

RESEARCH ARTICLE | OCTOBER 28 2024

Scalable fabrication of vertically arranged Bi_2Se_3 crossbar arrays for memristive device applications

Special Collection: **Papers from the 67th International Conference on Electron, Ion and Photon Beam Technology and Nanofabrication (EIPBN 2024)**

Seung jun Ki ; Shiwoo Lee ; Mingze Chen ; Xiaogan Liang

 Check for updates

J. Vac. Sci. Technol. B 42, 063203 (2024)

<https://doi.org/10.1116/6.0004022>

 CHORUS

 View
Online

 Export
Citation

Articles You May Be Interested In

Simulation and benchmarking of crossbar parasitic resistance models: Accuracy and performance comparison
APL Mach. Learn. (June 2025)

Schottky diode with excellent performance for large integration density of crossbar resistive memory
Appl. Phys. Lett. (May 2012)

Addressing crosstalk in crossbar memory arrays with a resistive switching ZnO homojunction diode
J. Appl. Phys. (May 2021)

Instruments for Advanced Science

- Knowledge
- Experience
- Expertise

[Click to view our product catalogue](#)

Contact Hiden Analytical for further details:

✉ www.HidenAnalytical.com
✉ info@hiden.co.uk

Gas Analysis

- dynamic measurement of reaction gas streams
- catalysts and thermal analysis
- molecular beam studies
- dissolved species probes

Surface Science

- UHV-TPD
- SIMS
- end point detection in ion beam etch
- elemental Imaging - surface mapping

Plasma Diagnostics

- plasma source characterization
- etch and deposition process reaction kinetic studies
- analysis of neutral and radical species

Vacuum Analysis

- partial pressure measurement and control of process gases
- reactive sputter process control
- vacuum diagnostics
- vacuum coating process monitoring

Scalable fabrication of vertically arranged Bi_2Se_3 crossbar arrays for memristive device applications

Cite as: *J. Vac. Sci. Technol. B* **42**, 063203 (2024); doi: 10.1116/6.0004022

Submitted: 29 August 2024 · Accepted: 9 October 2024 ·

Published Online: 28 October 2024

View Online

Export Citation

CrossMark

Seung jun Ki, Shiwoo Lee, Mingze Chen, and Xiaogan Liang^a

AFFILIATIONS

Department of Mechanical Engineering, University of Michigan, Ann Arbor 48109, Michigan

Note: This paper is part of the Special Topic Collection: Papers from the 67th International Conference on Electron, Ion and Photon Beam Technology and Nanofabrication (EIPBN 2024).

^aElectronic mail: xiaoganl@umich.edu

ABSTRACT

Despite the unique advantages of the memristive switching devices based on two-dimensional (2D) transition metal dichalcogenides, scalable growth technologies of such 2D materials and wafer-level fabrication remain challenging. In this work, we present the gold-assisted large-area physical vapor deposition (PVD) growth of Bi_2Se_3 features for the scalable fabrication of 2D-material-based crossbar arrays of memristor devices. This work indicates that gold layers, prepatterned by photolithography processes, can catalyze PVD growth of few-layer Bi_2Se_3 with 100-folds larger crystal grain size in comparison with that grown on bare Si/SiO_2 substrates. We also present a fluid-guided growth strategy to improve growth selectivity of Bi_2Se_3 on Au layers. Through the experimental and computational analyses, we identify two key processing parameters, i.e., the distance between Bi_2Se_3 powder and the target substrate and the distance between the leading edges of the substrate and the substrate holder with a hollow interior, which plays a critical role in realizing large-scale growth. By optimizing these growth parameters, we have successfully demonstrated cm-scale highly-selective Bi_2Se_3 growth on crossbar-arrayed structures with an in-lab yield of 86%. The whole process is etch- and plasma-free, substantially minimizing the damage to the crystal structure and also preventing the formation of rough 2D-material surfaces. Furthermore, we also preliminarily demonstrated memristive devices, which exhibit reproducible resistance switching characteristics (over 50 cycles) and a retention time of up to 10^6 s. This work provides a useful guideline for the scalable fabrication of vertically arranged crossbar arrays of 2D-material-based memristive devices, which is critical to the implementation of such devices for practical neuromorphic applications.

Published under an exclusive license by the AVS. <https://doi.org/10.1116/6.0004022>

I. INTRODUCTION

Two-dimensional (2D) materials have been extensively studied for revolutionizing numerous electronic devices, including thin-film transistors,^{1–3} photovoltaic^{4,5} and optoelectronic devices,^{6–8} and spintronics.^{9,10} Recently, memristive switching devices based on 2D-layered transition metal dichalcogenides (TMDCs) such as MoS_2 have been reported.^{11–14} These 2D-materials-based memristive devices exhibit unique characteristics such as low power consumption, effective tunability through electrostatic gates, and fast-switching rate attributed to their atomically thin structures.^{15,16} In addition to TMDC-based materials such as MoS_2 , other layered materials such as Bi_2Se_3 have also been investigated for making new resistive switching devices.^{17–19} For example, Chen *et al.* recently reported laterally arranged Bi_2Se_3 memristors for neuromorphic processing of the temporal information carried by analog sensory

signals.²⁰ Yin *et al.* also reported a resistance switching behavior of 2D topological Bi_2Se_3 nanosheets, fabricated by the damageless oxygen plasma injection method.¹⁹ These 2D-material-based memristive devices have exhibited several important advantages in comparison with oxide-based memristors, including the lower threshold field for initiating state changes, significantly improved level of interconnectivity among multiple devices, and higher biological similarity for emulating real neuron functions.

