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Abstract—Goal: We present a wireless, lightweight,
stretchable, and chest-conformable sensor, known as the
chest e-tattoo, coupled with an advanced signal processing
framework to accurately identify various cardiac events,
and thereby extract cardiac time intervals (CTIs) even
during body motion. Methods: We developed a wireless
chest e-tattoo featuring synchronous electrocardiography
(ECG) and seismocardiography (SCG), with SCG captur-
ing chest vibrations to complement ECG. Motion artifacts
often compromise the efficacy of SCG, but the e-tattoo’s
slim, stretchy design allows strategic placement near the
xiphoid process for improved signal quality. Nine partici-
pants were monitored during walking and cycling. To accu-
rately extract CTIs, we implemented a multistage signal pro-
cessing framework, named the FAD framework, combining
adaptive Normalized Least Mean Squares (NMLS) filtering,
ensemble averaging, and Empirical Mode Decomposition
(EMD). Results: Key CTIs, especially left ventricular ejection
time (LVET), were successfully extracted by our hardware-
software system and showed strong agreement with those
reported by an FDA-cleared bedside monitor even during
substantial movements. The pre-ejection period (PEP) mea-
sured by the e-tattoo also aligned with previous findings.
Conclusion: The bimodal chest e-tattoo combined with the
FAD framework enables reliable CTI measurements dur-
ing various activities. Significance: Managing cardiovascu-
lar disease at home necessitates continuous monitoring,
which has been challenging with wearables due to signal
sensitivity to motion. Accurately extracting cardiac events
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from synchronous SCG and ECG during motion can sig-
nificantly enhance heart stress response quantification, of-
fering a more comprehensive cardiac health assessment
than ECG alone and marking a significant advancement in
ambulatory cardiovascular monitoring capabilities.

Index Terms—Flexible electronics, wearable devices, car-
diovascular monitoring, motion compensation, adaptive fil-
ter, empirical mode decomposition (EMD).

I. INTRODUCTION

S
EISMOCARDIOGRAPHY (SCG) captures the thoracic

vibrations originating from cardiac contraction and the ex-

pulsion of blood from the ventricles into the vascular tree. These

seismic vibrations generated by the heartbeat can be recorded on

the chest surface using accelerometers, gyroscopes, fiber optic

sensors, or piezoelectric films [1], [2], [3], [4], [5], [6]. The SCG

signal was first discovered in 1964 [7] and gained popularity as

a noninvasive technique for cardiovascular monitoring [8], [9],

[10]. However, the reliance of the SCG on heavy equipment and

its effectiveness contingent on how and where it is attached to the

chest have made it eclipsed by the advent of advanced noninva-

sive imaging techniques, such as echocardiography, computed

tomography (CT) and cardiovascular magnetic resonance imag-

ing (C-MRI) [11].

Recent advancements in micro-electro-mechanical systems

(MEMS) technology have revitalized interest in SCG moni-

toring. Modern MEMS accelerometers have made it possible

to incorporate SCG monitoring into small, wearable devices,

allowing for continuous and mobile heart monitoring [12]. This

development overcomes the limitations of traditional imaging

techniques, which typically require intermittent and stationary

assessments.

The value of ambulatory cardiovascular monitoring is well

recognized, driving the innovation of numerous medical devices

over the years [13]. Devices like Holter monitors, which record

ECG data for extended periods outside of clinical settings, have

been essential. Although Holter monitors are effective in detect-

ing various cardiac arrhythmias and intermittent abnormalities,

they only capture the electrical aspect of heart functions, missing

the mechanical dynamics.

SCG, in contrast, offers direct insights into the mechanical

operation of the heart, providing information on blood flow,
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Fig. 1. (a) Synchronized electrocardiogram (ECG) and seismocardiogram (SCG) provide complementary information on cardiac activities,
including the QRS complex and T-wave in ECG, and aortic valve opening (AO), aortic valve closing (AC), mitral valve closing (MC), and mitral
valve opening (MO) in SCG. Pre-ejection period (PEP) is from the Q wave to the AO peak, and left ventricular ejection time (LVET) is from the
AO peak to the AC peak. (b) Schematic illustrating different phases in the left ventricular heart cycle, highlighting the sequential opening and
closing of the mitral valve (MV) and aortic valve (AV), as well as cardiac time intervals (CTIs) including iso-volumetric contraction time (IVCT), LVET,
iso-volumetric relaxation time (IVRT), and ventricular filling time (VFT). The heart-chambers-visible icon by Servier (https://smart.servier.com/) is
licensed under CC-BY 4.0 Unported https://creativecommons.org/licenses/by/4.0/ and has been modifed for this figure.

