gaze angle for each of the best six 429 

combinations from Table 1. For a -30° gaze angle, the original ROC curve is very close to the top 430 

left corner. Therefore, only four out of the six best combinations could show an improved ROC 431 

curve, more specifically, 1R2R1I3I, 1R2R3R1I, 1R2R3R2I, and 1R2R3R3I. The same is the case 432 

with +30°, where the combinations 1R2R1I3I, 1R2R3R1I, 1R2R1I3I, and 2R3R1I2I show 433 

improvement over the original. A clearer distinction can be found between the ROCs for the 434 

original and the generated iris codes for the extreme angles such as -40°, -50°, +40° and +50°. This  435 

shows that using this approach could pave the way for improved iris recognition at more extreme 436 

gaze angles.  437 

5. Conclusion 438 

This study aims to enhance off-angle iris recognition by projecting off-angle iris images to frontal 439 

iris images, improving the distinction between intra-class and inter-class Hamming distance scores 440 

for better recognition accuracy. Three different approaches utilizing a Pix2Pix GAN network with 441 

various loss functions were proposed. The first two approaches used resized normalized and 442 

resized iris code images. The model using resized normalized images showed improvements only 443 

with the extremely negative gaze angles, while the model using resized iris code images showed 444 

improvements only with the extremely positive gaze angles.  445 
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The third approach using subsampled four iris code images showed improvements across both the 446 

positive and the negative extreme gaze angles consistently. This approach can be further improved 447 

by selectively incorporating useful information from the skipped iris code portions. The drawback 448 

of utilizing four Iris Code strips instead of the six strips for iris recognition is the potential loss of 449 

valuable information. To address this and ensure the retention of information from all six strips of 450 

the iris code, a combination of two sub-blocks of iris code can be employed.  451 

The first iris code strip can be denoted as the primary block, and the second iris code strip can be 452 

referred to as the secondary block. The primary block can be utilized in its entirety. The two 453 

missing strips from the primary block can be acquired from the secondary block and seamlessly 454 

integrated into their respective positions within the primary block. The resulting structure is a high-455 

quality 6 * (64 x 256) iris code image that preserves all the iris information. Instead of choosing 456 

the secondary iris block at random for the two missing strips, a threshold-based system can be 457 

employed, where the resultant value of the best pixel at a point is based on the count of all the 458 

secondary pixels at that point. If the number of zero-value pixels of all the two-missing secondary 459 

iris strips for a point is greater than a threshold, the resultant value of the pixel at that point will be 460 

a zero. Similarly, if the number of one-value pixels of all the two-missing secondary iris strips for 461 

a point is greater than a threshold, the resultant value of the pixel at that point would be a one. 462 

However, if neither of the counts pass the threshold, the value of the resultant pixel would be a 463 

zero. An additional mask can be added to ensure that this conversion transitions smoothly.  464 

While a separate CNN model was used to identify the gaze angle in this model for convenience, 465 

automating the process of gaze angle identification would significantly reduce the number of 466 

training models. Instead of a regular Pix2Pix GAN model, a Conditional Pix2Pix GAN model 467 
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which can take as input the gaze angle along with the pair of images would help make it a reality. 468 

This can be done by concatenating the angle information along with the image features in the first 469 

layer of the Pix2Pix GAN model. Now, the generator will take both the angle and off-angle image 470 

as the input. The discriminator can also be trained to ensure that the generated images are realistic 471 

for a given angle. Findings also highlight the significance of diverse loss functions capturing iris 472 

textural characteristics and indicate that using real parts of iris code images makes for a better iris 473 

recognition model. 474 
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loss functions. 579 

Fig. 11. Performance analysis of all subjects using ROC plots for off-angle images at (a) -40° (b) 580 

-50° (c) +40° (d) +50° in angle using Resized Normalized iris images.  581 

Fig. 12. A test subject’s: (a) Frontal eye image (b) Off-angle iris image, Iris codes of (c) frontal, 582 

(d) off-angle, (e) generated images. XOR comparison of (f) frontal and off-angle iris codes and (g) 583 

frontal and generated iris codes. Note that, red pixels are for different bits (misses), white for same 584 

bits (hits), and gray for the mask. 585 

Fig. 13. (a) Baseline Performance analysis using ROC plots for off-angle images at different 586 

positive in angles. (b) Performance of all subjects using ROC plots for off-angle images at +40° 587 

in angle. (c) Performance of all subjects using ROC plots for off-angle images at +50° in angle 588 

using Resized Iris code images. 589 

Fig. 14. An iris code with the different iris code strips description. 590 

Fig. 15. A test subjects’ (+50° gaze angle) (a) Frontal eye image (b) Off-angle iris image, Four 591 

Strip Iris codes of (c) frontal, (d) off-angle, (e) generated images. XOR comparison of (f) frontal 592 
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and off-angle iris codes and (g) frontal and generated iris codes. Note that, red pixels are for 593 

different bits (misses), white for same bits (hits), and gray for the mask. 594 

Fig. 16. A test subjects’ (+40° gaze angle)  (a) Frontal eye image (b) Off-angle iris image, Four 595 

Strip Iris codes of (c) frontal, (d) off-angle, (e) generated images. XOR comparison of (f) frontal 596 

and off-angle iris codes and (g) frontal and generated iris codes. Note that, red pixels are for 597 

different bits (misses), white for same bits (hits), and gray for the mask.  598 

Fig. 17. Performance of all subjects for different 4-strip iris code combinations for angles: (a) -599 

30°, (b) -40°, (c) -50°, (d) +30°, (e) +40°, (f) +50°. 600 

 601 

 602 

Table 1 Area Under Curve for different gaze angles and four strip iris codes. (Yellow 603 

highlighted cells indicate improvement over baseline, and the red text indicates sequences with at 604 

least four cases of improvement over the baseline) 605 

 606 