Despite the explosive growth of the studies on 2D-layered material-based memristors, the scalable synthesis of uniform 2D materials over large areas for making arrays of vertically arranged memristors is an unresolved challenge. On the contrary, the memristor families based on transition metal oxides (TMOs) such as TiO_x , TaO_x , WO_x , and HfO_x have been extensively studied and some researchers have reported the memristors fabricated and

16 September 2025 22:04:10

integrated into commercially viable circuit-level architectures.^{21–25} In conventional oxide-based memristor fabrication processes, oxide-based insulating layers are deposited over the entire exterior surface of the substrate with prepatterned bottom electrodes using sputtering or thermal oxidation techniques, which are suitable for wafer-scale growths.^{26,27} To realize such scalable wafer-scale fabrication of layered materials, vapor-based growth methods have been reported to successfully synthesize various 2D materials.^{28–30} However, most 2D-material growth techniques generate isolated few-layer crystal grains or cluster islands across the cm-scale substrate surface, resulting in shorted nodes in the crossbar arrays over cm-scale areas. Additionally, the sample quality resulted from these growth methods is extremely sensitive to a series of processing parameters such as powder/vapor types, gas flow rates, types of substrate materials, substrate positions, growth temperatures, and processing time, resulting in significant variations in the qualities of 2D materials among the samples from different growth batches. Thus, additional research are needed to explore new 2D-material-based fabrication schemes and especially realize scalable fabrication of the vertically stacked device structures. A few works have been reported toward addressing this challenge. For example, Ahn *et al.* reported an atomic layer deposition (ALD) method to enable area-selective deposition of MoS₂, and Huang *et al.* demonstrated CVD-based selective growth of Sb₂Te₃ features.^{31,32} In these works, however, strong chemical solutions are needed to completely eliminate the required seeding features after the growth process, which can damage as-grown layered materials.

In this work, we present a gold-assisted large-area physical vapor deposition (PVD) growth of the Bi₂Se₃-based crossbar arrays for the scalable etch-, chemical-, and plasma-free fabrication of 2D-material-based memristors. We also integrate the PVD process with COMSOL-based computational fluidic dynamics (CFD) analysis to investigate the changes in gas flows under various experimental and processing conditions. Such simulation results, along with the experimental results, allow us to examine the correlation between the resultant Bi₂Se₃ thickness distribution and the substrate placement configuration, as well as other critical processing parameters, leading to the optimization of the growth conditions essential to achieve a cm-scale 10 s nm thick few-layer Bi₂Se₃ features selectively grown on Au surfaces.

II. EXPERIMENTS

A. Photolithography for patterning the Au electrodes

A polydimethylglutarimide lift-off resist (PMGI SF 6) is spin-coated on a 500/3 μ m thick Si/SiO₂ substrate using a CEE Apogee tool at 2000 rpm. After 190 °C baking for 300 s, the substrate is spin-coated with another 0.97 μ m thick SPR 955 photoresist (PR) using a TEL Mark Vz Coater. The PR-coated substrate is exposed to UV light using a stepper (GCA Autostep). After the developing process, Ti/Au (10/100 nm) metal layers are deposited using an Enerjet Evaporator. The metal-deposited substrate is subsequently immersed into a Remover PG tool for performing the metal lift-off process.

B. PVD of Bi₂Se₃

Au-patterned substrate (1 \times 2 cm² size) is loaded into a quartz tube furnace (25 mm OD \times 20.5 mm ID \times 600 mm L) for Bi₂Se₃

deposition through the PVD process. First, Bi₂Se₃ powder (Bi₂Se₃, 99.995%, Sigma-Aldrich) is loaded to the inlet area of a crucible boat (AdValue Technology) and the crucible boat is located at the center of the quartz tube. The target substrate is placed on an alumina crucible (50 \times 12 \times 10 mm³), which is located downstream toward the open-end of the tube. Afterward, the PVD tube is pumped to a pressure below 160 mTorr, and the carrier gas (99.999% argon from cryogenic gases) continuously flows through the PVD tube with a flow rate of 100 SCCM. The outlet absolute pressure is maintained at 2.2 Torr (~293 Pa). After deposition over a 15 min course at 500 °C, the furnace is opened to let the tube cool down to the ambient temperature of 25 °C.

C. COMSOL simulation setup

For the purpose of simplification, simulation only focuses on computational fluid dynamics (CFD), temporarily neglecting the thermal effects involved in the growth process. The modeled geometry includes the quartz tube, the alumina crucible holders for loading Bi₂Se₃ powder, and the target substrate. For both crucibles, the wall thickness is 2.5 mm. The argon gas flow inside the quartz tube is assumed to be laminar (Reynolds number: <100), with a boundary condition, which neglects the viscous effects in the boundary layer and only focuses on the distribution of free-stream flow velocity on the substrate. The inlet flow rate is set to 100 SCCM and the outlet absolute pressure is maintained at 2.2 Torr (~293 Pa), which are consistent with our experimental parameters. The argon gas temperature is set at 500 °C, with a density of 0.0018 kg/m³, and a dynamic viscosity of 4×10^{-6} Pa s, which is derived from ideal gas law and kinetic theory of gases. Here, the argon gas is assumed as an ideal gas due to its relatively high temperature and low pressure. Multiple parametric sweeps are conducted for simulating the growth cases with various positions of the Bi₂Se₃ sample and the target substrate holder.

III. RESULTS AND DISCUSSION

Figure 1(a) schematically illustrates the overall fabrication route involving Au-assisted PVD growth and photolithography for patterning the top/bottom metal electrodes of the crossbar arrays. The detailed fabrication process includes the following specific steps. First, a 500 nm wide Au bottom electrode (BE) is patterned by photolithography followed by metal deposition and lift-off processes. Subsequently, the Au-patterned substrate (1 \times 2 cm²) is loaded into the furnace for Bi₂Se₃ deposition through the PVD process. The Bi₂Se₃ powder (Bi₂Se₃, 99.995%, Sigma-Aldrich) is loaded to the inlet region of a crucible boat (AdValue Technology), and the crucible boat is located at the center of the PVD quartz tube. The target substrate with prepatterned Au bottom electrodes is placed at a downstream location in the furnace tube, facing up for the vapor deposition (condensation) process. Figures 1(b) and 1(c) show the top-view scanning electron microscopy (SEM) and energy-dispersive x-ray spectroscopy (EDS) images of a representative Bi₂Se₃ feature selectively grown on a prepatterned Au BE, respectively. Both results show a good continuity of as-grown Bi₂Se₃ over the whole BE region. The EDS images further indicate that most Bi₂Se₃ deposition takes place on the Au surface [Fig. 1(c)]. It is noted that there are still nonspecifically deposited