contractility of the heart muscle, valve activity, and other critical

hemodynamic parameters such as stroke volume [14], [15], [16],

[17]. Traditionally, clinicians have relied on phonocardiography

(PCG) as the primary method to assess valve dynamics by

listening to cardiac sounds [18], [19]. However, SCG, operating

at lower frequencies (up to 40Hz) compared to PCG (up to

750Hz), offers a deeper understanding of cardiac mechanics,

such as blood flow. In addition, SCG is less affected by ambient

noise than auscultation, which makes it promising for continuous

ambulatory monitoring.

Combining ECG and SCG monitoring in a single device

allows for the simultaneous tracking of the heart’s electrical

and mechanical activities. This combined approach promises

a deeper understanding of cardiovascular health in everyday

settings.

The capability of the SCG in detecting the precise moments

of cardiac valve movements has been proven [20], [21]. Fig. 1(a)

displays synchronized ECG and SCG signals for a single heart-

beat, with the key features clearly labeled. Fig. 1(b) shows

diagrams that highlight important valve movements and their

related timings within a cardiac cycle. The start of ventricular

systole, indicated by the first peak in SCG right after the R

peak in ECG, precisely captures the closure of the mitral valve

(MC). It is immediately followed by the first major peak in

the SCG, known as the aortic valve opening (AO) peak, which

marks the beginning of the ejection period. The second major

peak in the SCG records the aortic valve closing (AC), followed

by the mitral valve opening (MO) peak, which signifies the

start of diastole and the initiation of ventricular filling, respec-

tively. The precise timing information enables the calculation

of key cardiac time intervals (CTIs), such as the pre-ejection

period (PEP) and the left ventricular ejection time (LVET),

which are vital for assessing heart function [22]. For example,

previous work has discovered their correlation with cardiac

ejection fraction (EF) [23] and left ventricular failure [24],

[25].

However, the development of wearable SCG sensors for

everyday use has been hampered by motion artifacts. Motion

sensors used to collect the SCG from the surface of the hu-

man chest inadvertently capture all body movements including

respiration, not only heart valve actions, leading to consid-

erable signal contamination. The issue of motion artifacts is

evident when one notices that sternal vibrations due to the

heartbeat induce accelerations typically between 5–10 milli-g

(mg) (1g = 9.8m/s2), in contrast to activities of daily living

such as walking, which can produce accelerations of several

hundreds of mg (refer to Fig. S12 in supplementary material).

Furthermore, the noise of motion artifacts overlaps with the

frequencies of the SCG signal, which range from 1–40 Hz,

depending on the phenomena being studied [3]. The primary

heartbeat component is generally found within the 0.5–2 Hz

range, while additional components and harmonics may reach

higher frequencies. Frequencies associated with daily activities

also fall within this low-frequency range [33], [34]. We illustrate

this by performing the Fourier transform of SCG signals during

different activities and observing their magnitudes (see Figs.

S11C-E).

The considerable difference in magnitudes and the overlap-

ping frequency bands cause difficulty in isolating and precisely

interpreting SCG signals during movements. Addressing this
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TABLE I
PRIOR STUDIES WHICH FOCUSED ON REMOVING MOTION ARTIFACTS FROM SCG SIGNALS DURING SUBJECT’S MOVEMENTS HAVE UTILIZED A VARIETY OF

HARDWARE AND SOFTWARE APPROACHES

challenge is imperative for advancing the viability of ambulatory

SCG monitoring in real-life scenarios.

Numerous studies have sought to overcome this challenge

with varying levels of success, employing a range of signal

filtering or decomposition techniques. Key insights from the

most relevant prior works are summarized in Table I. These

efforts have mainly focused on extracting cardiac sounds, heart

rate (HR), or the AO peak (and consequently PEP). However, dif-

ficulties arise in restoring the SCG waveform to discern the AC

peak, a necessity for accurate LVET extraction. The importance

of LVET in cardiovascular assessment has been underscored

in many studies, particularly in conditions such as mitral valve

stenosis, arterial hypertension, and atrial fibrillation [35], [36],

[37]. Therefore, despite the diversity of methods, continuous

SCG denoising and comprehensive CTI extraction have not yet

been achieved.

Our contributions in this work comprise a comprehen-

sive hardware-software system that combines low-power and

high-fidelity chest e-tattoo with sophisticated signal process-

ing framework to achieve accurate CTI measurements during

physical activities. The main components of the system are

summarized as follows:
� An improved bimodal chest e-tattoo with light weight, me-

chanical flexibility, and body-conformal characteristics,

which enable high quality physiological signal capture

from an anatomically challenging region.
� A software framework that is validated in vivo to ef-

fectively eliminate motion artifacts from the SCG. This

framework, named FAD (filter, averaging, empirical mode

decomposition), allows for the extraction of LVET during

various physical activities, a capability that, to the best of

our knowledge, has not been previously achieved.

The effectiveness of this framework is evaluated by comparing

the LVET data from the e-tattoo with that from an FDA-cleared

impedance cardiogram (ICG) of nine participants performing

various activities, such as walking at various speeds and cycling

under varying loads. This comparison aims to validate the relia-

bility and accuracy of the FAD framework in monitoring cardiac

dynamics during body movements.

II. METHODS

A. Design and Application of the Dual-Mode E-Tattoo

The e-tattoo is a stretchable chest-laminated cardiovascu-

lar monitoring device, representing a modified version of the

device introduced in our earlier research [38]. The e-tattoo

features a flexible printed circuit (FPC) structured into islands

interconnected with serpentine traces that enable stretchabil-

ity [39](Fig. 2(a)). The islands serve as platforms for housing

rigid elements, which include passive components and inte-

grated circuits (IC), responsible for sensing, computing, and

communication. Components designated for specific functions

or sharing the same communication channel are segregated

onto distinct islands, reducing the number of interconnections

needed and thereby improving the overall robustness of the

device. This design preserves the optimal electronic density

and simplifies the manufacturing process. In addition, employ-

ing serpentine interconnections imparts stretchability to the

device.

The e-tattoo, which is capable of synchronizing the mea-

surement of ECG (MAX30003), SCG (ADXL355), and photo-

plethysmogram (PPG) (ADPD1080) signals, also intermittently

measures skin temperature (TMP117). Each sensor is equipped

with integrated analog front ends, which guarantees that solely

digital data is communicated to the central processor. This design

minimizes the susceptibility to noise from external factors, such

as electromagnetic interference or body-coupled interference,

ensuring accurate and reliable signal acquisition. To enhance

signal fidelity, sensor measurements are synchronized using

a peripheral-to-peripheral hardware synchronization scheme,

effectively eliminating cross-modality timing errors. The cen-

tral processing unit (nRF52832) is equipped with integrated
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Fig. 2. (a) Different components of the wireless chest e-tattoo depicted in an exploded view. The two layers of flexible printed circuit (FPC) and
graphite-polyurethane (GPU) electrodes on a Tegaderm tape are assembled to form the e-tattoo. (b) Circuit block diagram illustrating the primary
hardware components of the e-tattoo and their interconnections. (c) A photo of the wireless, multimodal, chest-conformable e-tattoo.

Bluetooth Low Energy (BLE) capabilities, facilitating real-time

transmission of data from the device to a designated receiver

(Fig. 2(b)). In this case, an Android smartphone, paired with a

custom designed application, enables real-time waveform dis-

play for monitoring device functionality. In addition, users can

mark specific instances to timestamp significant events, aiding

in post-processing analysis. The e-tattoo offers ultra-low power

consumption when utilizing ECG and SCG only. The power

consumption while actively transmitting data is 730 uA (see

Fig. S19).

There are some distinct hardware modifications with regards

to our previous work [38]. The SCG sensor has been shifted from

the I2C line to the SPI line and has been physically placed next to

the ECG sensor. This decision was made primarily because using

I2C with this specific component led to communication insta-

bility, and switching to SPI communication provided additional

power savings. Now that the SCG sensor is placed on the lower

part of the e-tattoo, it can be placed closer to the xiphoid process

more easily for better signal quality. Another modification is

the inclusion of a low-resolution accelerometer (MC3635) to

measure whole-body motion. It is not sensitive enough to mea-

sure SCG but can detect motion and body orientation. Lastly, a

power connector flap was added to the FPC design. This enables

a lithium polymer (LiPo) battery to be easily clipped or swapped

to supply more power than a coin cell battery used previously.