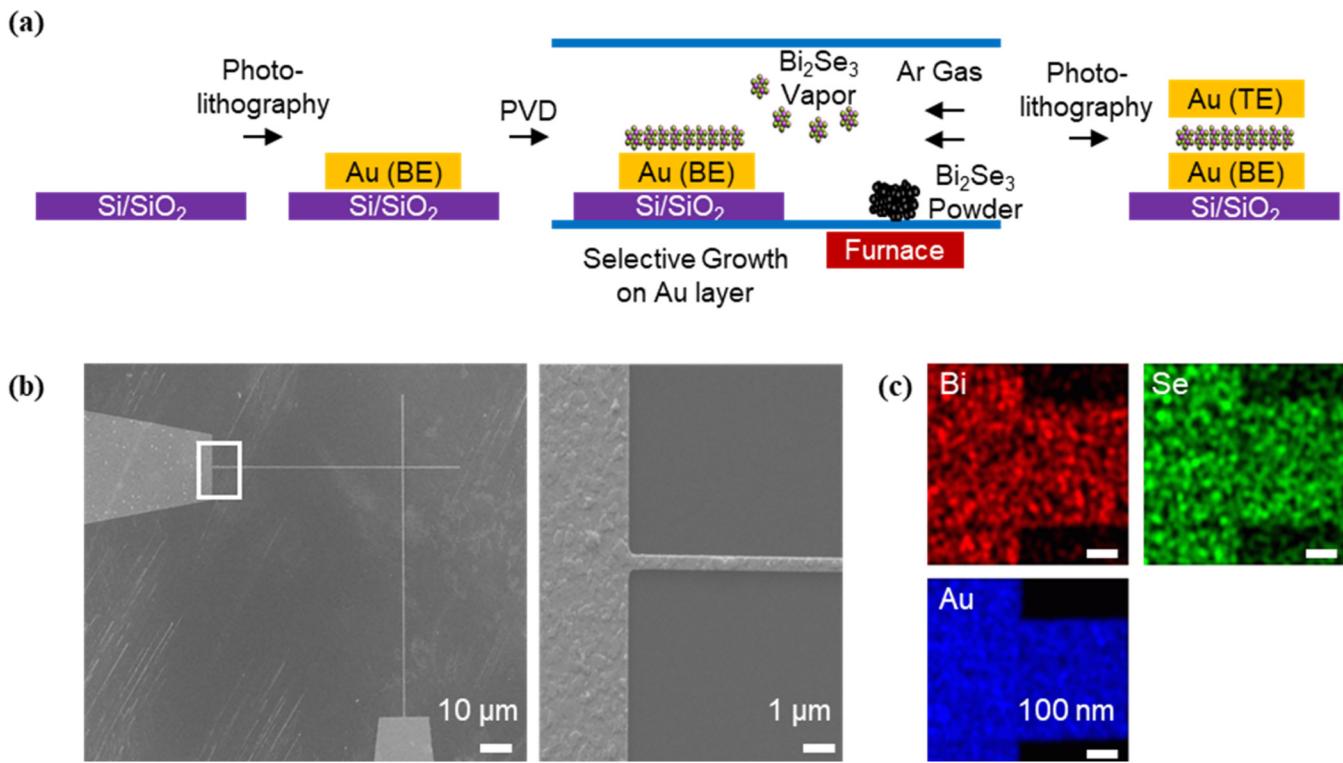
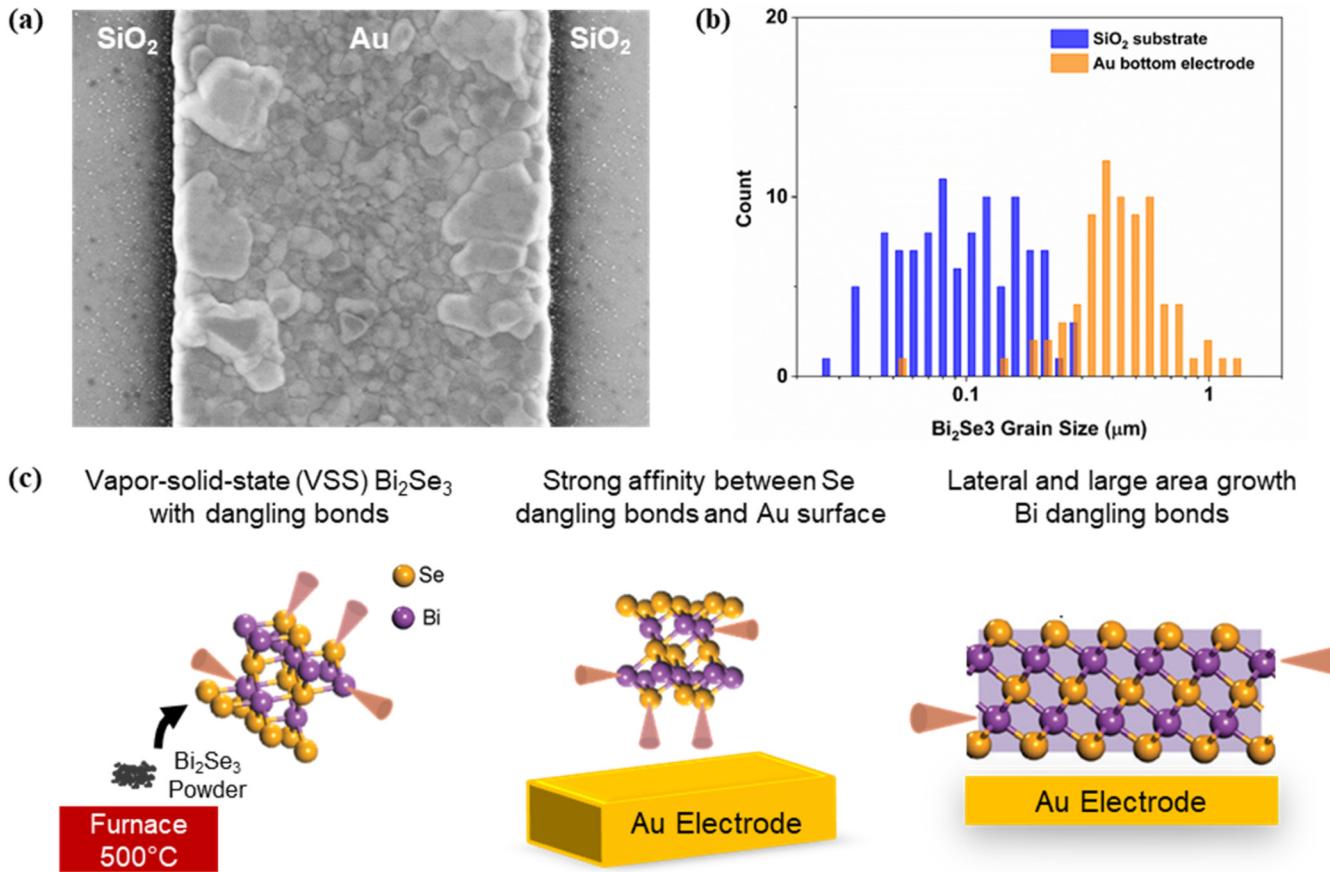