The ECG sensor requires robust electrical contact with

the skin, achieved using dry electrodes made from graphite

polyurethane (GPU) film cut into custom patterns by precision

laser cutting and transferred onto a medical dressing (Tegaderm,

3M). The detailed process is explained in supplementary materi-

als Section I. Dry electrodes offer advantages over gel electrodes,

such as immunity to signal degradation due to electrode dehy-

dration [40], [41] and a slim form factor. To establish electrical

connections between layers, holes are punctured through the

Tegaderm, and z-axis anisotropic conductive film (ACF) links

the FPC layer with the dry electrodes (Fig. 2(a)). This assem-

bly technique enables a temporary linkage between the device

and the electrodes, which simplifies the disposal of electrodes

after use and the recycling of electronic components. In this

configuration, only the medical dressing and the biocompatible

GPU make direct contact with the skin, ensuring electronic

isolation. This design prioritizes user comfort, device reusability,

and long-term functionality.

The device is laminated on the chest near the lower sternum,

such that the ECG electrodes span across the sternum to provide

a strong signal with a sharp R peak (Fig. 2(c)) and the SCG

sensor is in close proximity to the xiphoid process. Within the

realm of SCG, an ongoing challenge revolves around deter-

mining the optimal position for signal measurement. Currently,

there is no standardized protocol for sensor placement for SCG

recording. The significance of sensor positioning comes from

well-established evidence indicating that the SCG morphology

undergoes changes based on the location of the sensor on the

chest surface. [42], [43], [44], [45], [46]. Previous studies have

attempted to document these changes in the waveform and iden-

tify locations on the anterior chest that consistently guarantee

high repeatability in measurement, signal strength, and a high

signal-to-noise ratio [5], [43], [44], [47]. Furthermore, it has
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Fig. 3. Comparison of electrocardiogram (ECG) and seismocardiogram (SCG) captured by the e-tattoo attached at various chest locations.
Position A, the xiphoid process, exhibits an SCG of greater amplitude, featuring more pronounced first and second heart vibrations, alongside
a sharp ECG signal. In Position B, both signals appear significantly dampened, with the AC peak, required for LVET extraction, being notably
subdued. The signal in Position C is rendered unusable due to substantial attenuation, likely attributed to its greater distance from the heart.
Position D, situated on the left side of the thorax adjacent to the heart, manifest an SCG signal of reduced amplitude with the first and second
vibrations discernible although attenuated.

been observed that the placement of the sensor can either subdue

or amplify certain diagnostically significant features, such as the

AC peak, thus affecting the feasibility of extracting clinically

relevant parameters such as LVET [42], [48]. Previous studies

have also highlighted how variations in SCG morphology are

influenced by muscle mass and tissue properties of the thorax.

Areas such as the xiphoid process are ideal for acquiring high-

quality SCG signals due to their minimal fat content and bony

underlying support.

However, in several previous studies using wearable SCG

sensing systems during motion, applying the sensor near the

xiphoid process was not entirely feasible due to the size, bulk-

iness, and rigidity of the hardware, leading to difficulties in

conforming to the significant curvature of the sternal crest.

Research studies utilizing such devices near the xiphoid have

typically required the use of harnesses or belt-like apparatuses

to secure the device in place [27], [30]. In contrast, many other

investigations have chosen to place the sensor in the upper

sternal region, closer to the suprasternal notch [32]. However,

this location has been considered suboptimal for SCG detection,

as previously highlighted and confirmed through our own tests

(Fig. 3). Our thin, flexible, and stretchable device presents a

distinctive advantage in enabling application at the optimal po-

sition without concerns of delamination or compromise of user

comfort. This design choice addresses the limitations associated

with traditional rigid systems, allowing optimal SCG sensing in

a challenging anatomical region.

B. Motion Compensation Technique

The FAD framework leverages the implementation of adap-

tive filters, ensemble averaging, and EMD techniques in a se-

quential stack for motion compensation. For the sake of clarity,

we will briefly delve into the fundamentals of these techniques.

1) Adaptive Filter: Adaptive filters, characterized by their

dynamic parameter modification in response to evolving in-

put signal characteristics, are particularly valuable in scenarios

where signal properties fluctuate. These filters continuously

adapt their coefficients to minimize the discrepancy between

the actual and desired outputs, thereby effectively tracking

and responding to changes in the input signal. Among vari-

ous adaptive filters, the Recursive Least Squares (RLS) and

Least Mean Squares (LMS) filters have shown promise in

previous research focused on motion compensation for SCG

signals [27], [28].

The LMS Algorithm stands out for its straightforward appli-

cation and minimal computational demands, making it ideal for

real-time scenarios. However, using a gradient-based method for

updating weights, the LMS algorithm does exhibit a slower rate

of convergence and a propensity for higher steady-state errors

relative to the unknown system.

In the realm of noise and motion artifact mitigation, the

Normalized Least Mean Squares (NLMS) filter excels at elim-

inating extraneous disturbances while retaining critical signal

elements. This capability is particularly crucial in contexts where

input signals are subject to frequent and dynamic variations, as

observed in noise and motion compensation within biomedical

signal processing [49], [50].

2) Empirical Mode Decomposition: The Empirical Mode

Decomposition (EMD) method, recognized for significantly

enhancing the signal-to-noise ratio in wearable SCG signals,

represents an effective denoising strategy [32]. Developed by

Huang et al., EMD is an adaptive technique tailored for analyzing

non-stationary signals [51], [52], [53], [54]. It decomposes a

signal into unique components called intrinsic mode functions

(IMF), each representing distinct amplitude and frequency mod-

ulated tones inherent to the signal.

This decomposition is especially beneficial for SCG signal

extraction during motion, as SCG signals are nonlinear and

influenced by various physiological and external factors. EMD’s

adaptability, not requiring a predetermined basis like Fourier or

wavelet transforms, is crucial for managing the unpredictable

aspects of motion-corrupted SCG signals.

In addition, EMD aids in reducing noise from SCG signals.

Identifying and removing IMFs that correspond to noise or ar-

tifacts, typically associated with higher frequencies or irregular
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Fig. 4. Experimental protocol and setup. Three representative seismocardiogram (SCG) signals obtained during distinct activities (i.e., resting,
walking, and cycling) are displayed to show the notable differences.

patterns [55] the process preserves cardiac core information in

the SCG signal, thus enhancing its clarity.

III. EXPERIMENTAL VALIDATION

A. Experimental Setup and Protocol

A study was carried out with 9 healthy volunteers (all male,

age: 26.5 ± 4.1 years, weight: 150.7 ± 18.8 lbs, height: 69.5

± 2.1 inches, and BMI 21.83 ± 2.23), following a protocol

approved by the Institutional Review Board (IRB) at the Uni-

versity of Texas at Austin (IRB ID: STUDY00002313-MOD01).

Informed consent was obtained from each participant prior to

the beginning of the experimental session. Although no female

participant joined the final trial, we have successfully conducted

a pilot study on a female subject, and the results are given

in Fig. S13, which shows the promise of our system on the

female anatomy. More female participants will be recruited

in an upcoming study in which trimodal e-tattoos with added

photoplethysmography (PPG) capabilities will be tested.

The experimental protocol, illustrated in Fig. 4, included a

sequence of activities: 5 minutes of rest, followed by 3 minutes of

walking at 1.5 mph, 2 mph, 2.5 mph, and 3 mph. After a 5-minute

recovery period, participants completed a 10-minute cycling

session divided into two phases with incremental load, during

which participants were asked to maintain a steady power output

at 50 W and 75W. Some participants underwent an additional

walking session at 4 mph for 3 minutes, where 4 mph was

identified as the threshold speed at which the framework showed

signs of failure (Supplementary Materials Fig. S2). This speed

limitation is acceptable, as the study surpasses speeds used in

the previous literature and already corresponds to a mild jogging

phase at 4 mph.

Throughout the course of the study, participants simultane-

ously wore our e-tattoo and a noninvasive cardiac output monitor

(NICOM), the Starling Fluid Management Monitoring System

(Baxter International). The NICOM was utilized to measure

various hemodynamic parameters, including HR and LVET,

and these metrics were compared with data from the e-tattoo.

The NICOM utilizes impedance cardiography (ICG) and was

chosen as the gold standard for CTIs since it is noninvasive and

FDA-cleared patient monitor. It also has the advantage of being

semi-mobile as it can run on a battery for a short period of time.

In the raw SCG signals, an evident elevation in amplitude

was observed during walking and cycling, in contrast to the

signals obtained during the rest or recovery periods due to the

introduction of motion artifacts. Fig. 4 illustrates this in a 3-

second dorsoventral signal captured in three different phases of

the protocol (rest / recovery, walking, and cycling) for the same

participant. It is interesting to note that the amplitude variation

observed during cycling was significantly lower in magnitude

compared to that during walking.

B. Data Acquisition and Pre-Processing

The signals from the NICOM and the wearable e-tattoo

sensors were synchronized by initiating them simultaneously.