FIG. 1. (a) Illustration of the gold-assisted PVD and lithography processes to fabricate vertically arranged Bi₂Se₃ memristor devices, and (b) SEM (scale bars: 10 and 1 μm, respectively) and (c) EDS images of a representative as-grown Bi₂Se₃ memristor channel (scale bar: 100 nm).


16 September 2025 22:04:10

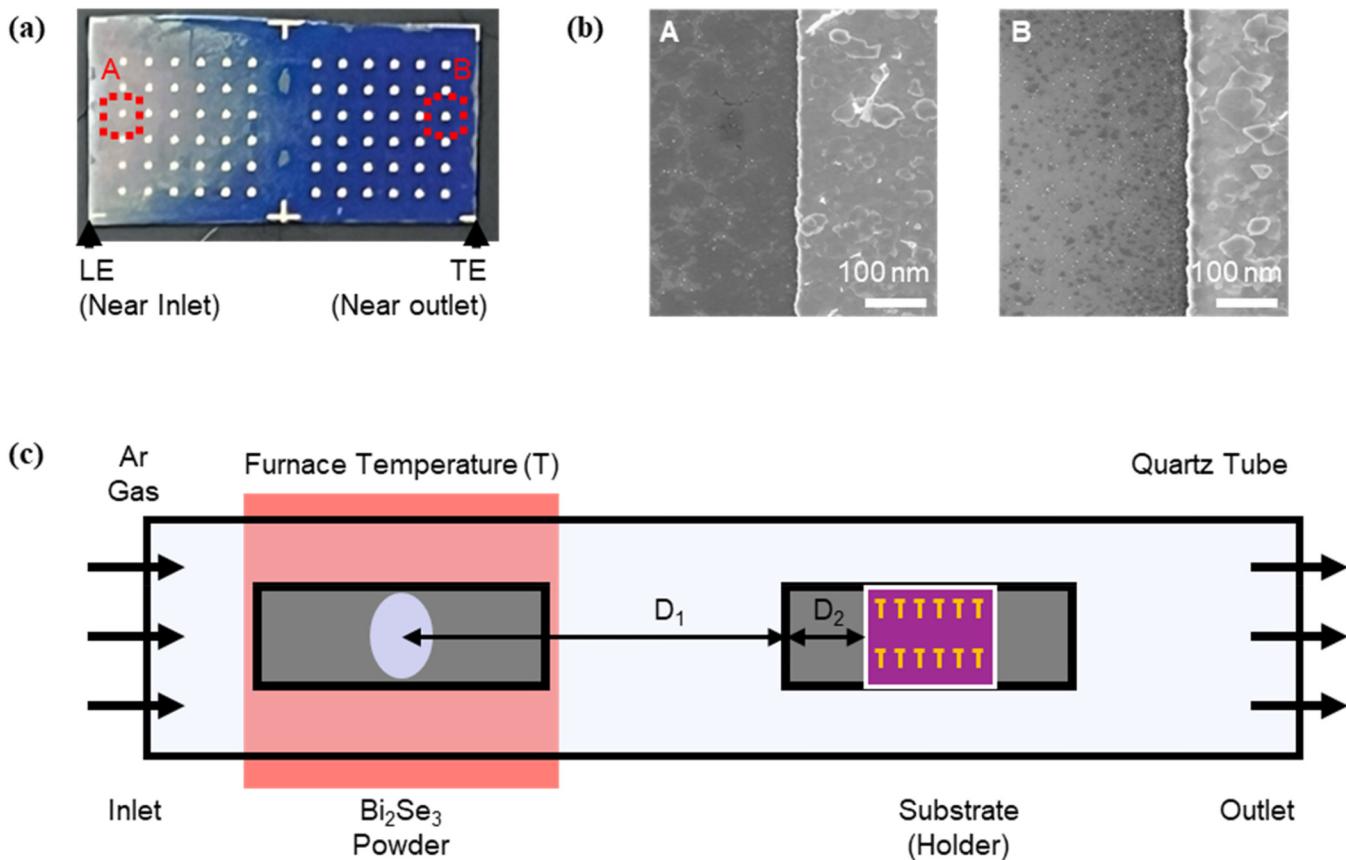
Bi₂Se₃ flakes on bare Si/SiO₂ substrate regions. However, such non-specifically deposited flakes are not continuous over large areas.

To further optimize the fabrication process of the crossbar structures with vertically arranged memristors, we further analyze the growth results of Bi₂Se₃ films on both Au and Si/SiO₂ substrate regions. In this work, suppression of the growth of Bi₂Se₃ features on the bare SiO₂ substrate regions is preferentially pursued because it allows the etch-free patterning of 2D-material device features (i.e., direct formation of isolated memristor nodes for the crossbar implementation). Figure 2 demonstrates a quantitative comparison of the deposition results on Au and bare SiO₂ surfaces. As shown in Fig. 2(a), only sparsely distributed tiny triangular Bi₂Se₃ crystal grains are found on the bare SiO₂ surface regions near the edge of the Au BE. Contrarily, on the Au electrode surface (electrode width $\sim 4 \mu\text{m}$), the nucleated Bi₂Se₃ crystal grains have much bigger sizes and they continuously cover the whole Au electrode surface. Such a distinction of the growth results between Au and SiO₂ surfaces strongly implies the catalytic role of Au in the Bi₂Se₃ growth. We further quantitatively compare these growth results by measuring the statistical distributions of the Bi₂Se₃ grain size data captured from the two different regions, as displayed in Fig. 2(b). The average grain size of the Bi₂Se₃ crystals grown on the Au layer is $\sim 450 \text{ nm}$, which is 50-folds larger than the crystal size grown on the bare SiO₂ substrate. Such a selective growth result is tentatively

attributed to a hypothesized mechanism described in Fig. 2(c). Specifically, vapor-solid-state (VSS) Bi₂Se₃ molecules, which are vaporized after being heated up to 500 °C, have quintuple layer (QL) structures and two different types of dangling bonds. One type of the dangling bonds is located along the top and bottom Se atoms in a QL, while the other type of the dangle bonds is located along the side Bi atoms in the QL. Because Se dangling bonds have a stronger affinity to the gold layer than to the SiO₂ layer, they can preferentially initiate the nucleation of Bi₂Se₃ molecules on the Au surface. Furthermore, the Bi dangling bonds, which are parallel to the surface, can facilitate the formation of large Bi₂Se₃ crystal grains.

Nevertheless, over the whole $1 \times 2 \text{ cm}^2$ size substrate surface, the resultant crystal qualities and growth selectivity are still not uniform. For example, as shown by the photograph in Fig. 3(a), the areal density of the as-grown Bi₂Se₃ crystal grains near the leading edge (LE) of the substrate is noticeably higher than that in the proximity of the trailing edge (TE) (here, the higher grain density is manifested as the apparently white color regions with the higher saturation in this macroscopic photo). To improve the yield and effective throughput of the growth of Bi₂Se₃ device features over large areas, such a nonuniformity issue needs to be addressed. Here, the nonuniformity of as-grown Bi₂Se₃ grains is further analyzed by examining the SEM images captured from both LE and TE areas [Fig. 3(b)]. These SEM images clearly indicate that for

FIG. 2. Gold-assisted large-area PVD growth of Bi_2Se_3 thin films: (a) SEM image revealing the catalyzed growth of the Bi_2Se_3 thin film on a bottom Au electrode. (b) Quantitative comparison of the statistical data of Bi_2Se_3 grain size data captured from the bare SiO_2 substrate and Au bottom electrode. (c) Hypothesized mechanism of the Au-assisted large-area PVD growth of continuous Bi_2Se_3 crystal grains.


16 September 2025 22:04:10

both LE and TE areas, the Bi_2Se_3 crystal grains nucleated on the Au surfaces exhibit quite similar crystalline morphologies, whereas the Bi_2Se_3 grains nucleated on the bare SiO_2 surfaces of these two regions exhibit a significant difference in their average grain sizes and areal densities. This also indicates that the Bi_2Se_3 nucleation in the proximity of the LE of the substrate exhibits a poor growth selectivity mediated by the presence of Au. Such unwanted Bi_2Se_3 features within the bare SiO_2 surface can cause significant leakage currents and failure of the crossbar arrays of memristors. We tentatively propose a hypothesized model for explaining this phenomenon. In this model, the carrier gas flow containing VSS Bi_2Se_3 molecules can develop vortices in the proximity of the LE of the substrate holder. The vortex flow field, formed near the LE of the substrate holder, can be attributed to the nonuniformity of Bi_2Se_3 grains growth by affecting the flow gas pressure and molecular concentration over the substrate. We further speculate the nonuniform growth result over the target substrate by examining two critical processing parameters: (1) the distance between the Bi_2Se_3 powder holder and the LE of the substrate holder (D_1) and (2) the distance

between the LE of the substrate holder and the LE of the substrate (D_2), as schematically illustrated in Fig. 3(c).

To understand the nonuniform growth result and its correlation to the PVD processing conditions, COMSOL Multiphysics simulation is performed in accordance with the experimental setup. For simplification, simulation focuses solely on computational fluid dynamics (CFD), temporarily neglecting the thermal effects involved in the growth process. The argon carrier gas flow inside the quartz tube is assumed to be laminar because of the relatively small Reynolds number (~ 100), only considering the free-stream flow velocity distribution and neglecting the details of the flow in the boundary layer at the solid/fluid interface. As shown in Table I, seven different sets of processing parameters are experimentally tested and compared to the COMSOL simulation results obtained under these settings to identify the key factors responsible for the nonuniformity of Bi_2Se_3 growth over large areas.

Figure 4 shows the comparison between simulation and experimental results, obtained using three sets of processing parameters (i.e., Nos. 5, 6, and 7 in Table I). Under these processing

FIG. 3. Spatial nonuniformity of Bi₂Se₃ growth result over a SiO₂/Si substrate: (a) optical image of a 1 cm (height) \times 2 cm (width) Si/SiO₂ substrate after PVD growth. The apparently white region indicates a poor selectivity for growing Bi₂Se₃. (b) SEM images captured from Sec. II A (LE) and Sec. II B (TE), further demonstrating the poor growth selectivity at the LE of the substrate (scale bar: 100 nm). Reduction of such white regions will enhance the yield and throughput of the Au-selectively grown Bi₂Se₃ device features. (c) Processing factors affecting the Bi₂Se₃ growth uniformity: distance between the Bi₂Se₃ powder holder and the leading edge of the substrate holder (D₁), distance between the LE of the substrate holder and LE of the substrate (D₂), furnace temperature (T), and growth time.