To confirm accurate alignment, the signals were subjected to

a manual review, with time-axis data providing additional ver-

ification. For the analyses, only the dorsoventral SCG signal,

corresponding to the z-axis component, was utilized.

In the signal preprocessing phase, the raw SCG signal is

filtered through a tenth-order Butterworth bandpass filter with a

cutoff frequency ranging from 1 to 40 Hz to extract the relevant

SCG signal. The raw signal is also processed using a bandpass
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Fig. 5. (a) Block diagram of the FAD framework for both electrocardiogram (ECG) and seismocardiogram (SCG) signal processing, encompassing
steps from bandpass filtering (BPF) and adaptive normalized least mean square (NLMS) filtering, to multiple beat ensemble averaging and empirical
mode decomposition (EMD) for recovering the SCG signal. Extraction of the key cardiac time intervals (CTI) of interest, namely pre-ejection period
(PEP) and left ventricular ejection time (LVET) is performed on the recovered signals. Results of motion compensation on SCG signals obtained
through the application of the FAD framework during (b) walking and (c) cycling are shown. Plots show 3 seconds of the raw SCG signal along with
a recovered heartbeat. Notably, the recovered SCG waveforms exhibit a quality comparable to that of the signal at rest.

filter with a cutoff frequency range of 1 to 10 Hz to extract

the major motion component of the signal. Both signals are

resampled to a sampling frequency of 1000 Hz for greater

temporal resolution and then fed into the adaptive filter. The

ECG signal is filtered with a bandpass filter in the range of 1 to

30 Hz and resampled similarly to 1000 Hz.

C. Motion Compensation

The FAD framework incorporates a multistage filtering

approach to recover the SCG signal during motion, as illustrated

in Fig. 5(a). All processing related to motion compensation

was performed offline and no processing was performed on the

e-tattoo or the Android device. Initially, an adaptive filter is

applied, followed by beat-ensembling using the ECG R-peak

as a reference. Subsequently, EMD is used and specific peaks

are extracted from the first IMF. PEP and LVET are computed

based on these extracted features corresponding to AO

and AC.

An adaptive NLMS filter is employed to remove substantial

motion artifacts from the SCG signals. The filter is implemented

with a window length ‘N’ of 128 samples, a learning rate coeffi-

cient ’µ ‘ set at 0.7, and initially randomized weights. The output

of the NLMS filter is segmented into individual beats using the

ECG signal as a reference for segmentation. We have previously

demonstrated that ECG measurements taken with dry electrodes

on the e-tattoo are largely unaffected by motion interference, due

to the minimized slippage at the electrode-skin interface [56].

Ensemble averaging is performed every 11 beats with an 8-beat

overlap to enhance the signal-to-noise ratio (SNR), considering

that the number of heartbeats required in the averaging operation

is directly proportional to the walking speed [32]. Following
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ensemble averaging, EMD is applied to each resulting ‘beat’ to

extract the first IMF. Subsequently, this signal is processed to

extract cardiac events of interest.

D. Extraction of Key Parameters

The first IMF of each ensemble is used for the detection of AO

and AC. For each activity chunk, we set the expected positions

for the initial AO and AC peaks. Then, on the first IMF of the

first window of ensembled beats, peaks closest to the expected

positions are selected as AO and AC peaks. The positions of AO

and AC peaks are then added to the arrays, and the expected

positions are updated using a weighted averaging approach and

used to search for peaks in the following ensemble windows.

Identified AO and AC peaks are also plotted and manually

verified by a human operator. To confirm the correct positioning

of the AC peak, the T wave of the ECG signal is taken as a

reference. Following the peak detection process, calculations

are performed to determine the PEP and LVET over time based

on the detected peaks.

IV. EXPERIMENTAL RESULTS

A. Results of Motion Compensation

Fig. 5(b) provides a visual representation of both the raw

signals and the results achieved in recovering the SCG signal

during two distinct activities of a single participant: walking

at 3 mph and cycling at 75W. 3 seconds of raw data are

showcased together with a 500-ms segment of the processed

signal depicting one heartbeat. In the initial raw signal captured

from the participant, the presence of motion artifacts dominates,

rendering the mechano-acoustic cardiac signal nearly imper-

ceptible. However, the FAD framework exhibits remarkable

efficacy in canceling out the motion-induced component of the

signal, resulting in the successful recovery of the SCG beats.