16 September 2025 22:04:10

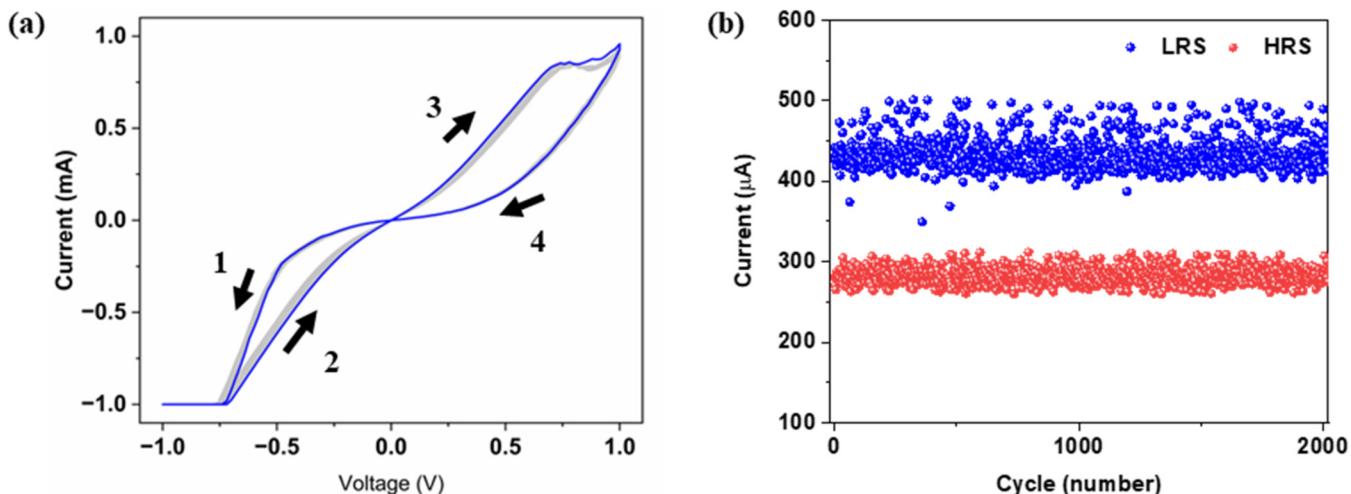
conditions, the holder of Bi₂Se₃ powder is placed at the same location in the tube; position parameters D₁ and D₂ have different values but D₁ + D₂ values remain a constant (i.e., the location of the substrate holder differs by a shift of D₁ while the distance between the LE of the target substrate and the powder holder remains the same). Figures 4(a)–4(c) depict the flow speed contour on top of the Si/SiO₂ substrate for process conditions No. 5, 6, and 7, respectively. Such a flow speed profile is important because it is

related to the gas pressure and Bi₂Se₃ molecule concentration, as partially implied by Bernoulli equation analysis with approximation assumption. Bernoulli's equation suggests the decrease in velocity is associated with an increase in pressure. Since Bi₂Se₃ nucleation happens more frequently within the substrate area with the higher pressure (i.e., the higher capture frequency for Bi₂Se₃ molecules), it can be inferred using Bernoulli's principle that the deposition happens more actively in the substrate area with the lower gas flow speed.³³ In Figs. 4(a)–4(c), the flow speed contour profile at 5.3 m/s, which is approximately half of the maximum flow speed for the three cases, is plotted with the dotted lines. The dashed circles indicate the intersection of the 5.3 m/s contour profile and the center line. These simulation results imply that as D₂ decreases from 10 to 0 mm while D₁ + D₂ remains constant, the substrate area with flow speed less than 5.3 m/s increases by 87.1% (i.e., the distances between dashed circles and LEs for substrates No. 5, 6, and 7 are 0.31, 0.39, and 0.58 cm, respectively). This supports a correlation between the low-flow regions (<5.3 m/s) and the

TABLE I. Seven sets of the processing parameters.

Sample No	1	2	3	4	5	6	7
D ₁ (mm)	130	130	140	140	140	145	150
D ₂ (mm)	10	0	0	5	10	5	0
T (°C)	500	500	500	500	500	500	500
t (min)	15	15	15	15	15	15	15

FIG. 4. COMSOL simulation and experimental results of the Bi_2Se_3 growth under various processing conditions (i.e., Condition No. 5: $D_1 = 140$ mm, $D_2 = 10$ mm, furnace temperature: 500 °C, growth time: 15 min; Condition No. 6: $D_1 = 145$ mm, $D_2 = 5$ mm, furnace temperature: 500 °C, growth time: 15 min; and Condition 7: $D_1 = 150$ mm, $D_2 = 0$ mm, furnace temperature: 500 °C, growth time: 15 min) with absolute position of the Si/SiO₂ substrates ($D_1 + D_2$) remaining the same for all three conditions: (a)–(c) display the top-view velocity profiles obtained by the COMSOL simulations at three processing conditions No. 5, 6, and 7, respectively; (d)–(f) display the corresponding side-view streamline maps; (g)–(i) are the optical images of the three samples experimentally processed with Conditions 5, 6, and 7, respectively; and (j)–(l) show the corresponding SEM images of the Bi_2Se_3 structures growth on the Si/SiO₂ substrates by using Conditions No. 5, 6, and 7, respectively. For each processing condition, the Bi_2Se_3 structures formed in the proximity of the first column of the right array are used for SEM imaging.


16 September 2025 22:04:10

white regions observed in the optical images of the experimental samples, as shown in Figs. 4(g)–4(i).