This achievement underscores the robustness and efficacy of our

methodology in mitigating motion interference and facilitating

accurate extraction of SCG data even during sustained motion.

HR obtained from the NICOM device was compared to the

HR derived from the R-R interval extracted from the ECG

signal captured by our e-tattoo. The resulting data demonstrated

a markedly high correlation (R = 0.997) and precision (error

= 0.13± 3.72) in all subjects, confirming the precision of

HR measurements obtained from the e-tattoo compared to a

commercially available clinical device (Fig. S3). This corre-

lation not only attests to the precision of our e-tattoo’s HR

measurements, but also implies that the majority of R peaks were

accurately detected. This precision in the detection of the R peak

is of significant importance in ensuring the correct segmentation

of the beat and the correct averaging of the ensemble required

for the reliable operation of the FAD framework.

In addition to HR, the NICOM device can provide LVET mea-

surements. However, it lacks the capability to measure PEP, nor

does it allow access to the raw data required for PEP extraction.

Consequently, we were unable to perform a direct comparison of

PEP with a gold standard measurement to assess the accuracy of

the extracted PEP. However, previous research has shown a de-

crease in PEP with increased walking speed [29], [32]. PEP data

from our e-tattoo also demonstrate this trend for all participants

(Fig. S7-S9). The LVET data from NICOM can be effectively

compared with the LVET calculated from the recovered SCG

signal of the e-tattoo. As LVET is determined by the time

interval between AO and AC, the precise detection of both events

significantly contributes to the accurate measurement of LVET.

In Fig. 6, we present the LVET correlation analysis between

NICOM and the E-tattoo. This figure presents three representa-

tive plots, each corresponding to a different participant selected

from our pool of recruited participants. These plots show a range

of correlations, including the highest correlation, a low correla-

tion, and a correlation between these extremes. Additionally, for

these participants, the temporal continuity of LVET detection is

illustrated, showing how LVET measurements change over time,

during different activities, from both the NICOM device and

our e-tattoo. For a comprehensive view of all participants’ data

and correlations, please refer to the supplementary materials,

Figs. S4–S6.

For participants exhibiting a lower correlation in the LVET

measurements between the e-tattoo and the NICOM device, a

closer examination of the temporal LVET plot reveals notable

deviations during the brisk walking phase. To decipher the

underlying cause of this discrepancy, we construct LVET vs. HR

plots for both devices, as depicted in Fig. 7. Interestingly, most

of the participants demonstrated a strong negative correlation

between LVET and HR when measured with e-tattoo. This

agrees with the results in the literature, where LVET and HR have

a negative correlation due to shorter filling times [57]. We noted

that for participants with poorer LVET agreement between the

e-tattoo and NICOM, the NICOM device exhibits a suspicious

decrease in the correlation between its LVET and HR. Moreover,

it becomes evident that during the walking phase, the LVET vs.

HR plot generated by the NICOM deviates from the expected

linear pattern. This observation strongly implies the challenges

faced by the NICOM system in accurately extracting the LVET

during motion.

As mentioned above, walking induces motion artifacts, with

magnitudes nearly three times higher than those generated

during cycling. Given that excessive motion interference can

impact ICG measurements [58], it is plausible that the NICOM

struggles to extract precise LVET data during brisk walking,

thus accounting for the observed deviations in the LVET vs. HR

plot.

V. DISCUSSIONS

This study addresses the significant challenge of elimi-

nating motion artifacts in the SCG for ambulatory monitor-

ing of CTIs. This achievement in continuous and accurate

CTI monitoring during activities such as walking and cy-

cling is made possible through both hardware and software

innovations. The success in mitigating motion artifacts stems

from a two-pronged strategy: first, the strategic placement

of the highly flexible and conformable device to improve

signal quality; and second, the implementation of a multi-

stage processing approach. This approach named FAD in-

cludes the use of an adaptive NLMS filter, ensemble averaging,

and EMD.
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Fig. 6. Correlation plots and temporal left ventricular ejection time (LVET) profiles for three representative subjects performing designed activities.
(a) Displays the subject with the highest correlation. (b) Features a subject with a moderate correlation. (c) Shows a subject with a low correlation.
These correlations are drawn between LVET measurements from the e-tattoo and the NICOM device.

The strategic placement of the device contributes significantly

to the success of our approach. By attaching the device to the

chest, with the SCG sensor near the xiphoid process and the ECG

electrodes across the sternum, we ensure optimal signal capture.