The flow speed profile is not the only factor responsible for the formation of the apparently white region modulated by processing parameters D_1 and D_2 . Figures 4(d)–4(f) show the simulated flow streamline distributions for three processing conditions. When the substrate position relative to the Bi_2Se_3 powder holder remains the same while varying the substrate holder location, the simulation results for these various cases demonstrate that a larger gap in front of the substrate (i.e., the large D_2 value) allows more carrier gas flowing toward the substrate holder's interior. As shown by the simulation result in Fig. 4(d), a vortex flow field is formed in the gap between the target substrate LE and the substrate holder. Such a configuration can indeed lower the local pressure on the substrate, thereby reducing the apparently white region (i.e., the region with the poor growth selectivity of Bi_2Se_3) and improving the effective yield and throughput of electrically isolated Bi_2Se_3 device features. Figures 4(j)–4(l) show the zoomed-in SEM images captured from the regions labelled with dashed boxes in OM

images for three different processing conditions. These SEM results can serve as further experimental evidence to support the implication from our CFD simulation results that a large gap between the leading edges of the substrate and the substrate holder with hollow interior (i.e., the larger D_2 value) result in the smaller region with poor growth selectivity.

As shown in Figs. 2 and 3, the formation of unwanted apparently white regions (i.e., the regions with a poor growth selectivity of Bi_2Se_3 features gold and bare SiO₂ surfaces) is detrimental to the yield and throughput of the final Bi_2Se_3 device features. Our simulation/experiment-integrated work provides important technical insights toward addressing this issue. On the basis of the results in Fig. 4, we can quantitatively estimate the yields of the electrically isolated Bi_2Se_3 memristor channels resulted from the aforementioned processing conditions (i.e., Samples 5, 6, and 7). Here, the yield value is calculated by the number of the Au pad regions where growth selectivity is good (i.e., no continuous Bi_2Se_3 grains are formed on the bare SiO₂ region near the neighboring Au pad) normalized by the total Au pad number. Using this method, the

FIG. 5. Memristive switching characterization results measured from a representative vertically arranged Bi_2Se_3 memristor: (a) hysteric I-V characteristics measured from 50 consecutive cycles; (b) endurance characteristics of a pair of low-resistance and high-resistance states (LRS and HRS) repetitively set by 10^4 pulse programming cycles.

yields of Samples 5, 6, and 7 are estimated to be 86.11%, 69.44%, and 43.05%, respectively. By involving more processing parameters such as temperature and growth time in both experimental and simulation analysis in the future, the yield of the device fabrication process could be further improved.

We further measured the hysteric I-V characteristics of a representative vertically arranged Bi_2Se_3 memristor made by using Condition No. 5, as shown in Fig. 5(a). For the measurement shown in Fig. 5(a), the voltage-sweep rate is 5 V/s, and the compliance current is set to 1 mA. In Fig. 5(a), the directions of four voltage-sweep processes (1–4) in a measurement cycle are labeled. During the negative voltage-sweep processes 1 and 2 (i.e., 0 to -1 to 0 V), the device conductance increases by 215% in a progressive way. During positive voltage-sweep processes 3 and 4 (0 to $+1$ to 0 V), the device conductance progressively changes back to its initial conductance states. Four voltage-sweep processes are highly repeatable over 50 cycles, as demonstrated in Fig. 5(a). Furthermore, we performed pulse programming to repetitively set the device to a pair of low-resistance state (LRS) and high-resistance state (HRS) and investigated its endurance property. Specifically, each cycle of pulse programming includes 10 positive voltage pulses (1 V, 1 ms) followed by 10 negative voltage pulses (-1 V, 1 ms). The instantaneous device conductance is sampled by a reading voltage pulse (0.2 V, 1 ms) after each programming pulse. In an endurance test, such a pulse programming cycle is repeated for 10^3 times, as shown in Fig. 5(b). Figure 5(b) shows that the vertically arranged Bi_2Se_3 memristor made by Au-assisted PVD exhibits good endurance and holds the potential for neuromorphic computing applications.

IV. SUMMARY AND CONCLUSIONS

We present research about the scalable fabrication of vertically arranged electrically isolated Bi_2Se_3 memristors in crossbar

architecture. The fabrication route is termed the Au-assisted PVD growth. In this work, it has been observed that Bi_2Se_3 structures grown on Au layers exhibit 100-folds larger average crystal grain size and are more continuous in comparison with the grains non-specifically grown on bare SiO_2 substrates. This result indicates the catalytic role of Au layers in Bi_2Se_3 nucleation. The present work also provides the COMSOL CFD simulation results to elucidate the key processing parameters affecting the quality of grown crystalline structures as well as growth selectivity between Au and bare SiO_2 surfaces. Specifically, a series of experimental and CFD analyses show that the distance between Bi_2Se_3 powder and the target substrate and the distance between the leading edges of the substrate and the substrate holder are key processing parameters. With optimization of these parameters, we have demonstrated the production of uniform electrically isolated Bi_2Se_3 memristors arranged in crossbar-arrayed structures with an in-lab yield of 86%. The entire process is etch- and plasma-free, minimizing the process-induced damage to Bi_2Se_3 channels. Finally, we present the memristive switching results measured from as-fabricated vertically arranged Bi_2Se_3 memristors. Such devices exhibit repeatable switching behaviors and high endurance for cyclic operations. This work provides the scalable fabrication methods for layered-materials-based vertically stacked memristor devices with no need of additional etching or lithographic techniques, which can potentially serve as an important approach for producing hardware-based neuromorphic sensory systems.

ACKNOWLEDGMENTS

This work is supported by NSF (No. ECCS-2331169). The authors would like to thank the staffs of the University of Michigan's Lurie Nanofabrication Facility for providing support for device fabrication.

16 September 2023 / 2024-04-10

AUTHOR DECLARATIONS

Conflicts of Interest

The authors have no conflicts to disclose.