Usually, the curvature of the chest in this anatomical area makes

it difficult to position other rigid and bulky devices at this

sensing site. The lightweight, ultrathin, and flexible form factor

of our e-tattoo overcomes the positioning challenges presented

by traditional rigid systems, ensuring effective SCG sensing

near the heart’s apex and improving signal accuracy without

compromising wearer comfort during movement or long-term

wear.
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Fig. 7. Correlation between left ventricular ejection time (LVET) and heart rate (HR) measured by e-tattoo and NICOM for representative subjects
presented in Fig. 6. As expected, a strong negative correlation is displayed. However, for Subject 1 (c), the NICOM data exhibits deviations from
this expected behavior during the walking phase, indicating motion artifacts in NICOM measurements.

Within the FAD framework, the adaptive NLMS filter is

designed to dynamically adjust its weights in response to large

variations in the acceleration signal. This is enhanced by using

ensemble averaging aligned with ECG segmentation to boost

SNR and minimize beat-by-beat variability. EMD is then applied

after the ensemble averaging, focusing on isolating the first

IMF to refine the morphology of the SCG signal. This com-

prehensive and sequential noise mitigation strategy effectively

isolates the SCG waveform from motion distortions, allowing

a clear identification of fiducial points such as AO and AC.

These points are vital for the precise calculation of CTIs such

as PEP and LVET, ensuring accurate ambulatory CTI measure-

ment in both active and at rest scenarios. We illustrate in Fig.

S16 the effect of eliminating either the NMLS filter or the

EMD from the framework. The results clearly show that all

elements of the multistage design are required for the optimal

performance of the FAD framework and the highest signal

quality.

Experimental findings indicate the method’s limitations at

walking speeds near jogging, specifically around 4 mph, likely

due to the adaptive NLMS filter’s saturation at handling rapid

signal changes. Such speeds intensify body movements, caus-

ing significant SCG signal fluctuations that challenge the fil-

ter’s capacity to adjust dynamically, particularly affecting its

ability to manage quick signal oscillations at these increased

speeds.

We explored using a second coarser accelerometer as a dif-

ferent reference for the NMLS filter. However, because the

e-tattoo had to conform to the 3D chest surface such that the two

accelerometers’ orientations were not perfectly aligned, there

was a significant difference in the morphology of the input and

reference signals, causing the framework to underperform. The

results of this study are included in supplementary materials

Section K.

We also explored the performance of the FAD framework

on random non-periodic motion. We utilized the data that was

captured when the participants were changing positions for

example when getting on the treadmill or the cycle ergometer.

The FAD framework successfully compensated for this range

of motion as well (see Fig. S18), indicating its potential for

ambulatory monitoring.

Despite its advantages, the e-tattoo hardware faces some

limitations, such as the need for a hairless contact area to

ensure optimal ECG signal quality and challenges with sweat

tolerance. Sweat accumulation under the e-tattoo during intense

activities or in warm conditions can reduce device adhesion and

potentially harm exposed electronic components such as the

battery. Future iterations could include a waterproof enclosure

for electronics and a sweat-permeable membrane to enhance

adhesion and device longevity.

At the software level, further exploration into the refinement

of the adaptive NLMS filter could provide better performance

during intense movements at higher speeds. Adjusting parame-

ters like the filter’s window length or learning rate, or integrating

additional processing steps may enhance its effectiveness in

more dynamic scenarios.

In future work, we plan to validate our hardware-software sys-

tem on non-healthy populations, specifically people with cardiac

disease or defects. We expect that their ECG and SCG waveform

morphologies would be different from healthy subjects. It would

be clinically impactful to extract continuous cardiac output or

stroke volume out of the e-tattoo measureables and validate them

against gold standards such as C-MRI.

VI. CONCLUSION

In conclusion, the wireless chest e-tattoo paired with the FAD

framework showcases a significant leap forward in the domain
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of continuous ambulatory cardiac monitoring. The lightweight,

ultrathin, and stretchable e-tattoo can closely adhere to the curvi-

linear xiphoid process area, where simultaneous high-quality

ECG and SCG can be measured, for prolonged periods despite

physical activities. It is supported by a comprehensive and

robust algorithm for SCG noise reduction and high-accuracy

CTI tracking. This innovative system can help improve the

understanding of cardiovascular health through crucial CTIs

such as PEP and LVET, thus significantly advancing ambulatory

cardiac monitoring and facilitating the delivery of a holistic and

comprehensive assessment of cardiac health.
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