Author Contributions

Seung jun Ki: Conceptualization (lead); Formal analysis (equal); Investigation (lead); Methodology (equal); Writing – original draft (lead). **Shiwoo Lee:** Formal analysis (lead); Validation (lead); Writing – original draft (supporting). **Mingze Chen:** Investigation (supporting); Methodology (equal); Resources (lead); Writing – original draft (supporting). **Xiaogan Liang:** Conceptualization (equal); Funding acquisition (lead); Project administration (lead); Supervision (lead); Writing – review & editing (lead).

DATA AVAILABILITY

The data that support the findings of this study are available within the article.

REFERENCES

¹H. Nam, B.-R. Oh, P. Chen, M. Chen, S. Wi, W. Wan, K. Kurabayashi, and X. Liang, *Sci. Rep.* **5**, 10546 (2015).

²M. Chen, H. Nam, S. Wi, G. Priessnitz, I. M. Gunawan, and X. Liang, *ACS Nano* **8**, 4023 (2014).

³H. Nam, S. Wi, H. Rokni, M. Chen, G. Priessnitz, W. Lu, and X. Liang, *ACS Nano* **7**, 5870 (2013).

⁴S. Wi, M. Chen, D. Li, H. Nam, E. Meyhofer, and X. Liang, *Appl. Phys. Lett.* **107**, 062102 (2015).

⁵S. Wi, H. Kim, M. Chen, H. Nam, L. J. Guo, E. Meyhofer, and X. Liang, *ACS Nano* **8**, 5270 (2014).

⁶S. Ki, M. Chen, and X. Liang, *J. Vac. Sci. Technol. B* **39**, 062201 (2021).

⁷Y. Park, B. Ryu, S. J. Ki, X. Liang, and K. Kurabayashi, *Adv. Mater. Interfaces* **8**, 2101291 (2021).

⁸Y. Park, B. Ryu, S. J. Ki, B. McCracken, A. Pennington, K. R. Ward, X. Liang, and K. Kurabayashi, *ACS Nano* **15**, 7722 (2021).

⁹J. F. Sierra, J. Fabian, R. K. Kawakami, S. Roche, and S. O. Valenzuela, *Nat. Nanotechnol.* **16**, 856 (2021).

¹⁰E. C. Ahn, *npj 2D Mater. Appl.* **4**, 17 (2020).

¹¹S. Ki, M. Chen, and X. Liang, *IEEE Nanotechnol. Mag.* **17**, 24 (2023).

¹²D. Li, B. Wu, X. Zhu, J. Wang, B. Ryu, W. D. Lu, W. Lu, and X. Liang, *ACS Nano* **12**, 9240 (2018).

¹³S. J. Ki, J. Kim, M. Chen, and X. Liang, *Appl. Phys. Lett.* **123**, 223501 (2023).

¹⁴X. Zhu, D. Li, X. Liang, and W. D. Lu, *Nat. Mater.* **18**, 141 (2019).

¹⁵M. Wang *et al.*, *Nat. Electron.* **1**, 130 (2018).

¹⁶W. Huh, D. Lee, and C. H. Lee, *Adv. Mater.* **32**, 2002092 (2020).

¹⁷N. Tulina, A. Rossolenko, I. Shmytko, N. Kolesnikov, D. Borisenko, S. Bozhko, and A. Ionov, *Mater. Lett.* **158**, 403 (2015).

¹⁸A. Zotov, V. Sirotkin, A. Il'in, O. Trofimov, D. Borisenko, N. Kolesnikov, and V. Tulin, *Chaos, Solitons Fractals* **143**, 110542 (2021).

¹⁹C. Yin *et al.*, *Adv. Funct. Mater.* **32**, 2108455 (2022).

²⁰M. Chen, S. J. Ki, and X. Liang, *ACS Appl. Electron. Mater.* **5**, 3830 (2023).

²¹S. H. Jo, T. Chang, I. Ebong, B. B. Bhadviya, P. Mazumder, and W. Lu, *Nano Lett.* **10**, 1297 (2010).

²²P. M. Sheridan, F. Cai, C. Du, W. Ma, Z. Zhang, and W. D. Lu, *Nat. Nanotechnol.* **12**, 784 (2017).

²³S. Choi, J. H. Shin, J. Lee, P. Sheridan, and W. D. Lu, *Nano Lett.* **17**, 3113 (2017).

²⁴S. Choi, P. Sheridan, and W. D. Lu, *Sci. Rep.* **5**, 10492 (2015).

²⁵T. Chang, S.-H. Jo, and W. Lu, *ACS Nano* **5**, 7669 (2011).

²⁶J. Rofeh, A. Sodhi, M. Payvand, M. A. Lastras-Montaña, A. Ghofrani, A. Madhavan, S. Yemencioglu, K.-T. Cheng, and L. Theogarajan, *2015 IEEE 65th ECTC*, 26–29 May 2015, San Diego, CA (IEEE, 2015), p. 957.

²⁷M. Rao *et al.*, *Nature* **615**, 823 (2023).

²⁸B. Ryu, D. Li, C. Park, H. Rokni, W. Lu, and X. Liang, *ACS Appl. Mater. Interfaces* **10**, 43774 (2018).

²⁹B. Ryu, J. S. Yoon, E. Kazyak, K.-H. Chen, Y. Park, N. P. Dasgupta, and X. Liang, *Nanoscale* **12**, 16917 (2020).

³⁰M. Chen, S. Ki, and X. Liang, *J. Vac. Sci. Technol. B* **39**, 062203 (2021).

³¹R. Huang, S. L. Benjamin, C. Gurnani, Y. Wang, A. L. Hector, W. Levenson, G. Reid, and C. De Groot, *Sci. Rep.* **6**, 27593 (2016).

³²W. Ahn, H. Lee, H. Kim, M. Leem, H. Lee, T. Park, E. Lee, and H. Kim, *Phys. Status Solidi RRL* **15**, 2000533 (2021).

³³J. Wei, P. L. Ong, F. E. Tay, and C. Iliescu, *Thin Solid Films* **516**, 5181 (2008).